
NFSv4 D. Noveck
Internet-Draft NetApp
Updates: 8881, 7530 (if approved) March 26, 2021
Intended status: Standards Track
Expires: September 27, 2021

Internationalization for the NFSv4 Protocols
draft-ietf-nfsv4-internationalization-00

Abstract

 This document describes the handling of internationalization for all
 NFSv4 protocols, including NFSv4.0, NFSv4.1, NFSv4.2 and extensions
 thereof, and future minor versions.

 It updates RFC7530 and RFC8881.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 27, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Noveck Expires September 27, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc8881
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc8881
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft NFSv4 Internationalization March 2021

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Requirements Language . 4
2.1. Requirements Language Definition 4
2.2. Requirements Language Derivation 4

3. Internationalization and Minor Versioning 6
4. Changes Relative to RFC7530 7

 5. Limitations on Internationalization-Related Processing in the
 NFSv4 Context . 7

6. Summary of Server Behavior Types 8
7. The Attribute Fs_charset_cap 9

 7.1. The Attribute Fs_charset_cap in Published NFSv4.1
 Specifications . 10
 7.2. The Attribute Fs_charset_cap in Future NFSv4.1
 Specifications . 12

8. String Encoding . 14
9. Normalization . 15
10. Case-Insensitive Processing of File Names 15

 10.1. Implementing Case-Insensitive Comparison of File Names . 19
 10.2. Important Examples of Case-insensitive Handling of File
 Names . 21
 11. Internationalization-related Processing of File Names by
 Clients . 24
 11.1. Server Restrictions to Deal with Lack of Client
 Knowledge . 25
 11.2. Client Processing of File Names for Current NFSv4
 Protocols . 26
 11.3. Client Processing of File Names for Future NFSv4
 Protocols . 30
 12. String Types with Processing Defined by Other Internet Areas 31

12.1. Effect of IDNA Changes 33
 12.2. Potential Compatibility Issues Related to IDNA Changes . 34

13. Errors Related to UTF-8 36
 14. Servers That Accept File Component Names That Are Not Valid
 UTF-8 Strings . 37

15. Future Minor Versions and Extensions 38
16. IANA Considerations . 39
17. Security Considerations 39
18. References . 40
18.1. Normative References 40
18.2. Informative References 41

Appendix A. History . 42
Appendix B. Form-insensitive String Comparisons 47
B.1. Name Hashes . 49

https://datatracker.ietf.org/doc/html/rfc7530

Noveck Expires September 27, 2021 [Page 2]

Internet-Draft NFSv4 Internationalization March 2021

B.2. Character Tables . 51
B.3. Outline of comparison 52
B.4. Comparing Base Characters 53
B.5. Comparing Combining Characters 54

 Acknowledgements . 57
 Author's Address . 57

1. Introduction

 Internationalization is a complex topic with its own set of
 terminology (see [22]). The topic is made more complex for the NFSv4
 protocols by the tangled history described in Appendix A. In large
 part, this document is based on the actual behavior of NFSv4 client
 and server implementations (for all existing minor versions) and is
 intended to serve as a basis for further implementations to be
 developed that can interact with existing implementations as well as
 those to be developed in the future.

 Note that the behaviors on which this document are based are each
 demonstrated by a combination of an NFSv4 server implementation
 proper and a server-side physical file system. It is common for
 servers and physical file systems to be configurable as to the
 behavior shown. In the discussion below, each configuration that
 shows different behavior is considered separately.

 As a consequence of this choice, normative terms defined in RFC2119
 [1] are often derived from implementation behavior, rather than the
 other way around, as is more commonly the case. The specifics are
 discussed in Section 2.

 With regard to the question of interoperability with existing
 specifications for NFSv4 minor versions, different minor versions
 pose different issues.

 o With regard to NFSv4.0 as defined in RFC7530 [3], no significant
 interoperability issues are expected to arise because the
 internationalization in that specification, which is the basis for
 this one, was also based on the behavior of existing
 implementations. Although, in a formal sense, the treatment of
 internationalization here supersedes that in RFC7530 [3], the
 treatments are intended to be essentially the same, in order to
 eliminate interoperability issues.

 Because of a change in the handling of Internationalized domain
 names, there are some differences from the handling in RFC7530
 [3], as discussed in Appendix A. For a discussion of those
 differences and potential compatibility issues, see Sections 12.1
 and 12.2.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7530

Noveck Expires September 27, 2021 [Page 3]

Internet-Draft NFSv4 Internationalization March 2021

 o With regard to NFSv4.1 as defined RFC5661 [21], the situation is
 quite different. The approach to internationalization specified
 in that document, based in large part on that in RFC3530 was never
 implemented, and implementers were either unaware of the
 troublesome implications of that approach or chose to ignore the
 existing specification as essentially unimplementable. An
 internationalization approach compatible with that specified in

RFC7530 [3] tended to be followed, despite the fact that, in other
 respects, NFSv4.1 was considered to be a separate protocol.

 If there were NFSv4 servers who obeyed the internationalization
 dictates within RFC5661 [21], or clients that expected servers to
 do so, they would fail to interoperate with typical clients and
 servers when dealing with non-UTF8 file names, which are quite
 common. As no such implementations have come to our attention, it
 has to be assumed that they do not exist and interoperability with
 existing implementations as described here is an appropriate basis
 for this document.

2. Requirements Language

2.1. Requirements Language Definition

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as BCP 14 [1] [2] when, and only when,
 they appear in all capitals, as shown here.

2.2. Requirements Language Derivation

 Although the key words "MUST", "SHOULD", and "MAY" retain their
 normal meanings, as described above, we need to explain how the
 statements involving these terms were arrived at:

 o In the case of statements within Sections 12 and 15, these derive
 from the requirements of other internet specifications.

 o In the case of statements within Sections 7, 10, and 11 derive
 from the author's view of the appropriate normative language to
 use and will, when this document is advanced, represent the
 working group's consensus on those same matters.

 o However, in other cases, i.e. those in sections deriving from
RFC7530 [3] (i.e. Sections 5, 6, 8, 9, 13, 14, 16, 17) this

 specification's descriptions were derived from existing
 implementation patterns. Although this pattern is atypical, it is
 needed to provide a description that satisfies the goal of RFC2119
 [1], providing a normative description to enable future

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc2119

Noveck Expires September 27, 2021 [Page 4]

Internet-Draft NFSv4 Internationalization March 2021

 implementations to be compatible with existing ones. This
 requires that we explain later in this section how the normative
 terms used derive from the behavior of existing implementations,
 in those situations in which existing implementation behavior
 patterns can be determined.

 Note that in introductory and explanatory sections of this document
 (i.e. Sections 1 through 4 these terms do not appear except to
 explain how they are used in this document. Also, they do not appear
 in Appendix B which provides non-normative implementation guidance.

 With regard to the parts of this document deriving from RFC7530, we
 explain below how the normative terms used derive from the behavior
 of existing implementations, in those situations in which existing
 implementation behavior patterns can be determined.

 o Behavior implemented by all existing clients or servers is
 described using "MUST", since new implementations need to follow
 existing ones to be assured of interoperability. While it is
 possible that different behavior might be workable, we have found
 no case where this seems reasonable.

 The converse holds for "MUST NOT": if a type of behavior poses
 interoperability problems, it MUST NOT be implemented by any
 existing clients or servers.

 o Behavior implemented by most existing clients or servers, where
 that behavior is more desirable than any alternative, is described
 using "SHOULD", since new implementations need to follow that
 existing practice unless there are strong reasons to do otherwise.

 The converse holds for "SHOULD NOT".

 o Behavior implemented by some, but not all, existing clients or
 servers is described using "MAY", indicating that new
 implementations have a choice as to whether they will behave in
 that way. Thus, new implementations will have the same
 flexibility that existing ones do.

 o Behavior implemented by all existing clients or servers, so far as
 is known -- but where there remains some uncertainty as to details
 -- is described using "should". Such cases primarily concern
 details of error returns. New implementations should follow
 existing practice even though such situations generally do not
 affect interoperability.

 There are also cases in which certain server behaviors, while not
 known to exist, cannot be reliably determined not to exist. In part,

https://datatracker.ietf.org/doc/html/rfc7530

Noveck Expires September 27, 2021 [Page 5]

Internet-Draft NFSv4 Internationalization March 2021

 this is a consequence of the long period of time that has elapsed
 since the publication of the defining specifications, resulting in a
 situation in which those involved in t implementation work may no
 longer be involved in or aware of working group activities.

 In the case of possible server behavior that is neither known to
 exist nor known not to exist, we use "SHOULD NOT" and "MUST NOT" as
 follows, and similarly for "SHOULD" and "MUST".

 o In some cases, the potential behavior is not known to exist but is
 of such a nature that, if it were in fact implemented,
 interoperability difficulties would be expected and reported,
 giving us cause to conclude that the potential behavior is not
 implemented. For such behavior, we use "MUST NOT". Similarly, we
 use "MUST" to apply to the contrary behavior.

 o In other cases, potential behavior is not known to exist but the
 behavior, while undesirable, is not of such a nature that we are
 able to draw any conclusions about its potential existence. In
 such cases, we use "SHOULD NOT". Similarly, we use "SHOULD" to
 apply to the contrary behavior.

 In the case of a "MAY", "SHOULD", or "SHOULD NOT" that applies to
 servers, clients need to be aware that there are servers that may or
 may not take the specified action, and they need to be prepared for
 either eventuality.

3. Internationalization and Minor Versioning

 Despite the fact that NFSv4.0 and subsequent minor versions have
 differed in many ways, the actual implementations of
 internationalization have remained the same and internationalized
 names have been handled without regard to the minor version being
 used. Minor version specification documents contained different
 treatments of internationalization as described in Appendix A but of
 those only the implementation-based approach used by RFC7530 [3],
 resulted in a workable description while a number of attempts to
 specify an approach that implementors were to follow were all
 ignored.

 It is expected that any future minor versions will follow a similar
 approach, even though there is nothing to prevent a future minor
 version from adopting a different approach as long as the rules
 within [8]) are adhered to. In any such case, the new minor version
 would have to be marked as updating or obsoleting this document.
 Issues relating to potential extensions within the framework
 specified in this document are dealt with in Section 15.

https://datatracker.ietf.org/doc/html/rfc7530

Noveck Expires September 27, 2021 [Page 6]

Internet-Draft NFSv4 Internationalization March 2021

4. Changes Relative to RFC7530

 This document follows the internationalization approach defined in
RFC7530, with a number of significant necessary changes.

 o The handling of internationalization specified in [3] is applied
 to all NFSv4 minor versions. No compatibility issues are expected
 to arise because all existing implementations follow the same
 approach to internationalization despite the large difference
 between [3] and what was specified in [21]. Issues relating to
 potential future minor versions and protocol extensions are
 addressed in Section 15.

 o Some changes motivated by the shift from IDNA2003 to IDNA2008 have
 been made. The intention is to maintain compatibility with all
 existing NFSv4 minor versions. Potential compatibility issues
 with regard to the IDNA shift are discussed in Section 12.2.

 o There is more detailed discussion of case-insensitive handling of
 file names, with particular attention to the complexities that can
 arise when multiple language convention in these matters need to
 be accommodated. The discussion in Section 10 applies to both
 client or server, although issues relating to the client's
 knowledge are dealt with in Section 11.

 o There is additional material, dealing with the implications of
 server-side internationalization-related file name processing for
 clients that cache the results of READDIR's. This includes a
 discussion of options to deal with the current lack of detailed
 information about the server (in Section 11.2), and options for
 handling when more detailed information is available (in

Section 11.3)."

5. Limitations on Internationalization-Related Processing in the NFSv4
 Context

 There are a number of noteworthy circumstances that limit the degree
 to which internationalization-related encoding and normalization-
 related restrictions can be made universal with regard to NFSv4
 clients and servers:

 o The NFSv4 client is part of an extensive set of client-side
 software components whose design and internal interfaces are not
 within the IETF's purview, limiting the degree to which a
 particular character encoding might be made standard.

 o Server-side handling of file component names is typically
 implemented within a server-side physical file system, whose

https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7530

Noveck Expires September 27, 2021 [Page 7]

Internet-Draft NFSv4 Internationalization March 2021

 handling of character encoding and normalization is not
 specifiable by the IETF.

 o Typical implementation patterns in UNIX systems result in the
 NFSv4 client having no knowledge of the character encoding being
 used, which might even vary between processes on the same client
 system.

 o Users may need access to files stored previously with non-UTF-8
 encodings, or with UTF-8 encodings that are not in accord with any
 particular normalization form.

6. Summary of Server Behavior Types

 Servers MAY reject component name strings that are not valid UTF-8.
 This leads to a number of types of valid server behavior, as outlined
 below. When these are combined with the valid normalization-related
 behaviors as described in Section 8, this leads to the combined
 behaviors outlined below.

 o Servers that limit file component names within a given file system
 to UTF-8 strings exist with normalization-related handling as
 described in Section 8. These are best described as behaving as
 "UTF-8-only servers".

 o Servers that do not limit file component names on particular file
 systems to UTF-8 strings are very common and are necessary to deal
 with clients/applications not oriented to the use of UTF-8. Such
 servers ignore normalization-related issues, and there is no way
 for them to implement either normalization or representation-
 independent lookups. These are best described as behaving as
 "UTF-8-unaware servers" for such file systems, since they treat
 file component names as uninterpreted strings of bytes and have no
 knowledge of the characters represented. See Section 13 for
 details.

 o It is possible for a server to allow component names that are not
 valid UTF-8, while still being aware of the structure of UTF-8
 strings. Such servers could, in theory, implement either
 normalization or representation-independent lookups but apply
 those techniques only to valid UTF-8 strings. Such servers are
 not common, but it is possible to configure at least one known
 server to have this behavior. This behavior SHOULD NOT be used
 due to the possibility that a file name using one encoding may, by
 coincidence, have the appearance of a UTF-8 file name; the results
 of UTF-8 normalization or representation-independent lookups are
 unlikely to be correct in all cases, when considered from the

Noveck Expires September 27, 2021 [Page 8]

Internet-Draft NFSv4 Internationalization March 2021

 viewpoint of the other encoding. Such difficulties can be
 compounded when case-insensitive name handling is in effect.

7. The Attribute Fs_charset_cap

 This attribute, nominally "RECOMMENDED", appears to have been added
 to NFSv4.1 to allow servers, while staying within the constraints of
 the stringprep-based specification of internationalization, to allow
 uses of UTF-8-unaware naming by clients. As a result, those NFSv4
 servers implementing internationalization as NFSv3 had done, could be
 considered spec-compliant, as long as a later "SHOULD" was ignored.
 However, because use of UTF-8 was tied to existing stringprep
 restrictions, implementations of internationalization, that were
 aware of Unicode canonical equivalence issues were not provided for.
 Although this attribute may have been implemented despite the
 problems noted in Section 7.1, the overall scheme was never
 implemented and NFSv4.1 implementations dealt with
 internationalization as NFSv4.0 implementations had.

 It is generally accepted that attributes designated "RECOMMENDED" are
 essentially OPTIONAL with the client having the responsibility to
 deal with server non-support of them. While RFC7530 has gone so far
 as to explicitly exclude this use from the general statement that
 these terms are to be used as defined by RFC2119, no NFSv4.1
 specification has done so, at least through RFC8881 [9]. In this
 particular case, there are a number of circumstances that makes this
 OPTIONAL status noteworthy:

 o The statement "It is expected that servers will support all
 attributes they comfortably can and only fail to support
 attributes that are difficult to support in their operating
 environments", appearing in Section 5.2 of [9] is troublesome
 since it is hard to understand how a server could find this read-
 only attribute "difficult to support" regardless of the operating
 environment

 o This was added in minor version one which added a number of
 REQUIRED operations and could well have added a REQUIRED
 attribute.

 o The fact that the client is to be prepared for non-support of the
 attribute would require specification of a default value, yet none
 is provided.

 The attribute contains two flag bits. As discussed below, in
Section 7.1, it is hard two see why two bits are required while the

 implications of this issue for future NFSv4.1 specifications will be
 discussed in Section 7.2

https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8881

Noveck Expires September 27, 2021 [Page 9]

Internet-Draft NFSv4 Internationalization March 2021

7.1. The Attribute Fs_charset_cap in Published NFSv4.1 Specifications

 We reproduce Section 14.4 of [9] below, with comments interspersed
 trying to make sense of what is there, in order to arrive at an
 appropriate replacement, to be presented in Section 7.2. In that
 connection, we need to understand better a few issues:

 o The use of two bits while one is clearly adequate, given the
 subject matter actually mentioned

 o The mention of possible "capabilities" which could not possibly be
 realized.

 o The use of the RFC2119 keyword "SHOULD" in contexts in which this
 term is clearly inappropriate.

 Issues related to the confusion caused by mention of "UTF-8
 characters" and the lack of mention of Unicode will be addressed in
 the revision in Section 7.2 but will not be further discussed here.

 const FSCHARSET_CAP4_CONTAINS_NON_UTF8 = 0x1;
 const FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 = 0x2;

 typedef uint32_t fs_charset_cap4;

 While it is made clear that two separate bits are to be provided,
 their names seem to indicate that they should be complements of one
 another. As a way of understanding why two bits were specified, it
 is helpful to consider a possible boolean attribute as a potential
 replacement. That attribute would clearly govern whether names that
 do not conform to the rules of UTF-8 are to be rejected, which was a
 "MUST" in RFC3530 [20]. Although conveying this information is
 clearly part of the motivation, stating so clearly might have been
 judged by the authors as too provocative, given the role of IESG in
 arriving at the internationalization approach specified in RFC3530.

 Because some operating environments and file systems do not
 enforce character set encodings,

 It is clear that the ability of operating environments to enforce use
 of UTF-8 encoding is not an issue, since RFC3530 made this the
 responsibility of the server implementation. That mandate was never
 followed because implementers chose not to follow it, and not because
 they were unable to do so. The apparently confused statement above
 is best understood if one notes that its essential job is to state
 that the "MUST" in RFC3530 referred to above is not reasonable.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530

Noveck Expires September 27, 2021 [Page 10]

Internet-Draft NFSv4 Internationalization March 2021

 However, the authors might well feel unable to say so clearly, in
 light of the potential IESG reaction.

 NFSv4.1 supports the fs_charset_cap attribute (Section 5.8.2.11)
 that indicates to the client a file system's UTF-8 capabilities.

 The problem with the mention of (plural) capabilities is that the
 only capability mentioned which servers could implement is to accept
 strings which are not valid UTF-8. There are other potential
 capabilities having to do with the implementation of canonical
 equivalence, but since they were not mentioned, they will not be
 discussed further here.

 The attribute is an integer containing a pair of flags. The first
 flag is FSCHARSET_CAP4_CONTAINS_NON_UTF8, which, if set to one,
 tells the client that the file system contains non-UTF-8
 characters,

 As stated, this would mean that a server would have to keep track of
 a count of non-UTF-8-encoded names within the file system and change
 the attribute value as that count varied between zero and non-zero.
 Since it is most unlikely that any server would keep track of that or
 that any client would find it useful, we will assume that the
 capability to store such names is what is most likely intended.

 and the server will not convert non-UTF characters to UTF-8 if the
 client reads a symbolic link or directory,

 There is no way for the server to convert non-UTF names to UTF-8 or
 anything else, since it has no knowledge of the name encoding to
 begin with. The alternative to treating names as UTF-8-encoded
 Unicode strings is to treat them as POSIX does, as uninterpreted
 strings of bytes. That makes it impossible to interpret strings that
 do not follow the rules of UTF-8 at all, making it impossible to
 convert the string to UTF-8.

 neither will operations with component names or pathnames in the
 arguments convert the strings to UTF-8.

 As stated above, there is no way a server could ever do that.

 The second flag is FSCHARSET_CAP4_ALLOWS_ONLY_UTF8, which, if set
 to one, indicates that the server will accept (and generate) only
 UTF-8 characters on the file system.

 That is clear and so it poses no problem for a revised treatment,
 unlike the other flag.

Noveck Expires September 27, 2021 [Page 11]

Internet-Draft NFSv4 Internationalization March 2021

 If FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set to one,
 FSCHARSET_CAP4_CONTAINS_NON_UTF8 MUST be set to zero.

 There is no problem with this statement. However, it does, by
 implication, raise the issue of what values of
 FSCHARSET_CAP4_CONTAINS_NON_UTF8 may be set in the case in which
 FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set to zero.

 FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 SHOULD always be set to one.

 According to RFC2119 [1], "SHOULD" means that "there may exist valid
 reasons in particular circumstances to ignore a particular item, but
 the full implications must be understood and carefully weighing a
 different course". In this context, it is unclear what these "full
 implications" might be given the introduction above. The clause,
 "because some operating e environments and file systems do not
 enforce character set encodings", gives one no basis for treating
 this as other than an unproblematic behavior variant, calling into
 question the use of "SHOULD".

 Also, the statement in RFC2119 that these terms (i.e. those like
 "SHOULD") "only be used where it is actually required for
 interoperation or to limit behavior which has the potential for
 causing harm"

 o The whole purpose of this feature is to enable interoperation and
 there is no basis for the implication that one particular flag
 value is superior to another in allowing interoperation.

 o There is no basis for assuming that accepting file names that are
 not UTF-8-encoded Unicode has any potential for causing harm.

 Despite the statement in RFC2119, that "they [i.e. terms such as
 'SHOULD'] must not be used to impose a particular method on
 implementors", it is hard to avoid the conclusion that this is in
 fact the motivation for the "SHOULD", although the authors might not
 have had any such intention but felt that the IESG might well have
 such an intention.

7.2. The Attribute Fs_charset_cap in Future NFSv4.1 Specifications

 We provide a revised version of Section 14.4 of [9] below, taking
 into account the issues noted in Section 7.1. Given there was a
 working group consensus to adopt the confusing language discussed
 there, we must now adopt, by consensus, a clearer replacement that
 reflects the working group's intentions. Given the passage of time
 and the changed context, it might not be possible to determine those
 intentions. In any case, we will have to be aware of how this

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Noveck Expires September 27, 2021 [Page 12]

Internet-Draft NFSv4 Internationalization March 2021

 attribute was implemented and used, particularly with regard to the
 first flag, whose meaning remains obscure.

 The following treatment is proposed as a basis for discussion, with
 the understanding that it would need to be changed, if it raises
 interoperability issues.

 const FSCHARSET_CAP4_CONTAINS_NON_UTF8 = 0x1;
 const FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 = 0x2;

 typedef uint32_t fs_charset_cap4;

 This attribute provides a simple way of determining whether a
 particular file system behaves as a UTF-8-only server and rejects
 file names which are not valid UTF-8 strings. When this attribute
 is supported and the value returned has the
 FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 flag set, the error NFS4ERR_INVAL
 MUST be returned if any file name argument contains a string which
 is not a valid UTF-8 string.

 When this attribute is supported and the value returned has the
 FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 flag clear, the error
 NFS4ERR_INVAL will not be returned based on adherence to the rules
 of UTF-8. While such file systems are generally UTF-8-unaware,
 this cannot be assumed, since server are allowed (in some
 circumstances; it is a "SHOULD NOT") to accept non-UTF-8 names
 while being aware of the structure of UTF-8-conforming names, for
 the purposes of determining canonical equivalence, for example.
 See Section 6.

 With regard to the flag FSCHARSET_CAP4_CONTAINS_NON_UTF8, it has
 proved impossible to determine, from existing treatments of this
 attribute, any value that might be helpful here. As a result, we
 are forced to assume that this flag is always a complement of
 FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 and that any result in which it is
 not is to be ignored, with the appropriate handling being the same
 as would apply if the attribute were not supported.

 When this attribute is not supported, the client can perform a
 LOOKUP using a name not conforming to the rules of UTF-8 and use
 the error returned to determine whether non-UTF-8 names are
 accepted.

Noveck Expires September 27, 2021 [Page 13]

Internet-Draft NFSv4 Internationalization March 2021

8. String Encoding

 Strings that potentially contain characters outside the ASCII range
 [10] are generally represented in NFSv4 using the UTF-8 encoding [7]
 of Unicode [11]. See [7] for precise encoding and decoding rules.

 Some details of the protocol treatment depend on the type of string:

 o For strings that are component names, the preferred encoding for
 any non-ASCII characters is the UTF-8 representation of Unicode.

 In many cases, clients have no knowledge of the encoding being
 used, with the encoding done at the user level under the control
 of a per-process locale specification. As a result, it may be
 impossible for the NFSv4 client to enforce the use of UTF-8. The
 use of non-UTF-8 encodings can be problematic, since it may
 interfere with access to files stored using other forms of name
 encoding. Also, normalization-related processing (see Section 9)
 of a string not encoded in UTF-8 could result in inappropriate
 name modification or aliasing. In cases in which one has a non-
 UTF-8 encoded name that accidentally conforms to UTF-8 rules,
 substitution of canonically equivalent strings can change the non-
 UTF-8 encoded name drastically.

 For similar reasons, where non-UTF-8 encoded names are accepted,
 case-related mappings cannot be relied upon. For this reason, the
 attribute case_insensitive MUST NOT be returned as TRUE for file
 systems which accept non-UTF-8 encoded file names.

 The kinds of modification and aliasing mentioned here can lead to
 both false negatives and false positives, depending on the strings
 in question, which can result in security issues such as elevation
 of privilege and denial of service (see [23] for further
 discussion).

 o For strings based on domain names, non-ASCII characters MUST be
 represented using the UTF-8 encoding of Unicode, and additional
 string format restrictions may apply. See Section 12 for details.

 o The contents of symbolic links (of type linktext4 in the XDR) MUST
 be treated as opaque data by NFSv4 servers. Although UTF-8
 encoding is often used, it need not be. In this respect, the
 contents of symbolic links are like the contents of regular files
 in that their encoding is not within the scope of this
 specification.

 o For other sorts of strings, any non-ASCII characters SHOULD be
 represented using the UTF-8 encoding of Unicode.

Noveck Expires September 27, 2021 [Page 14]

Internet-Draft NFSv4 Internationalization March 2021

9. Normalization

 The client and server operating environments can potentially differ
 in their policies and operational methods with respect to character
 normalization (see [11] for a discussion of normalization forms).
 This difference may also exist between applications on the same
 client. This adds to the difficulty of providing a single
 normalization policy for the protocol that allows for maximal
 interoperability. This issue is similar to the issues of character
 case where the server may or may not support case-insensitive file
 name matching and may or may not preserve the character case when
 storing file names. The protocol does not mandate a particular
 behavior but allows for a range of useful behaviors.

 The NFSv4 protocol does not mandate the use of a particular
 normalization form. A subsequent minor version of the NFSv4 protocol
 might specify a particular normalization form, although there would
 be difficulties in doing so (see Section 15 for details). In any
 case, the server and client can expect that they might receive
 unnormalized characters within protocol requests and responses. If
 the operating environment requires normalization, then the
 implementation will need to normalize the various UTF-8 encoded
 strings within the protocol before presenting the information to an
 application (at the client) or local file system (at the server).

 Server implementations MAY normalize file names to conform to a
 particular normalization form before using the resulting string when
 looking up or creating a file. Servers MAY also perform
 normalization-insensitive string comparisons without modifying the
 names to match a particular normalization form. Except in cases in
 which component names are excluded from normalization-related
 handling because they are not valid UTF-8 strings, a server MUST make
 the same choice (as to whether to normalize or not, the target form
 of normalization, and whether to do normalization-insensitive string
 comparisons) in the same way for all accesses to a particular file
 system. Servers SHOULD NOT reject a file name because it does not
 conform to a particular normalization form, as this would deny access
 to clients that use a different normalization form or clients acting
 on behalf of application that use a different normalization form.

10. Case-Insensitive Processing of File Names

 When the server is to process file names in a case-insensitive way in
 a given file system, it may choose to do so in a number of ways.

 o It can force all characters which have multiple forms to a common
 case, whether uppercase of lowercase. Although this may cause the
 file name shown in the directory to be different from that

Noveck Expires September 27, 2021 [Page 15]

Internet-Draft NFSv4 Internationalization March 2021

 specified when the file is created, these two names will be judged
 as equivalent when a case-insensitive comparison is used. Such
 file systems are case-insensitive but not case-preserving.

 o It can preserve all names, presented as valid and not subject to
 case-based modification, while treating two names that are
 equivalent when a case-insensitive comparison is used as referring
 to the same file. Such file systems are both case-insensitive and
 case-preserving.

 When a server implements case-insensitive file name handling, it is
 necessary that clients do so as well. For example, if a client
 possessing the cached contents of a directory, notes that the file
 "a" does not exist, it cannot immediately act on that presumed non-
 existence, without checking for the potential existence of "A" as
 well. As a result, clients need to be able to provide case-
 insensitive name comparisons, irrespective of whether the server
 handling is case-preserving or not.

 Because case-insensitive name comparisons are not always as
 straightforward as the above example suggests, the client, if it is
 to emulate the server's name handling, would need information about
 how certain cases are to be dealt with. In cases in which that
 information is unavailable, the client needs to avoid making
 assumptions about the server's handling, since it will be unaware of
 the Unicode version implemented by the server, or many of the details
 of specific issues that might need to be addressed differently by
 different server file systems in implementing case-insensitive name
 handling.

 Many of the problematic issues with regard to the case-insensitive
 handling of name are discussed in Section 5.18 of the Unicode
 Standard [12] which deals with case mapping. While we need to
 address all of these issues as well, our approach will not be exactly
 the same.

 o Since the client will be doing case-insensitive comparisons,
 issues that apply only to uppercasing or lowercasing do not have
 the same significance.

 o Many clients will have to operate correctly even in the absence of
 detailed information about the specifics of server case-mapping or
 the version on Unicode implemented by the server.

 o Clients will have to accommodate server behaviors not anticipated
 by the Unicode Specification since the neither the server nor the
 client might have any locale knowledge when file names are
 processed.

Noveck Expires September 27, 2021 [Page 16]

Internet-Draft NFSv4 Internationalization March 2021

 Another source of information about case-folding, and indirectly
 about case-insensitive comparisons, is the case-folding text file
 which is part of the Unicode Standard [13]. This file contains, for
 each Unicode character that can be uppercased or lowercased, a single
 character, or, in some cases a string of characters of the other
 case. For characters in capital case, the lowercase counterpart is
 given. Each of the mappings is characterized as of one of four
 types:

 o Common case folding, denoted by a status field of "C". These are
 used for mapping where a single character can be mapped to a
 single character of another case. These are always valid with one
 potential exception being the mappings of LATIN CAPITAL LETTER I
 to LATIN SMALL LETTER I and vice versa, which might be superseded
 by the T-type mappings of associated with some Turkic languages.

 o Full case folding, denoted by a status field of "F". These are
 used for mappings in which single character is mapped to a multi-
 character string of a different case.

 o Special case folding, denoted by a status field of "S". These
 provide additional single-character-to-single-character which
 might be used when there is also an F-type mapping of the same
 character. In the case of case folding, this is an alternative to
 the corresponding F-type, although, for the purposes of case-
 insensitive string comparison, it is possible for both to be in
 considered valid at the same time

 o Special case foldings for Turkic languages, denoted by a status
 field of "T". These consist of the invertible case mappings
 between LATIN SMALL LETTER I (U+0069) and LATIN CAPITAL LETTER I
 WITH DOT ABOVE (U+0130) and between LATIN CAPITAL LETTER I
 (U+0049) and LATIN SMALL LETTER DOTLESS I (U+0131). The
 relationship between these mappings and the C-type mappings for
 LETTER I is discussed below in item EX8.

 While the case mapping section does discuss case-insensitive string
 comparisons, and describes a procedure for constructing equivalence
 classes of Unicode characters, the description does not deal clearly
 with the effect of F-type mappings. There are a number of problems
 with dealing with F-type mappings for case folding and basing case-
 insensitive string comparisons on those mappings, particularly in
 situations, such as file systems, in which extensive processing of
 strings is unlikely to be possible.

 o Mappings from single characters to multi-character strings, are,
 for case-folding purposes, not invertible. However, case-
 insensitive name comparison, by its nature, requires invertible

Noveck Expires September 27, 2021 [Page 17]

Internet-Draft NFSv4 Internationalization March 2021

 mappings, in which a multi-character string is mapped to a single
 character of a different case which not compatible with any
 existing simple case-mapping models.

 o Scanning of names for multi-character sequences might well be too
 complicated, especially since such sequences might overlap in
 complicated ways.

 o Case foldings which map single characters to multi-character
 sequences (see item EX4 below for an important example), would
 give rise, because of the invertibility of case mappings when used
 to determine case-insensitive string equivalence for very large
 sets of strings. For example, a string of eight copies of the
 letter S would give rise to an set of 256 equivalent strings plus
 over two thousand others when the German SHARP S characters
 discussed in item EX4 are included.

 Despite these potential difficulties, case mappings involving multi-
 character sequences can be reversed when used as a basis for case-
 insensitive string comparisons and incorporated into a set of
 equivalence classes on name strings.

 o Case-insensitive servers MAY do either case-mapping to a chosen
 case or case-insensitive string comparisons when providing a case-
 preserving implementation. In either case, it MAY include F-type
 mappings, which map a single character to a multi-character
 string. However, only the case in which it is doing case-
 insensitive string comparison will it use the inverse of F-type
 mappings, in which a multi-character string is mapped to a single
 character of a different case

 In these cases, the server can choose to use either a C-type
 mapping or an F-type mapping, or both, when both exist. Similarly
 the server may choose to implement the C-type mappings of LATIN
 CAPITAL LETTER I to LATIN SMALL LETTER I and vice versa, the
 corresponding T-type mappings or both, although using only the
 second of these is NOT ALLOWED, unless there is a means of
 informing the client that it has been chosen.

 o The client, when informed of the details of the client's handling
 of case, has the ability to efficiently implement an appropriate
 case-insensitive name comparison compatible with that of the
 server. This includes the ability to handle mappings between
 single characters and multi-character strings.

 o Implementation of case-insensitive name comparisons will typically
 require a case-insensitive name hash.

Noveck Expires September 27, 2021 [Page 18]

Internet-Draft NFSv4 Internationalization March 2021

10.1. Implementing Case-Insensitive Comparison of File Names

 Implementing case-insensitive string comparisons based on equivalence
 classes including multi-character strings can be performed as
 described below. This algorithm requires that if there is more than
 one multi-character string within a given equivalence class, they
 must all be equivalent, with any equivalences derivable from case-
 insensitive string equivalence using single-character equivalence
 classes.

 Although other sources are possible (see items EX2 and EX3 in
Section 10.2), multi-character sequences often appear in case-

 insensitive equivalence classes as the result of the canonical
 decomposition of one or more precomposed characters as elements of a
 case-insensitive equivalence class.

 While the algorithm described in this section can deal with certain
 case-based equivalences deriving from canonical decomposition, it is
 not capable of providing general handling of the combination of
 canonical equivalence and case-based equivalence. While this can be
 addressed by normalizing strings before doing case-insensitive
 comparison, it is more efficient to do a general form-insensitive and
 case-insensitive string comparison in a single step as described in

Appendix B

 The following tables would be used by the comparison algorithm
 presented below.

 o For each possible character value, the associated equivalence
 class for case-insensitive comparison will be identified

 o For each such equivalence class, the hash value contribution will
 be provided. In the case of equivalence class that do not include
 multi-character including equivalence classes that only include a
 single member, this will be the hash value contribution of one
 particular variant (usually lower case) of the character

 o In the case of equivalence classes that do include multi-character
 strings, the hash value contribution needs to equivalent to the
 combined contribution of each character within the multi-character
 string. In addition, for each such equivalence class, the length
 of the multicharacter string will be provided together with a
 pointer to an array describing the multi-character string, most
 probably presenting each character as an equivalence class id.

 Case-insensitive comparison proceeds as follows:

Noveck Expires September 27, 2021 [Page 19]

Internet-Draft NFSv4 Internationalization March 2021

 o Implementation of case-insensitive name comparisons will typically
 require a case-insensitive name hash using the tables described
 above. If such a hash vale is kept or all cached names
 comparisons of hashes can be used instead of the detailed
 comparison set forth below. Using such hash comparisons, a large
 set of potentially equivalent names can be excluded based on the
 occurrence of hash mismatches, since case-equivalent names would
 have the same hash value. value.

 o For names with matching hash values, a detailed case-insensitive
 comparison will be necessary. This can proceed character-by-
 character or byte-by-byte. However, in the byte-by-byte case,
 processing in the event of a mismatch must start at the start of
 the current character, rather than the byte at which the
 difference was detected.

 o In cases in which there is a mismatch, the associated equivalence
 classes will be compared. When these are identical, indicating
 the case equivalence of the two characters, the comparison of the
 two strings continues at the next character of each string.

 o When the two equivalence classes are not identical, further
 comparisons to determine if a single character within one string
 matches (except for case) a multi-character string within the
 other. For each of two equivalence classes being compared that
 include a multi-character string, the check below must be made to
 determine whether the multi-character string at the corresponding
 position of the other string being compared, is within the current
 equivalence class. If neither of the two equivalence classes
 include multi-character strings, the comparison terminates with a
 mismatch indication.

 o For each equivalence class that does include a multi-character
 string (there might be one or two), a scan needs to be made to see
 of the characters at the current position if the other string
 matches (except for case) the multi-character string which is
 included in the current equivalence class. If this check
 succeeds, for either equivalence class, the comparison of the two
 strings continues at the next character of each string. In the
 event of failure, the same sort of comparison is done using the
 other current equivalence class, if it include multi-character
 strings. Once this check fails for all equivalence classes that
 include multi-character strings, the comparison terminates with a
 mismatch indication.

Noveck Expires September 27, 2021 [Page 20]

Internet-Draft NFSv4 Internationalization March 2021

10.2. Important Examples of Case-insensitive Handling of File Names

 In this section, we discuss many of the interesting and/or
 troublesome issues that the need for case-insensitive handling gives
 rise to in fully internationalized environment. Many of these are
 also discussed in [12]. However, our treatment of these issues,
 while not inconsistent with that in [12], differs significantly for a
 number of reasons:

 o Our primary focus is on case-insensitive string comparison rather
 than with case mapping per se. While such comparison is natural
 for the client and allowed for servers, its greater flexibility
 makes it important to understand its capabilities in dealing with
 potentially troublesome issues in providing case-insensitive file
 name handling.

 o Because a case mapping model forces the specification of a single
 case mapping result when there are multiple potentially valid
 results, there are inevitably cases in which the result chosen is
 inappropriate for some users. These are cases in which F-type and
 S-type mappings are present and in which C-type and T-type
 mappings conflict. Normally, an appropriate choice is selected by
 use of the locale, but in a filesystem environment, valid locale
 information might not be present. As a result, case-insensitive
 string comparison, which does not force such case mapping choices,
 will be more desirable.

 The examples below present common situations that go beyond the
 simple invertible case mappings of Latin characters and the
 straightforward adaptation of that model to Greek and Cyrillic. In
 EX4 and EX5 we have case-based equivalence classes including multi-
 character strings not derived from canonical equivalences while for
 EX7 and EX8 all multi-character strings are derived from canonical
 equivalences. In addition, EX1, EX2, EX3 and EX6 discuss other
 situations in which an equivalence class has more than two elements.

 EX1: Certain digraph characters such LATIN SMALL LETTER DZ (U+01F3)
 have additional case variants to consider such as the titlecase
 character LATIN CAPTAL LETTER D WITH SMALL LETTER Z (U+01F2) in
 addition to the uppercase LATIN CAPITAL LETTER DZ (U+01F1).
 While the titlecased variant would not appear in names in case-
 insensitive non-case-preserving file systems, case-insensitive
 string comparison has no problem in treating these three
 characters as within the same equivalence class.

 This equivalence class can be derived from only C-type
 mappings. The possibility of mapping these characters to two-
 character sequences they represent is not a troublesome issue

Noveck Expires September 27, 2021 [Page 21]

Internet-Draft NFSv4 Internationalization March 2021

 since that would be derived from a compatibility equivalence,
 rather than a canonical equivalence, and there is no F-type
 mapping making it an option.

 EX2: To deal with the case of the OHM SIGN (U+2126) which is
 essentially identical to the GREEK CAPITAL LETTER OMEGA
 (U+03A9), one can construct an equivalence class consisting of
 OHM SIGN (U+2126), GREEK CAPITAL LETTER OMEGA (U+03A9), and
 GREEK SMALL LETTER OMEGA (U+03C9).

 This equivalence class can be derived only from C-type
 mappings. Both OHM SIGN (U+2126), and GREEK CAPITAL LETTER
 OMEGA (U+03A9) lowercase to GREEK LETTER OMEGA (U+03C9), while
 that character only uppercases to GREEK CAPITAL LETTER OMEGA
 (U+03A9).

 EX3: To deal with the case of the ANGSTROM SIGN (U+212B) which is
 essentially identical to LATIN CAPITAL LETTER A WITH RING ABOVE
 (U+00C5), one can construct an equivalence class consisting of
 ANGSTROM SIGN (U+212B), LATIN CAPITAL LETTER A WITH RING ABOVE
 (U+00C5), LATIN SMALL LETTER A WITH RING ABOVE (U+00E5),
 together with the two-character sequences involving LATIN
 CAPITAL LETTER A (U+0041) or LATIN SMALL LETTER A (U+0061)
 followed by COMBINING RING ABOVE (U+030A).

 This equivalence class can be derived from C-type mappings
 together with the ability to map characters to canonically
 equivalent strings. Both ANGSTROM SIGN (U+212B), and LATIN
 CAPITAL LETTER A WITH RING ABOVE (U+00C5) lowercase to LATIN
 SMALL LETTER A WITH RING ABOVE (U+00E5), while that character
 only uppercases to CAPITAL LETTER A WITH RING ABOVE (U+00C5).

 EX4: In some cases, case mapping of a single character will result
 in a multi-character string. For example, the German character
 LATIN SMALL LETTER SHARP S (U+00DF) would be uppercased to
 "SS", i.e. two copies of LATIN CAPITAL LETTER S (U+0053). On
 the other hand, in some situations, it would be uppercased to
 the character LATIN CAPITAL LETTER SHARP S (U+1E9E), using an
 S-type mapping. referred to as an instance of "Tailored
 Casing". Unfortunately, in the context of a file system, there
 is unlikely to be available information that provides guidance
 about which of these case mappings should be chosen. However,
 the use of case-insensitive mappings with larger equivalence
 classes often provides handling that is acceptable to a wider
 variety of users. In this case, German-speakers get the
 mapping they expect while those unfamiliar with these
 characters only see them when they access a file whose name
 contains them.

Noveck Expires September 27, 2021 [Page 22]

Internet-Draft NFSv4 Internationalization March 2021

 It appears that if the construction of case-based equivalence
 classes were generalized to include multi-character sequences,
 then all of LATIN SMALL LETTER SHARP S (U+00DF), LATIN CAPITAL
 LETTER SHARP S (U+1E9E), "ss", "sS", "Ss", and "SS" would
 belong to the same equivalence class and could be handled by
 the general algorithm described in Section 10.1, as well by
 code specifically written to deal with this particular issue.

 EX5: Other ligatures, such as LATIN SMALL LIGATURE FFL (U+FB04),
 could be handled similarly by this algorithm, if there were
 felt a need to do so. However, because the decomposition of
 this character into the string consisting of the three letters
 LATIN SMALL LETTER F (U+0066), LATIN SMALL LETTER F (U+0066),
 LATIN SMALL LETTER L (U+006C), is a compatibility equivalence,
 and the F-type mapping of this ligature to the three
 constituent is to be treated as optional, implementations can
 choose either to treat this character as having no uppercase
 equivalent or treat it as part of larger equivalence class
 including "ffl", "ffL", "fFl", etc.).

 EX6: The character COMBINING GREEK YPOGEGRAMMENI (U+0345), also
 known as "iota-subscript" requires special handling when
 uppercasing and lowercasing. While the description of the
 appropriate handling for this character, in the case mapping
 section, is focused on multi- character sequences representing
 diphthongs, case-insensitive comparisons can be performed
 without consideration of multi-character sequences. This can
 be done by assigning COMBINING GREEK YPOGEGRAMMENI (U+0345),
 GREEK SMALL LETTER IOTA (U+03B9), and GREEK CAPITAL LETTER IOTA
 (U+0399) to the same equivalence class, even though the first
 of these is a combining character and the others are not.

 EX7: In some cases context-dependent case mapping is required. For
 example, GREEK CAPITAL LETTER SIGMA (U+03A3) lowercases to
 GREEK SMALL LETTER SIGMA (U+03C3) if it is followed by another
 letter and to GREEK SMALL LETTER FINAL SIGMA (U+03C2) if it is
 not.

 Despite this, case-insensitive comparisons can be implemented,
 by considering all of these characters as part of the same
 equivalence class, without any context-dependence, and this
 equivalence class can be derived using only C-type mappings.

 EX8: In most languages written using Latin characters, the uppercase
 and lowercase varieties of the letter "I" differ in that only
 the lowercase character. In a number of Turkic languages,
 there are two distinct characters derived from "I" which differ
 only with regard to the presence or absence of a dot so that

Noveck Expires September 27, 2021 [Page 23]

Internet-Draft NFSv4 Internationalization March 2021

 there are both capital and small i's with each having dotted
 and dotless variants. Within such languages, the dotted and
 dotless I's represent different vowel sounds and are treated as
 separate characters with respect to case mapping. The
 uppercase of LATIN SMALL LETTER I (U+0069) is LATIN CAPITAL
 LETTER I WITH DOT ABOVE (U+0130), rather than LATIN CAPITAL
 LETTER I (U+0049). Similarly the lowercase of LATIN CAPITAL
 LETTER I (U+0049) is LATIN SMALL LETTER DOTLESS I (U+0131)
 rather than LATIN SMALL LETTER I (U+0069).

 When doing case mapping, the server must choose to uppercase
 LATIN SMALL LETTER I (U+0069) to either LATIN CAPITAL LETTER I
 (U+0049), based on a C-type mapping to LATIN CAPITAL LETTER I
 WITH DOT ABOVE (U+0130), based on a T-type mapping. The former
 is acceptable to most people but confusing to speakers of the
 Turkic languages in question since the case mapping changes the
 character to represent a different vowel sound. On the other
 hand, the latter mapping seemingly inexplicably results in a
 character many users have never seen before. Normally such
 choices are dealt with based on a locale but, in a file system
 environment, no locale information may be available.

 In the context of case-insensitive string comparison, it is
 possible to create a larger equivalence class, including all of
 the letters LATIN SMALL LETTER I (U+0069), LATIN CAPITAL LETTER
 I (U+0049), LATIN CAPITAL LETTER I WITH DOT ABOVE (U+0130),
 LATIN SMALL LETTER DOTLESS I (U+0131) together with the two-
 character string consisting of LATIN CAPITAL LETTER I (U+0049)
 followed by COMBINING DOT ABOVE (U+0307).

11. Internationalization-related Processing of File Names by Clients

 Given the way that internationalization is addressed within the NFSv4
 protocols, clients, and applications accessing NFS files can
 generally remain unaware of the specific type of
 internationalization-related processing implemented by the server.
 For example, although a server MAY store all file names according to
 the rules appropriate to a particular normalization form, it MUST NOT
 reject names solely because they are not encoded using this
 normalization form, allowing the clients and applications to avoid
 knowledge of normalization choices.

 However, as has been pointed out in [25], there are situations in
 which clients implementing local optimizations use the saved contents
 of directories fetched from the server, making it necessary that the
 client's and the server's handling of internationalization-related
 name mapping issues be in concord. There are two basic ways this
 issue can be addressed:

Noveck Expires September 27, 2021 [Page 24]

Internet-Draft NFSv4 Internationalization March 2021

 o Where the protocol has not defined a means whereby the client can
 obtain information about the details of internationalized name
 handling implemented within the server, the client can avoid
 conflict with the server by limiting its use of local
 optimizations. While positive name caching can be used without
 adverse effects, negative name caching has to limited to avoid
 situations in which a given name is not present but an equivalent
 one may exist, as far as the server is concerned. This situation,
 which applies to all current NFSv4 protocols is discussed in

Section 11.2.

 o The client can be provided complete information about the server's
 internationalization-related name handling (typically implemented
 within the server-based file system. This situation, which could
 be implemented in later NFSv4 minor versions, or in an extension
 to an existing extensible minor version is discussed in

Section 11.3.

 o Note that when case-insensitive handling of file names is
 implemented by a server-side filesystem, further complications can
 arise. For the most part, these are addressed in Sections 11.2
 and 11.3 by treating the particulars of case-handling as a another
 element of the name handling implemented by the server. However,
 some of the specific complexities are addressed separately in

Section 10.

11.1. Server Restrictions to Deal with Lack of Client Knowledge

 There are a number of restrictions, not previously specified in
RFC7530 [3], on server implementation of internationalized file name

 handling. These restrictions apply to both case-sensitive and case-
 insensitive file systems and are designed to limit the options that
 servers have in choosing server-side internationalized file name
 handling so as to enable the clients to either duplicate that
 handling or limit it to avoid relying on cases in which the proper
 handling cannot be determined or duplicated by the client.

 o The canonical equivalence relation implemented by the server, for
 each internationalization-aware filesystem MUST match that defined
 by some particular UNICODE version equal to or later than version
 4.0.

 o The case-equivalence relationship implemented by the server, for
 each case-insensitive filesystem MUST include all C-type case
 mappings included by the particular UNICODE version whose
 canonical equivalence relation is implemented by the server, with
 the possible exception of those conflicting with T-type case

https://datatracker.ietf.org/doc/html/rfc7530

Noveck Expires September 27, 2021 [Page 25]

Internet-Draft NFSv4 Internationalization March 2021

 mappings. by some particular Unicode version equal to or later
 than version 4.0.

 o In cases in which the server provides no way of determining the
 details of the case-equivalence relationship implemented by the
 server for a particular file system, that mapping must include all
 C-type case mappings included by the particular UNICODE version
 whose canonical equivalence relation is implemented by the server,
 i.e. it MUST map between LATIN SMALL LETTER I (U+0069)and LATIN
 CAPITAL LETTER I (U+0049).

11.2. Client Processing of File Names for Current NFSv4 Protocols

 The existing minor versions, NFSv4.0 [3], NFSv4.1 [21], and NFSv4.2
 [4], have very limited facilities allowing a client to get
 information about the server's internationalization-related file name
 handling. Because these protocols were all defined when it was
 assumed that the server's internationalized file name handling could
 be specified in great detail, there was no provision for attributes
 defining the server's choices. As a result, the information
 available to the client is quite limited:

 o The client can determine that the server is not performing
 internationalized file name processing. It can do this by looking
 up a file name using a string which is not valid UTF-8, concluding
 that if the LOOKUP is not rejected on that basis, then the file
 system is not internationalization-aware, allowing the client to
 ignore the potential difficulties which server-based
 internationalized file name processing might give rise to.

 o The client can use the optional per-fs attributes case_insensitive
 and case_preserving to how the server deals with character case
 for particular file system. When one of these attributes is not
 supported by a particular file system, the client treats the
 attribute as if it were false.

 When a file system is internationalization-unaware, the client can
 use both positive and negative name caching, without any issues
 arising from the potential for conflict between distinct file names
 that would be considered equivalent by the server. In other cases,
 the handling is more restricted in the use of negative name caching.
 The issue with regard to case-sensitive and case-insensitive file
 systems are discussed separately below. In each case, the client has
 a range of choices trading off forgone optimization opportunities
 against the difficulty of implementation while avoiding negative

Noveck Expires September 27, 2021 [Page 26]

Internet-Draft NFSv4 Internationalization March 2021

 consequences arising from the fact that certain details of the
 server's name handling are not known to it.

 In the case of case-sensitive file systems, the uncertainty to be
 dealt with concerns the version of Unicode implemented by the server,
 given that different versions may have different canonical
 equivalence relationships. However, whether the server implements a
 particular normalization form or implements form-insensitive file
 name matching has no effect on client behavior. In light of the
 uncertainty created by the lack of knowledge of the precise Unicode
 version used by the server to implement its canonical equivalence
 relation, the follow possibilities, arranged in order of increasing
 value (and difficulty of implementation) should be considered.

 A1: The client can simply decline to implement optimizations based
 on negative name caching on internationalization-aware file
 systems.

 While this might have a negative effect on performance, it might
 be the best option for clients not heavily used to access
 internationalization-aware filesystems, or where, due to a lack
 of directory delegation support, the client has no assurance
 that will be notified of the invalidation of a previous
 assumption that a particular file does not exist.

 A2: Relatively simple name filtering can exclude the names for which
 negative name caching might cause difficulties. For example,
 the client could scan file names for characters whose presence
 might pose difficulties and allow negative name caching only for
 strings known not to contain such characters. Because the
 Unicode version used by the server file system is not known,
 this treatment would be limited to string only containing
 characters defined in the earliest version of Unicode which
 could be supported, that is, Unicode 4.0.

 One simple way for a client to provide such filtering would be
 to establish an upper limit (e.g. U+00ff) and disallow negative
 name caching for strings containing characters above that value
 or characters below that value that might cause there to be
 canonically equivalent strings on the server. A simple mask
 could be used to allow each character to be examined allowing
 composed and combining characters to be identified together with
 code points unassigned in Unicode 4.0.

 This approach would allow negative name caching to be disallowed
 for strings containing those characters while allowing it for
 other strings that do not. A larger limit (and a corresponding

Noveck Expires September 27, 2021 [Page 27]

Internet-Draft NFSv4 Internationalization March 2021

 mask) would make sense for clients used to access many file
 names containing characters from non-Latin alphabets.

 A3: A client might implement its own internationalized file name
 handling paralleling that of the server. Because the Unicode
 version used by the server filesystem is unknown, strings for
 which it is possible that the canonically equivalent string
 might be different depending on the version of Unicode
 implemented by the server will have to be identified and
 excluded from using negative name caching. This would require
 that strings containing code points unassigned in Unicode
 version 4.0, and those denoting combining characters that could
 be parts of precomposed character added to later versions of
 Unicode be excluded from negative name caching. The necessary
 filtering could apply to all potential code points although
 clients might choose to simplify implementation by excluding
 strings containing code points beyond a certain point, e.g.
 (U+0FFFF).

 When a client implements internationalized name handling, it
 needs to be able to detect when the apparent absence of a file
 within a directory is contradicted by the occurrence of a file
 with a distinct, but canonically equivalent, name. In order to
 efficiently find such names, when they exist, a client typically
 needs to implement a form of name hashing which always produces
 the same result for two canonically equivalent names. This can
 be done by making the contribution of any character to the name
 hash, equal to the contribution of the corresponding canonical
 decomposition string.

 In the case of case-insensitive file systems, the uncertainty to be
 dealt with includes the version of Unicode implemented by the server
 as well as the details of the possible case-handling implemented by
 the server. In addition to the fact that different Unicode versions
 may have different canonical equivalence relationships, the server
 may implement different approaches to the handling of issues related
 to the handling of dotted and dotless i, in Turkish and Azeri.
 However, the question of whether the server's handling is case-
 preserving has no effect on client behavior, as is the question of
 whether the server implements a particular normalization form or
 implements form-insensitive file name matching. In light of the
 uncertainty created by the lack of knowledge of the details of the
 case-related equivalence relation together with the precise Unicode
 version used by the server to implement its canonical equivalence
 relation, the following possibilities, arranged in order of
 increasing value (and difficulty of implementation) should be
 considered.

Noveck Expires September 27, 2021 [Page 28]

Internet-Draft NFSv4 Internationalization March 2021

 B1: The client can simply decline to implement optimizations based
 on negative name caching on case-insensitive file systems.

 While this might have a negative effect on performance where
 significant benefits from negative name caching might be
 expected, it might be the best option for clients not heavily
 used to access case-insensitive filesystems.

 B2: Filtering similar to that discussed in item A2 could be
 implemented, although a higher limit is likely to be chosen
 (e.g. U+07ff) if significant use of non-Latin scripts is
 expected. Because of the uncertainty regarding the handling of
 case relationship among characters used for the variant of I
 used by Turkic languages, this filtering would have to exclude
 names containing LATIN CAPITAL LETTER I WITH DOT ABOVE and LATIN
 SMALL LETTER DOTLESS I together with precomposed characters
 derived from them.

 In cases in which such filtering did not exclude the item from
 consideration, it would need to search for files with possibly
 equivalent names, including those equivalent by canonical
 equivalence, case-insensitive equivalence, or a combination of
 the two. This will typically require a form of name hashing
 which always produces the same hash for equivalent names,
 similar to that discussed in item A3 but including case-
 insensitive equivalence as well.

 B3: A client might implement its own internationalized, case-
 insensitive file name handling paralleling that of the server.
 Because the case mappings are uncertain and the Unicode version
 used by the server filesystem is unknown, strings for which it
 is possible that the equivalent string might be different
 depending on the version of Unicode implemented by the server or
 the choice of case mappings would have to be identified and
 excluded from using negative name caching. This would require
 that strings containing code points unassigned in Unicode
 version 4.0, and those denoting combining characters that could
 be parts of precomposed characters added to later versions of
 Unicode be excluded from negative name caching. The necessary
 filtering could apply to all potential code points although
 clients might choose to simplify implementation by excluding
 strings containing code points beyond a certain point (e.g.
 U+00FFFF).

 When a client implements internationalized name handling, it
 needs to be able to detect when the apparent absence of a file
 within a directory is contradicted by the occurrence of a file
 with a distinct, but canonically equivalent name. In order to

Noveck Expires September 27, 2021 [Page 29]

Internet-Draft NFSv4 Internationalization March 2021

 efficiently find such names, when they exist, a client typically
 needs to implements a form of name hashing which always produces
 the same result for two canonically equivalent names. This can
 be done by making the contribution of any character to the name
 hash, equal to contribution of the correspond canonical
 decomposition string.

11.3. Client Processing of File Names for Future NFSv4 Protocols

 Because of NFSv4 has an extension framework allowing the addition of
 new attributes in later minor version or in extensions to extensible
 minor versions. Such new attributes are likely to be optional. They
 could include a number of useful per-fs attributes to deal with the
 information gaps discussed in Section 11.2:

 o The Unicode version used to define the canonical equivalence
 relation implemented by the server could be provided as an fs-
 scope attribute.

 o For case-insensitive filesystems, details regarding the actual
 case mapping used could be provided as an fs-scope attribute.
 These details would include the case mapping associated with LATIN
 LETTER I (i.e. whether the C-type or T-type case mappings or both
 are to be used). Similarly for characters having F-type case
 mappings, information needs to be provided about whether the
 F-type, mapping, the S-type mapping, or both, are to be used.

 There is little prospect of such additional attributes being
 REQUIRED. Although the term "RECOMMENDED" has been used to describe
 NFSv4 attributes that are not REQUIRED, any such attributes are best
 considered OPTIONAL for the server to support with the client
 required to deal with the case in which the attribute is not
 supported.

 When such attributes are defined and implemented, it would be
 possible for the client and server to implement compatible
 internationalization-related file name handling. However, as a
 practical matter, such compatibility would be considerably eased if
 there existed unencumbered open-source implementations of the
 algorithm and tables described in Appendix B. This would allow
 clients, servers, and server-based file systems, to easily adopt
 compatible approaches to these issues, each calling a common set of
 primitives, even though each might have a different execution
 environment and might be processing file names for different
 purposes.

 In the case of case-sensitive file system, the case-mapping attribute
 is not relevant. In dealing with the non-support of the Unicode

Noveck Expires September 27, 2021 [Page 30]

Internet-Draft NFSv4 Internationalization March 2021

 version attribute, the client is in the same position as that of
 clients described in Section 11.2. In the case in which the Unicode
 version is supported, the client would be able to implement the same
 version of the canonical equivalence relation implemented by the
 server, thus avoiding the need for the sort of overbroad filtering
 mentioned in items A2 and A3 within Section 11.2

 The case of case-insensitive file systems is more complicated, since
 there are two OPTIONAL attributes to deal with:

 C1: When neither of these OPTIONAL attributes is supported, the
 client is in the same position as that of clients described in

Section 11.2 in dealing with a case-insensitive file system.

 C2: When the Unicode version is available but the details of case
 mapping are not, the client handling will be similar to that
 specified the options B1 through B3 defined in Section 11.2.
 However, in cases B2 and B3, it will be possible to reduce the
 scope of the character filtering applied, by enabling names
 containing characters defined after Unicode version 4.0 to be
 processed, as long as none of the case mapping options for those
 characters is at all problematic.

 C3: When the details of case mapping are available but Unicode
 version is not, the client handling will be similar to that
 specified the options B1 through B3 defined in Section 11.2.
 However, in cases B2 and B3 However, in cases B2 and B3, it will
 be possible to reduce the scope of the character filtering by
 enabling names containing characters of uncertain case mapping
 to be processed as long as those character were defined in
 Unicode version 4.0.

 C4: When both of these OPTIONAL attributes are supported, the client
 has the ability, at least theoretically, to reproduce the
 internationalization-related file name handling implemented by a
 server for a case-insensitive file system. However, when the
 client is unable to provide such an implementation, it is free
 to ignore the attribute and implement one of the options B1
 through B3 defined in Section 11.2.

12. String Types with Processing Defined by Other Internet Areas

 There are two types of strings that NFSv4 deals with that are based
 on domain names. Processing of such strings is defined by other
 Internet standards, and hence the processing behavior for such
 strings should be consistent across all server operating systems and
 server file systems.

Noveck Expires September 27, 2021 [Page 31]

Internet-Draft NFSv4 Internationalization March 2021

 This section differs from other sections of this document in two
 respects:

 o The normative statements within this section are not derived from
 the behavior from existing NFSv4 implementations, but derive
 instead from existing RFCs.

 o Because of the switch from IDNA2003 [18] [19] to IDNA2008 [5],
 this section is necessarily different from the corresponding
 section (i.e. Section 12.6) of [3]. The differences are
 discussed in Section 12.1.

 Because of this shift, there could be compatibility issues to be
 expected between implementations obeying Section 12.6 of [3] and
 those following this document. Whether such compatibility issues
 actually exist depends on the behavior of NFSv4 implementations and
 how domain names are actually used in existing implementations.
 These matters will be discussed in Section 12.2.

 The types of strings referred to above are as follows:

 o Server names as they appear in the fs_locations and
 fs_locations_info attribute. Notes that for most purposes, such
 server names will only be sent by the server to the client. The
 exception is the use of these attributes in a VERIFY or NVERIFY
 operation.

 o Principal suffixes that are used to denote sets of users and
 groups, and are in the form of domain names.

 The general rules for handling all of these domain-related strings
 are similar and independent of the role of the sender or receiver as
 client or server, although the consequences of failure to obey these
 rules may be different for client or server. The server can report
 errors when it is sent invalid strings, whereas the client will
 simply ignore an invalid string or use a default value in its place.

 The string sent SHOULD be in the form of one or more unvalidated
 U-labels as defined by [5]. In cases where this cannot be done, the
 string will instead be in the form of one or more LDH labels [5].
 The receiver needs to be able to accept domain and server names in
 any of the formats allowed. The server MUST reject, using the error
 NFS4ERR_INVAL, any of the following:

 o a string that is not valid UTF-8.

Noveck Expires September 27, 2021 [Page 32]

Internet-Draft NFSv4 Internationalization March 2021

 o a string that contains an XN-label (begins with "xn--") for which
 the characters after "xn--" are not valid output of the Punycode
 algorithm [6].

 o a string that contains a reserved LDH label which is not an
 XN-label.

 When a domain string is part of id@domain or group@domain, there are
 two possible approaches:

 1. The server generally treats the domain string as a series of
 unvalidated U-labels. In cases where the domain string is a
 series of unvalidated A-labels or Non-Reserved LDH (NR-LDH)
 labels, it converts them to U-labels using the Punycode algorithm
 [6]. As a result, the domain string returned within a user id on
 a GETATTR may not match that sent when the user id is set using
 SETATTR, although when this happens, the domain will be in the
 form of an unvalidated U-label.

 2. The server treats the domain string as a series of unvalidated
 U-labels. Specifically, it does not map a domain string that is
 not a U-label into a U-label using the methods described above.
 As a result, the domain string returned on a GETATTR of the user
 id MUST be the same as that used when setting the user id by the
 SETATTR.

 A server SHOULD use the first method.

 For VERIFY and NVERIFY, additional string processing requirements
 apply to verification of the owner and owner_group attributes; see
 the section entitled "Interpreting owner and owner_group" for the
 document specifying the minor version in question (RFC750 [3],

RFC5661 [21])

12.1. Effect of IDNA Changes

 Overall, the effect of the shift to IDNA2008 is to limit the degree
 of understanding of the IDNA-based restrictions on domain names that
 were expected of NFSv4 in RFC7530 [3]. Despite this specification,
 the degree to which implementations actually implemented such
 restrictions is open to question and will be discussed in detail in

Section 12.2

 In analyzing how various cases are to be dealt with according to
RFC7530, there a number of troubling uncertainties that arise in

 trying to interpret the existing specification:

https://datatracker.ietf.org/doc/html/rfc750
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7530

Noveck Expires September 27, 2021 [Page 33]

Internet-Draft NFSv4 Internationalization March 2021

 o There are a number of cases in which "SHOULD" is used that are
 confusing. According to RFC2119 [1], "SHOULD" means that "there
 may exist valid reasons in particular circumstances to ignore a
 particular item, but the full implications must be understood and
 carefully weighed before choosing a different course". To fully
 understand a particular "SHOULD", there needs to be enough context
 to determine whether particular reasons for ignoring the item are
 in fact valid, and sufficient guidance to understand the
 implication of ignoring the item. In the absence of such
 information, the relevant fact is that the peer needs to deal with
 the item being ignored, making the implications of a "SHOULD" hard
 to distinguish from those of "MAY".

 o While the document states. "the general rules for handling all of
 these domain-related strings are similar and independent of the
 role of the sender or receiver as client or server", all of the
 following text is explicitly about the server's options, choices
 and responsibilities, leaving the client case unclear.

 o In a number of places within the paragraph describing server
 approach #1, the word "can" is used as in the text "the server can
 use the ToUnicode function", leaving it unclear whether the server
 can choose to do anything else and if so what.

 The following cases are those where RFC7530 requires use of IDNA
 handling and this requirement could, if implementations follow them,
 create potential compatibility issues, which need to be understood.

 o The degree to which RFC3490 [18] requires that characters other
 than U+002E (full stop) be treated as label separators, including
 U+3002 (ideographic full stop), U+FF0E (fullwidth full stop),
 U+FF61 (halfwidth ideographic full stop).

 o The degree to which RFC3490 [18] that server or client needs to
 validate a putative A-label or U-label or to rectify it if it is
 not valid.

12.2. Potential Compatibility Issues Related to IDNA Changes

 There are a number of factors relating to the handling of domain
 names within NFSv4 implementations that are important in
 understanding why any compatibility issues might be less troubling
 than a comparison of the two IDNA approaches might suggest:

 o Much of the potentially conflicting IDNA-related behavior required
 or recommended for the server by RFC7530 [3] might not actually be
 implemented, limiting the potential harmful effects of ceasing to
 mandate it.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc7530

Noveck Expires September 27, 2021 [Page 34]

Internet-Draft NFSv4 Internationalization March 2021

 o Even if such behavior were implemented by servers, no
 compatibility issue would arise unless clients actually relied on
 the server to implement it. Given that none of this behavior is
 made required, the chances of that occurring is quite small.

 o The range of potential values for user and group attributes sent
 by clients are often quite small with implementations commonly
 restricting all such values to a single domain string. This is
 even though RFCs 7530 [3] and 5661 [21] are written without
 mention of such restrictions.

 Specification of users and groups in the "id@domain" format within
 NFSv4 was adopted to enable expansion of the spaces of users and
 groups beyond the 32-bit id spaces mandated in NFSv3 [15] and
 NFsv2 [14]. While one obstacle to expansion was eliminated, most
 implementations were unable to actually effect that expansion,
 principally because the physical file systems used assume that
 user and group identifiers fit in 32 bits each and the vnode
 interfaces used by server implementations make similar
 assumptions.

 Given these restrictions, the typical implementation pattern is
 for servers to accept only a single domain, specified as part of
 the server configuration, together with information necessary to
 effect the appropriate name-to-id mappings.

 o The other uses of domain names in NFSv4, to represent hostnames in
 location attributes, the values are generated by the server and
 will normally include only include hostnames within DNS-registered
 domains.

 Keeping the above in mind, we can see that interoperability issues,
 while they might exist are unlikely to raise major challenges as
 looking to the following specific cases shows

 o When an internationalized domain name is used as part of a user or
 group, it would need to be configured as such, with the domain
 string known to both client and server.

 While it is theoretically possible that a client might work with
 an invalid domain string and rely on the server to correct it to
 an IDNA-acceptable one, such a scenario has to be considered
 extremely unlikely, since it would depend on multiple servers
 implementing the same correction, especially since there is no
 evidence of such corrections ever having been implemented by NFSv4
 servers.

Noveck Expires September 27, 2021 [Page 35]

Internet-Draft NFSv4 Internationalization March 2021

 o When an internationalized domain in a location string is meant to
 specify a registered domain, similar considerations apply.

 While it is theoretically possible that a client might work with
 an invalid domain string and rely on the server to correct it to
 the appropriate registered one, such a scenario has to be
 considered extremely unlikely, since it would depend on multiple
 servers implementing the same correction, especially since there
 is no evidence of such corrections ever having been implemented by
 NFSv4 servers.

 o When an internationalized domain in a location string is meant to
 specify a non-registered domain, any such server-applied
 corrections would be useless.

 In this situation, any potential interoperability issue would
 arise from rejecting the name, which has to be considered as what
 should have been done in the first place.

13. Errors Related to UTF-8

 Where the client sends an invalid UTF-8 string, the server MAY return
 an NFS4ERR_INVAL error. This includes cases in which inappropriate
 prefixes are detected and where the count includes trailing bytes
 that do not constitute a full Multiple-Octet Coded Universal
 Character Set (UCS) character.

 Requirements for server handling of component names that are not
 valid UTF-8, when a server does not return NFS4ERR_INVAL in response
 to receiving them, are described in Section 14.

 Where the string supplied by the client is not rejected with
 NFS4ERR_INVAL but contains characters that are not supported by the
 server as a value for that string (e.g., names containing slashes, or
 characters that do not fit into 16 bits when converted from UTF-8 to
 a Unicode codepoint), the server should return an NFS4ERR_BADCHAR
 error.

 Where a UTF-8 string is used as a file name, and the file system,
 while supporting all of the characters within the name, does not
 allow that particular name to be used, the server should return the
 error NFS4ERR_BADNAME. This includes such situations as file system
 prohibitions of "." and ".." as file names for certain operations,
 and similar constraints.

Noveck Expires September 27, 2021 [Page 36]

Internet-Draft NFSv4 Internationalization March 2021

14. Servers That Accept File Component Names That Are Not Valid UTF-8
 Strings

 As stated previously, servers MAY accept, on all or on some subset of
 the physical file systems exported, component names that are not
 valid UTF-8 strings. A typical pattern is for a server to use
 UTF-8-unaware physical file systems that treat component names as
 uninterpreted strings of bytes, rather than having any awareness of
 the character set being used.

 Such servers SHOULD NOT change the stored representation of component
 names from those received on the wire and SHOULD use an octet-by-
 octet comparison of component name strings to determine equivalence
 (as opposed to any broader notion of string comparison). This is
 because the server has no knowledge of the character encoding being
 used.

 Nonetheless, when such a server uses a broader notion of string
 equivalence than what is recommended in the preceding paragraph, the
 following considerations apply:

 o Outside of 7-bit ASCII, string processing that changes string
 contents is usually specific to a character set and hence is
 generally unsafe when the character set is unknown. This
 processing could change the file name in an unexpected fashion,
 rendering the file inaccessible to the application or client that
 created or renamed the file and to others expecting the original
 file name. Hence, such processing should not be performed,
 because doing so is likely to result in incorrect string
 modification or aliasing.

 o Unicode normalization is particularly dangerous, as such
 processing assumes that the string is UTF-8. When that assumption
 is false because a different character set was used to create the
 file name, normalization may corrupt the file name with respect to
 that character set, rendering the file inaccessible to the
 application that created it and others expecting the original file
 name. Hence, Unicode normalization SHOULD NOT be performed,
 because it may cause incorrect string modification or aliasing.

 When the above recommendations are not followed, the resulting string
 modification and aliasing can lead to both false negatives and false
 positives, depending on the strings in question, which can result in
 security issues such as elevation of privilege and denial of service
 (see [23] for further discussion).

Noveck Expires September 27, 2021 [Page 37]

Internet-Draft NFSv4 Internationalization March 2021

15. Future Minor Versions and Extensions

 As stated above, all current NFSv4 minor versions allow use of non-
 UTF-8 encodings, allow servers a choice of whether to be aware of
 normalization issues or not, and allows servers a number of choices
 about how to address normalization issues. This range of choices
 reflects the need to accommodate existing file systems and user
 expectations about character handling which in turn reflect the
 assumptions of the POSIX model of handling file names.

 While it is theoretically possible for a subsequent minor version to
 change these aspects of the protocol (see [8]), this section will
 explain why any such change is highly unlikely, making it expected
 that these aspects of NFSv4 internationalization handling will be
 retained indefinitely. As a result, any new minor version
 specification document that made such a change would have to be
 marked as updating or obsoleting this document

 No such change could be done as an extension to an existing minor
 version or in a new minor version consisting only of OPTIONAL
 features. Such a change could only be done in a new minor version,
 which like minor version one, was prepared to be incompatible to some
 degree with the previous minor versions. While it appears unlikely
 that such minor versions will be adopted, the possibility cannot be
 excluded, so we need to explore the difficulties of changing the
 aspects of internationalization handling mentioned above.

 o Establishing UTF-8 as the sole means of encoding for
 internationalized characters, would make inaccessible existing
 files stored with other encodings. Further, unless there were a
 corresponding change in the UNIX file interface model, it would
 cause the set of valid names for local and remote files to
 diverge.

 o Imposing a particular normalization form, in the sense of refusing
 to create to allow access to files whose UTF-8-encoded names are
 not of the selected normalization form would give rise to similar
 difficulties.

 o Defining a preferred normalization form to be returned as the
 names of all internationalized files, would result in applications
 having to deal with sudden unexplained changes of file names for
 existing files.

 None of the above appears likely since there does not seem to be any
 corresponding benefits to justify the difficulties that they would
 create.

Noveck Expires September 27, 2021 [Page 38]

Internet-Draft NFSv4 Internationalization March 2021

 There would also be difficulties in otherwise reducing the set of
 three acceptable normalization handling options, without reducing it
 to a single option by imposing a specific normalization form.

 o Eliminating the possibility of a single possible normalization
 form, would pose similar difficulties to imposing the other one,
 even if representation-independent comparisons were also allowed.

 In either case, a specific normalization form would be disfavored,
 with no corresponding benefit.

 o Allowing only representation-independent lookups would not impose
 difficulties for clients, but there are reasons to doubt it could
 be universally implemented, since such name comparisons would have
 to be done within the file system itself.

 Such a change could only be made once file system support for
 representation-independent file lookups would become commonly
 available. As long as the POSIX file naming model continues its
 sway, that would be unlikely to happen.

 One possible internationalization-related extension that the working
 could adopt would be definition of an OPTIONAL per-fs attribute
 defining the internationalization-related handling for that file
 system. That would allow clients to be aware of server choices in
 this area and could be adopted without disrupting existing clients
 and servers.

16. IANA Considerations

 The current document does not require any actions by IANA.

17. Security Considerations

 Unicode in the form of UTF-8 is generally is used for file component
 names (i.e., both directory and file components). However, other
 character sets may also be allowed for these names. For the owner
 and owner_group attributes and other sorts strings whose form is
 affected by standard outside NFSv4 (see Section 12.) are always
 encoded as UTF-8. String processing (e.g., Unicode normalization)
 raises security concerns for string comparison. See Sections 12 and
 9 as well as the respective Sections 5.9 of RFC7530 [3] and RFC5661
 [21] for further discussion. See [23] for related identifier
 comparison security considerations. File component names are
 identifiers with respect to the identifier comparison discussion in
 [23] because they are used to identify the objects to which ACLs are
 applied (See the respective Sections 6 of RFC7530 [3] and RFC5661
 [21]).

https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc5661

Noveck Expires September 27, 2021 [Page 39]

Internet-Draft NFSv4 Internationalization March 2021

18. References

18.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [2] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [3] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
 March 2015, <https://www.rfc-editor.org/info/rfc7530>.

 [4] Haynes, T., "Network File System (NFS) Version 4 Minor
 Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862,
 November 2016, <https://www.rfc-editor.org/info/rfc7862>.

 [5] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <https://www.rfc-editor.org/info/rfc5890>.

 [6] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,
 <https://www.rfc-editor.org/info/rfc3492>.

 [7] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [8] Noveck, D., "Rules for NFSv4 Extensions and Minor
 Versions", RFC 8178, DOI 10.17487/RFC8178, July 2017,
 <https://www.rfc-editor.org/info/rfc8178>.

 [9] Noveck, D., Ed. and C. Lever, "Network File System (NFS)
 Version 4 Minor Version 1 Protocol", RFC 8881,
 DOI 10.17487/RFC8881, August 2020,
 <https://www.rfc-editor.org/info/rfc8881>.

 [10] Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, October 1969,

 <http://www.rfc-editor.org/info/rfc20>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc7530
https://www.rfc-editor.org/info/rfc7530
https://datatracker.ietf.org/doc/html/rfc7862
https://www.rfc-editor.org/info/rfc7862
https://datatracker.ietf.org/doc/html/rfc5890
https://www.rfc-editor.org/info/rfc5890
https://datatracker.ietf.org/doc/html/rfc3492
https://www.rfc-editor.org/info/rfc3492
https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc8178
https://www.rfc-editor.org/info/rfc8178
https://datatracker.ietf.org/doc/html/rfc8881
https://www.rfc-editor.org/info/rfc8881
https://datatracker.ietf.org/doc/html/rfc20
http://www.rfc-editor.org/info/rfc20

Noveck Expires September 27, 2021 [Page 40]

Internet-Draft NFSv4 Internationalization March 2021

 [11] The Unicode Consortium, "The Unicode Standard, Version
 7.0.0", (Mountain View, CA: The Unicode Consortium,
 2014 ISBN 978-1-936213-09-2), June 2014,
 <http://www.unicode.org/versions/Unicode7.0.0/>.

 [12] The Unicode Consortium, "The Unicode Standard, Version
 13.0.0, Section 5.18 Case Mappings", (Mountain View, CA:
 The Unicode Consortium, 2014 ISBN 978-1-936213-26-9),
 March 2020,
 <http://www.unicode.org/versions/Unicode13.0.0/

ch05.pdf#G21180>.

 [13] The Unicode Consortium, "CaseFolding-13.0.0.txt",
 (Mountain View, CA: The Unicode Consortium, 2014 ISBN
 978-1-936213-26-9), March 2020,
 <https://www.unicode.org/Public/13.0.0/ucd/

CaseFolding.txt>.

18.2. Informative References

 [14] Nowicki, B., "NFS: Network File System Protocol
 specification", RFC 1094, DOI 10.17487/RFC1094, March
 1989, <https://www.rfc-editor.org/info/rfc1094>.

 [15] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
 Version 3 Protocol Specification", RFC 1813,
 DOI 10.17487/RFC1813, June 1995,
 <https://www.rfc-editor.org/info/rfc1813>.

 [16] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "NFS version 4
 Protocol", RFC 3010, DOI 10.17487/RFC3010, December 2000,
 <https://www.rfc-editor.org/info/rfc3010>.

 [17] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 DOI 10.17487/RFC3454, December 2002,
 <https://www.rfc-editor.org/info/rfc3454>.

 [18] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",

RFC 3490, DOI 10.17487/RFC3490, March 2003,
 <https://www.rfc-editor.org/info/rfc3490>.

 [19] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
 Profile for Internationalized Domain Names (IDN)",

RFC 3491, DOI 10.17487/RFC3491, March 2003,
 <https://www.rfc-editor.org/info/rfc3491>.

http://www.unicode.org/versions/Unicode7.0.0/
http://www.unicode.org/versions/Unicode13.0.0/ch05.pdf#G21180
http://www.unicode.org/versions/Unicode13.0.0/ch05.pdf#G21180
https://www.unicode.org/Public/13.0.0/ucd/CaseFolding.txt
https://www.unicode.org/Public/13.0.0/ucd/CaseFolding.txt
https://datatracker.ietf.org/doc/html/rfc1094
https://www.rfc-editor.org/info/rfc1094
https://datatracker.ietf.org/doc/html/rfc1813
https://www.rfc-editor.org/info/rfc1813
https://datatracker.ietf.org/doc/html/rfc3010
https://www.rfc-editor.org/info/rfc3010
https://datatracker.ietf.org/doc/html/rfc3454
https://www.rfc-editor.org/info/rfc3454
https://datatracker.ietf.org/doc/html/rfc3490
https://www.rfc-editor.org/info/rfc3490
https://datatracker.ietf.org/doc/html/rfc3491
https://www.rfc-editor.org/info/rfc3491

Noveck Expires September 27, 2021 [Page 41]

Internet-Draft NFSv4 Internationalization March 2021

 [20] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, DOI 10.17487/RFC3530,
 April 2003, <https://www.rfc-editor.org/info/rfc3530>.

 [21] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <https://www.rfc-editor.org/info/rfc5661>.

 [22] Hoffman, P. and J. Klensin, "Terminology Used in
 Internationalization in the IETF", BCP 166, RFC 6365,
 DOI 10.17487/RFC6365, September 2011,
 <https://www.rfc-editor.org/info/rfc6365>.

 [23] Thaler, D., Ed., "Issues in Identifier Comparison for
 Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May
 2013, <https://www.rfc-editor.org/info/rfc6943>.

 [24] Shepler, S., "NFS version 4 Protocol", draft-ietf-
nfsv4-rfc3010bis-04 (work in progress), October 2002.

 [25] Williams, N., "Internationalization Considerations for
 Filesystems and Filesystem Protocols", draft-williams-

filesystem-18n-00 (work in progress), July 2020.

Appendix A. History

 This section describes the history of internationalization within
 NFSv4. Despite the fact that NFSv4.0 and subsequent minor versions
 have differed in many ways, the actual implementations of
 internationalization have remained the same and internationalized
 names have been handled without regard to the minor version being
 used. This is the reason the document is able to treat
 internationalization for all NFSv4 minor versions together.

 During the period from the publication of RFC3010 [16] until now, two
 different perspectives with regard to internationalization have been
 held and represented, to varying degrees, in specifications for NFSv4
 minor versions.

 o The perspective held by NFSv4 implementers treated most aspects of
 internationalization as basically outside the scope of what NFSv4
 client and server implementers could deal with. This was because
 the POSIX interface treated file names as uninterpreted strings of
 bytes, because the file systems used by NFSv4 servers treated file
 names similarly, and because those file systems contained files
 with internationalized names using a number of different encoding

https://datatracker.ietf.org/doc/html/rfc3530
https://www.rfc-editor.org/info/rfc3530
https://datatracker.ietf.org/doc/html/rfc5661
https://www.rfc-editor.org/info/rfc5661
https://datatracker.ietf.org/doc/html/bcp166
https://datatracker.ietf.org/doc/html/rfc6365
https://www.rfc-editor.org/info/rfc6365
https://datatracker.ietf.org/doc/html/rfc6943
https://www.rfc-editor.org/info/rfc6943
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rfc3010bis-04
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rfc3010bis-04
https://datatracker.ietf.org/doc/html/draft-williams-filesystem-18n-00
https://datatracker.ietf.org/doc/html/draft-williams-filesystem-18n-00
https://datatracker.ietf.org/doc/html/rfc3010

Noveck Expires September 27, 2021 [Page 42]

Internet-Draft NFSv4 Internationalization March 2021

 methods, chosen by the users of the POSIX interface. From this
 perspective, wider support for internationalized names and general
 use of universal encodings was a matter for users and applications
 and not for protocol implementers or designers.

 o Within the IETF in general and in the IESG, there was a feeling
 that new protocols, such as NFSv4, could not avoid dealing with
 internationalization issues, making it difficult to treat these
 matters, as the implementers' perspective would have it, as
 essentially out of scope.

 As specifications were developed, approved, and at times rewritten,
 this fundamental difference of approach was never fully resolved,
 although, with the publication of RFC7530 [3], a satisfactory modus
 vivendi may have been arrived at.

 Although many specifications were published dealing with NFSv4
 internationalization, all minor versions used the same implementation
 approach, even when the current specification for that minor version
 specified an entirely different approach. As a result, we need to
 treat the history of NFSv4 internationalization below as an
 integrated whole, rather than treating individual minor versions
 separately.

 o The approach to internationalization specified in RFC3010 [16]
 sidestepped the conflict of approaches cited above by discussing
 the reasons that UTF-8 encoding was desirable while leaving file
 names as uninterpreted strings of bytes. The issue of string
 normalization was avoided by saying "The NFS version 4 protocol
 does not mandate the use of a particular normalization form at
 this time."

 Despite this approach's inconsistency with general IETF
 expectations regarding internationalization, RFC3010 was published
 as a Proposed Standard. NFSv4.0 implementation related to
 internationalization of file names followed the same paradigm used
 by NFSv3, assuring interoperability with files created using that
 protocol, as well as with those created using local means of file
 creation.

 o When it became necessary, because of issues with byte-range
 locking, to create an rfc3010bis, no change to the previously
 approved approach seemed indicated and the drafts submitted up
 until [24] closely followed RFC3010 as regards
 internationalization. The IESG then decided that a different
 approach to internationalization was required, to be based on
 stringprep [17] and rfc3010bis was accordingly revised, replacing

https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3010

Noveck Expires September 27, 2021 [Page 43]

Internet-Draft NFSv4 Internationalization March 2021

 all of the Internationalization section, before being published as
RFC3530 [20].

 These changes required the rejection of file names that were not
 valid UTF-8, file names that included code points not, at the time
 of publication, assigned a Unicode character (e.g. capital eszett)
 or that were not allowed by stringprep (e.g. Zero-width joiner
 and non-joiner characters). Because these restrictions would have
 caused the set of valid file names to be different on NFS-mounted
 and local file systems there was no chance of them ever being
 implemented.

 Because these specification changes were made without working
 group involvement, most implementers were unaware of them while
 those who were aware of the changes ignored them and continued to
 develop implementations based on the internationalization approach
 specified in RFC3010.

 o When NFsv4.1 was being developed, it seemed that no changes in
 internationalization would be required. Many people were unaware
 of the stringprep-based requirements which made the NFSv4.0
 internationalization specified in RFC3530 unimplementable. As a
 result, the internationalization specified in RFC5661 [21] was
 based on that in RFC3530 [20], although the addition of the
 attribute fs_charset_cap, discussed below, provided additional
 flexibility.

 The attribute fs_charset_cap, discussed below in Section 7
 provides flags allowing the server to indicate that it accepts and
 processes non-UTF-8 file names. Rejecting them was a "MUST" in

RFC3530 and became a "SHOULD" in RFC5661, although there is no
 evidence that any of these designations ever affected server
 behavior.

 As a result of this treatment of internationalization, even though
 NFSv4.1 was a separate protocol and could have had a different
 approach to internationalization, for a considerable time, the
 internationalization specification for both protocols was based on
 stringprep (in RFC3530 and RFC5661) while the actual
 implementations of the two minor versions both followed the
 approach specified in RFC3010, despite its obsoleted status.

 o When work started on rfc3530bis it was clear that issues related
 to internationalization had to be addressed. When the
 implications of the stringprep references in RFC3530 were
 discussed with implementers it became clear that mandating that
 NFSv4.0 file names conform to stringprep was not appropriate.
 While some working group members articulated the view that,

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3530

Noveck Expires September 27, 2021 [Page 44]

Internet-Draft NFSv4 Internationalization March 2021

 because of the need to maintain compatibility with the POSIX
 interface and existing file systems, internationalization for
 NFSv4 could not be successfully addressed by the IETF, the
 rfc3530bis draft submitted to the IESG did not explicitly embrace
 the implementers' perspective set forth above.

 The draft submitted to the IESG and RFC7530 [3] as published
 provided an explanation (see Section 5) as to why restrictions on
 character encodings were not viable. It allowed non-UTF-8
 encodings to be used for internationalized file names while
 defining UTF-8 as the preferred encoding and allowing servers to
 reject non-UTF-8 string as invalid. Other stringprep-based string
 restrictions were eliminated. With regard to normalization, it
 continued to defer the matter, leaving open the possibility that
 one might be chosen later.

 This approach is compatible, in implementation terms, with that
 specified in RFC3010 [16], allowing it to be used compatibly with
 existing implementations for all existing minor versions. This is
 despite the fact that RFC5661 [21] specifies an entirely different
 approach.

 As a result of discussions leading up to the publishing of
RFC7530, it was discovered that some local file systems used with

 NFSv4 were configured to be both normalization-aware and
 normalization-preserving, mapping all canonically equivalent file
 names to the same file while preserving the form actually used to
 create the file, of whatever form, normalized or not. This
 behavior, which is legal according to RFC3010, which says little
 about name mapping is probably illegal according to stringprep.
 Nevertheless, it was expressly pointed out in RFC7530 as a valid
 choice to deal with normalization issues, since it allows
 normalization-aware processing without the difficulties that arise
 in imposing a particular normalization form, as described in

Section 9.

 In its discussion of internationalized domain names, RFC7530 [3]
 adopted an approach compatible with IDNA2003, rather than
 attempting to derive the specification from the behavior of
 existing implementations.

 o When IDNA2003 was replaced by IDNA2008, the internationalization
 specified by [3] was not changed. Also, it appears unlikely that
 implementations were changed to reflect that shift.

 o NFSv4.2 made no changes to internationalization. As a result,
RFC7862 [4] which made no mention of internationalization,

https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7862

Noveck Expires September 27, 2021 [Page 45]

Internet-Draft NFSv4 Internationalization March 2021

 implicitly aligned internationalization in NFSv4.2 with that in
 NFSv4.1, as specified by RFC5661 [21].

 As a result of this implicit alignment, there is no need for this
 document to specifically address NFSv4.2 or be marked as updating

RFC7862. It is sufficient that it updates RFC5661, which
 specifies the internationalization for NFSv4.1, inherited by
 NFSv4.2.

 o Later, as work on the predecessors of this document was underway,
 [25] was submitted, making it necessary that some gaps the
 discussion of internationalization in [3] be filled in. These
 gaps primarily concerned the need of NFSv4 clients to match the
 handling of the corresponding server when using cached file name
 data locally, or to avoid making invalid assumptions about that
 handling, when information on the details of such handling was not
 available.

 The above history, can, for the purposes of the rest of this document
 be summarized in the following statements:

 o The actual treatment of internationalization within NFSv4 has not
 been affected by the particular minor version used, despite the
 fact that the specifications for the minor versions have often
 differed in their treatment of internationalization.

 o With regard to file names, implementations have followed the
 internationalization approach specified in RFC3010, which is
 compatible with the treatment in RFC7530.

 o With regard to internationalized domain names, RFC7530 [3]
 specified an approach compatible with IDNA at the time of
 publication. However, no detailed analysis was done to determine
 whether NFSv4 implementations actually followed that approach

 o Because [3] did not specifically address the special issues that
 clients would face, relying on the assumption that each file is
 accessible only by its name. As this assumption is no longer true
 when internationalized name handling is in effect, the appropriate
 handling is discusssed below. Section 11.2 explains the options
 for handling in the case in which the client has very limited
 information about the details about the server's
 internationalization-related handling of file names while

Section 11.3 discusses how a client might use more complete
 information provided by new attributes.

 In order to deal with all NFSv4 minor versions, this document follows
 the internationalization approach defined in RFC7530, with some

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc7862
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7530

Noveck Expires September 27, 2021 [Page 46]

Internet-Draft NFSv4 Internationalization March 2021

 changes discussed in Section 4 and applies that approach to all NFSv4
 minor versions.

Appendix B. Form-insensitive String Comparisons

 This section deal with two varieties of form-insensitive string
 comparison:

 o Providing a comparison function which is form-insensitive only.
 For any string, whether normalized or not, this function will
 determine it to be equivalent to all canonically equivalent
 strings, including but not limited, to the normalized forms NFC
 and NFD

 o Providing a comparison function which is both form-insensitive and
 case-insensitive. This function will determine strings that only
 differ in case to be equal but will also be form-insensitive, as
 described above.

 The non-normative guidance provided in this Appendix is intended to
 be helpful to two distinct implementation areas:

 o Implementation of server-side file systems intended to be accessed
 using NFSv4 protocols. While it is often the case that such
 filesystems are developed by separate organizations from those
 concerned with NFSv4 server development, the internationalization-
 related requirements specified in this document must be adhered to
 for successful inter-operation, making this implementation
 guidance apropos despite any potential organizational barriers.

 o Implementation of NFSv4 clients that need to provide matching
 internationalization-related handling for reason discussed in

Section 11.

 There are three basic reasons that two strings being compared might
 be canonically equivalent even though not identical. For each such
 reason, the implementation will be similar in the cases in which
 form-insensitive comparison (only) is being done and in which the
 comparison is both case-insensitive and form- insensitive.

 o Two strings may differ only because each has a different one of
 two code points that are essentially the same. Three code points
 assigned to represent units, are essentially equivalent to the
 character denoting those units. For example, the OHM SIGN
 (U+2126) is essentially identical to the GREEK CAPITAL LETTER
 OMEGA (U+03A9) as MICRO SIGN (U+00B5) is to GREEK SMALL LETTER MU
 (U+03BC) and ANGSTROM SIGN (U+212B) is to LATIN CAPITAL LETTER A
 WITH RING ABOVE (U+00C5).

Noveck Expires September 27, 2021 [Page 47]

Internet-Draft NFSv4 Internationalization March 2021

 As discussed in items EX2 and EX3 in Section 10.2, it is possible
 to adjust for this situation using tables designed to resolve
 case-insensitive equivalence, essentially treating the unit
 symbols as an additional case variant, essentially ignoring the
 fact that the graphic representation is the same. As a result,
 those doing string comparisons that are both form-insensitive and
 case-insensitive do not need to address this issue as part of
 form-insensitivity, since it would be dealt with by existing case-
 insensitive comparison logic.

 Where there is no case-insensitive comparison logic, this function
 needs to be performed using similar tables whose primary function
 is to provide the decomposition of precomposed characters, as
 described in Appendix B.2.

 o Two strings may differ in that one has the decomposed form
 consisting of a base character and an associated combining
 character while the other has a precomposed character equivalent.

 Although, as discussed in items EX3 in Section 10.2, it is
 possible to use tables designed to resolve case-insensitive
 equivalence by providing as possible case-insensitively equivalent
 string, multi-character string providing the decomposition of
 precomposed characters, special logic to do so is only necessary
 when the decomposition is not a canonical one, i.e. it is a
 compatibility equivalence.

 In general, the table used to do comparisons, whether case-
 sensitive or not, need to provide information about the canonical
 decomposition of precomposed characters. See Appendix B.2 for
 details.

 o Two strings may differ in that the strings consist of combining
 characters that have the same effect differ as to the order in
 which the characters appear.

 There is no way this function could be performed within code
 primarily devoted to case-insensitive equivalence. However, this
 function could be added to implementations, providing both sorts
 of equivalence once it is determined that the base characters are
 case-equivalent while there is a difference of combining
 characters in to be resolved. (See Appendix B.5 for a discussion
 of how sets of combining characters can be compared).

Noveck Expires September 27, 2021 [Page 48]

Internet-Draft NFSv4 Internationalization March 2021

B.1. Name Hashes

 We discussed in Section 10.1 the construction of a case-insensitive
 file name hash. While such a hash could also be form-insensitive if
 the hash contribution of every pre-composed character matched the
 combined contribution of the characters that it decomposes into.

 However, there is no obvious way that sort of hash could respect the
 canonical equivalence of multiple combining characters modifying the
 same base character, when those combining characters appear in
 different orders. Addressing that issue would require a
 significantly different sort of hash, in which combining characters
 are treated differently from others, so that the re-ordering of a
 string of combining characters applying to the same base character
 will not affect the hash.

 In the hash discussed in Section 10.1, there is no guarantee that the
 hash for multiple combining characters presented in different orders
 will be the same. This is because typically such hashes implement
 some transformation on the existing hash, together with adding the
 new character to the hash being accumulated. Such methods of hash
 construction will arrive at different values if the ordering of
 combining characters changes.

 In order to create a hash with the necessary characteristics, one can
 construct a separate sub-hash for composite character, consisting of
 one non-combining character (may be pre-composed) together with the
 set (possibly null) of combining characters immediately following it.
 Each such composed character, whether precomposed or not, will have
 its own sub-hash, which will be the same regardless of the order of
 the combining characters.

 If the hash is to include case-insensitivity, special handling is
 needed to deal with issues arising from the handling of COMBINING
 GREEK YPOGEGRAMMENI (U+0345). That combining character, as discussed
 in item EX6 of Section 10.2 is uppercased to the non-combining
 character GREEK CAPITAL LETTER IOTA (U+0399) which is in turn
 lowercased to the non-combining character GREEK SMALL LETTER IOTA
 (U+03B9). As a result, when computing a case-insensitive hash, when
 a base character is IOTA (of either case) and the previous base
 character is ALPHA, ETA, or OMEGA (of the same case as the IOTA),
 that IOTA is treated, for the purpose of defining the composite
 characters for which to generate sub-hashes as if it were a combining
 character. As a result, in this case a string of containing two
 composite characters will be treated as were a single composite
 character since the iota will be treated as if it were a combining
 character. This string will have its own sub-hash, which will be the
 same regardless of the order of combining characters.

Noveck Expires September 27, 2021 [Page 49]

Internet-Draft NFSv4 Internationalization March 2021

 The same outline will be followed for generating hashes which are to
 be form-insensitive (only) and for those which are to be both form-
 insensitive and case-insensitive. The initial value, representing
 the base character, will differ based on the type of hash.

 o In the case-sensitive case, the initial value of the sub-hash will
 reflect the value of the base character with the only possible
 need to map to a different value deriving from the existence of
 OHM SIGN (U+2126), ANGSTROM SIGN (U+212B), and MICRO SIGN (U+00B5)
 as characters distinct from the letters that represent these code
 points. This could be done with a mapping table but most
 implementations would probably choose to implement special-purpose
 code to do this.

 o In the case-insensitive case, the initial value of the sub-hash
 will reflect the case-based equivalence class to which the
 character (the lower-case equivalent is generally suitable). In
 this context a table-based mapping is required and this mapping
 can shift OHM SIGN, ANGSTROM SIGN, and MICRO SIGN to the case-
 based equivalence class for the corresponding character.

 Regardless of the type of hash to be produced, values based on the
 following combining characters need to reflected in the sub-hash. In
 order to make the sub-hash invariant to changes in the order of
 combining characters, values based on the particular combining
 character are combined with the hash being computed using a
 commutative associative operation, such as addition.

 To reduce false-positives it is desirable to make the hash relatively
 wide (i.e. 32-64 bits) with the value based on base character in the
 upper portion of the word with the values for the combining
 characters appearing in a wide range of bit positions in the rest of
 the word to limit the degree that multiple distinct sets of combining
 characters have value that are the same. Although the details will
 be affected by processor cache structure and the distribution of
 names processed, a table of values will be used but typical
 implementations will be different in the two cases we are dealing as
 described in Appendix B.2.

 As each sub-hash is computed, it is combined into a name-wide hash.
 There is no need for this computation to be order-independent and it
 will probably include a circular shift of the hash computed so far to
 be added to the contribution of the sub-hash for the new base or
 composed character.

 As described in Appendix B.3 the appropriate full name hash will have
 the major role in excluding potential matches efficiently. However,
 in some small number of cases, there will be a hash match in which

Noveck Expires September 27, 2021 [Page 50]

Internet-Draft NFSv4 Internationalization March 2021

 the names to be compared are not equivalent, requiring more involved
 processing. It is assumed below that a given name will be searching
 for potential cached matches within the directory so that for that
 name, on will be able retain information used to construct the full
 name hash (e.g. individual sub-hashes plus the bounds of each
 composite character. These will be compared against cached entries
 where only the full (e.g. 64-bit) name hash and the name itself will
 be available for comparison.

B.2. Character Tables

 The per-character tables used in these algorithms have a number of
 type of entries for different types of characters. In some cases,
 information for a given character type will be essentially the same
 whether the comparison is to be form-insensitive or case-
 insensitive. In others, there will be differences. Also, there may
 be entry types that only exist for particular types of comparisons.
 In any case, some bits within the table entry will be devoted to
 representing the type of character and entry:

 o For combining characters, the entry will provide information about
 the character's contribution to the composite character sub-hash
 in which it appears.

 o For case-insensitive comparisons, there need to be special entries
 for characters, which, while not themselves combining characters,
 are the case-insensitive equivalents of combining characters. An
 example of this situation is provided in item EX6 within

Section 10.2

 o For pre-composed characters, the entry needs to provide the
 initial hash value which is to be the basis for the sub-hash for
 the name substring including contributions for the base character
 together with contribution of included combining characters. In
 addition, such entries will provide, separately, information about
 the character's canonical decomposition.

 o For case-insensitive comparisons, there needs to be, for base
 characters, entries assigning each base character to the case-
 based equivalence class to which it belongs, although such entries
 can be avoided if the equivalence class matches the character
 (usually caseless and lowercase characters.

 o Also, for case-insensitive comparisons, there will need to be
 special entries for characters which multi-character string as
 case-insensitive equivalent of the base character. Examples of
 this situation are provided in items EX4 and EX5 within

Section 10.2. Such entries will need to have a hash-contribution

Noveck Expires September 27, 2021 [Page 51]

Internet-Draft NFSv4 Internationalization March 2021

 that reflects the hash that would be computed for the multi-
 character string.

 o For form-insensitive comparisons, there will be special entries to
 provide special handling for those cases in which there are two
 canonically equivalent single characters. Such entries do not
 exist for case-insensitive comparison since this situation can be
 handled by a non-standard use of case mapping for base characters
 by placing these two characters in the same case-based equivalence

 In the common case in which a two-stage mapping will be used, there
 will be common groups of characters in which no table entry will be
 required, allowing a default entry type to be used for some character
 groups with entry contents easily calculable from the code point.

 o In the case form-insensitive comparison, this consists of all base
 characters, with the hash contribution of the character derivable
 by a pre-specified transformation of the code point value.

 o In the case case-insensitive comparison, this consists of all base
 character which are either caseless or equivalence class is the
 same as the code point, typically lowercase characters. As in the
 form-insensitive case, the hash contribution of the character is
 derivable by a pre-specified transformation of the code point
 value, which matches, in this case, the id assigned to the case-
 based equivalence class.

B.3. Outline of comparison

 We are assuming that comparisons will be based on the hash values
 computed as described in Appendix B.1, whether the comparison is to
 be form-insensitive or both case-insensitive and form-insensitive.

 To facilitate this comparison, the name hash will be stored with the
 names to be compared. As a result, when there is a need to
 investigate a new name and whether there are existing matches, it
 will be possible to search for matches with existing names cached for
 that directory, using a hash for the new name which is computed and
 compared to all the existing names, with the result that the detailed
 comparisons described in Appendices B.4 and B.5 have to be done
 relatively rarely, since non-matching names together with matching
 hashes are likely to be atypical.

 Given the above, it is a reasonable assumption, which we will take
 note of in the sections below, that for one of the names to be
 compared, we will have access to data generated in the process of
 computing the name hash while for the other names, such data would
 have to be generated anew, when necessary. When that data includes,

Noveck Expires September 27, 2021 [Page 52]

Internet-Draft NFSv4 Internationalization March 2021

 as we expect it will, the offset and length of the string regions
 covered by each sub-hash, direct byte-by-byte comparisons between
 corresponding regions of the two strings can exclude the possibility
 of difference without invoking any detailed logic to deal with the
 possibility of canonical equivalence or case-based equivalence in the
 absence of identical name segment.

 In the case in which the byte-by-byte comparisons fail, further
 analysis is necessary:

 o First, the associated base characters are compared, as is
 discussed in Appendix B.4. When doing form-insensitive comparison
 this is straightforward. However, when case-insensitive
 comparison is to be done, there is the possibility that the sub-
 hash boundaries of the two comparands are different, requiring
 that a common point in both comparands be found to resume
 comparison after a successful match. For either form of
 comparison, if a mismatch is found at this point then the
 comparison fails, while, if there is match, there must be a
 comparison of any following combining characters, as described
 below, before moving on to the region covered by the appropriate
 sub-string covered by the appropriate next sub-hash for each
 comparand.

 o If there is no mismatch as to the base characters, the set of
 associated combining characters (might be null) must be compared,
 as is discussed in Appendix B.5. If a mismatch is found at this
 point then the comparison fails. This may be because the sets of
 combining characters are different, because there are multiple
 copies of the same combining character in one of the string, or
 because the difference in combining character is not one that
 maintains canonical equivalence (due to combining classes).

 o When both comparisons show a match, the comparison resumes at the
 next substring, using a byte-by-byte comparison initially. If the
 comparison cannot be resumed because one of the strings is
 exhausted, the comparison terminate, succeeding only if both
 strings are exhausted while failing if only one of the strings is
 exhausted.

B.4. Comparing Base Characters

 In general, the task of comparing based characters is simple, using a
 table lookup using the numeric value of the initial character in the
 substring. When doing form-insensitive comparison this is the base
 character associated with the initial (possibly pre-composed)
 character, while for case-insensitive comparison it is the case-based
 equivalence class associated with that character.

Noveck Expires September 27, 2021 [Page 53]

Internet-Draft NFSv4 Internationalization March 2021

 When doing case-insensitive comparison, issues may arise that result
 when there is a multi-character string that as the case- insensitive
 equivalent of a single base character, as discussed in items EX4 and
 EX5 within Section 10.2. These are best dealt with using the
 approach outlined in Section 10.1. When it is noted that the current
 base character (for either comparand) is a character whose associated
 equivalence class contains one or more multi-character strings, then
 these comparisons, normally requiring that each base character be
 mapped to the same case-based equivalence class by modified to allow
 equivalences allowed by these multi-character sequences.

 In such cases, there may need to be comparisons involving the multi-
 character string, in addition to the normal comparisons using the
 base characters' equivalence class. As an illustration, we will
 consider possible comparison results that involve characters string
 within the equivalence class mentioned in item EX4 within

Section 10.2

 o When the base character for both comparands are either LATIN SMALL
 LETTER SHARP S (U+00DF) or LATIN CAPITAL LETTER SHARP S (U+1E9E),
 then a match is recognized.

 o When the base character for one comparand is either LATIN SMALL
 LETTER SHARP S (U+00DF) or LATIN CAPITAL LETTER SHARP S (U+1E9E),
 while the other is not, each character in the that other comparand
 is case-insensitively compared to the corresponding character of
 the string "ss" with a match being signaled when all such
 subsequent characters match, except for possibly being of a
 different case. Because that comparison will involve multiple
 base characters, the overall comparison point for that comparand
 will have to be adjusted to reflect character already processed as
 part of the comparison.

 o When the base character for neither comparands is either LATIN
 SMALL LETTER SHARP S (U+00DF) or LATIN CAPITAL LETTER SHARP S
 (U+1E9E), then matching proceeds normally. As a result, the only
 cases in which character strings within the equivalence class
 being discussed will result is where both comparands have one of
 the strings "ss", "sS", "Ss", or "SS" at the current comparison
 point.

B.5. Comparing Combining Characters

 In order to effect the necessary comparison, one needs to assemble,
 for each comparand, the set of combining characters within the
 current substring. The means used might be different for different
 comparands since there might be useful information retained from the

Noveck Expires September 27, 2021 [Page 54]

Internet-Draft NFSv4 Internationalization March 2021

 generation of the associated string hash for one of the comparands.
 In any case, there are two potential sources for these characters:

 o Those deriving from the canonical decomposition of a pre-composed
 character, treated as a null set of if the base character is not a
 precomposed one.

 o Those combining characters that immediate following the base
 character, which will be a null set if the immediately following
 character is not a combining character. Note that it is possible,
 when doing case-insensitive comparison to treat certain character,
 not normally combining characters, as if they are. Such
 situations can arise, when, as described in item EX6 within

Section 10.2, such non-combining character are the uppercase or
 lowercase equivalents of combining characters.

 Although, the two sets of character can be checked to see if they are
 identical, this is a sufficient but not a necessary condition for
 equivalence since some permutations of a set of combining characters
 are considered canonically equivalent. To summarize the appropriate
 equivalence rules:

 o Combining characters of different combining classes may be freely
 reordered.

 o If combining characters of the same combining class are reordered,
 then result is not canonically equivalent

 The rules above do not directly apply to the case, discussed above,
 in which some non-combining characters are the case-based equivalents
 of combining characters such as COMBINING GREEK YPOGEGRAMMENI
 (U+0345). Nevertheless, because of this equivalence, those
 implementing case-insensitive comparisons do have to deal with this
 potential equivalence when considering whether two strings containing
 combining characters or their case-based equivalents match. As a
 result when comparing strings of combining characters, we need to
 implement the following modified rules.

 o When one comparand has a true combining character and the other
 comparand has an identical one, they may differ in location as
 long as there is no permutation of combining characters of the
 same combining class.

 o When one comparand has a true combining character and the other
 has a case-insensitive equivalent which is not a combining
 character, that character must appear last in its string while the
 combining may character appear in its string in any position

Noveck Expires September 27, 2021 [Page 55]

Internet-Draft NFSv4 Internationalization March 2021

 except the last. In this case, there are no restrictions based on
 combining classes.

 o When both comparands contain a non-combining character case-
 insensitively equivalent to a combining character, these character
 must appear last in their respective strings.

 Although it is possible to divide combining characters based on their
 combining classes, sort each of the list and compare, that approach
 will not be discussed here. Even though the use of sorts might allow
 use of an overall N log N algorithm, the number of combining
 characters is likely to be too low for this to be a practical
 benefit. Instead, we present below an order N-squared algorithm
 based on searches.

 In this algorithm, one string, chosen arbitrarily id designated the
 "source string" and successive character from it, are searched for in
 the other, designated the "target string". Associated with the
 target string is a mask to allow characters search for a found to be
 marked so that they will not be found a second time. In the
 treatment below, when a character is "searched for" only characters
 not yet in the mask are examined and the character sought has its
 associated mask bit set when it is found.

 Each character in the source string is processed in turn with the
 actual processing depending on particular character being processed,
 with the following three possibilities to be dealt with.

 1. For the typical case (i.e. a combining character with no case-
 insensitive equivalents), the character is searched for in the
 target string with the compare failing if it is not found.

 If it is found, then the region of the target string between the
 point corresponding to the current position in the source string
 and the character found is examined to check for characters of
 the same combining class. If any are found, the overall
 comparison fails.

 2. For the case of a combining character with a case- insensitive
 equivalents, the character is searched for as described in the
 first paragraph of item 1. However, the compare does not fail if
 it is not found. Instead, a case-insensitive equivalent
 character is searched for at the final position of the string and
 the compare fails if that is not found.

 3. For the case of a non-combining character that has a combining
 character as a case-insensitive equivalents, the overall
 comparison fail if the character is not in the final position

Noveck Expires September 27, 2021 [Page 56]

Internet-Draft NFSv4 Internationalization March 2021

 within the source string or has already been successfully
 searched for. Otherwise, the corresponding combining character
 is searched for in the target as described in in the first
 paragraph of item 1. The overall compare fails if it is not
 found.

 Once all characters in the source string has been processed, the mask
 associated is examined to see if there are combining character that
 were not found in the matching process described above. Normally, if
 there are such characters, the overall comparison fails. However, if
 the last character of the target was not matched and if it is a non-
 combining character that is case-insensitively equivalent to a
 combining character, then comparison succeeds and the remaining
 character needs to be matched with the next substring in the source.

Acknowledgements

 This document is based, in large part, on Section 12 of [3] and all
 the people who contributed to that work, have helped make this
 document possible, including David Black, Peter Staubach, Nico
 Williams, Mike Eisler, Trond Myklebust, James Lentini, Mike Kupfer
 and Peter Saint-Andre.

 The author wishes to thank Tom Haynes for his timely suggestion to
 pursue the task of dealing with internationalization on an NFSv4-wide
 basis.

 The author wishes to thank Nico WIlliams for his insights regarding
 the need for clients implementing file access protocols to be aware
 of the details of the server's internationalization-related name
 processing, particularly when case-insensitive file systems are being
 accessed.

Author's Address

 David Noveck
 NetApp
 1601 Trapelo Road
 Waltham, MA 02451
 United States of America

 Phone: +1 781 572 8038
 Email: davenoveck@gmail.com

Noveck Expires September 27, 2021 [Page 57]

