
NFSv4 B. Halevy
Internet-Draft
Intended status: Standards Track T. Haynes
Expires: July 25, 2016 Primary Data
 January 22, 2016

Parallel NFS (pNFS) Flexible File Layout
draft-ietf-nfsv4-flex-files-07.txt

Abstract

 The Parallel Network File System (pNFS) allows a separation between
 the metadata (onto a metadata server) and data (onto a storage
 device) for a file. The Flexible File Layout Type is defined in this
 document as an extension to pNFS to allow the use of storage devices
 in a fashion such that they require only a quite limited degree of
 interaction with the metadata server, using already existing
 protocols. Client side mirroring is also added to provide
 replication of files.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 25, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Halevy & Haynes Expires July 25, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Flex File Layout January 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Definitions . 3
1.2. Difference Between a Data Server and a Storage Device . . 5
1.3. Requirements Language 6

2. Coupling of Storage Devices 6
2.1. LAYOUTCOMMIT . 6
2.2. Fencing Clients from the Data Server 6
2.2.1. Implementation Notes for Synthetic uids/gids 7
2.2.2. Example of using Synthetic uids/gids 7

2.3. State and Locking Models 8
3. XDR Description of the Flexible File Layout Type 9
3.1. Code Components Licensing Notice 10

4. Device Addressing and Discovery 11
4.1. ff_device_addr4 . 11
4.2. Storage Device Multipathing 13

5. Flexible File Layout Type 14
5.1. ff_layout4 . 14
5.1.1. Error codes from LAYOUTGET 17
5.1.2. Client Interactions with FF_FLAGS_NO_IO_THRU_MDS . . 18

5.2. Interactions Between Devices and Layouts 18
5.3. Handling Version Errors 18

6. Striping via Sparse Mapping 19
7. Recovering from Client I/O Errors 19
8. Mirroring . 20
8.1. Selecting a Mirror 21
8.2. Writing to Mirrors 21
8.3. Metadata Server Resilvering of the File 22

9. Flexible Files Layout Type Return 22
9.1. I/O Error Reporting 23
9.1.1. ff_ioerr4 . 23

9.2. Layout Usage Statistics 24
9.2.1. ff_io_latency4 24
9.2.2. ff_layoutupdate4 25
9.2.3. ff_iostats4 . 25

9.3. ff_layoutreturn4 . 26
10. Flexible Files Layout Type LAYOUTERROR 27
11. Flexible Files Layout Type LAYOUTSTATS 27
12. Flexible File Layout Type Creation Hint 27
12.1. ff_layouthint4 . 28

13. Recalling a Layout . 28
13.1. CB_RECALL_ANY . 28

Halevy & Haynes Expires July 25, 2016 [Page 2]

Internet-Draft Flex File Layout January 2016

14. Client Fencing . 29
15. Security Considerations 30
15.1. Kerberized File Access 30
15.1.1. Loosely Coupled 31
15.1.2. Tightly Coupled 31

16. IANA Considerations . 31
17. References . 31
17.1. Normative References 31
17.2. Informative References 32

Appendix A. Acknowledgments 32
Appendix B. RFC Editor Notes 33

 Authors' Addresses . 33

1. Introduction

 In the parallel Network File System (pNFS), the metadata server
 returns Layout Type structures that describe where file data is
 located. There are different Layout Types for different storage
 systems and methods of arranging data on storage devices. This
 document defines the Flexible File Layout Type used with file-based
 data servers that are accessed using the Network File System (NFS)
 protocols: NFSv3 [RFC1813], NFSv4.0 [RFCNFSv4], NFSv4.1 [RFC5661],
 and NFSv4.2 [NFSv42].

 To provide a global state model equivalent to that of the Files
 Layout Type, a back-end control protocol MAY be implemented between
 the metadata server and NFSv4.1+ storage devices. It is out of scope
 for this document to specify the wire protocol of such a protocol,
 yet the requirements for the protocol are specified in [RFC5661] and
 clarified in [pNFSLayouts].

1.1. Definitions

 control protocol: is a set of requirements for the communication of
 information on layouts, stateids, file metadata, and file data
 between the metadata server and the storage devices (see
 [pNFSLayouts]).

 client-side mirroring: is when the client and not the server is
 responsible for updating all of the mirrored copies of a layout
 segment.

 data file: is that part of the file system object which describes
 the payload and not the object. E.g., it is the file contents.

 data server (DS): is one of the pNFS servers which provides the
 contents of a file system object which is a regular file.
 Depending on the layout, there might be one or more data servers

https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires July 25, 2016 [Page 3]

Internet-Draft Flex File Layout January 2016

 over which the data is striped. Note that while the metadata
 server is strictly accessed over the NFSv4.1+ protocol, depending
 on the Layout Type, the data server could be accessed via any
 protocol that meets the pNFS requirements.

 fencing: is when the metadata server prevents the storage devices
 from processing I/O from a specific client to a specific file.

 File Layout Type: is a Layout Type in which the storage devices are
 accessed via the NFS protocol.

 layout: informs a client of which storage devices it needs to
 communicate with (and over which protocol) to perform I/O on a
 file. The layout might also provide some hints about how the
 storage is physically organized.

 layout iomode: describes whether the layout granted to the client is
 for read or read/write I/O.

 layout segment: describes a sub-division of a layout. That sub-
 division might be by the iomode (see Sections 3.3.20 and 12.2.9 of
 [RFC5661]), a striping pattern (see Section 13.3 of [RFC5661]), or
 requested byte range.

 layout stateid: is a 128-bit quantity returned by a server that
 uniquely defines the layout state provided by the server for a
 specific layout that describes a Layout Type and file (see

Section 12.5.2 of [RFC5661]). Further, Section 12.5.3 describes
 the difference between a layout stateid and a normal stateid.

 layout type: describes both the storage protocol used to access the
 data and the aggregation scheme used to lay out the file data on
 the underlying storage devices.

 loose coupling: is when the metadata server and the storage devices
 do not have a control protocol present.

 metadata file: is that part of the file system object which
 describes the object and not the payload. E.g., it could be the
 time since last modification, access, etc.

 metadata server (MDS): is the pNFS server which provides metadata
 information for a file system object. It also is responsible for
 generating layouts for file system objects. Note that the MDS is
 responsible for directory-based operations.

 mirror: is a copy of a layout segment. While mirroring can be used
 for backing up a layout segment, the copies can be distributed

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-13.3
https://datatracker.ietf.org/doc/html/rfc5661#section-12.5.2

Halevy & Haynes Expires July 25, 2016 [Page 4]

Internet-Draft Flex File Layout January 2016

 such that each remote site has a locally available copy. Note
 that if one copy of the mirror is updated, then all copies must be
 updated.

 recalling a layout: is when the metadata server uses a back channel
 to inform the client that the layout is to be returned in a
 graceful manner. Note that the client could be able to flush any
 writes, etc., before replying to the metadata server.

 revoking a layout: is when the metadata server invalidates the
 layout such that neither the metadata server nor any storage
 device will accept any access from the client with that layout.

 resilvering: is the act of rebuilding a mirrored copy of a layout
 segment from a known good copy of the layout segment. Note that
 this can also be done to create a new mirrored copy of the layout
 segment.

 rsize: is the data transfer buffer size used for reads.

 stateid: is a 128-bit quantity returned by a server that uniquely
 defines the open and locking states provided by the server for a
 specific open-owner or lock-owner/open-owner pair for a specific
 file and type of lock.

 storage device: is another term used almost interchangeably with
 data server. See Section 1.2 for the nuances between the two.

 tight coupling: is when the metadata server and the storage devices
 do have a control protocol present.

 wsize: is the data transfer buffer size used for writes.

1.2. Difference Between a Data Server and a Storage Device

 We defined a data server as a pNFS server, which implies that it can
 utilize the NFSv4.1+ protocol to communicate with the client. As
 such, only the File Layout Type would currently meet this
 requirement. The more generic concept is a storage device, which can
 use any protocol to communicate with the client. The requirements
 for a storage device to act together with the metadata server to
 provide data to a client are that there is a Layout Type
 specification for the given protocol and that the metadata server has
 granted a layout to the client. Note that nothing precludes there
 being multiple supported Layout Types (i.e., protocols) between a
 metadata server, storage devices, and client.

Halevy & Haynes Expires July 25, 2016 [Page 5]

Internet-Draft Flex File Layout January 2016

 As storage device is the more encompassing terminology, this document
 utilizes it over data server.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Coupling of Storage Devices

 The coupling of the metadata server with the storage devices can be
 either tight or loose. In a tight coupling, there is a control
 protocol present to manage security, LAYOUTCOMMITs, etc. With a
 loose coupling, the only control protocol might be a version of NFS.
 As such, semantics for managing security, state, and locking models
 MUST be defined.

2.1. LAYOUTCOMMIT

 With a tightly coupled system, when the metadata server receives a
 LAYOUTCOMMIT (see Section 18.42 of [RFC5661]), the semantics of the
 File Layout Type MUST be met (see Section 12.5.4 of [RFC5661]). It
 is the responsibility of the client to make sure the data file is
 stable before the metadata server begins to query the storage devices
 about the changes to the file. With a loosely coupled system, if any
 WRITE to a storage device did not result with stable_how equal to
 FILE_SYNC, a LAYOUTCOMMIT to the metadata server MUST be preceded
 with a COMMIT to the storage device. Note that if the client has not
 done a COMMIT to the storage device, then the LAYOUTCOMMIT might not
 be synchronized to the last WRITE operation to the storage device.

2.2. Fencing Clients from the Data Server

 With loosely coupled storage devices, the metadata server uses
 synthetic uids and gids for the data file, where the uid owner of the
 data file is allowed read/write access and the gid owner is allowed
 read only access. As part of the layout (see ffds_user and
 ffds_group in Section 5.1), the client is provided with the user and
 group to be used in the Remote Procedure Call (RPC) [RFC5531]
 credentials needed to access the data file. Fencing off of clients
 is achieved by the metadata server changing the synthetic uid and/or
 gid owners of the data file on the storage device to implicitly
 revoke the outstanding RPC credentials.

 With this loosely coupled model, the metadata server is not able to
 fence off a single client, it is forced to fence off all clients.
 However, as the other clients react to the fencing, returning their

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5661#section-18.42
https://datatracker.ietf.org/doc/html/rfc5661#section-12.5.4
https://datatracker.ietf.org/doc/html/rfc5531

Halevy & Haynes Expires July 25, 2016 [Page 6]

Internet-Draft Flex File Layout January 2016

 layouts and trying to get new ones, the metadata server can hand out
 a new uid and gid to allow access.

 Note: it is recommended to implement common access control methods at
 the storage device filesystem to allow only the metadata server root
 (super user) access to the storage device, and to set the owner of
 all directories holding data files to the root user. This approach
 provides a practical model to enforce access control and fence off
 cooperative clients, but it can not protect against malicious
 clients; hence it provides a level of security equivalent to
 AUTH_SYS.

 With tightly coupled storage devices, the metadata server sets the
 user and group owners, mode bits, and ACL of the data file to be the
 same as the metadata file. And the client must authenticate with the
 storage device and go through the same authorization process it would
 go through via the metadata server.

2.2.1. Implementation Notes for Synthetic uids/gids

 The selection method for the synthetic uids and gids to be used for
 fencing in loosely coupled storage devices is strictly an
 implementation issue. I.e., an administrator might restrict a range
 of such ids available to the Lightweight Directory Access Protocol
 (LDAP) 'uid' field [RFC4519]. She might also be able to choose an id
 that would never be used to grant acccess. Then when the metadata
 server had a request to access a file, a SETATTR would be sent to the
 storage device to set the owner and group of the data file. The user
 and group might be selected in a round robin fashion from the range
 of available ids.

 Those ids would be sent back as ffds_user and ffds_group to the
 client. And it would present them as the RPC credentials to the
 storage device. When the client was done accessing the file and the
 metadata server knew that no other client was accessing the file, it
 could reset the owner and group to restrict access to the data file.

 When the metadata server wanted to fence off a client, it would
 change the synthetic uid and/or gid to the restricted ids. Note that
 using a restricted id ensures that there is a change of owner and at
 least one id available that never gets allowed access.

2.2.2. Example of using Synthetic uids/gids

 The user loghyr creates a file "ompha.c" on the metadata server and
 it creates a corresponding data file on the storage device.

 The metadata server entry may look like:

https://datatracker.ietf.org/doc/html/rfc4519

Halevy & Haynes Expires July 25, 2016 [Page 7]

Internet-Draft Flex File Layout January 2016

 -rw-r--r-- 1 loghyr staff 1697 Dec 4 11:31 ompha.c

 On the storage device, it may be assigned some random synthetic uid/
 gid to deny access:

 -rw-r----- 1 19452 28418 1697 Dec 4 11:31 data_ompha.c

 When the file is opened on a client, since the layout knows nothing
 about the user (and does not care), whether loghyr or garbo opens the
 file does not matter. The owner and group are modified and those
 values are returned.

 -rw-r----- 1 1066 1067 1697 Dec 4 11:31 data_ompha.c

 The set of synthetic gids on the storage device should be selected
 such that there is no mapping in any of the name services used by the
 storage device. I.e., each group should have no members.

 If the layout segment has an iomode of LAYOUTIOMODE4_READ, then the
 metadata server should return a synthetic uid that is not set on the
 storage device. Only the synthetic gid would be valid.

 The client is thus solely responsible for enforcing file permissions
 in a loosely coupled model. To allow loghyr write access, it will
 send an RPC to the storage device with a credential of 1066:1067. To
 allow garbo read access, it will send an RPC to the storage device
 with a credential of 1067:1067. The value of the uid does not matter
 as long as it is not the synthetic uid granted it when getting the
 layout.

 While pushing the enforcement of permission checking onto the client
 may seem to weaken security, the client may already be responsible
 for enforcing permissions before modifications are sent to a server.
 With cached writes, the client is always responsible for tracking who
 is modifying a file and making sure to not coalesce requests from
 multiple users into one request.

2.3. State and Locking Models

 Metadata file OPEN, LOCK, and DELEGATION operations are always
 executed only against the metadata server.

 The metadata server responds to state changing operations by
 executing them against the respective data files on the storage
 devices. It then sends the storage device open stateid as part of
 the layout (see the ffm_stateid in Section 5.1) and it is then used
 by the client for executing READ/WRITE operations against the storage
 device.

Halevy & Haynes Expires July 25, 2016 [Page 8]

Internet-Draft Flex File Layout January 2016

 NFSv4.1+ storage devices that do not return the
 EXCHGID4_FLAG_USE_PNFS_DS flag set to EXCHANGE_ID are indicating that
 they are loosely coupled. As such, they are treated the same way as
 NFSv4 storage devices.

 NFSv4.1+ storage devices that do identify themselves with the
 EXCHGID4_FLAG_USE_PNFS_DS flag set to EXCHANGE_ID are stongly
 coupled. They will be using a back-end control protocol as described
 in [RFC5661] to implement a global stateid model as defined there.

3. XDR Description of the Flexible File Layout Type

 This document contains the external data representation (XDR)
 [RFC4506] description of the Flexible File Layout Type. The XDR
 description is embedded in this document in a way that makes it
 simple for the reader to extract into a ready-to-compile form. The
 reader can feed this document into the following shell script to
 produce the machine readable XDR description of the Flexible File
 Layout Type:

 <CODE BEGINS>

 #!/bin/sh
 grep '^ *///' $* | sed 's?^ */// ??' | sed 's?^ *///$??'

 <CODE ENDS>

 That is, if the above script is stored in a file called "extract.sh",
 and this document is in a file called "spec.txt", then the reader can
 do:

 sh extract.sh < spec.txt > flex_files_prot.x

 The effect of the script is to remove leading white space from each
 line, plus a sentinel sequence of "///".

 The embedded XDR file header follows. Subsequent XDR descriptions,
 with the sentinel sequence are embedded throughout the document.

 Note that the XDR code contained in this document depends on types
 from the NFSv4.1 nfs4_prot.x file [RFC5662]. This includes both nfs
 types that end with a 4, such as offset4, length4, etc., as well as
 more generic types such as uint32_t and uint64_t.

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc5662

Halevy & Haynes Expires July 25, 2016 [Page 9]

Internet-Draft Flex File Layout January 2016

3.1. Code Components Licensing Notice

 Both the XDR description and the scripts used for extracting the XDR
 description are Code Components as described in Section 4 of "Legal
 Provisions Relating to IETF Documents" [LEGAL]. These Code
 Components are licensed according to the terms of that document.

 <CODE BEGINS>

 /// /*
 /// * Copyright (c) 2012 IETF Trust and the persons identified
 /// * as authors of the code. All rights reserved.
 /// *
 /// * Redistribution and use in source and binary forms, with
 /// * or without modification, are permitted provided that the
 /// * following conditions are met:
 /// *
 /// * o Redistributions of source code must retain the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer.
 /// *
 /// * o Redistributions in binary form must reproduce the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer in the documentation and/or other
 /// * materials provided with the distribution.
 /// *
 /// * o Neither the name of Internet Society, IETF or IETF
 /// * Trust, nor the names of specific contributors, may be
 /// * used to endorse or promote products derived from this
 /// * software without specific prior written permission.
 /// *
 /// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 /// * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// *
 /// * This code was derived from RFCTBD10.

Halevy & Haynes Expires July 25, 2016 [Page 10]

Internet-Draft Flex File Layout January 2016

 /// * Please reproduce this note if possible.
 /// */
 ///
 /// /*
 /// * flex_files_prot.x
 /// */
 ///
 /// /*
 /// * The following include statements are for example only.
 /// * The actual XDR definition files are generated separately
 /// * and independently and are likely to have a different name.
 /// * %#include <nfsv42.x>
 /// * %#include <rpc_prot.x>
 /// */
 ///

 <CODE ENDS>

4. Device Addressing and Discovery

 Data operations to a storage device require the client to know the
 network address of the storage device. The NFSv4.1+ GETDEVICEINFO
 operation (Section 18.40 of [RFC5661]) is used by the client to
 retrieve that information.

4.1. ff_device_addr4

 The ff_device_addr4 data structure is returned by the server as the
 storage protocol specific opaque field da_addr_body in the
 device_addr4 structure by a successful GETDEVICEINFO operation.

 <CODE BEGINS>

 /// struct ff_device_versions4 {
 /// uint32_t ffdv_version;
 /// uint32_t ffdv_minorversion;
 /// uint32_t ffdv_rsize;
 /// uint32_t ffdv_wsize;
 /// bool ffdv_tightly_coupled;
 /// };
 ///

 /// struct ff_device_addr4 {
 /// multipath_list4 ffda_netaddrs;
 /// ff_device_versions4 ffda_versions<>;
 /// };
 ///

https://datatracker.ietf.org/doc/html/rfc5661#section-18.40

Halevy & Haynes Expires July 25, 2016 [Page 11]

Internet-Draft Flex File Layout January 2016

 <CODE ENDS>

 The ffda_netaddrs field is used to locate the storage device. It
 MUST be set by the server to a list holding one or more of the device
 network addresses.

 The ffda_versions array allows the metadata server to present choices
 as to NFS version, minor version, and coupling strength to the
 client. The ffdv_version and ffdv_minorversion represent the NFS
 protocol to be used to access the storage device. This layout
 specification defines the semantics for ffdv_versions 3 and 4. If
 ffdv_version equals 3 then the server MUST set ffdv_minorversion to 0
 and ffdv_tightly_coupled to false. The client MUST then access the
 storage device using the NFSv3 protocol [RFC1813]. If ffdv_version
 equals 4 then the server MUST set ffdv_minorversion to one of the
 NFSv4 minor version numbers and the client MUST access the storage
 device using NFSv4.

 Note that while the client might determine that it cannot use any of
 the configured combinations of ffdv_version, ffdv_minorversion, and
 ffdv_tightly_coupled, when it gets the device list from the metadata
 server, there is no way to indicate to the metadata server as to
 which device it is version incompatible. If however, the client
 waits until it retrieves the layout from the metadata server, it can
 at that time clearly identify the storage device in question (see

Section 5.3).

 The ffdv_rsize and ffdv_wsize are used to communicate the maximum
 rsize and wsize supported by the storage device. As the storage
 device can have a different rsize or wsize than the metadata server,
 the ffdv_rsize and ffdv_wsize allow the metadata server to
 communicate that information on behalf of the storage device.

 ffdv_tightly_coupled informs the client as to whether the metadata
 server is tightly coupled with the storage devices or not. Note that
 even if the data protocol is at least NFSv4.1, it may still be the
 case that there is loose coupling is in effect. If
 ffdv_tightly_coupled is not set, then the client MUST commit writes
 to the storage devices for the file before sending a LAYOUTCOMMIT to
 the metadata server. I.e., the writes MUST be committed by the
 client to stable storage via issuing WRITEs with stable_how ==
 FILE_SYNC or by issuing a COMMIT after WRITEs with stable_how !=
 FILE_SYNC (see Section 3.3.7 of [RFC1813]).

https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc1813#section-3.3.7

Halevy & Haynes Expires July 25, 2016 [Page 12]

Internet-Draft Flex File Layout January 2016

4.2. Storage Device Multipathing

 The Flexible File Layout Type supports multipathing to multiple
 storage device addresses. Storage device level multipathing is used
 for bandwidth scaling via trunking and for higher availability of use
 in the event of a storage device failure. Multipathing allows the
 client to switch to another storage device address which may be that
 of another storage device that is exporting the same data stripe
 unit, without having to contact the metadata server for a new layout.

 To support storage device multipathing, ffda_netaddrs contains an
 array of one or more storage device network addresses. This array
 (data type multipath_list4) represents a list of storage devices
 (each identified by a network address), with the possibility that
 some storage device will appear in the list multiple times.

 The client is free to use any of the network addresses as a
 destination to send storage device requests. If some network
 addresses are less desirable paths to the data than others, then the
 MDS SHOULD NOT include those network addresses in ffda_netaddrs. If
 less desirable network addresses exist to provide failover, the
 RECOMMENDED method to offer the addresses is to provide them in a
 replacement device-ID-to-device-address mapping, or a replacement
 device ID. When a client finds no response from the storage device
 using all addresses available in ffda_netaddrs, it SHOULD send a
 GETDEVICEINFO to attempt to replace the existing device-ID-to-device-
 address mappings. If the MDS detects that all network paths
 represented by ffda_netaddrs are unavailable, the MDS SHOULD send a
 CB_NOTIFY_DEVICEID (if the client has indicated it wants device ID
 notifications for changed device IDs) to change the device-ID-to-
 device-address mappings to the available addresses. If the device ID
 itself will be replaced, the MDS SHOULD recall all layouts with the
 device ID, and thus force the client to get new layouts and device ID
 mappings via LAYOUTGET and GETDEVICEINFO.

 Generally, if two network addresses appear in ffda_netaddrs, they
 will designate the same storage device. When the storage device is
 accessed over NFSv4.1 or a higher minor version, the two storage
 device addresses will support the implementation of client ID or
 session trunking (the latter is RECOMMENDED) as defined in [RFC5661].
 The two storage device addresses will share the same server owner or
 major ID of the server owner. It is not always necessary for the two
 storage device addresses to designate the same storage device with
 trunking being used. For example, the data could be read-only, and
 the data consist of exact replicas.

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires July 25, 2016 [Page 13]

Internet-Draft Flex File Layout January 2016

5. Flexible File Layout Type

 The layout4 type is defined in [RFC5662] as follows:

 <CODE BEGINS>

 enum layouttype4 {
 LAYOUT4_NFSV4_1_FILES = 1,
 LAYOUT4_OSD2_OBJECTS = 2,
 LAYOUT4_BLOCK_VOLUME = 3,
 LAYOUT4_FLEX_FILES = 4
 [[RFC Editor: please modify the LAYOUT4_FLEX_FILES
 to be the layouttype assigned by IANA]]
 };

 struct layout_content4 {
 layouttype4 loc_type;
 opaque loc_body<>;
 };

 struct layout4 {
 offset4 lo_offset;
 length4 lo_length;
 layoutiomode4 lo_iomode;
 layout_content4 lo_content;
 };

 <CODE ENDS>

 This document defines structure associated with the layouttype4 value
 LAYOUT4_FLEX_FILES. [RFC5661] specifies the loc_body structure as an
 XDR type "opaque". The opaque layout is uninterpreted by the generic
 pNFS client layers, but is interpreted by the Flexible File Layout
 Type implementation. This section defines the structure of this
 otherwise opaque value, ff_layout4.

5.1. ff_layout4

 <CODE BEGINS>

 /// const FF_FLAGS_NO_LAYOUTCOMMIT = 0x00000001;
 /// const FF_FLAGS_NO_IO_THRU_MDS = 0x00000002;

 /// typedef uint32_t ff_flags4;
 ///

https://datatracker.ietf.org/doc/html/rfc5662
https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires July 25, 2016 [Page 14]

Internet-Draft Flex File Layout January 2016

 /// struct ff_data_server4 {
 /// deviceid4 ffds_deviceid;
 /// uint32_t ffds_efficiency;
 /// stateid4 ffds_stateid;
 /// nfs_fh4 ffds_fh_vers<>;
 /// fattr4_owner ffds_user;
 /// fattr4_owner_group ffds_group;
 /// };
 ///

 /// struct ff_mirror4 {
 /// ff_data_server4 ffm_data_servers<>;
 /// };
 ///

 /// struct ff_layout4 {
 /// length4 ffl_stripe_unit;
 /// ff_mirror4 ffl_mirrors<>;
 /// ff_flags4 ffl_flags;
 /// uint32_t ffl_stats_collect_hint;
 /// };
 ///

 <CODE ENDS>

 The ff_layout4 structure specifies a layout over a set of mirrored
 copies of that portion of the data file described in the current
 layout segment. This mirroring protects against loss of data in
 layout segments. Note that while not explicitly shown in the above
 XDR, each layout4 element returned in the logr_layout array of
 LAYOUTGET4res (see Section 18.43.1 of [RFC5661]) descibes a layout
 segment. Hence each ff_layout4 also descibes a layout segment.

 It is possible that the file is concatenated from more than one
 layout segment. Each layout segment MAY represent different striping
 parameters, applying respectively only to the layout segment byte
 range.

 The ffl_stripe_unit field is the stripe unit size in use for the
 current layout segment. The number of stripes is given inside each
 mirror by the number of elements in ffm_data_servers. If the number
 of stripes is one, then the value for ffl_stripe_unit MUST default to
 zero. The only supported mapping scheme is sparse and is detailed in

Section 6. Note that there is an assumption here that both the
 stripe unit size and the number of stripes is the same across all
 mirrors.

https://datatracker.ietf.org/doc/html/rfc5661#section-18.43.1

Halevy & Haynes Expires July 25, 2016 [Page 15]

Internet-Draft Flex File Layout January 2016

 The ffl_mirrors field is the array of mirrored storage devices which
 provide the storage for the current stripe, see Figure 1.

 The ffl_stats_collect_hint field provides a hint to the client on how
 often the server wants it to report LAYOUTSTATS for a file. The time
 is in seconds.

 +-----------+
 | |
 | |
 | File |
 | |
 | |
 +-----+-----+
 |
 +------------+------------+
 | |
 +----+-----+ +-----+----+
 | Mirror 1 | | Mirror 2 |
 +----+-----+ +-----+----+
 | |
 +-----------+ +-----------+
 |+-----------+ |+-----------+
 ||+-----------+ ||+-----------+
 +|| Storage | +|| Storage |
 +| Devices | +| Devices |
 +-----------+ +-----------+

 Figure 1

 The ffs_mirrors field represents an array of state information for
 each mirrored copy of the current layout segment. Each element is
 described by a ff_mirror4 type.

 ffds_deviceid provides the deviceid of the storage device holding the
 data file.

 ffds_fh_vers is an array of filehandles of the data file matching to
 the available NFS versions on the given storage device. There MUST
 be exactly as many elements in ffds_fh_vers as there are in
 ffda_versions. Each element of the array corresponds to a particular
 combination of ffdv_version, ffdv_minorversion, and
 ffdv_tightly_coupled provided for the device. The array allows for
 server implementations which have different filehandles for different
 combinations of version, minor version, and coupling strength. See

Section 5.3 for how to handle versioning issues between the client
 and storage devices.

Halevy & Haynes Expires July 25, 2016 [Page 16]

Internet-Draft Flex File Layout January 2016

 For tight coupling, ffds_stateid provides the stateid to be used by
 the client to access the file. For loose coupling and a NFSv4
 storage device, the client may use an anonymous stateid to perform I/
 O on the storage device as there is no use for the metadata server
 stateid (no control protocol). In such a scenario, the server MUST
 set the ffds_stateid to be the anonymous stateid.

 For loosely coupled storage devices, ffds_user and ffds_group provide
 the synthetic user and group to be used in the RPC credentials that
 the client presents to the storage device to access the data files.
 For tightly coupled storage devices, the user and group on the
 storage device will be the same as on the metadata server. I.e., if
 ffdv_tightly_coupled (see Section 4.1) is set, then the client MUST
 ignore both ffds_user and ffds_group.

 The allowed values for both ffds_user and ffds_group are specified in
Section 5.9 of [RFC5661]. For NFSv3 compatibility, user and group

 strings that consist of decimal numeric values with no leading zeros
 can be given a special interpretation by clients and servers that
 choose to provide such support. The receiver may treat such a user
 or group string as representing the same user as would be represented
 by an NFSv3 uid or gid having the corresponding numeric value. Note
 that if using Kerberos for security, the expectation is that these
 values will be a name@domain string.

 ffds_efficiency describes the metadata server's evaluation as to the
 effectiveness of each mirror. Note that this is per layout and not
 per device as the metric may change due to perceived load,
 availability to the metadata server, etc. Higher values denote
 higher perceived utility. The way the client can select the best
 mirror to access is discussed in Section 8.1.

 ffl_flags is a bitmap that allows the metadata server to inform the
 client of particular conditions that may result from the more or less
 tight coupling of the storage devices. FF_FLAGS_NO_LAYOUTCOMMIT can
 be set to indicate that the client is not required to send
 LAYOUTCOMMIT to the metadata server. FF_FLAGS_NO_IO_THRU_MDS can be
 set to indicate that the client SHOULD not send IO operations to the
 metadata server. I.e., even if a storage device is partitioned from
 the client, the client SHOULD not try to proxy the IO through the
 metadata server.

5.1.1. Error codes from LAYOUTGET

 [RFC5661] provides little guidance as to how the client is to proceed
 with a LAYOUTEGT which returns an error of either
 NFS4ERR_LAYOUTTRYLATER, NFS4ERR_LAYOUTUNAVAILABLE, and NFS4ERR_DELAY.

https://datatracker.ietf.org/doc/html/rfc5661#section-5.9

Halevy & Haynes Expires July 25, 2016 [Page 17]

Internet-Draft Flex File Layout January 2016

 NFS4ERR_LAYOUTUNAVAILABLE: there is no layout available and the IO
 is to go to the metadata server. Note that it is possible to have
 had a layout before a recall and not after.

 NFS4ERR_LAYOUTTRYLATER: there is some issue preventing the layout
 from being granted. If the client already has an appropriate
 layout, it SHOULD continue with IO to the storage devices.

 NFS4ERR_DELAY: there is some issue preventing the layout from being
 granted. If the client already has an appropriate layout, it
 SHOULD not continue with IO to the storage devices.

5.1.2. Client Interactions with FF_FLAGS_NO_IO_THRU_MDS

 If the client does not ask for a layout for a file, then the IO will
 go through the metadata server. Thus, even if the metadata server
 sets the FF_FLAGS_NO_IO_THRU_MDS flag, it can recall the layout and
 either not set the flag on the new layout or not provide a layout.
 When a client encounters an error with a storage device, it typically
 returns the layout to the metadata server and requests a new layout.
 The client's IO would then proceed according to the status codes as
 outlined in Section 5.1.1.

5.2. Interactions Between Devices and Layouts

 In [RFC5661], the File Layout Type is defined such that the
 relationship between multipathing and filehandles can result in
 either 0, 1, or N filehandles (see Section 13.3). Some rationals for
 this are clustered servers which share the same filehandle or
 allowing for multiple read-only copies of the file on the same
 storage device. In the Flexible File Layout Type, while there is an
 array of filehandles, they are independent of the multipathing being
 used. If the metadata server wants to provide multiple read-only
 copies of the same file on the same storage device, then it should
 provide multiple ff_device_addr4, each as a mirror. The client can
 then determine that since the ffds_fh_vers are different, then there
 are multiple copies of the file for the current layout segment
 available.

5.3. Handling Version Errors

 When the metadata server provides the ffda_versions array in the
 ff_device_addr4 (see Section 4.1), the client is able to determine if
 it can not access a storage device with any of the supplied
 combinations of ffdv_version, ffdv_minorversion, and
 ffdv_tightly_coupled. However, due to the limitations of reporting
 errors in GETDEVICEINFO (see Section 18.40 in [RFC5661], the client
 is not able to specify which specific device it can not communicate

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-18.40

Halevy & Haynes Expires July 25, 2016 [Page 18]

Internet-Draft Flex File Layout January 2016

 with over one of the provided ffdv_version and ffdv_minorversion
 combinations. Using ff_ioerr4 (see Section 9.1.1 inside either the
 LAYOUTRETURN (see Section 18.44 of [RFC5661]) or the LAYOUTERROR (see
 Section 15.6 of [NFSv42] and Section 10 of this document), the client
 can isolate the problematic storage device.

 The error code to return for LAYOUTRETURN and/or LAYOUTERROR is
 NFS4ERR_MINOR_VERS_MISMATCH. It does not matter whether the mismatch
 is a major version (e.g., client can use NFSv3 but not NFSv4) or
 minor version (e.g., client can use NFSv4.1 but not NFSv4.2), the
 error indicates that for all the supplied combinations for
 ffdv_version and ffdv_minorversion, the client can not communicate
 with the storage device. The client can retry the GETDEVICEINFO to
 see if the metadata server can provide a different combination or it
 can fall back to doing the I/O through the metadata server.

6. Striping via Sparse Mapping

 While other Layout Types support both dense and sparse mapping of
 logical offsets to physical offsets within a file (see for example

Section 13.4 of [RFC5661]), the Flexible File Layout Type only
 supports a sparse mapping.

 With sparse mappings, the logical offset within a file (L) is also
 the physical offset on the storage device. As detailed in

Section 13.4.4 of [RFC5661], this results in holes across each
 storage device which does not contain the current stripe index.

 L: logical offset into the file

 W: stripe width
 W = number of elements in ffm_data_servers

 S: number of bytes in a stripe
 S = W * ffl_stripe_unit

 N: stripe number
 N = L / S

7. Recovering from Client I/O Errors

 The pNFS client may encounter errors when directly accessing the
 storage devices. However, it is the responsibility of the metadata
 server to recover from the I/O errors. When the LAYOUT4_FLEX_FILES
 layout type is used, the client MUST report the I/O errors to the
 server at LAYOUTRETURN time using the ff_ioerr4 structure (see

Section 9.1.1).

https://datatracker.ietf.org/doc/html/rfc5661#section-18.44
https://datatracker.ietf.org/doc/html/rfc5661#section-13.4
https://datatracker.ietf.org/doc/html/rfc5661#section-13.4.4

Halevy & Haynes Expires July 25, 2016 [Page 19]

Internet-Draft Flex File Layout January 2016

 The metadata server analyzes the error and determines the required
 recovery operations such as recovering media failures or
 reconstructing missing data files.

 The metadata server SHOULD recall any outstanding layouts to allow it
 exclusive write access to the stripes being recovered and to prevent
 other clients from hitting the same error condition. In these cases,
 the server MUST complete recovery before handing out any new layouts
 to the affected byte ranges.

 Although it MAY be acceptable for the client to propagate a
 corresponding error to the application that initiated the I/O
 operation and drop any unwritten data, the client SHOULD attempt to
 retry the original I/O operation by requesting a new layout using
 LAYOUTGET and retry the I/O operation(s) using the new layout, or the
 client MAY just retry the I/O operation(s) using regular NFS READ or
 WRITE operations via the metadata server. The client SHOULD attempt
 to retrieve a new layout and retry the I/O operation using the
 storage device first and only if the error persists, retry the I/O
 operation via the metadata server.

8. Mirroring

 The Flexible File Layout Type has a simple model in place for the
 mirroring of the file data constrained by a layout segment. There is
 no assumption that each copy of the mirror is stored identically on
 the storage devices, i.e., one device might employ compression or
 deduplication on the data. However, the over the wire transfer of
 the file contents MUST appear identical. Note, this is a construct
 of the selected XDR representation that each mirrored copy of the
 layout segment has the same striping pattern (see Figure 1).

 The metadata server is responsible for determining the number of
 mirrored copies and the location of each mirror. While the client
 may provide a hint to how many copies it wants (see Section 12), the
 metadata server can ignore that hint and in any event, the client has
 no means to dictate neither the storage device (which also means the
 coupling and/or protocol levels to access the layout segments) nor
 the location of said storage device.

 The updating of mirrored layout segments is done via client-side
 mirroring. With this approach, the client is responsible for making
 sure modifications get to all copies of the layout segments it is
 informed of via the layout. If a layout segment is being resilvered
 to a storage device, that mirrored copy will not be in the layout.
 Thus the metadata server MUST update that copy until the client is
 presented it in a layout. Also, if the client is writing to the
 layout segments via the metadata server, e.g., using an earlier

Halevy & Haynes Expires July 25, 2016 [Page 20]

Internet-Draft Flex File Layout January 2016

 version of the protocol, then the metadata server MUST update all
 copies of the mirror. As seen in Section 8.3, during the
 resilvering, the layout is recalled, and the client has to make
 modifications via the metadata server.

8.1. Selecting a Mirror

 When the metadata server grants a layout to a client, it MAY let the
 client know how fast it expects each mirror to be once the request
 arrives at the storage devices via the ffds_efficiency member. While
 the algorithms to calculate that value are left to the metadata
 server implementations, factors that could contribute to that
 calculation include speed of the storage device, physical memory
 available to the device, operating system version, current load, etc.

 However, what should not be involved in that calculation is a
 perceived network distance between the client and the storage device.
 The client is better situated for making that determination based on
 past interaction with the storage device over the different available
 network interfaces between the two. I.e., the metadata server might
 not know about a transient outage between the client and storage
 device because it has no presence on the given subnet.

 As such, it is the client which decides which mirror to access for
 reading the file. The requirements for writing to a mirrored layout
 segments are presented below.

8.2. Writing to Mirrors

 The client is responsible for updating all mirrored copies of the
 layout segments that it is given in the layout. A single failed
 update is suffcient to fail the entire operation. I.e., if all but
 one copy is updated successfully and the last one provides an error,
 then the client needs to return the layout to the metadata server
 with an error indicating that the update failed to that storage
 device. If the client is updating the mirrors serially, then it
 SHOULD stop at the first error encountered and report that to the
 metadata server. If the client is updating the mirrors in parallel,
 then it SHOULD wait until all storage devices respond such that it
 can report all errors encountered during the update.

 The metadata server is then responsible for determining if it wants
 to remove the errant mirror from the layout, if the mirror has
 recovered from some transient error, etc. When the client tries to
 get a new layout, the metadata server informs it of the decision by
 the contents of the layout. The client MUST NOT make any assumptions
 that the contents of the previous layout will match those of the new

Halevy & Haynes Expires July 25, 2016 [Page 21]

Internet-Draft Flex File Layout January 2016

 one. If it has updates that were not committed, it MUST resend those
 updates to all mirrors.

8.3. Metadata Server Resilvering of the File

 The metadata server may elect to create a new mirror of the layout
 segments at any time. This might be to resilver a copy on a storage
 device which was down for servicing, to provide a copy of the layout
 segments on storage with different storage performance
 characteristics, etc. As the client will not be aware of the new
 mirror and the metadata server will not be aware of updates that the
 client is making to the layout segments, the metadata server MUST
 recall the writable layout segment(s) that it is resilvering. If the
 client issues a LAYOUTGET for a writable layout segment which is in
 the process of being resilvered, then the metadata server MUST deny
 that request with a NFS4ERR_LAYOUTTRYLATER. The client can then
 perform the I/O through the metadata server.

9. Flexible Files Layout Type Return

 layoutreturn_file4 is used in the LAYOUTRETURN operation to convey
 layout-type specific information to the server. It is defined in
 [RFC5661] as follows:

 <CODE BEGINS>

 struct layoutreturn_file4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 /* layouttype4 specific data */
 opaque lrf_body<>;
 };

 union layoutreturn4 switch(layoutreturn_type4 lr_returntype) {
 case LAYOUTRETURN4_FILE:
 layoutreturn_file4 lr_layout;
 default:
 void;
 };

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires July 25, 2016 [Page 22]

Internet-Draft Flex File Layout January 2016

 struct LAYOUTRETURN4args {
 /* CURRENT_FH: file */
 bool lora_reclaim;
 layoutreturn_stateid lora_recallstateid;
 layouttype4 lora_layout_type;
 layoutiomode4 lora_iomode;
 layoutreturn4 lora_layoutreturn;
 };

 <CODE ENDS>

 If the lora_layout_type layout type is LAYOUT4_FLEX_FILES, then the
 lrf_body opaque value is defined by ff_layoutreturn4 (See

Section 9.3). It allows the client to report I/O error information
 or layout usage statistics back to the metadata server as defined
 below.

9.1. I/O Error Reporting

9.1.1. ff_ioerr4

 <CODE BEGINS>

 /// struct ff_ioerr4 {
 /// offset4 ffie_offset;
 /// length4 ffie_length;
 /// stateid4 ffie_stateid;
 /// device_error4 ffie_errors<>;
 /// };
 ///

 <CODE ENDS>

 Recall that [NFSv42] defines device_error4 as:

 <CODE BEGINS>

 struct device_error4 {
 deviceid4 de_deviceid;
 nfsstat4 de_status;
 nfs_opnum4 de_opnum;
 };

 <CODE ENDS>

 The ff_ioerr4 structure is used to return error indications for data
 files that generated errors during data transfers. These are hints
 to the metadata server that there are problems with that file. For

Halevy & Haynes Expires July 25, 2016 [Page 23]

Internet-Draft Flex File Layout January 2016

 each error, ffie_errors.de_deviceid, ffie_offset, and ffie_length
 represent the storage device and byte range within the file in which
 the error occurred; ffie_errors represents the operation and type of
 error. The use of device_error4 is described in Section 15.6 of
 [NFSv42].

 Even though the storage device might be accessed via NFSv3 and
 reports back NFSv3 errors to the client, the client is responsible
 for mapping these to appropriate NFSv4 status codes as de_status.
 Likewise, the NFSv3 operations need to be mapped to equivalent NFSv4
 operations.

9.2. Layout Usage Statistics

9.2.1. ff_io_latency4

 <CODE BEGINS>

 /// struct ff_io_latency4 {
 /// uint64_t ffil_ops_requested;
 /// uint64_t ffil_bytes_requested;
 /// uint64_t ffil_ops_completed;
 /// uint64_t ffil_bytes_completed;
 /// uint64_t ffil_bytes_not_delivered;
 /// nfstime4 ffil_total_busy_time;
 /// nfstime4 ffil_aggregate_completion_time;
 /// };
 ///

 <CODE ENDS>

 Both operation counts and bytes transferred are kept in the
 ff_io_latency4. READ operations are used for read latencies. Both
 WRITE and COMMIT operations are used for write latencies.
 "Requested" counters track what the client is attempting to do and
 "completed" counters track what was done. Note that there is no
 requirement that the client only report completed results that have
 matching requested results from the reported period.

 ffil_bytes_not_delivered is used to track the aggregate number of
 bytes requested by not fulfilled due to error conditions.
 ffil_total_busy_time is the aggregate time spent with outstanding RPC
 calls, ffil_aggregate_completion_time is the sum of all latencies for
 completed RPC calls.

 Note that LAYOUTSTATS are cumulative, i.e., not reset each time the
 operation is sent. If two LAYOUTSTATS ops for the same file, layout
 stateid, and originating from the same NFS client are processed at

Halevy & Haynes Expires July 25, 2016 [Page 24]

Internet-Draft Flex File Layout January 2016

 the same time by the metadata server, then the one containing the
 larger values contains the most recent time series data.

9.2.2. ff_layoutupdate4

 <CODE BEGINS>

 /// struct ff_layoutupdate4 {
 /// netaddr4 ffl_addr;
 /// nfs_fh4 ffl_fhandle;
 /// ff_io_latency4 ffl_read;
 /// ff_io_latency4 ffl_write;
 /// nfstime4 ffl_duration;
 /// bool ffl_local;
 /// };
 ///

 <CODE ENDS>

 ffl_addr differentiates which network address the client connected to
 on the storage device. In the case of multipathing, ffl_fhandle
 indicates which read-only copy was selected. ffl_read and ffl_write
 convey the latencies respectively for both read and write operations.
 ffl_duration is used to indicate the time period over which the
 statistics were collected. ffl_local if true indicates that the I/O
 was serviced by the client's cache. This flag allows the client to
 inform the metadata server about "hot" access to a file it would not
 normally be allowed to report on.

9.2.3. ff_iostats4

 <CODE BEGINS>

 /// struct ff_iostats4 {
 /// offset4 ffis_offset;
 /// length4 ffis_length;
 /// stateid4 ffis_stateid;
 /// io_info4 ffis_read;
 /// io_info4 ffis_write;
 /// deviceid4 ffis_deviceid;
 /// ff_layoutupdate4 ffis_layoutupdate;
 /// };
 ///

 <CODE ENDS>

 Recall that [NFSv42] defines io_info4 as:

Halevy & Haynes Expires July 25, 2016 [Page 25]

Internet-Draft Flex File Layout January 2016

 <CODE BEGINS>

 struct io_info4 {
 uint64_t ii_count;
 uint64_t ii_bytes;
 };

 <CODE ENDS>

 With pNFS, the data transfers are performed directly between the pNFS
 client and the storage devices. Therefore, the metadata server has
 no visibility to the I/O stream and cannot use any statistical
 information about client I/O to optimize data storage location.
 ff_iostats4 MAY be used by the client to report I/O statistics back
 to the metadata server upon returning the layout. Since it is
 infeasible for the client to report every I/O that used the layout,
 the client MAY identify "hot" byte ranges for which to report I/O
 statistics. The definition and/or configuration mechanism of what is
 considered "hot" and the size of the reported byte range is out of
 the scope of this document. It is suggested for client
 implementation to provide reasonable default values and an optional
 run-time management interface to control these parameters. For
 example, a client can define the default byte range resolution to be
 1 MB in size and the thresholds for reporting to be 1 MB/second or 10
 I/O operations per second. For each byte range, ffis_offset and
 ffis_length represent the starting offset of the range and the range
 length in bytes. ffis_read.ii_count, ffis_read.ii_bytes,
 ffis_write.ii_count, and ffis_write.ii_bytes represent, respectively,
 the number of contiguous read and write I/Os and the respective
 aggregate number of bytes transferred within the reported byte range.

 The combination of ffis_deviceid and ffl_addr uniquely identify both
 the storage path and the network route to it. Finally, the
 ffl_fhandle allows the metadata server to differentiate between
 multiple read-only copies of the file on the same storage device.

9.3. ff_layoutreturn4

 <CODE BEGINS>

 /// struct ff_layoutreturn4 {
 /// ff_ioerr4 fflr_ioerr_report<>;
 /// ff_iostats4 fflr_iostats_report<>;
 /// };
 ///

 <CODE ENDS>

Halevy & Haynes Expires July 25, 2016 [Page 26]

Internet-Draft Flex File Layout January 2016

 When data file I/O operations fail, fflr_ioerr_report<> is used to
 report these errors to the metadata server as an array of elements of
 type ff_ioerr4. Each element in the array represents an error that
 occurred on the data file identified by ffie_errors.de_deviceid. If
 no errors are to be reported, the size of the fflr_ioerr_report<>
 array is set to zero. The client MAY also use fflr_iostats_report<>
 to report a list of I/O statistics as an array of elements of type
 ff_iostats4. Each element in the array represents statistics for a
 particular byte range. Byte ranges are not guaranteed to be disjoint
 and MAY repeat or intersect.

10. Flexible Files Layout Type LAYOUTERROR

 If the client is using NFSv4.2 to communicate with the metadata
 server, then instead of waiting for a LAYOUTRETURN to send error
 information to the metadata server (see Section 9.1), it MAY use
 LAYOUTERROR (see Section 15.6 of [NFSv42]) to communicate that
 information. For the Flexible Files Layout Type, this means that
 LAYOUTERROR4args is treated the same as ff_ioerr4.

11. Flexible Files Layout Type LAYOUTSTATS

 If the client is using NFSv4.2 to communicate with the metadata
 server, then instead of waiting for a LAYOUTRETURN to send I/O
 statistics to the metadata server (see Section 9.2), it MAY use
 LAYOUTSTATS (see Section 15.7 of [NFSv42]) to communicate that
 information. For the Flexible Files Layout Type, this means that
 LAYOUTSTATS4args.lsa_layoutupdate is overloaded with the same
 contents as in ffis_layoutupdate.

12. Flexible File Layout Type Creation Hint

 The layouthint4 type is defined in the [RFC5661] as follows:

 <CODE BEGINS>

 struct layouthint4 {
 layouttype4 loh_type;
 opaque loh_body<>;
 };

 <CODE ENDS>

 The layouthint4 structure is used by the client to pass a hint about
 the type of layout it would like created for a particular file. If
 the loh_type layout type is LAYOUT4_FLEX_FILES, then the loh_body
 opaque value is defined by the ff_layouthint4 type.

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires July 25, 2016 [Page 27]

Internet-Draft Flex File Layout January 2016

12.1. ff_layouthint4

 <CODE BEGINS>

 /// union ff_mirrors_hint switch (bool ffmc_valid) {
 /// case TRUE:
 /// uint32_t ffmc_mirrors;
 /// case FALSE:
 /// void;
 /// };
 ///

 /// struct ff_layouthint4 {
 /// ff_mirrors_hint fflh_mirrors_hint;
 /// };
 ///

 <CODE ENDS>

 This type conveys hints for the desired data map. All parameters are
 optional so the client can give values for only the parameter it
 cares about.

13. Recalling a Layout

 While Section 12.5.5 of [RFC5661] discusses layout type independent
 reasons for recalling a layout, the Flexible File Layout Type
 metadata server should recall outstanding layouts in the following
 cases:

 o When the file's security policy changes, i.e., Access Control
 Lists (ACLs) or permission mode bits are set.

 o When the file's layout changes, rendering outstanding layouts
 invalid.

 o When there are sharing conflicts.

 o When a file is being resilvered, either due to being repaired
 after a write error or to load balance.

13.1. CB_RECALL_ANY

 The metadata server can use the CB_RECALL_ANY callback operation to
 notify the client to return some or all of its layouts. The
 [RFC5661] defines the following types:

 <CODE BEGINS>

https://datatracker.ietf.org/doc/html/rfc5661#section-12.5.5
https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires July 25, 2016 [Page 28]

Internet-Draft Flex File Layout January 2016

 const RCA4_TYPE_MASK_FF_LAYOUT_MIN = -2;
 const RCA4_TYPE_MASK_FF_LAYOUT_MAX = -1;
 [[RFC Editor: please insert assigned constants]]

 struct CB_RECALL_ANY4args {
 uint32_t craa_layouts_to_keep;
 bitmap4 craa_type_mask;
 };

 <CODE ENDS>

 [[AI13: No, 5661 does not define these above values. The ask here is
 to create these and _add_ them to 5661. --TH]]

 Typically, CB_RECALL_ANY will be used to recall client state when the
 server needs to reclaim resources. The craa_type_mask bitmap
 specifies the type of resources that are recalled and the
 craa_layouts_to_keep value specifies how many of the recalled
 Flexible File Layouts the client is allowed to keep. The Flexible
 File Layout Type mask flags are defined as follows:

 <CODE BEGINS>

 /// enum ff_cb_recall_any_mask {
 /// FF_RCA4_TYPE_MASK_READ = -2,
 /// FF_RCA4_TYPE_MASK_RW = -1
 [[RFC Editor: please insert assigned constants]]
 /// };
 ///

 <CODE ENDS>

 They represent the iomode of the recalled layouts. In response, the
 client SHOULD return layouts of the recalled iomode that it needs the
 least, keeping at most craa_layouts_to_keep Flexible File Layouts.

 The PNFS_FF_RCA4_TYPE_MASK_READ flag notifies the client to return
 layouts of iomode LAYOUTIOMODE4_READ. Similarly, the
 PNFS_FF_RCA4_TYPE_MASK_RW flag notifies the client to return layouts
 of iomode LAYOUTIOMODE4_RW. When both mask flags are set, the client
 is notified to return layouts of either iomode.

14. Client Fencing

 In cases where clients are uncommunicative and their lease has
 expired or when clients fail to return recalled layouts within a
 lease period, at the least the server MAY revoke client layouts and
 reassign these resources to other clients (see Section 12.5.5 in

Halevy & Haynes Expires July 25, 2016 [Page 29]

Internet-Draft Flex File Layout January 2016

 [RFC5661]). To avoid data corruption, the metadata server MUST fence
 off the revoked clients from the respective data files as described
 in Section 2.2.

15. Security Considerations

 The pNFS extension partitions the NFSv4.1+ file system protocol into
 two parts, the control path and the data path (storage protocol).
 The control path contains all the new operations described by this
 extension; all existing NFSv4 security mechanisms and features apply
 to the control path. The combination of components in a pNFS system
 is required to preserve the security properties of NFSv4.1+ with
 respect to an entity accessing data via a client, including security
 countermeasures to defend against threats that NFSv4.1+ provides
 defenses for in environments where these threats are considered
 significant.

 The metadata server enforces the file access-control policy at
 LAYOUTGET time. The client should use suitable authorization
 credentials for getting the layout for the requested iomode (READ or
 RW) and the server verifies the permissions and ACL for these
 credentials, possibly returning NFS4ERR_ACCESS if the client is not
 allowed the requested iomode. If the LAYOUTGET operation succeeds
 the client receives, as part of the layout, a set of credentials
 allowing it I/O access to the specified data files corresponding to
 the requested iomode. When the client acts on I/O operations on
 behalf of its local users, it MUST authenticate and authorize the
 user by issuing respective OPEN and ACCESS calls to the metadata
 server, similar to having NFSv4 data delegations. If access is
 allowed, the client uses the corresponding (READ or RW) credentials
 to perform the I/O operations at the data file's storage devices.
 When the metadata server receives a request to change a file's
 permissions or ACL, it SHOULD recall all layouts for that file and it
 MUST fence off the clients holding outstanding layouts for the
 respective file by implicitly invalidating the outstanding
 credentials on all data files comprising before committing to the new
 permissions and ACL. Doing this will ensure that clients re-
 authorize their layouts according to the modified permissions and ACL
 by requesting new layouts. Recalling the layouts in this case is
 courtesy of the server intended to prevent clients from getting an
 error on I/Os done after the client was fenced off.

15.1. Kerberized File Access

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires July 25, 2016 [Page 30]

Internet-Draft Flex File Layout January 2016

15.1.1. Loosely Coupled

 Under this coupling model, the principal used to authenticate the
 metadata file is different than that used to authenticate the data
 file. I.e., the synthetic principals generated to control access to
 the data file could prove to be difficult to manage.

 While RPCSEC_GSS version 3 (RPCSEC_GSSv3) [rpcsec_gssv3] could be
 used to authorize the client to the storage device on behalf of the
 metadata server, such a requirement exceeds the loose coupling model.
 I.e., each of the metadata server, storage device, and client would
 have to implement RPCSEC_GSSv3.

 In all, while either an elaborate schema could be used to
 automatically authenticate principals or RPCSEC_GSSv3 aware clients,
 metadata server, and storage devices could be deployed, if more
 secure authentication is desired, tight coupling should be considered
 as described in the next section.

15.1.2. Tightly Coupled

 With tight coupling, the principal used to access the metadata file
 is exactly the same as used to access the data file. Thus there are
 no security issues related to using Kerberos with a tightly coupled
 system.

16. IANA Considerations

 As described in [RFC5661], new layout type numbers have been assigned
 by IANA. This document defines the protocol associated with the
 existing layout type number, LAYOUT4_FLEX_FILES.

17. References

17.1. Normative References

 [LEGAL] IETF Trust, "Legal Provisions Relating to IETF Documents",
 November 2008, <http://trustee.ietf.org/docs/

IETF-Trust-License-Policy.pdf>.

 [NFSv42] Haynes, T., "NFS Version 4 Minor Version 2", draft-ietf-
nfsv4-minorversion2-28 (Work In Progress), November 2014.

 [RFC1813] IETF, "NFS Version 3 Protocol Specification", RFC 1813,
 June 1995.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc5661
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-minorversion2-28
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-minorversion2-28
https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Halevy & Haynes Expires July 25, 2016 [Page 31]

Internet-Draft Flex File Layout January 2016

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2009.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, January 2010.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",

RFC 5662, January 2010.

 [RFCNFSv4]
 Haynes, T. and D. Noveck, "NFS Version 4 Protocol", draft-

ietf-nfsv4-rfc3530bis-35 (work in progress), Dec 2014.

 [pNFSLayouts]
 Haynes, T., "Considerations for a New pNFS Layout Type",

draft-ietf-nfsv4-layout-types-02 (Work In Progress),
 October 2014.

17.2. Informative References

 [RFC4519] Sciberras, A., Ed., "Lightweight Directory Access Protocol
 (LDAP): Schema for User Applications", RFC 4519, DOI
 10.17487/RFC4519, June 2006,
 <http://www.rfc-editor.org/info/rfc4519>.

 [rpcsec_gssv3]
 Adamson, W. and N. Williams, "Remote Procedure Call (RPC)
 Security Version 3", November 2014.

Appendix A. Acknowledgments

 Those who provided miscellaneous comments to early drafts of this
 document include: Matt W. Benjamin, Adam Emerson, J. Bruce Fields,
 and Lev Solomonov.

 Those who provided miscellaneous comments to the final drafts of this
 document include: Anand Ganesh, Robert Wipfel, Gobikrishnan
 Sundharraj, and Trond Myklebust.

 Idan Kedar caught a nasty bug in the interaction of client side
 mirroring and the minor versioning of devices.

https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc5531
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5662
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rfc3530bis-35
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rfc3530bis-35
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-layout-types-02
https://datatracker.ietf.org/doc/html/rfc4519
http://www.rfc-editor.org/info/rfc4519

Halevy & Haynes Expires July 25, 2016 [Page 32]

Internet-Draft Flex File Layout January 2016

 Dave Noveck provided a comprehensive review of the document during
 the working group last call.

 Olga Kornievskaia lead the charge against the use of a credential
 versus a principal in the fencing approach. Andy Adamson and
 Benjamin Kaduk helped to sharpen the focus.

 Tigran Mkrtchyan provided the use case for not allowing the client to
 proxy the IO through the data server.

Appendix B. RFC Editor Notes

 [RFC Editor: please remove this section prior to publishing this
 document as an RFC]

 [RFC Editor: prior to publishing this document as an RFC, please
 replace all occurrences of RFCTBD10 with RFCxxxx where xxxx is the
 RFC number of this document]

Authors' Addresses

 Benny Halevy

 Email: bhalevy@gmail.com

 Thomas Haynes
 Primary Data, Inc.
 4300 El Camino Real Ste 100
 Los Altos, CA 94022
 USA

 Phone: +1 408 215 1519
 Email: thomas.haynes@primarydata.com

Halevy & Haynes Expires July 25, 2016 [Page 33]

