
NFSv4 B. Halevy
Internet-Draft
Intended status: Standards Track T. Haynes
Expires: November 4, 2018 Hammerspace
 May 03, 2018

Parallel NFS (pNFS) Flexible File Layout
draft-ietf-nfsv4-flex-files-19.txt

Abstract

 The Parallel Network File System (pNFS) allows a separation between
 the metadata (onto a metadata server) and data (onto a storage
 device) for a file. The flexible file layout type is defined in this
 document as an extension to pNFS which allows the use of storage
 devices in a fashion such that they require only a quite limited
 degree of interaction with the metadata server, using already
 existing protocols. Client-side mirroring is also added to provide
 replication of files.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 4, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Halevy & Haynes Expires November 4, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Flex File Layout May 2018

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Definitions . 4
1.2. Requirements Language 6

2. Coupling of Storage Devices 6
2.1. LAYOUTCOMMIT . 7
2.2. Fencing Clients from the Storage Device 7
2.2.1. Implementation Notes for Synthetic uids/gids 8
2.2.2. Example of using Synthetic uids/gids 9

2.3. State and Locking Models 10
2.3.1. Loosely Coupled Locking Model 10
2.3.2. Tightly Coupled Locking Model 12

3. XDR Description of the Flexible File Layout Type 13
3.1. Code Components Licensing Notice 14

4. Device Addressing and Discovery 15
4.1. ff_device_addr4 . 16
4.2. Storage Device Multipathing 17

5. Flexible File Layout Type 18
5.1. ff_layout4 . 19
5.1.1. Error Codes from LAYOUTGET 22
5.1.2. Client Interactions with FF_FLAGS_NO_IO_THRU_MDS . . 23

5.2. LAYOUTCOMMIT . 23
5.3. Interactions Between Devices and Layouts 23
5.4. Handling Version Errors 23

6. Striping via Sparse Mapping 24
7. Recovering from Client I/O Errors 24
8. Mirroring . 25
8.1. Selecting a Mirror 26
8.2. Writing to Mirrors 26
8.2.1. Single Storage Device Updates Mirrors 26
8.2.2. Client Updates All Mirrors 27
8.2.3. Handling Write Errors 27
8.2.4. Handling Write COMMITs 28

8.3. Metadata Server Resilvering of the File 28
9. Flexible Files Layout Type Return 28
9.1. I/O Error Reporting 30
9.1.1. ff_ioerr4 . 30

9.2. Layout Usage Statistics 30
9.2.1. ff_io_latency4 31
9.2.2. ff_layoutupdate4 32
9.2.3. ff_iostats4 . 32

9.3. ff_layoutreturn4 . 33

Halevy & Haynes Expires November 4, 2018 [Page 2]

Internet-Draft Flex File Layout May 2018

10. Flexible Files Layout Type LAYOUTERROR 34
11. Flexible Files Layout Type LAYOUTSTATS 34
12. Flexible File Layout Type Creation Hint 34
12.1. ff_layouthint4 . 35

13. Recalling a Layout . 35
13.1. CB_RECALL_ANY . 36

14. Client Fencing . 37
15. Security Considerations 37
15.1. RPCSEC_GSS and Security Services 38
15.1.1. Loosely Coupled 38
15.1.2. Tightly Coupled 39

16. IANA Considerations . 39
17. References . 39
17.1. Normative References 39
17.2. Informative References 41

Appendix A. Acknowledgments 41
Appendix B. RFC Editor Notes 41

 Authors' Addresses . 42

1. Introduction

 In the parallel Network File System (pNFS), the metadata server
 returns layout type structures that describe where file data is
 located. There are different layout types for different storage
 systems and methods of arranging data on storage devices. This
 document defines the flexible file layout type used with file-based
 data servers that are accessed using the Network File System (NFS)
 protocols: NFSv3 [RFC1813], NFSv4.0 [RFC7530], NFSv4.1 [RFC5661], and
 NFSv4.2 [RFC7862].

 To provide a global state model equivalent to that of the files
 layout type, a back-end control protocol might be implemented between
 the metadata server and NFSv4.1+ storage devices. This document does
 not provide a standard track control protocol. An implementation can
 either define its own mechanism or it could define a control protocol
 in a standard's track document. The requirements for a control
 protocol are specified in [RFC5661] and clarified in [pNFSLayouts].

 The control protocol described in this document is based on NFS. The
 storage devices are configured such that the metadata server has full
 access rights to the data file system and then the metadata server
 uses synthetic ids to control client access to individual files.

 In traditional mirroring of data, the server is responsible for
 replicating, validating, and repairing copies of the data file. With
 client-side mirroring, the metadata server provides a layout which
 presents the available mirrors to the client. It is then the client
 which picks a mirror to read from and ensures that all writes go to

https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc7862
https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires November 4, 2018 [Page 3]

Internet-Draft Flex File Layout May 2018

 all mirrors. Only if all mirrors are successfully updated, does the
 client consider the write transaction to have succeeded. In case of
 error, the client can use the LAYOUTERROR operation to inform the
 metadata server, which is then responsible for the repairing of the
 mirrored copies of the file.

1.1. Definitions

 control communication requirements: is the specification for
 information on layouts, stateids, file metadata, and file data
 which must be communicated between the metadata server and the
 storage devices. There is a separate set of requirements for each
 layout type.

 control protocol: is the particular mechanism that an implementation
 of a layout type would use to meet the control communication
 requirement for that layout type. This need not be a protocol as
 normally understood. In some cases the same protocol may be used
 as a control protocol and storage protocol.

 client-side mirroring: is a feature in which the client and not the
 server is responsible for updating all of the mirrored copies of a
 layout segment.

 (file) data: is that part of the file system object which contains
 the content.

 data server (DS): is another term for storage device.

 fencing: is the process by which the metadata server prevents the
 storage devices from processing I/O from a specific client to a
 specific file.

 file layout type: is a layout type in which the storage devices are
 accessed via the NFS protocol (see Section 13 of [RFC5661]).

 gid: is the group id, a numeric value which identifies to which
 group a file belongs.

 layout: is the information a client uses to access file data on a
 storage device. This information will include specification of
 the protocol (layout type) and the identity of the storage devices
 to be used.

 layout iomode: is a grant of either read or read/write I/O to the
 client.

https://datatracker.ietf.org/doc/html/rfc5661#section-13

Halevy & Haynes Expires November 4, 2018 [Page 4]

Internet-Draft Flex File Layout May 2018

 layout segment: is a sub-division of a layout. That sub-division
 might be by the layout iomode (see Sections 3.3.20 and 12.2.9 of
 [RFC5661]), a striping pattern (see Section 13.3 of [RFC5661]), or
 requested byte range.

 layout stateid: is a 128-bit quantity returned by a server that
 uniquely defines the layout state provided by the server for a
 specific layout that describes a layout type and file (see

Section 12.5.2 of [RFC5661]). Further, Section 12.5.3 describes
 differences in handling between layout stateids and other stateid
 types.

 layout type: is a specification of both the storage protocol used to
 access the data and the aggregation scheme used to lay out the
 file data on the underlying storage devices.

 loose coupling: is when the control protocol is a storage protocol.

 (file) metadata: is that part of the file system object which
 describes the object and not the content. E.g., it could be the
 time since last modification, access, etc.

 metadata server (MDS): is the pNFS server which provides metadata
 information for a file system object. It also is responsible for
 generating, recalling, and revoking layouts for file system
 objects, for performing directory operations, and for performing I
 /O operations to regular files when the clients direct these to
 the metadata server itself.

 mirror: is a copy of a layout segment. Note that if one copy of the
 mirror is updated, then all copies must be updated.

 recalling a layout: is when the metadata server uses a back channel
 to inform the client that the layout is to be returned in a
 graceful manner. Note that the client has the opportunity to
 flush any writes, etc., before replying to the metadata server.

 revoking a layout: is when the metadata server invalidates the
 layout such that neither the metadata server nor any storage
 device will accept any access from the client with that layout.

 resilvering: is the act of rebuilding a mirrored copy of a layout
 segment from a known good copy of the layout segment. Note that
 this can also be done to create a new mirrored copy of the layout
 segment.

 rsize: is the data transfer buffer size used for reads.

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-13.3
https://datatracker.ietf.org/doc/html/rfc5661#section-12.5.2

Halevy & Haynes Expires November 4, 2018 [Page 5]

Internet-Draft Flex File Layout May 2018

 stateid: is a 128-bit quantity returned by a server that uniquely
 defines the open and locking states provided by the server for a
 specific open-owner or lock-owner/open-owner pair for a specific
 file and type of lock.

 storage device: is the target to which clients may direct I/O
 requests when they hold an appropriate layout. See Section 2.1 of
 [pNFSLayouts] for further discussion of the difference between a
 data store and a storage device.

 storage protocol: is the protocol used by clients to do I/O
 operations to the storage device. Each layout type specifies the
 set of storage protocols.

 tight coupling: is an arrangement in which the control protocol is
 one designed specifically for that purpose. It may be either a
 proprietary protocol, adapted specifically to a a particular
 metadata server, or one based on a standards-track document.

 uid: is the used id, a numeric value which identifies which user
 owns a file.

 wsize: is the data transfer buffer size used for writes.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Coupling of Storage Devices

 A server implementation may choose either a loose or tight coupling
 model between the metadata server and the storage devices.
 [pNFSLayouts] describes the general problems facing pNFS
 implementations. This document details how the new Flexible File
 Layout Type addresses these issues. To implement the tight coupling
 model, a control protocol has to be defined. As the flex file layout
 imposes no special requirements on the client, the control protocol
 will need to provide:

 (1) for the management of both security and LAYOUTCOMMITs, and,

 (2) a global stateid model and management of these stateids.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Halevy & Haynes Expires November 4, 2018 [Page 6]

Internet-Draft Flex File Layout May 2018

 When implementing the loose coupling model, the only control protocol
 will be a version of NFS, with no ability to provide a global stateid
 model or to prevent clients from using layouts inappropriately. To
 enable client use in that environment, this document will specify how
 security, state, and locking are to be managed.

2.1. LAYOUTCOMMIT

 Regardless of the coupling model, the metadata server has the
 responsibility, upon receiving a LAYOUTCOMMIT (see Section 18.42 of
 [RFC5661]), of ensuring that the semantics of pNFS are respected (see
 Section 3.1 of [pNFSLayouts]). These do include a requirement that
 data written to data storage device be stable before the occurrence
 of the LAYOUTCOMMIT.

 It is the responsibility of the client to make sure the data file is
 stable before the metadata server begins to query the storage devices
 about the changes to the file. If any WRITE to a storage device did
 not result with stable_how equal to FILE_SYNC, a LAYOUTCOMMIT to the
 metadata server MUST be preceded by a COMMIT to the storage devices
 written to. Note that if the client has not done a COMMIT to the
 storage device, then the LAYOUTCOMMIT might not be synchronized to
 the last WRITE operation to the storage device.

2.2. Fencing Clients from the Storage Device

 With loosely coupled storage devices, the metadata server uses
 synthetic uids (user ids) and gids (group ids) for the data file,
 where the uid owner of the data file is allowed read/write access and
 the gid owner is allowed read only access. As part of the layout
 (see ffds_user and ffds_group in Section 5.1), the client is provided
 with the user and group to be used in the Remote Procedure Call (RPC)
 [RFC5531] credentials needed to access the data file. Fencing off of
 clients is achieved by the metadata server changing the synthetic uid
 and/or gid owners of the data file on the storage device to
 implicitly revoke the outstanding RPC credentials. A client
 presenting the wrong credential for the desired access will get a
 NFS4ERR_ACCESS error.

 With this loosely coupled model, the metadata server is not able to
 fence off a single client, it is forced to fence off all clients.
 However, as the other clients react to the fencing, returning their
 layouts and trying to get new ones, the metadata server can hand out
 a new uid and gid to allow access.

 It is RECOMMENDED to implement common access control methods at the
 storage device filesystem to allow only the metadata server root
 (super user) access to the storage device, and to set the owner of

https://datatracker.ietf.org/doc/html/rfc5661#section-18.42
https://datatracker.ietf.org/doc/html/rfc5661#section-18.42
https://datatracker.ietf.org/doc/html/rfc5531

Halevy & Haynes Expires November 4, 2018 [Page 7]

Internet-Draft Flex File Layout May 2018

 all directories holding data files to the root user. This approach
 provides a practical model to enforce access control and fence off
 cooperative clients, but it can not protect against malicious
 clients; hence it provides a level of security equivalent to
 AUTH_SYS. It is RECOMMENDED that the communication between the
 metadata server and storage device be secure from eavesdroppers and
 man-in-the-middle protocol tampering. The security measure could be
 due to physical security (e.g., the servers are co-located in a
 physically secure area), from encrypted communications, or some other
 technique.

 With tightly coupled storage devices, the metadata server sets the
 user and group owners, mode bits, and ACL of the data file to be the
 same as the metadata file. And the client must authenticate with the
 storage device and go through the same authorization process it would
 go through via the metadata server. In the case of tight coupling,
 fencing is the responsibility of the control protocol and is not
 described in detail here. However, implementations of the tight
 coupling locking model (see Section 2.3), will need a way to prevent
 access by certain clients to specific files by invalidating the
 corresponding stateids on the storage device. In such a scenario,
 the client will be given an error of NFS4ERR_BAD_STATEID.

 The client need not know the model used between the metadata server
 and the storage device. It need only react consistently to any
 errors in interacting with the storage device. It should both return
 the layout and error to the metadata server and ask for a new layout.
 At that point, the metadata server can either hand out a new layout,
 hand out no layout (forcing the I/O through it), or deny the client
 further access to the file.

2.2.1. Implementation Notes for Synthetic uids/gids

 The selection method for the synthetic uids and gids to be used for
 fencing in loosely coupled storage devices is strictly an
 implementation issue. I.e., an administrator might restrict a range
 of such ids available to the Lightweight Directory Access Protocol
 (LDAP) 'uid' field [RFC4519]. She might also be able to choose an id
 that would never be used to grant access. Then when the metadata
 server had a request to access a file, a SETATTR would be sent to the
 storage device to set the owner and group of the data file. The user
 and group might be selected in a round robin fashion from the range
 of available ids.

 Those ids would be sent back as ffds_user and ffds_group to the
 client. And it would present them as the RPC credentials to the
 storage device. When the client was done accessing the file and the

https://datatracker.ietf.org/doc/html/rfc4519

Halevy & Haynes Expires November 4, 2018 [Page 8]

Internet-Draft Flex File Layout May 2018

 metadata server knew that no other client was accessing the file, it
 could reset the owner and group to restrict access to the data file.

 When the metadata server wanted to fence off a client, it would
 change the synthetic uid and/or gid to the restricted ids. Note that
 using a restricted id ensures that there is a change of owner and at
 least one id available that never gets allowed access.

 Under an AUTH_SYS security model, synthetic uids and gids of 0 SHOULD
 be avoided. These typically either grant super access to files on a
 storage device or are mapped to an anonymous id. In the first case,
 even if the data file is fenced, the client might still be able to
 access the file. In the second case, multiple ids might be mapped to
 the anonymous ids.

2.2.2. Example of using Synthetic uids/gids

 The user loghyr creates a file "ompha.c" on the metadata server and
 it creates a corresponding data file on the storage device.

 The metadata server entry may look like:

 -rw-r--r-- 1 loghyr staff 1697 Dec 4 11:31 ompha.c

 On the storage device, it may be assigned some unpredictable
 synthetic uid/gid to deny access:

 -rw-r----- 1 19452 28418 1697 Dec 4 11:31 data_ompha.c

 When the file is opened on a client and accessed, it will try to get
 a layout for the data file. Since the layout knows nothing about the
 user (and does not care), whether the user loghyr or garbo opens the
 file does not matter. The client has to present an uid of 19452 to
 get write permission. If it presents any other value for the uid,
 then it must give a gid of 28418 to get read access.

 Further, if the metadata server decides to fence the file, it should
 change the uid and/or gid such that these values neither match
 earlier values for that file nor match a predictable change based on
 an earlier fencing.

 -rw-r----- 1 19453 28419 1697 Dec 4 11:31 data_ompha.c

 The set of synthetic gids on the storage device should be selected
 such that there is no mapping in any of the name services used by the
 storage device. I.e., each group should have no members.

Halevy & Haynes Expires November 4, 2018 [Page 9]

Internet-Draft Flex File Layout May 2018

 If the layout segment has an iomode of LAYOUTIOMODE4_READ, then the
 metadata server should return a synthetic uid that is not set on the
 storage device. Only the synthetic gid would be valid.

 The client is thus solely responsible for enforcing file permissions
 in a loosely coupled model. To allow loghyr write access, it will
 send an RPC to the storage device with a credential of 1066:1067. To
 allow garbo read access, it will send an RPC to the storage device
 with a credential of 1067:1067. The value of the uid does not matter
 as long as it is not the synthetic uid granted it when getting the
 layout.

 While pushing the enforcement of permission checking onto the client
 may seem to weaken security, the client may already be responsible
 for enforcing permissions before modifications are sent to a server.
 With cached writes, the client is always responsible for tracking who
 is modifying a file and making sure to not coalesce requests from
 multiple users into one request.

2.3. State and Locking Models

 An implementation can always be deployed as a loosely coupled model.
 There is however no way for a storage device to indicate over a NFS
 protocol that it can definitively participate in a tightly coupled
 model:

 o Storage devices implementing the NFSv3 and NFSv4.0 protocols are
 always treated as loosely coupled.

 o NFSv4.1+ storage devices that do not return the
 EXCHGID4_FLAG_USE_PNFS_DS flag set to EXCHANGE_ID are indicating
 that they are to be treated as loosely coupled. From the locking
 viewpoint they are treated in the same way as NFSv4.0 storage
 devices.

 o NFSv4.1+ storage devices that do identify themselves with the
 EXCHGID4_FLAG_USE_PNFS_DS flag set to EXCHANGE_ID can potentially
 be tightly coupled. They would use a back-end control protocol to
 implement the global stateid model as described in [RFC5661].

 A storage device would have to either be discovered or advertised
 over the control protocol to enable a tight coupling model.

2.3.1. Loosely Coupled Locking Model

 When locking-related operations are requested, they are primarily
 dealt with by the metadata server, which generates the appropriate
 stateids. When an NFSv4 version is used as the data access protocol,

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires November 4, 2018 [Page 10]

Internet-Draft Flex File Layout May 2018

 the metadata server may make stateid-related requests of the storage
 devices. However, it is not required to do so and the resulting
 stateids are known only to the metadata server and the storage
 device.

 Given this basic structure, locking-related operations are handled as
 follows:

 o OPENs are dealt with by the metadata server. Stateids are
 selected by the metadata server and associated with the client id
 describing the client's connection to the metadata server. The
 metadata server may need to interact with the storage device to
 locate the file to be opened, but no locking-related functionality
 need be used on the storage device.

 OPEN_DOWNGRADE and CLOSE only require local execution on the
 metadata server.

 o Advisory byte-range locks can be implemented locally on the
 metadata server. As in the case of OPENs, the stateids associated
 with byte-range locks are assigned by the metadata server and only
 used on the metadata server.

 o Delegations are assigned by the metadata server which initiates
 recalls when conflicting OPENs are processed. No storage device
 involvement is required.

 o TEST_STATEID and FREE_STATEID are processed locally on the
 metadata server, without storage device involvement.

 All I/O operations to the storage device are done using the anonymous
 stateid. Thus the storage device has no information about the
 openowner and lockowner responsible for issuing a particular I/O
 operation. As a result:

 o Mandatory byte-range locking cannot be supported because the
 storage device has no way of distinguishing I/O done on behalf of
 the lock owner from those done by others.

 o Enforcement of share reservations is the responsibility of the
 client. Even though I/O is done using the anonymous stateid, the
 client must ensure that it has a valid stateid associated with the
 openowner, that allows the I/O being done before issuing the I/O.

 In the event that a stateid is revoked, the metadata server is
 responsible for preventing client access, since it has no way of
 being sure that the client is aware that the stateid in question has
 been revoked.

Halevy & Haynes Expires November 4, 2018 [Page 11]

Internet-Draft Flex File Layout May 2018

 As the client never receives a stateid generated by a storage device,
 there is no client lease on the storage device and no prospect of
 lease expiration, even when access is via NFSv4 protocols. Clients
 will have leases on the metadata server. In dealing with lease
 expiration, the metadata server may need to use fencing to prevent
 revoked stateids from being relied upon by a client unaware of the
 fact that they have been revoked.

2.3.2. Tightly Coupled Locking Model

 When locking-related operations are requested, they are primarily
 dealt with by the metadata server, which generates the appropriate
 stateids. These stateids must be made known to the storage device
 using control protocol facilities, the details of which are not
 discussed in this document.

 Given this basic structure, locking-related operations are handled as
 follows:

 o OPENs are dealt with primarily on the metadata server. Stateids
 are selected by the metadata server and associated with the client
 id describing the client's connection to the metadata server. The
 metadata server needs to interact with the storage device to
 locate the file to be opened, and to make the storage device aware
 of the association between the metadata-server-chosen stateid and
 the client and openowner that it represents.

 OPEN_DOWNGRADE and CLOSE are executed initially on the metadata
 server but the state change made must be propagated to the storage
 device.

 o Advisory byte-range locks can be implemented locally on the
 metadata server. As in the case of OPENs, the stateids associated
 with byte-range locks, are assigned by the metadata server and are
 available for use on the metadata server. Because I/O operations
 are allowed to present lock stateids, the metadata server needs
 the ability to make the storage device aware of the association
 between the metadata-server-chosen stateid and the corresponding
 open stateid it is associated with.

 o Mandatory byte-range locks can be supported when both the metadata
 server and the storage devices have the appropriate support. As
 in the case of advisory byte-range locks, these are assigned by
 the metadata server and are available for use on the metadata
 server. To enable mandatory lock enforcement on the storage
 device, the metadata server needs the ability to make the storage
 device aware of the association between the metadata-server-chosen
 stateid and the client, openowner, and lock (i.e., lockowner,

Halevy & Haynes Expires November 4, 2018 [Page 12]

Internet-Draft Flex File Layout May 2018

 byte-range, lock-type) that it represents. Because I/O operations
 are allowed to present lock stateids, this information needs to be
 propagated to all storage devices to which I/O might be directed
 rather than only to storage device that contain the locked region.

 o Delegations are assigned by the metadata server which initiates
 recalls when conflicting OPENs are processed. Because I/O
 operations are allowed to present delegation stateids, the
 metadata server requires the ability to make the storage device
 aware of the association between the metadata-server-chosen
 stateid and the filehandle and delegation type it represents, and
 to break such an association.

 o TEST_STATEID is processed locally on the metadata server, without
 storage device involvement.

 o FREE_STATEID is processed on the metadata server but the metadata
 server requires the ability to propagate the request to the
 corresponding storage devices.

 Because the client will possess and use stateids valid on the storage
 device, there will be a client lease on the storage device and the
 possibility of lease expiration does exist. The best approach for
 the storage device is to retain these locks as a courtesy. However,
 if it does not do so, control protocol facilities need to provide the
 means to synchronize lock state between the metadata server and
 storage device.

 Clients will also have leases on the metadata server, which are
 subject to expiration. In dealing with lease expiration, the
 metadata server would be expected to use control protocol facilities
 enabling it to invalidate revoked stateids on the storage device. In
 the event the client is not responsive, the metadata server may need
 to use fencing to prevent revoked stateids from being acted upon by
 the storage device.

3. XDR Description of the Flexible File Layout Type

 This document contains the external data representation (XDR)
 [RFC4506] description of the flexible file layout type. The XDR
 description is embedded in this document in a way that makes it
 simple for the reader to extract into a ready-to-compile form. The
 reader can feed this document into the following shell script to
 produce the machine readable XDR description of the flexible file
 layout type:

 <CODE BEGINS>

https://datatracker.ietf.org/doc/html/rfc4506

Halevy & Haynes Expires November 4, 2018 [Page 13]

Internet-Draft Flex File Layout May 2018

 #!/bin/sh
 grep '^ *///' $* | sed 's?^ */// ??' | sed 's?^ *///$??'

 <CODE ENDS>

 That is, if the above script is stored in a file called "extract.sh",
 and this document is in a file called "spec.txt", then the reader can
 do:

 sh extract.sh < spec.txt > flex_files_prot.x

 The effect of the script is to remove leading white space from each
 line, plus a sentinel sequence of "///".

 The embedded XDR file header follows. Subsequent XDR descriptions,
 with the sentinel sequence are embedded throughout the document.

 Note that the XDR code contained in this document depends on types
 from the NFSv4.1 nfs4_prot.x file [RFC5662]. This includes both nfs
 types that end with a 4, such as offset4, length4, etc., as well as
 more generic types such as uint32_t and uint64_t.

3.1. Code Components Licensing Notice

 Both the XDR description and the scripts used for extracting the XDR
 description are Code Components as described in Section 4 of "Legal
 Provisions Relating to IETF Documents" [LEGAL]. These Code
 Components are licensed according to the terms of that document.

 <CODE BEGINS>

 /// /*
 /// * Copyright (c) 2012 IETF Trust and the persons identified
 /// * as authors of the code. All rights reserved.
 /// *
 /// * Redistribution and use in source and binary forms, with
 /// * or without modification, are permitted provided that the
 /// * following conditions are met:
 /// *
 /// * o Redistributions of source code must retain the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer.
 /// *
 /// * o Redistributions in binary form must reproduce the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer in the documentation and/or other
 /// * materials provided with the distribution.
 /// *

https://datatracker.ietf.org/doc/html/rfc5662

Halevy & Haynes Expires November 4, 2018 [Page 14]

Internet-Draft Flex File Layout May 2018

 /// * o Neither the name of Internet Society, IETF or IETF
 /// * Trust, nor the names of specific contributors, may be
 /// * used to endorse or promote products derived from this
 /// * software without specific prior written permission.
 /// *
 /// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 /// * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// *
 /// * This code was derived from RFCTBD10.
 /// * Please reproduce this note if possible.
 /// */
 ///
 /// /*
 /// * flex_files_prot.x
 /// */
 ///
 /// /*
 /// * The following include statements are for example only.
 /// * The actual XDR definition files are generated separately
 /// * and independently and are likely to have a different name.
 /// * %#include <nfsv42.x>
 /// * %#include <rpc_prot.x>
 /// */
 ///

 <CODE ENDS>

4. Device Addressing and Discovery

 Data operations to a storage device require the client to know the
 network address of the storage device. The NFSv4.1+ GETDEVICEINFO
 operation (Section 18.40 of [RFC5661]) is used by the client to
 retrieve that information.

https://datatracker.ietf.org/doc/html/rfc5661#section-18.40

Halevy & Haynes Expires November 4, 2018 [Page 15]

Internet-Draft Flex File Layout May 2018

4.1. ff_device_addr4

 The ff_device_addr4 data structure is returned by the server as the
 layout type specific opaque field da_addr_body in the device_addr4
 structure by a successful GETDEVICEINFO operation.

 <CODE BEGINS>

 /// struct ff_device_versions4 {
 /// uint32_t ffdv_version;
 /// uint32_t ffdv_minorversion;
 /// uint32_t ffdv_rsize;
 /// uint32_t ffdv_wsize;
 /// bool ffdv_tightly_coupled;
 /// };
 ///

 /// struct ff_device_addr4 {
 /// multipath_list4 ffda_netaddrs;
 /// ff_device_versions4 ffda_versions<>;
 /// };
 ///

 <CODE ENDS>

 The ffda_netaddrs field is used to locate the storage device. It
 MUST be set by the server to a list holding one or more of the device
 network addresses.

 The ffda_versions array allows the metadata server to present choices
 as to NFS version, minor version, and coupling strength to the
 client. The ffdv_version and ffdv_minorversion represent the NFS
 protocol to be used to access the storage device. This layout
 specification defines the semantics for ffdv_versions 3 and 4. If
 ffdv_version equals 3 then the server MUST set ffdv_minorversion to 0
 and ffdv_tightly_coupled to false. The client MUST then access the
 storage device using the NFSv3 protocol [RFC1813]. If ffdv_version
 equals 4 then the server MUST set ffdv_minorversion to one of the
 NFSv4 minor version numbers and the client MUST access the storage
 device using NFSv4 with the specified minor version.

 Note that while the client might determine that it cannot use any of
 the configured combinations of ffdv_version, ffdv_minorversion, and
 ffdv_tightly_coupled, when it gets the device list from the metadata
 server, there is no way to indicate to the metadata server as to
 which device it is version incompatible. If however, the client
 waits until it retrieves the layout from the metadata server, it can

https://datatracker.ietf.org/doc/html/rfc1813

Halevy & Haynes Expires November 4, 2018 [Page 16]

Internet-Draft Flex File Layout May 2018

 at that time clearly identify the storage device in question (see
Section 5.4).

 The ffdv_rsize and ffdv_wsize are used to communicate the maximum
 rsize and wsize supported by the storage device. As the storage
 device can have a different rsize or wsize than the metadata server,
 the ffdv_rsize and ffdv_wsize allow the metadata server to
 communicate that information on behalf of the storage device.

 ffdv_tightly_coupled informs the client as to whether the metadata
 server is tightly coupled with the storage devices or not. Note that
 even if the data protocol is at least NFSv4.1, it may still be the
 case that there is loose coupling in effect. If ffdv_tightly_coupled
 is not set, then the client MUST commit writes to the storage devices
 for the file before sending a LAYOUTCOMMIT to the metadata server.
 I.e., the writes MUST be committed by the client to stable storage
 via issuing WRITEs with stable_how == FILE_SYNC or by issuing a
 COMMIT after WRITEs with stable_how != FILE_SYNC (see Section 3.3.7
 of [RFC1813]).

4.2. Storage Device Multipathing

 The flexible file layout type supports multipathing to multiple
 storage device addresses. Storage device level multipathing is used
 for bandwidth scaling via trunking and for higher availability of use
 in the event of a storage device failure. Multipathing allows the
 client to switch to another storage device address which may be that
 of another storage device that is exporting the same data stripe
 unit, without having to contact the metadata server for a new layout.

 To support storage device multipathing, ffda_netaddrs contains an
 array of one or more storage device network addresses. This array
 (data type multipath_list4) represents a list of storage devices
 (each identified by a network address), with the possibility that
 some storage device will appear in the list multiple times.

 The client is free to use any of the network addresses as a
 destination to send storage device requests. If some network
 addresses are less desirable paths to the data than others, then the
 metadata server SHOULD NOT include those network addresses in
 ffda_netaddrs. If less desirable network addresses exist to provide
 failover, the RECOMMENDED method to offer the addresses is to provide
 them in a replacement device-ID-to-device-address mapping, or a
 replacement device ID. When a client finds no response from the
 storage device using all addresses available in ffda_netaddrs, it
 SHOULD send a GETDEVICEINFO to attempt to replace the existing
 device-ID-to-device-address mappings. If the metadata server detects
 that all network paths represented by ffda_netaddrs are unavailable,

https://datatracker.ietf.org/doc/html/rfc1813#section-3.3.7
https://datatracker.ietf.org/doc/html/rfc1813#section-3.3.7

Halevy & Haynes Expires November 4, 2018 [Page 17]

Internet-Draft Flex File Layout May 2018

 the metadata server SHOULD send a CB_NOTIFY_DEVICEID (if the client
 has indicated it wants device ID notifications for changed device
 IDs) to change the device-ID-to-device-address mappings to the
 available addresses. If the device ID itself will be replaced, the
 metadata server SHOULD recall all layouts with the device ID, and
 thus force the client to get new layouts and device ID mappings via
 LAYOUTGET and GETDEVICEINFO.

 Generally, if two network addresses appear in ffda_netaddrs, they
 will designate the same storage device. When the storage device is
 accessed over NFSv4.1 or a higher minor version, the two storage
 device addresses will support the implementation of client ID or
 session trunking (the latter is RECOMMENDED) as defined in [RFC5661].
 The two storage device addresses will share the same server owner or
 major ID of the server owner. It is not always necessary for the two
 storage device addresses to designate the same storage device with
 trunking being used. For example, the data could be read-only, and
 the data consist of exact replicas.

5. Flexible File Layout Type

 The layout4 type is defined in [RFC5662] as follows:

 <CODE BEGINS>

 enum layouttype4 {
 LAYOUT4_NFSV4_1_FILES = 1,
 LAYOUT4_OSD2_OBJECTS = 2,
 LAYOUT4_BLOCK_VOLUME = 3,
 LAYOUT4_FLEX_FILES = 4
 [[RFC Editor: please modify the LAYOUT4_FLEX_FILES
 to be the layouttype assigned by IANA]]
 };

 struct layout_content4 {
 layouttype4 loc_type;
 opaque loc_body<>;
 };

 struct layout4 {
 offset4 lo_offset;
 length4 lo_length;
 layoutiomode4 lo_iomode;
 layout_content4 lo_content;
 };

 <CODE ENDS>

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5662

Halevy & Haynes Expires November 4, 2018 [Page 18]

Internet-Draft Flex File Layout May 2018

 This document defines structures associated with the layouttype4
 value LAYOUT4_FLEX_FILES. [RFC5661] specifies the loc_body structure
 as an XDR type "opaque". The opaque layout is uninterpreted by the
 generic pNFS client layers, but is interpreted by the flexible file
 layout type implementation. This section defines the structure of
 this otherwise opaque value, ff_layout4.

5.1. ff_layout4

 <CODE BEGINS>

 /// const FF_FLAGS_NO_LAYOUTCOMMIT = 0x00000001;
 /// const FF_FLAGS_NO_IO_THRU_MDS = 0x00000002;
 /// const FF_FLAGS_NO_READ_IO = 0x00000004;
 /// const FF_FLAGS_WRITE_ONE_MIRROR = 0x00000008;

 /// typedef uint32_t ff_flags4;
 ///

 /// struct ff_data_server4 {
 /// deviceid4 ffds_deviceid;
 /// uint32_t ffds_efficiency;
 /// stateid4 ffds_stateid;
 /// nfs_fh4 ffds_fh_vers<>;
 /// fattr4_owner ffds_user;
 /// fattr4_owner_group ffds_group;
 /// };
 ///

 /// struct ff_mirror4 {
 /// ff_data_server4 ffm_data_servers<>;
 /// };
 ///

 /// struct ff_layout4 {
 /// length4 ffl_stripe_unit;
 /// ff_mirror4 ffl_mirrors<>;
 /// ff_flags4 ffl_flags;
 /// uint32_t ffl_stats_collect_hint;
 /// };
 ///

 <CODE ENDS>

 The ff_layout4 structure specifies a layout in that portion of the
 data file described in the current layout segment. It is either a
 single instance or a set of mirrored copies of that portion of the
 data file. When mirroring is in effect, it protects against loss of

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires November 4, 2018 [Page 19]

Internet-Draft Flex File Layout May 2018

 data in layout segments. Note that while not explicitly shown in the
 above XDR, each layout4 element returned in the logr_layout array of
 LAYOUTGET4res (see Section 18.43.1 of [RFC5661]) describes a layout
 segment. Hence each ff_layout4 also describes a layout segment.

 It is possible that the file is concatenated from more than one
 layout segment. Each layout segment MAY represent different striping
 parameters, applying respectively only to the layout segment byte
 range.

 The ffl_stripe_unit field is the stripe unit size in use for the
 current layout segment. The number of stripes is given inside each
 mirror by the number of elements in ffm_data_servers. If the number
 of stripes is one, then the value for ffl_stripe_unit MUST default to
 zero. The only supported mapping scheme is sparse and is detailed in

Section 6. Note that there is an assumption here that both the
 stripe unit size and the number of stripes is the same across all
 mirrors.

 The ffl_mirrors field is the array of mirrored storage devices which
 provide the storage for the current stripe, see Figure 1.

 The ffl_stats_collect_hint field provides a hint to the client on how
 often the server wants it to report LAYOUTSTATS for a file. The time
 is in seconds.

 +-----------+
 | |
 | |
 | File |
 | |
 | |
 +-----+-----+
 |
 +------------+------------+
 | |
 +----+-----+ +-----+----+
 | Mirror 1 | | Mirror 2 |
 +----+-----+ +-----+----+
 | |
 +-----------+ +-----------+
 |+-----------+ |+-----------+
 ||+-----------+ ||+-----------+
 +|| Storage | +|| Storage |
 +| Devices | +| Devices |
 +-----------+ +-----------+

 Figure 1

https://datatracker.ietf.org/doc/html/rfc5661#section-18.43.1

Halevy & Haynes Expires November 4, 2018 [Page 20]

Internet-Draft Flex File Layout May 2018

 The ffs_mirrors field represents an array of state information for
 each mirrored copy of the current layout segment. Each element is
 described by a ff_mirror4 type.

 ffds_deviceid provides the deviceid of the storage device holding the
 data file.

 ffds_fh_vers is an array of filehandles of the data file matching to
 the available NFS versions on the given storage device. There MUST
 be exactly as many elements in ffds_fh_vers as there are in
 ffda_versions. Each element of the array corresponds to a particular
 combination of ffdv_version, ffdv_minorversion, and
 ffdv_tightly_coupled provided for the device. The array allows for
 server implementations which have different filehandles for different
 combinations of version, minor version, and coupling strength. See

Section 5.4 for how to handle versioning issues between the client
 and storage devices.

 For tight coupling, ffds_stateid provides the stateid to be used by
 the client to access the file. For loose coupling and a NFSv4
 storage device, the client will have to use an anonymous stateid to
 perform I/O on the storage device. With no control protocol, the
 metadata server stateid can not be used to provide a global stateid
 model. Thus the server MUST set the ffds_stateid to be the anonymous
 stateid.

 This specification of the ffds_stateid restricts both models for
 NFSv4.x storage protocols:

 loosely couple: the stateid has to be an anonymous stateid,

 tightly couple: the stateid has to be a global stateid.

 A number of issues stem from a mismatch between the fact that
 ffds_stateid is defined as a single item while ffds_fh_vers is
 defined as an array. It is possible for each open file on the
 storage device to require its own open stateid. Because there are
 established loosely coupled implementations of the version of the
 protocol described in this document, such potential issues have not
 been addressed here. It is possible for future layout types to be
 defined that address these issues, should it become important to
 provide multiple stateids for the same underlying file.

 For loosely coupled storage devices, ffds_user and ffds_group provide
 the synthetic user and group to be used in the RPC credentials that
 the client presents to the storage device to access the data files.
 For tightly coupled storage devices, the user and group on the
 storage device will be the same as on the metadata server. I.e., if

Halevy & Haynes Expires November 4, 2018 [Page 21]

Internet-Draft Flex File Layout May 2018

 ffdv_tightly_coupled (see Section 4.1) is set, then the client MUST
 ignore both ffds_user and ffds_group.

 The allowed values for both ffds_user and ffds_group are specified in
Section 5.9 of [RFC5661]. For NFSv3 compatibility, user and group

 strings that consist of decimal numeric values with no leading zeros
 can be given a special interpretation by clients and servers that
 choose to provide such support. The receiver may treat such a user
 or group string as representing the same user as would be represented
 by an NFSv3 uid or gid having the corresponding numeric value. Note
 that if using Kerberos for security, the expectation is that these
 values will be a name@domain string.

 ffds_efficiency describes the metadata server's evaluation as to the
 effectiveness of each mirror. Note that this is per layout and not
 per device as the metric may change due to perceived load,
 availability to the metadata server, etc. Higher values denote
 higher perceived utility. The way the client can select the best
 mirror to access is discussed in Section 8.1.

 ffl_flags is a bitmap that allows the metadata server to inform the
 client of particular conditions that may result from the more or less
 tight coupling of the storage devices.

 FF_FLAGS_NO_LAYOUTCOMMIT: can be set to indicate that the client is
 not required to send LAYOUTCOMMIT to the metadata server.

 F_FLAGS_NO_IO_THRU_MDS: can be set to indicate that the client
 should not send I/O operations to the metadata server. I.e., even
 if the client could determine that there was a network disconnect
 to a storage device, the client should not try to proxy the I/O
 through the metadata server.

 FF_FLAGS_NO_READ_IO: can be set to indicate that the client should
 not send READ requests with the layouts of iomode
 LAYOUTIOMODE4_RW. Instead, it should request a layout of iomode
 LAYOUTIOMODE4_READ from the metadata server.

 FF_FLAGS_WRITE_ONE_MIRROR: can be set to indicate that the client
 only needs to update one of the mirrors (see Section 8.2).

5.1.1. Error Codes from LAYOUTGET

 [RFC5661] provides little guidance as to how the client is to proceed
 with a LAYOUTGET which returns an error of either
 NFS4ERR_LAYOUTTRYLATER, NFS4ERR_LAYOUTUNAVAILABLE, and NFS4ERR_DELAY.
 Within the context of this document:

https://datatracker.ietf.org/doc/html/rfc5661#section-5.9

Halevy & Haynes Expires November 4, 2018 [Page 22]

Internet-Draft Flex File Layout May 2018

 NFS4ERR_LAYOUTUNAVAILABLE: there is no layout available and the I/O
 is to go to the metadata server. Note that it is possible to have
 had a layout before a recall and not after.

 NFS4ERR_LAYOUTTRYLATER: there is some issue preventing the layout
 from being granted. If the client already has an appropriate
 layout, it should continue with I/O to the storage devices.

 NFS4ERR_DELAY: there is some issue preventing the layout from being
 granted. If the client already has an appropriate layout, it
 should not continue with I/O to the storage devices.

5.1.2. Client Interactions with FF_FLAGS_NO_IO_THRU_MDS

 Even if the metadata server provides the FF_FLAGS_NO_IO_THRU_MDS,
 flag, the client can still perform I/O to the metadata server. The
 flag functions as a hint. The flag indicates to the client that the
 metadata server prefers to separate the metadata I/O from the data I/
 O, most likely for peformance reasons.

5.2. LAYOUTCOMMIT

 The flex file layout does not use lou_body. If lou_type is
 LAYOUT4_FLEX_FILES, the lou_body field MUST have a zero length.

5.3. Interactions Between Devices and Layouts

 In [RFC5661], the file layout type is defined such that the
 relationship between multipathing and filehandles can result in
 either 0, 1, or N filehandles (see Section 13.3). Some rationales
 for this are clustered servers which share the same filehandle or
 allowing for multiple read-only copies of the file on the same
 storage device. In the flexible file layout type, while there is an
 array of filehandles, they are independent of the multipathing being
 used. If the metadata server wants to provide multiple read-only
 copies of the same file on the same storage device, then it should
 provide multiple ff_device_addr4, each as a mirror. The client can
 then determine that since the ffds_fh_vers are different, then there
 are multiple copies of the file for the current layout segment
 available.

5.4. Handling Version Errors

 When the metadata server provides the ffda_versions array in the
 ff_device_addr4 (see Section 4.1), the client is able to determine if
 it can not access a storage device with any of the supplied
 combinations of ffdv_version, ffdv_minorversion, and
 ffdv_tightly_coupled. However, due to the limitations of reporting

https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires November 4, 2018 [Page 23]

Internet-Draft Flex File Layout May 2018

 errors in GETDEVICEINFO (see Section 18.40 in [RFC5661], the client
 is not able to specify which specific device it can not communicate
 with over one of the provided ffdv_version and ffdv_minorversion
 combinations. Using ff_ioerr4 (see Section 9.1.1 inside either the
 LAYOUTRETURN (see Section 18.44 of [RFC5661]) or the LAYOUTERROR (see

Section 15.6 of [RFC7862] and Section 10 of this document), the
 client can isolate the problematic storage device.

 The error code to return for LAYOUTRETURN and/or LAYOUTERROR is
 NFS4ERR_MINOR_VERS_MISMATCH. It does not matter whether the mismatch
 is a major version (e.g., client can use NFSv3 but not NFSv4) or
 minor version (e.g., client can use NFSv4.1 but not NFSv4.2), the
 error indicates that for all the supplied combinations for
 ffdv_version and ffdv_minorversion, the client can not communicate
 with the storage device. The client can retry the GETDEVICEINFO to
 see if the metadata server can provide a different combination or it
 can fall back to doing the I/O through the metadata server.

6. Striping via Sparse Mapping

 While other layout types support both dense and sparse mapping of
 logical offsets to physical offsets within a file (see for example

Section 13.4 of [RFC5661]), the flexible file layout type only
 supports a sparse mapping.

 With sparse mappings, the logical offset within a file (L) is also
 the physical offset on the storage device. As detailed in

Section 13.4.4 of [RFC5661], this results in holes across each
 storage device which does not contain the current stripe index.

 L: logical offset into the file

 W: stripe width
 W = number of elements in ffm_data_servers

 S: number of bytes in a stripe
 S = W * ffl_stripe_unit

 N: stripe number
 N = L / S

7. Recovering from Client I/O Errors

 The pNFS client may encounter errors when directly accessing the
 storage devices. However, it is the responsibility of the metadata
 server to recover from the I/O errors. When the LAYOUT4_FLEX_FILES
 layout type is used, the client MUST report the I/O errors to the

https://datatracker.ietf.org/doc/html/rfc5661#section-18.40
https://datatracker.ietf.org/doc/html/rfc5661#section-18.44
https://datatracker.ietf.org/doc/html/rfc7862#section-15.6
https://datatracker.ietf.org/doc/html/rfc5661#section-13.4
https://datatracker.ietf.org/doc/html/rfc5661#section-13.4.4

Halevy & Haynes Expires November 4, 2018 [Page 24]

Internet-Draft Flex File Layout May 2018

 server at LAYOUTRETURN time using the ff_ioerr4 structure (see
Section 9.1.1).

 The metadata server analyzes the error and determines the required
 recovery operations such as recovering media failures or
 reconstructing missing data files.

 The metadata server MUST recall any outstanding layouts to allow it
 exclusive write access to the stripes being recovered and to prevent
 other clients from hitting the same error condition. In these cases,
 the server MUST complete recovery before handing out any new layouts
 to the affected byte ranges.

 Although the client implementation has the option to propagate a
 corresponding error to the application that initiated the I/O
 operation and drop any unwritten data, the client should attempt to
 retry the original I/O operation by either requesting a new layout or
 sending the I/O via regular NFSv4.1+ READ or WRITE operations to the
 metadata server. The client SHOULD attempt to retrieve a new layout
 and retry the I/O operation using the storage device first and only
 if the error persists, retry the I/O operation via the metadata
 server.

8. Mirroring

 The flexible file layout type has a simple model in place for the
 mirroring of the file data constrained by a layout segment. There is
 no assumption that each copy of the mirror is stored identically on
 the storage devices. For example, one device might employ
 compression or deduplication on the data. However, the over the wire
 transfer of the file contents MUST appear identical. Note, this is a
 constraint of the selected XDR representation in which each mirrored
 copy of the layout segment has the same striping pattern (see
 Figure 1).

 The metadata server is responsible for determining the number of
 mirrored copies and the location of each mirror. While the client
 may provide a hint to how many copies it wants (see Section 12), the
 metadata server can ignore that hint and in any event, the client has
 no means to dictate either the storage device (which also means the
 coupling and/or protocol levels to access the layout segments) or the
 location of said storage device.

 The updating of mirrored layout segments is done via client-side
 mirroring. With this approach, the client is responsible for making
 sure modifications are made on all copies of the layout segments it
 is informed of via the layout. If a layout segment is being
 resilvered to a storage device, that mirrored copy will not be in the

Halevy & Haynes Expires November 4, 2018 [Page 25]

Internet-Draft Flex File Layout May 2018

 layout. Thus the metadata server MUST update that copy until the
 client is presented it in a layout. If the FF_FLAGS_WRITE_ONE_MIRROR
 is set in ffl_flags, the client need only update one of the mirrors
 (see Section 8.2). If the client is writing to the layout segments
 via the metadata server, then the metadata server MUST update all
 copies of the mirror. As seen in Section 8.3, during the
 resilvering, the layout is recalled, and the client has to make
 modifications via the metadata server.

8.1. Selecting a Mirror

 When the metadata server grants a layout to a client, it MAY let the
 client know how fast it expects each mirror to be once the request
 arrives at the storage devices via the ffds_efficiency member. While
 the algorithms to calculate that value are left to the metadata
 server implementations, factors that could contribute to that
 calculation include speed of the storage device, physical memory
 available to the device, operating system version, current load, etc.

 However, what should not be involved in that calculation is a
 perceived network distance between the client and the storage device.
 The client is better situated for making that determination based on
 past interaction with the storage device over the different available
 network interfaces between the two. I.e., the metadata server might
 not know about a transient outage between the client and storage
 device because it has no presence on the given subnet.

 As such, it is the client which decides which mirror to access for
 reading the file. The requirements for writing to mirrored layout
 segments are presented below.

8.2. Writing to Mirrors

8.2.1. Single Storage Device Updates Mirrors

 If the FF_FLAGS_WRITE_ONE_MIRROR flag in ffl_flags is set, the client
 only needs to update one of the copies of the layout segment. For
 this case, the storage device MUST ensure that all copies of the
 mirror are updated when any one of the mirrors is updated. If the
 storage device gets an error when updating one of the mirrors, then
 it MUST inform the client that the original WRITE had an error. The
 client then MUST inform the metadata server (see Section 8.2.3). The
 client's responsibility with respect to COMMIT is explained in

Section 8.2.4. The client may choose any one of the mirrors and may
 use ffds_efficiency in the same manner as for reading when making
 this choice.

Halevy & Haynes Expires November 4, 2018 [Page 26]

Internet-Draft Flex File Layout May 2018

8.2.2. Client Updates All Mirrors

 If the FF_FLAGS_WRITE_ONE_MIRROR flag in ffl_flags is not set, the
 client is responsible for updating all mirrored copies of the layout
 segments that it is given in the layout. A single failed update is
 sufficient to fail the entire operation. If all but one copy is
 updated successfully and the last one provides an error, then the
 client needs to inform the metadata server about the error via either
 LAYOUTRETURN or LAYOUTERROR that the update failed to that storage
 device. If the client is updating the mirrors serially, then it
 SHOULD stop at the first error encountered and report that to the
 metadata server. If the client is updating the mirrors in parallel,
 then it SHOULD wait until all storage devices respond such that it
 can report all errors encountered during the update.

8.2.3. Handling Write Errors

 When the client reports a write error to the metadata server, the
 metadata server is responsible for determining if it wants to remove
 the errant mirror from the layout, if the mirror has recovered from
 some transient error, etc. When the client tries to get a new
 layout, the metadata server informs it of the decision by the
 contents of the layout. The client MUST NOT make any assumptions
 that the contents of the previous layout will match those of the new
 one. If it has updates that were not committed to all mirrors, then
 it MUST resend those updates to all mirrors.

 There is no provision in the protocol for the metadata server to
 directly determine that the client has or has not recovered from an
 error. I.e., assume that the storage device was network partitioned
 from the client and all of the copies are successfully updated after
 the error was reported. There is no mechanism for the client to
 report that fact and the metadata server is forced to repair the file
 across the mirror.

 If the client supports NFSv4.2, it can use LAYOUTERROR and
 LAYOUTRETURN to provide hints to the metadata server about the
 recovery efforts. A LAYOUTERROR on a file is for a non-fatal error.
 A subsequent LAYOUTRETURN without a ff_ioerr4 indicates that the
 client successfully replayed the I/O to all mirrors. Any
 LAYOUTRETURN with a ff_ioerr4 is an error that the metadata server
 needs to repair. The client MUST be prepared for the LAYOUTERROR to
 trigger a CB_LAYOUTRECALL if the metadata server determines it needs
 to start repairing the file.

Halevy & Haynes Expires November 4, 2018 [Page 27]

Internet-Draft Flex File Layout May 2018

8.2.4. Handling Write COMMITs

 When stable writes are done to the metadata server or to a single
 replica (if allowed by the use of FF_FLAGS_WRITE_ONE_MIRROR), it is
 the responsibility of the receiving node to propagate the written
 data stably, before replying to the client.

 In the corresponding cases in which unstable writes are done, the
 receiving node does not have any such obligation, although it may
 choose to asynchronously propagate the updates. However, once a
 COMMIT is replied to, all replicas must reflect the writes that have
 been done, and this data must have been committed to stable storage
 on all replicas.

 In order to avoid situations in which stale data is read from
 replicas to which writes have not been propagated:

 o A client which has outstanding unstable writes made to single node
 (metadata server or storage device) MUST do all reads from that
 same node.

 o When writes are flushed to the server, for example to implement,
 close-to-open semantics, a COMMIT must be done by the client to
 ensure that up-to-date written data will be available irrespective
 of the particular replica read.

8.3. Metadata Server Resilvering of the File

 The metadata server may elect to create a new mirror of the layout
 segments at any time. This might be to resilver a copy on a storage
 device which was down for servicing, to provide a copy of the layout
 segments on storage with different storage performance
 characteristics, etc. As the client will not be aware of the new
 mirror and the metadata server will not be aware of updates that the
 client is making to the layout segments, the metadata server MUST
 recall the writable layout segment(s) that it is resilvering. If the
 client issues a LAYOUTGET for a writable layout segment which is in
 the process of being resilvered, then the metadata server can deny
 that request with a NFS4ERR_LAYOUTUNAVAILABLE. The client would then
 have to perform the I/O through the metadata server.

9. Flexible Files Layout Type Return

 layoutreturn_file4 is used in the LAYOUTRETURN operation to convey
 layout-type specific information to the server. It is defined in

Section 18.44.1 of [RFC5661] as follows:

 <CODE BEGINS>

https://datatracker.ietf.org/doc/html/rfc5661#section-18.44.1

Halevy & Haynes Expires November 4, 2018 [Page 28]

Internet-Draft Flex File Layout May 2018

 /* Constants used for LAYOUTRETURN and CB_LAYOUTRECALL */
 const LAYOUT4_RET_REC_FILE = 1;
 const LAYOUT4_RET_REC_FSID = 2;
 const LAYOUT4_RET_REC_ALL = 3;

 enum layoutreturn_type4 {
 LAYOUTRETURN4_FILE = LAYOUT4_RET_REC_FILE,
 LAYOUTRETURN4_FSID = LAYOUT4_RET_REC_FSID,
 LAYOUTRETURN4_ALL = LAYOUT4_RET_REC_ALL
 };

 struct layoutreturn_file4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 /* layouttype4 specific data */
 opaque lrf_body<>;
 };

 union layoutreturn4 switch(layoutreturn_type4 lr_returntype) {
 case LAYOUTRETURN4_FILE:
 layoutreturn_file4 lr_layout;
 default:
 void;
 };

 struct LAYOUTRETURN4args {
 /* CURRENT_FH: file */
 bool lora_reclaim;
 layoutreturn_stateid lora_recallstateid;
 layouttype4 lora_layout_type;
 layoutiomode4 lora_iomode;
 layoutreturn4 lora_layoutreturn;
 };

 <CODE ENDS>

 If the lora_layout_type layout type is LAYOUT4_FLEX_FILES and the
 lr_returntype is LAYOUTRETURN4_FILE, then the lrf_body opaque value
 is defined by ff_layoutreturn4 (See Section 9.3). It allows the
 client to report I/O error information or layout usage statistics
 back to the metadata server as defined below. Note that while the
 data structures are built on concepts introduced in NFSv4.2, the
 effective discriminated union (lora_layout_type combined with
 ff_layoutreturn4) allows for a NFSv4.1 metadata server to utilize the
 data.

Halevy & Haynes Expires November 4, 2018 [Page 29]

Internet-Draft Flex File Layout May 2018

9.1. I/O Error Reporting

9.1.1. ff_ioerr4

 <CODE BEGINS>

 /// struct ff_ioerr4 {
 /// offset4 ffie_offset;
 /// length4 ffie_length;
 /// stateid4 ffie_stateid;
 /// device_error4 ffie_errors<>;
 /// };
 ///

 <CODE ENDS>

 Recall that [RFC7862] defines device_error4 as:

 <CODE BEGINS>

 struct device_error4 {
 deviceid4 de_deviceid;
 nfsstat4 de_status;
 nfs_opnum4 de_opnum;
 };

 <CODE ENDS>

 The ff_ioerr4 structure is used to return error indications for data
 files that generated errors during data transfers. These are hints
 to the metadata server that there are problems with that file. For
 each error, ffie_errors.de_deviceid, ffie_offset, and ffie_length
 represent the storage device and byte range within the file in which
 the error occurred; ffie_errors represents the operation and type of
 error. The use of device_error4 is described in Section 15.6 of
 [RFC7862].

 Even though the storage device might be accessed via NFSv3 and
 reports back NFSv3 errors to the client, the client is responsible
 for mapping these to appropriate NFSv4 status codes as de_status.
 Likewise, the NFSv3 operations need to be mapped to equivalent NFSv4
 operations.

9.2. Layout Usage Statistics

https://datatracker.ietf.org/doc/html/rfc7862
https://datatracker.ietf.org/doc/html/rfc7862#section-15.6
https://datatracker.ietf.org/doc/html/rfc7862#section-15.6

Halevy & Haynes Expires November 4, 2018 [Page 30]

Internet-Draft Flex File Layout May 2018

9.2.1. ff_io_latency4

 <CODE BEGINS>

 /// struct ff_io_latency4 {
 /// uint64_t ffil_ops_requested;
 /// uint64_t ffil_bytes_requested;
 /// uint64_t ffil_ops_completed;
 /// uint64_t ffil_bytes_completed;
 /// uint64_t ffil_bytes_not_delivered;
 /// nfstime4 ffil_total_busy_time;
 /// nfstime4 ffil_aggregate_completion_time;
 /// };
 ///

 <CODE ENDS>

 Both operation counts and bytes transferred are kept in the
 ff_io_latency4. As seen in ff_layoutupdate4 (See Section 9.2.2) read
 and write operations are aggregated separately. READ operations are
 used for the ff_io_latency4 ffl_read. Both WRITE and COMMIT
 operations are used for the ff_io_latency4 ffl_write. "Requested"
 counters track what the client is attempting to do and "completed"
 counters track what was done. There is no requirement that the
 client only report completed results that have matching requested
 results from the reported period.

 ffil_bytes_not_delivered is used to track the aggregate number of
 bytes requested by not fulfilled due to error conditions.
 ffil_total_busy_time is the aggregate time spent with outstanding RPC
 calls. ffil_aggregate_completion_time is the sum of all round trip
 times for completed RPC calls.

 In Section 3.3.1 of [RFC5661], the nfstime4 is defined as the number
 of seconds and nanoseconds since midnight or zero hour January 1,
 1970 Coordinated Universal Time (UTC). The use of nfstime4 in
 ff_io_latency4 is to store time since the start of the first I/O from
 the client after receiving the layout. In other words, these are to
 be decoded as duration and not as a date and time.

 Note that LAYOUTSTATS are cumulative, i.e., not reset each time the
 operation is sent. If two LAYOUTSTATS ops for the same file, layout
 stateid, and originating from the same NFS client are processed at
 the same time by the metadata server, then the one containing the
 larger values contains the most recent time series data.

https://datatracker.ietf.org/doc/html/rfc5661#section-3.3.1

Halevy & Haynes Expires November 4, 2018 [Page 31]

Internet-Draft Flex File Layout May 2018

9.2.2. ff_layoutupdate4

 <CODE BEGINS>

 /// struct ff_layoutupdate4 {
 /// netaddr4 ffl_addr;
 /// nfs_fh4 ffl_fhandle;
 /// ff_io_latency4 ffl_read;
 /// ff_io_latency4 ffl_write;
 /// nfstime4 ffl_duration;
 /// bool ffl_local;
 /// };
 ///

 <CODE ENDS>

 ffl_addr differentiates which network address the client connected to
 on the storage device. In the case of multipathing, ffl_fhandle
 indicates which read-only copy was selected. ffl_read and ffl_write
 convey the latencies respectively for both read and write operations.
 ffl_duration is used to indicate the time period over which the
 statistics were collected. ffl_local if true indicates that the I/O
 was serviced by the client's cache. This flag allows the client to
 inform the metadata server about "hot" access to a file it would not
 normally be allowed to report on.

9.2.3. ff_iostats4

 <CODE BEGINS>

 /// struct ff_iostats4 {
 /// offset4 ffis_offset;
 /// length4 ffis_length;
 /// stateid4 ffis_stateid;
 /// io_info4 ffis_read;
 /// io_info4 ffis_write;
 /// deviceid4 ffis_deviceid;
 /// ff_layoutupdate4 ffis_layoutupdate;
 /// };
 ///

 <CODE ENDS>

 Recall that [RFC7862] defines io_info4 as:

 <CODE BEGINS>

https://datatracker.ietf.org/doc/html/rfc7862

Halevy & Haynes Expires November 4, 2018 [Page 32]

Internet-Draft Flex File Layout May 2018

 struct io_info4 {
 uint64_t ii_count;
 uint64_t ii_bytes;
 };

 <CODE ENDS>

 With pNFS, data transfers are performed directly between the pNFS
 client and the storage devices. Therefore, the metadata server has
 no direct knowledge to the I/O operations being done and thus can not
 create on its own statistical information about client I/O to
 optimize data storage location. ff_iostats4 MAY be used by the
 client to report I/O statistics back to the metadata server upon
 returning the layout.

 Since it is not feasible for the client to report every I/O that used
 the layout, the client MAY identify "hot" byte ranges for which to
 report I/O statistics. The definition and/or configuration mechanism
 of what is considered "hot" and the size of the reported byte range
 is out of the scope of this document. It is suggested for client
 implementation to provide reasonable default values and an optional
 run-time management interface to control these parameters. For
 example, a client can define the default byte range resolution to be
 1 MB in size and the thresholds for reporting to be 1 MB/second or 10
 I/O operations per second.

 For each byte range, ffis_offset and ffis_length represent the
 starting offset of the range and the range length in bytes.
 ffis_read.ii_count, ffis_read.ii_bytes, ffis_write.ii_count, and
 ffis_write.ii_bytes represent, respectively, the number of contiguous
 read and write I/Os and the respective aggregate number of bytes
 transferred within the reported byte range.

 The combination of ffis_deviceid and ffl_addr uniquely identifies
 both the storage path and the network route to it. Finally, the
 ffl_fhandle allows the metadata server to differentiate between
 multiple read-only copies of the file on the same storage device.

9.3. ff_layoutreturn4

 <CODE BEGINS>

 /// struct ff_layoutreturn4 {
 /// ff_ioerr4 fflr_ioerr_report<>;
 /// ff_iostats4 fflr_iostats_report<>;
 /// };
 ///

Halevy & Haynes Expires November 4, 2018 [Page 33]

Internet-Draft Flex File Layout May 2018

 <CODE ENDS>

 When data file I/O operations fail, fflr_ioerr_report<> is used to
 report these errors to the metadata server as an array of elements of
 type ff_ioerr4. Each element in the array represents an error that
 occurred on the data file identified by ffie_errors.de_deviceid. If
 no errors are to be reported, the size of the fflr_ioerr_report<>
 array is set to zero. The client MAY also use fflr_iostats_report<>
 to report a list of I/O statistics as an array of elements of type
 ff_iostats4. Each element in the array represents statistics for a
 particular byte range. Byte ranges are not guaranteed to be disjoint
 and MAY repeat or intersect.

10. Flexible Files Layout Type LAYOUTERROR

 If the client is using NFSv4.2 to communicate with the metadata
 server, then instead of waiting for a LAYOUTRETURN to send error
 information to the metadata server (see Section 9.1), it MAY use
 LAYOUTERROR (see Section 15.6 of [RFC7862]) to communicate that
 information. For the flexible files layout type, this means that
 LAYOUTERROR4args is treated the same as ff_ioerr4.

11. Flexible Files Layout Type LAYOUTSTATS

 If the client is using NFSv4.2 to communicate with the metadata
 server, then instead of waiting for a LAYOUTRETURN to send I/O
 statistics to the metadata server (see Section 9.2), it MAY use
 LAYOUTSTATS (see Section 15.7 of [RFC7862]) to communicate that
 information. For the flexible files layout type, this means that
 LAYOUTSTATS4args.lsa_layoutupdate is overloaded with the same
 contents as in ffis_layoutupdate.

12. Flexible File Layout Type Creation Hint

 The layouthint4 type is defined in the [RFC5661] as follows:

 <CODE BEGINS>

 struct layouthint4 {
 layouttype4 loh_type;
 opaque loh_body<>;
 };

 <CODE ENDS>

 The layouthint4 structure is used by the client to pass a hint about
 the type of layout it would like created for a particular file. If

https://datatracker.ietf.org/doc/html/rfc7862#section-15.6
https://datatracker.ietf.org/doc/html/rfc7862#section-15.7
https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires November 4, 2018 [Page 34]

Internet-Draft Flex File Layout May 2018

 the loh_type layout type is LAYOUT4_FLEX_FILES, then the loh_body
 opaque value is defined by the ff_layouthint4 type.

12.1. ff_layouthint4

 <CODE BEGINS>

 /// union ff_mirrors_hint switch (bool ffmc_valid) {
 /// case TRUE:
 /// uint32_t ffmc_mirrors;
 /// case FALSE:
 /// void;
 /// };
 ///

 /// struct ff_layouthint4 {
 /// ff_mirrors_hint fflh_mirrors_hint;
 /// };
 ///

 <CODE ENDS>

 This type conveys hints for the desired data map. All parameters are
 optional so the client can give values for only the parameter it
 cares about.

13. Recalling a Layout

 While Section 12.5.5 of [RFC5661] discusses layout type independent
 reasons for recalling a layout, the flexible file layout type
 metadata server should recall outstanding layouts in the following
 cases:

 o When the file's security policy changes, i.e., Access Control
 Lists (ACLs) or permission mode bits are set.

 o When the file's layout changes, rendering outstanding layouts
 invalid.

 o When existing layouts are inconsistent with the need to enforce
 locking constraints.

 o When existing layouts are inconsistent with the requirements
 regarding resilvering as described in Section 8.3.

https://datatracker.ietf.org/doc/html/rfc5661#section-12.5.5

Halevy & Haynes Expires November 4, 2018 [Page 35]

Internet-Draft Flex File Layout May 2018

13.1. CB_RECALL_ANY

 The metadata server can use the CB_RECALL_ANY callback operation to
 notify the client to return some or all of its layouts. Section 22.3
 of [RFC5661] defines the allowed types of the "NFSv4 Recallable
 Object Types Registry".

 <CODE BEGINS>

 /// const RCA4_TYPE_MASK_FF_LAYOUT_MIN = 16;
 /// const RCA4_TYPE_MASK_FF_LAYOUT_MAX = 17;
 [[RFC Editor: please insert assigned constants]]
 ///

 struct CB_RECALL_ANY4args {
 uint32_t craa_layouts_to_keep;
 bitmap4 craa_type_mask;
 };

 <CODE ENDS>

 Typically, CB_RECALL_ANY will be used to recall client state when the
 server needs to reclaim resources. The craa_type_mask bitmap
 specifies the type of resources that are recalled and the
 craa_layouts_to_keep value specifies how many of the recalled
 flexible file layouts the client is allowed to keep. The flexible
 file layout type mask flags are defined as follows:

 <CODE BEGINS>

 /// enum ff_cb_recall_any_mask {
 /// FF_RCA4_TYPE_MASK_READ = -2,
 /// FF_RCA4_TYPE_MASK_RW = -1
 [[RFC Editor: please insert assigned constants]]
 /// };
 ///

 <CODE ENDS>

 They represent the iomode of the recalled layouts. In response, the
 client SHOULD return layouts of the recalled iomode that it needs the
 least, keeping at most craa_layouts_to_keep Flexible File Layouts.

 The PNFS_FF_RCA4_TYPE_MASK_READ flag notifies the client to return
 layouts of iomode LAYOUTIOMODE4_READ. Similarly, the
 PNFS_FF_RCA4_TYPE_MASK_RW flag notifies the client to return layouts
 of iomode LAYOUTIOMODE4_RW. When both mask flags are set, the client
 is notified to return layouts of either iomode.

https://datatracker.ietf.org/doc/html/rfc5661#section-22.3
https://datatracker.ietf.org/doc/html/rfc5661#section-22.3

Halevy & Haynes Expires November 4, 2018 [Page 36]

Internet-Draft Flex File Layout May 2018

14. Client Fencing

 In cases where clients are uncommunicative and their lease has
 expired or when clients fail to return recalled layouts within a
 lease period, the server MAY revoke client layouts and reassign these
 resources to other clients (see Section 12.5.5 in [RFC5661]). To
 avoid data corruption, the metadata server MUST fence off the revoked
 clients from the respective data files as described in Section 2.2.

15. Security Considerations

 The combination of components in a pNFS system is required to
 preserve the security properties of NFSv4.1+ with respect to an
 entity accessing data via a client. The pNFS feature partitions the
 NFSv4.1+ file system protocol into two parts, the control protocol
 and the data protocol. As the control protocol in this document is
 NFS, the security properties are equivalent to that version of NFS.
 The Flexible File Layout further divides the data protocol into
 metadata and data paths. The security properties of the metadata
 path are equivalent to those of NFSv4.1x (see Sections 1.7.1 and
 2.2.1 of [RFC5661]). And the security properties of the data path
 are equivalent to those of the version of NFS used to access the
 storage device, with the provision that the metadata server is
 responsible for authenticating client access to the data file. The
 metadata server provides appropriate credentials to the client to
 access data files on the storage device. It is also responsible for
 revoking access for a client to the storage device.

 The metadata server enforces the file access-control policy at
 LAYOUTGET time. The client should use RPC authorization credentials
 for getting the layout for the requested iomode (READ or RW) and the
 server verifies the permissions and ACL for these credentials,
 possibly returning NFS4ERR_ACCESS if the client is not allowed the
 requested iomode. If the LAYOUTGET operation succeeds the client
 receives, as part of the layout, a set of credentials allowing it I/O
 access to the specified data files corresponding to the requested
 iomode. When the client acts on I/O operations on behalf of its
 local users, it MUST authenticate and authorize the user by issuing
 respective OPEN and ACCESS calls to the metadata server, similar to
 having NFSv4 data delegations.

 The combination of file handle, synthetic uid, and gid in the layout
 are the way that the metadata server enforces access control to the
 data server. The client only has access to file handles of file
 objects and not directory objects. Thus, given a file handle in a
 layout, it is not possible to guess the parent directory file handle.
 Further, as the data file permissions only allow the given synthetic
 uid read/write permission and the given synthetic gid read

https://datatracker.ietf.org/doc/html/rfc5661#section-12.5.5
https://datatracker.ietf.org/doc/html/rfc5661

Halevy & Haynes Expires November 4, 2018 [Page 37]

Internet-Draft Flex File Layout May 2018

 permission, knowing the synthetic ids of one file does not
 necessarily allow access to any other data file on the storage
 device.

 The metadata server can also deny access at any time by fencing the
 data file, which means changing the synthetic ids. In turn, that
 forces the client to return its current layout and get a new layout
 if it wants to continue IO to the data file.

 If access is allowed, the client uses the corresponding (READ or RW)
 credentials to perform the I/O operations at the data file's storage
 devices. When the metadata server receives a request to change a
 file's permissions or ACL, it SHOULD recall all layouts for that file
 and then MUST fence off any clients still holding outstanding layouts
 for the respective files by implicitly invalidating the previously
 distributed credential on all data file comprising the file in
 question. It is REQUIRED that this be done before committing to the
 new permissions and/or ACL. By requesting new layouts, the clients
 will reauthorize access against the modified access control metadata.
 Recalling the layouts in this case is intended to prevent clients
 from getting an error on I/Os done after the client was fenced off.

15.1. RPCSEC_GSS and Security Services

 Because of the special use of principals within the loose coupling
 model, the issues are different depending on the coupling model.

15.1.1. Loosely Coupled

 RPCSEC_GSS version 3 (RPCSEC_GSSv3) [RFC7861] contains facilities
 that would allow it to be used to authorize the client to the storage
 device on behalf of the metadata server. Doing so would require that
 each of the metadata server, storage device, and client would need to
 implement RPCSEC_GSSv3 using an RPC-application-defined structured
 privilege assertion in a manner described in Section 4.9.1 of
 [RFC7862]. The specifics necessary to do so are not described in
 this document. This is principally because any such specification
 would require extensive implementation work on a wide range of
 storage devices, which would be unlikely to result in a widely usable
 specification for a considerable time.

 As a result, the layout type described in this document will not
 provide support for use of RPCSEC_GSS together with the loosely
 coupled model. However, future layout types could be specified which
 would allow such support, either through the use of RPCSEC_GSSv3, or
 in other ways.

https://datatracker.ietf.org/doc/html/rfc7861
https://datatracker.ietf.org/doc/html/rfc7862#section-4.9.1
https://datatracker.ietf.org/doc/html/rfc7862#section-4.9.1

Halevy & Haynes Expires November 4, 2018 [Page 38]

Internet-Draft Flex File Layout May 2018

15.1.2. Tightly Coupled

 With tight coupling, the principal used to access the metadata file
 is exactly the same as used to access the data file. The storage
 device can use the control protocol to validate any RPC credentials.
 As a result there are no security issues related to using RPCSEC_GSS
 with a tightly coupled system. For example, if Kerberos V5 GSS-API
 [RFC4121] is used as the security mechanism, then the storage device
 could use a control protocol to validate the RPC credentials to the
 metadata server.

16. IANA Considerations

 [RFC5661] introduced a registry for "pNFS Layout Types Registry" and
 as such, new layout type numbers need to be assigned by IANA. This
 document defines the protocol associated with the existing layout
 type number, LAYOUT4_FLEX_FILES (see Table 1).

 +--------------------+-------+----------+-----+----------------+
 | Layout Type Name | Value | RFC | How | Minor Versions |
 +--------------------+-------+----------+-----+----------------+
 | LAYOUT4_FLEX_FILES | 0x4 | RFCTBD10 | L | 1 |
 +--------------------+-------+----------+-----+----------------+

 Table 1: Layout Type Assignments

 [RFC5661] also introduced a registry called "NFSv4 Recallable Object
 Types Registry". This document defines new recallable objects for
 RCA4_TYPE_MASK_FF_LAYOUT_MIN and RCA4_TYPE_MASK_FF_LAYOUT_MAX (see
 Table 2).

 +------------------------------+-------+----------+-----+-----------+
 | Recallable Object Type Name | Value | RFC | How | Minor |
 | | | | | Versions |
 +------------------------------+-------+----------+-----+-----------+
 | RCA4_TYPE_MASK_FF_LAYOUT_MIN | 16 | RFCTBD10 | L | 1 |
 | RCA4_TYPE_MASK_FF_LAYOUT_MAX | 17 | RFCTBD10 | L | 1 |
 +------------------------------+-------+----------+-----+-----------+

 Table 2: Recallable Object Type Assignments

17. References

17.1. Normative References

 [LEGAL] IETF Trust, "Legal Provisions Relating to IETF Documents",
 November 2008, <http://trustee.ietf.org/docs/

IETF-Trust-License-Policy.pdf>.

https://datatracker.ietf.org/doc/html/rfc4121
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf

Halevy & Haynes Expires November 4, 2018 [Page 39]

Internet-Draft Flex File Layout May 2018

 [RFC1813] IETF, "NFS Version 3 Protocol Specification", RFC 1813,
 June 1995.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism Version 2", RFC 4121, July
 2005.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2009.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, January 2010.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",

RFC 5662, January 2010.

 [RFC7530] Haynes, T. and D. Noveck, "Network File System (NFS)
 version 4 Protocol", RFC 7530, March 2015.

 [RFC7861] Adamson, W. and N. Williams, "Remote Procedure Call (RPC)
 Security Version 3", November 2016.

 [RFC7862] Haynes, T., "NFS Version 4 Minor Version 2", RFC 7862,
 November 2016.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [pNFSLayouts]
 Haynes, T., "Requirements for pNFS Layout Types", draft-

ietf-nfsv4-layout-types-07 (Work In Progress), August
 2017.

https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc5531
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5662
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7862
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-layout-types-07
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-layout-types-07

Halevy & Haynes Expires November 4, 2018 [Page 40]

Internet-Draft Flex File Layout May 2018

17.2. Informative References

 [RFC4519] Sciberras, A., Ed., "Lightweight Directory Access Protocol
 (LDAP): Schema for User Applications", RFC 4519, DOI
 10.17487/RFC4519, June 2006,
 <http://www.rfc-editor.org/info/rfc4519>.

Appendix A. Acknowledgments

 Those who provided miscellaneous comments to early drafts of this
 document include: Matt W. Benjamin, Adam Emerson, J. Bruce Fields,
 and Lev Solomonov.

 Those who provided miscellaneous comments to the final drafts of this
 document include: Anand Ganesh, Robert Wipfel, Gobikrishnan
 Sundharraj, Trond Myklebust, Rick Macklem, and Jim Sermersheim.

 Idan Kedar caught a nasty bug in the interaction of client side
 mirroring and the minor versioning of devices.

 Dave Noveck provided comprehensive reviews of the document during the
 working group last calls. He also rewrote Section 2.3.

 Olga Kornievskaia made a convincing case against the use of a
 credential versus a principal in the fencing approach. Andy Adamson
 and Benjamin Kaduk helped to sharpen the focus.

 Benjamin Kaduk and Olga Kornievskaia also helped provide concrete
 scenarios for loosely coupled security mechanisms. And in the end,
 Olga proved that as defined, the loosely coupled model would not work
 with RPCSEC_GSS.

 Tigran Mkrtchyan provided the use case for not allowing the client to
 proxy the I/O through the data server.

 Rick Macklem provided the use case for only writing to a single
 mirror.

Appendix B. RFC Editor Notes

 [RFC Editor: please remove this section prior to publishing this
 document as an RFC]

 [RFC Editor: prior to publishing this document as an RFC, please
 replace all occurrences of RFCTBD10 with RFCxxxx where xxxx is the
 RFC number of this document]

https://datatracker.ietf.org/doc/html/rfc4519
http://www.rfc-editor.org/info/rfc4519

Halevy & Haynes Expires November 4, 2018 [Page 41]

Internet-Draft Flex File Layout May 2018

Authors' Addresses

 Benny Halevy

 Email: bhalevy@gmail.com

 Thomas Haynes
 Hammerspace
 4300 El Camino Real Ste 105
 Los Altos, CA 94022
 USA

 Email: loghyr@gmail.com

Halevy & Haynes Expires November 4, 2018 [Page 42]

