
Workgroup: NFSv4

Internet-Draft:

draft-ietf-nfsv4-internationalization-03

Updates: 8881, 7530 (if approved)

Published: 25 September 2022

Intended Status: Standards Track

Expires: 29 March 2023

Authors: D. Noveck

NetApp

Internationalization for the NFSv4 Protocols

Abstract

This document describes the handling of internationalization for all

NFSv4 protocols, including NFSv4.0, NFSv4.1, NFSv4.2 and extensions

thereof, and future minor versions.

It updates RFC7530 and RFC8881.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8881
https://www.rfc-editor.org/rfc/rfc7530
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Requirements Language

2.1. Requirements Language Definition

2.2. Requirements Language Derivation

3. Internationalization and Minor Versioning

4. Changes Relative to RFC7530

5. Limitations on Internationalization-Related Processing in the

NFSv4 Context

6. Summary of Server Behavior Types

7. The Attribute Fs_charset_cap

7.1. The Attribute Fs_charset_cap in Published NFSv4.1

Specifications

7.2. The Attribute Fs_charset_cap in Future NFSv4.1

Specifications

8. String Encoding

9. Normalization

10. Case-Insensitive Processing of File Names

10.1. Implementing Case-Insensitive Comparison of File Names

10.2. Important Examples of Case-insensitive Handling of File

Names

11. Internationalization-related Processing of File Names by Clients

11.1. Server Restrictions to Deal with Lack of Client Knowledge

11.2. Client Processing of File Names for Current NFSv4 Protocols

11.3. Client Processing of File Names for Future NFSv4 Protocols

12. String Types with Processing Defined by Other Internet Areas

12.1. Effect of IDNA Changes

12.2. Potential Compatibility Issues Related to IDNA Changes

13. Errors Related to UTF-8

14. Servers That Accept File Component Names That Are Not Valid

UTF-8 Strings

15. Future Minor Versions and Extensions

16. IANA Considerations

17. Security Considerations

18. References

18.1. Normative References

18.2. Informative References

Appendix A. History

Appendix B. Form-insensitive String Comparisons

B.1. Name Hashes

B.2. Character Tables

B.3. Outline of comparison

B.4. Comparing Base Characters

B.5. Comparing Combining Characters

Acknowledgements

¶

Author's Address

1. Introduction

Internationalization is a complex topic with its own set of

terminology (see [RFC6365]). The topic is made more complex for the

NFSv4 protocols by the complicated history described in Appendix A.

In large part, this document is based on the actual behavior of

NFSv4 client and server implementations (for all existing minor

versions) and is intended to serve as a basis for further

implementations to be developed that can interact with existing

implementations as well as those to be developed in the future.

Note that the behaviors on which this document are based are each

demonstrated by a combination of an NFSv4 server implementation

proper and a server-side physical file system. It is common for

servers and physical file systems to be configurable as to the

behavior shown. In the discussion below, each configuration that

shows different behavior is considered separately.

As a consequence of this choice, normative terms defined in

[RFC2119] are often derived from implementation behavior, rather

than the other way around, as is more commonly the case. The

specifics are discussed in Section 2.

With regard to the question of interoperability with existing

specifications for NFSv4 minor versions, different minor versions

pose different issues.

With regard to NFSv4.0 as defined in [RFC7530], no significant

interoperability issues are expected to arise because the

discussion of internationalization of in that specification,

which is the basis for this one, was also based on the behavior

of existing implementations. Although, in a formal sense, the

treatment of internationalization here supersedes that in

[RFC7530], the treatments are intended to be essentially the

same, in order to eliminate interoperability issues.

Because of a change in the handling of Internationalized domain

names, there are some differences from the handling in [RFC7530],

as discussed in Appendix A. For a discussion of those differences

and potential compatibility issues, see Sections 12.1 and 12.2.

With regard to NFSv4.1 as defined by [RFC8881], the situation is

quite different. The approach to internationalization specified

in that document, based in large part on that in RFC3530, was

never implemented, and implementers were either unaware of the

troublesome implications of that approach or chose to ignore the

existing specification as essentially unimplementable. An

internationalization approach compatible with that specified in

¶

¶

¶

¶

*

¶

¶

*

[RFC7530] tended to be followed, despite the fact that, in other

respects, NFSv4.1 was considered to be a separate protocol.

If there were NFSv4 servers who obeyed the internationalization

dictates within [RFC5661], or clients that expected servers to do

so, they would fail to interoperate with typical clients and

servers when dealing with non-UTF8 file names, which are quite

common. As no such implementations have come to our attention, it

has to be assumed that they do not exist and interoperability

with existing implementations as described here is an appropriate

basis for this document.

The same applies to all existing minor versions beyound NFSv4.1

(i.e. to NFSv4.2), which made no changes in internationalization-

related handling.

2. Requirements Language

2.1. Requirements Language Definition

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as BCP 14 [RFC2119] [RFC8174] when,

and only when, they appear in all capitals, as shown here.

2.2. Requirements Language Derivation

Although the key words "MUST", "SHOULD", and "MAY" retain their

normal meanings, as described above, we need to explain how the

statements involving these terms were arrived at:

In the case of statements within Sections 12 and 15, these derive

from the requirements of other internet specifications.

In the case of statements within Sections 7, 10, and 11 derive

from the author's view of the appropriate normative language to

use and will, when this document is advanced, represent the

working group's consensus on those same matters.

However, in other cases, i.e. those in sections deriving from

RFC7530 [RFC7530] (i.e. Sections 5, 6, 8, 9, 13, 14, 16, 17) this

specification's descriptions were derived from existing

implementation patterns. Although this pattern is atypical, it is

needed to provide a description that satisfies the goal of

[RFC2119], providing a normative description to enable future

implementations to be compatible with existing ones. This

requires that we explain later in this section how the normative

terms used derive from the behavior of existing implementations,

in those situations in which existing implementation behavior

patterns can be determined.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

Note that in introductory and explanatory sections of this document

(i.e. Sections 1 through 4 these terms do not appear except to

explain how they are used in this document. Also, they do not appear

in Appendix B which provides non-normative implementation guidance.

With regard to the parts of this document deriving from RFC7530, we

explain below how the normative terms used derive from the behavior

of existing implementations, in those situations in which existing

implementation behavior patterns can be determined.

Behavior implemented by all existing clients or servers is

described using "MUST", since new implementations need to follow

existing ones to be assured of interoperability. While it is

possible that different behavior might be workable, we have found

no case where this seems reasonable.

The converse holds for "MUST NOT": if a type of behavior poses

interoperability problems, it MUST NOT be implemented by any

existing clients or servers.

Behavior implemented by most existing clients or servers, where

that behavior is more desirable than any alternative, is

described using "SHOULD", since new implementations need to

follow that existing practice unless there are strong reasons to

do otherwise.

The converse holds for "SHOULD NOT".

Behavior implemented by some, but not all, existing clients or

servers is described using "MAY", indicating that new

implementations have a choice as to whether they will behave in

that way. Thus, new implementations will have the same

flexibility that existing ones do.

Behavior implemented by all existing clients or servers, so far

as is known -- but where there remains some uncertainty as to

details -- is described using "should". Such cases primarily

concern details of error returns. New implementations should

follow existing practice even though such situations generally do

not affect interoperability.

There are also cases in which certain server behaviors, while not

known to exist, cannot be reliably determined not to exist. In part,

this is a consequence of the long period of time that has elapsed

since the publication of the defining specifications, resulting in a

situation in which those involved in the implementation work may no

longer be involved in or be aware of working group activities.

¶

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

¶

In the case of possible server behavior that is neither known to

exist nor known not to exist, we use "SHOULD NOT" and "MUST NOT" as

follows, and similarly for "SHOULD" and "MUST".

In some cases, the potential behavior is not known to exist but

is of such a nature that, if it were in fact implemented,

interoperability difficulties would be expected and reported,

giving us cause to conclude that the potential behavior is not

implemented. For such behavior, we use "MUST NOT". Similarly, we

use "MUST" to apply to the contrary behavior.

In other cases, potential behavior is not known to exist but the

behavior, while undesirable, is not of such a nature that we are

able to draw any conclusions about its potential existence. In

such cases, we use "SHOULD NOT". Similarly, we use "SHOULD" to

apply to the contrary behavior.

In the case of a "MAY", "SHOULD", or "SHOULD NOT" that applies to

servers, clients need to be aware that there are servers that may or

may not take the specified action, and they need to be prepared for

either eventuality.

3. Internationalization and Minor Versioning

Despite the fact that NFSv4.0 and subsequent minor versions have

differed in many ways, the actual implementations of

internationalization have remained the same and internationalized

file names have been handled without regard to the minor version

being used. Minor version specification documents contained

different treatments of internationalization as described in

Appendix A but of those only the implementation-based approach used

by [RFC7530], resulted in a workable description while a number of

attempts to specify an approach that implementors were to follow

were all ignored.

It is expected that any future minor versions will follow a similar

approach, even though there is nothing to prevent a future minor

version from adopting a different approach as long as the rules

within [RFC8178]) are adhered to. In any such case, the new minor

version would have to be marked as updating or obsoleting this

document. Issues relating to potential extensions within the

framework specified in this document are dealt with in Section 15.

¶

*

¶

*

¶

¶

¶

¶

4. Changes Relative to RFC7530

This document follows the internationalization approach defined in

RFC7530, with a number of significant necessary changes described

below.

The handling of internationalization specified in [RFC7530] is

applied to all NFSv4 minor versions. No compatibility issues are

expected to arise because all existing implementations follow the

same approach to internationalization despite the large

difference between [RFC7530] and what was specified in [RFC5661].

Issues relating to potential future minor versions and protocol

extensions are addressed in Section 15.

Changes made necessary by the shift from IDNA2003 to IDNA2008

have been made. The intention is to maintain compatibility with

all existing implementations of all NFSv4 minor versions.

Potential compatibility issues with regard to the IDNA shift are

discussed in Section 12.2.

There is more detailed discussion of case-insensitive handling of

file names, with particular attention to the complexities that

can arise when multiple language conventions in these matters

need to be accommodated. The discussion in Section 10 applies to

both client or server, although issues relating to the client's

knowledge are dealt with in Section 11.

There is additional material, dealing with the implications of

server-side internationalization-related file name processing for

clients that cache the results of READDIR's. This includes a

discussion of options to deal with the current lack of detailed

information about the server (in Section 11.2), and options for

handling when more detailed information is available (in Section

11.3)."

5. Limitations on Internationalization-Related Processing in the NFSv4

Context

There are a number of noteworthy circumstances that limit the degree

to which internationalization-related encoding and normalization-

related restrictions can be made universal with regard to NFSv4

clients and servers:

The NFSv4 client is part of an extensive set of client-side

software components whose design and internal interfaces are not

within the IETF's purview, limiting the degree to which a

particular character encoding might be made standard.

Server-side handling of file component names is typically

implemented within a server-side physical file system, whose

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

handling of character encoding and normalization is not

specifiable by the IETF.

Typical implementation patterns in UNIX systems result in the

NFSv4 client having no knowledge of the character encoding being

used, which might even vary between processes on the same client

system.

Users may need access to files stored previously with non-UTF-8

encodings, or with UTF-8 encodings that are not in accord with

any particular normalization form.

6. Summary of Server Behavior Types

Servers MAY reject component name strings that are not valid UTF-8.

This choice leads to a number of types of valid server behavior, as

outlined below. When these are combined with the valid

normalization-related behaviors as described in Section 8, this

leads to the combined behaviors outlined below.

Servers that limit file component names within a given file

system to UTF-8 strings exist with normalization-related handling

as described in Section 8. These are best described as behaving

as "UTF-8-only servers".

Servers that do not limit file component names on particular file

systems to UTF-8 strings are very common and are necessary to

deal with clients/applications not oriented to the use of UTF-8.

Such servers ignore normalization-related issues, and there is no

way for them to implement either normalization or representation-

independent lookups. These are best described as behaving as

"UTF-8-unaware servers" for such file systems, since they treat

file component names as uninterpreted strings of bytes and have

no knowledge of the characters represented. See Section 13 for

details.

It is possible for a server to allow component names that are not

valid UTF-8, while still being aware of the structure of UTF-8

strings. Such servers could, in theory, implement either

normalization or representation-independent lookups but apply

those techniques only to valid UTF-8 strings. Such servers are

not common, but it is possible to configure at least one known

server to have this behavior. This behavior SHOULD NOT be used

due to the possibility that a file name using one encoding may,

by coincidence, have the appearance of a UTF-8 file name; the

results of UTF-8 normalization or representation-independent

lookups are unlikely to be correct in all cases, when considered

from the viewpoint of the other encoding. Such difficulties can

be compounded when case-insensitive name handling is in effect.

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

7. The Attribute Fs_charset_cap

This attribute, nominally "RECOMMENDED", appears to have been added

to NFSv4.1 to allow servers, while staying within the constraints of

the stringprep-based specification of internationalization, to allow

uses of UTF-8-unaware naming by clients. As a result, those NFSv4

servers implementing internationalization as NFSv3 had done, could

be considered spec-compliant, as long as a later "SHOULD" was

ignored. However, because use of UTF-8 was tied to existing

stringprep restrictions, implementations of internationalization,

that were aware of Unicode canonical equivalence issues were not

provided for. Although this attribute may have been implemented

despite the problems noted in Section 7.1, the overall scheme was

never implemented and NFSv4.1 implementations dealt with

internationalization in the same way as NFSv4.0 implementations had.

It is generally accepted that attributes designated elsewhere as

"RECOMMENDED" are essentially OPTIONAL with the client having the

responsibility to deal with server non-support of them. While

RFC7530 has gone so far as to explicitly exclude this use from the

general statement that these terms are to be used as defined by

RFC2119, no NFSv4.1 specification has done so, at least through

[RFC8881]. In this particular case, there are a number of

circumstances that makes this OPTIONAL status noteworthy:

The statement "It is expected that servers will support all

attributes they comfortably can and only fail to support

attributes that are difficult to support in their operating

environments", appearing in Section 5.2 of [RFC8881] is

troublesome since it is hard to understand how a server could

find this read-only attribute "difficult to support" regardless

of the operating environment

This was added in minor version one which added a number of

REQUIRED operations and could well have added a REQUIRED

attribute.

The fact that the client is to be prepared for non-support of the

attribute would require specification of a default value to be

assumed by the client, yet none is provided.

The attribute contains two flag bits. As discussed below, in Section

7.1, it is hard two see why two bits are required while the

implications of this issue for future NFSv4.1 specifications will be

discussed in Section 7.2

7.1. The Attribute Fs_charset_cap in Published NFSv4.1 Specifications

We reproduce Section 14.4 of [RFC8881] below, with comments

interspersed trying to make sense of what is there, in order to

¶

¶

*

¶

*

¶

*

¶

¶

arrive at an appropriate replacement, to be presented in Section

7.2. In that connection, we need to understand better a few issues:

The use of two bits while one is clearly adequate, given the

subject matter actually mentioned.

The mention of possible "capabilities" which could not possibly

be realized.

The use of the RFC2119 keyword "SHOULD" in contexts in which this

term is clearly inappropriate.

Issues related to the confusion caused by mention of "UTF-8

characters" and the lack of mention of Unicode will be addressed in

the revision in Section 7.2 but will not be further discussed here.

While it is made clear that two separate bits are to be provided,

their names seem to indicate that they should be complements of one

another. As a way of understanding why two bits were specified, it

is helpful to consider a possible boolean attribute as a potential

replacement. That attribute would clearly govern whether names that

do not conform to the rules of UTF-8 are to be rejected, which was a

"MUST" in [RFC3530]. Although conveying this information is clearly

part of the motivation, stating so explicitly might have been judged

by the authors as unnecessarily provocative, given the role of IESG

in arriving at the internationalization approach specified in

RFC3530.

Because some operating environments and file systems do not

enforce character set encodings,

It is clear that the ability of operating environments to enforce

use of UTF-8 encoding is not an issue, since RFC3530 made this the

responsibility of the server implementation. That mandate was never

followed because implementers chose not to follow it, and not

because they were unable to do so.

The apparently confused statement above is best understood if one

notes that its essential job is to state that the "MUST" in RFC3530

referred to above is not reasonable. However, the authors might well

¶

*

¶

*

¶

*

¶

¶

 const FSCHARSET_CAP4_CONTAINS_NON_UTF8 = 0x1;

 const FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 = 0x2;

 typedef uint32_t fs_charset_cap4;

¶

¶

¶

¶

have felt unable to say so explicitly, in light of the potential

IESG reaction.

NFSv4.1 supports the fs_charset_cap attribute (Section 5.8.2.11)

that indicates to the client a file system's UTF-8 capabilities.

The problem with the mention of (plural) capabilities is that the

only capability mentioned which servers could implement is to accept

strings which are not valid UTF-8. There are other potential

capabilities having to do with the handling of canonicallent file

nsmes, but since they were not mentioned, they will not be discussed

further here.

The attribute is an integer containing a pair of flags. The first

flag is FSCHARSET_CAP4_CONTAINS_NON_UTF8, which, if set to one,

tells the client that the file system contains non-UTF-8

characters,

As stated, this would mean that a server would have to keep track of

a count of non-UTF-8-encoded names within the file system and change

the attribute value as that count varied between zero and non-zero.

Since it is most unlikely that any server would keep track of that

or that any client would find it useful, we will assume that the

capability to store such names is what is most likely intended.

and the server will not convert non-UTF characters to UTF-8 if

the client reads a symbolic link or directory,

There is no way for the server to convert non-UTF names to UTF-8 or

anything else, since it has no knowledge of the name encoding to

begin with. The alternative to treating names as UTF-8-encoded

Unicode strings is to treat them as POSIX does, as uninterpreted

strings of bytes. That makes it impossible to interpret strings that

do not follow the rules of UTF-8 at all, making it impossible to

convert the string to UTF-8.

neither will operations with component names or pathnames in the

arguments convert the strings to UTF-8.

As stated above, there is no way a server could ever do that.

The second flag is FSCHARSET_CAP4_ALLOWS_ONLY_UTF8, which, if set

to one, indicates that the server will accept (and generate) only

UTF-8 characters on the file system.

That is clear and so it poses no problem for a revised treatment,

unlike the other flag.

If FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set to one,

FSCHARSET_CAP4_CONTAINS_NON_UTF8 MUST be set to zero.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

There is no problem with this statement. However, it does, by

implication, raise the issue of what values of

FSCHARSET_CAP4_CONTAINS_NON_UTF8 may be set in the case in which

FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 is set to zero.

FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 SHOULD always be set to one.

According to xref target="RFC2119"/>, "SHOULD" means that "there may

exist valid reasons in particular circumstances to ignore a

particular item, but the full implications must be understood and

carefully weighing a different course". In this context, it is

unclear what these "full implications" might be, given the

introduction above. The clause, "because some operating environments

and file systems do not enforce character set encodings", gives one

no basis for treating this as other than an unproblematic behavioral

variant, calling into question the use of "SHOULD".

Also, the statement in RFC2119 that these terms (i.e. those like

"SHOULD") "only be used where it is actually required for

interoperation or to limit behavior which has the potential for

causing harm" raises the following issues:

The whole purpose of this feature is to enable interoperation and

there is no basis for the implication that one particular flag

value is superior to another in allowing interoperation.

There is no basis for assuming that accepting file names that are

not UTF-8-encoded Unicode has any potential for causing harm.

Despite the statement in RFC2119, that "they [i.e. terms such as

'SHOULD'] must not be used to impose a particular method on

implementors", it is hard to avoid the conclusion that this is in

fact the motivation for the "SHOULD". The authors might not have had

any such intention but it is posible they felt that the IESG might

well have had such an intention and used "SHOULD" for this reason.

7.2. The Attribute Fs_charset_cap in Future NFSv4.1 Specifications

We provide a revised version of Section 14.4 of [RFC8881] below,

taking into account the issues noted in Section 7.1. Given there was

a working group consensus to adopt the confusing language discussed

there, we must now adopt, by consensus, a clearer replacement that

reflects the working group's intentions and is compatible with

existing implementations. Given the passage of time and the changed

context, it might not be possible to determine those intentions. In

any case, we will have to be aware of how this attribute was

implemented and used, particularly with regard to the first flag,

whose meaning remains obscure.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

The following treatment is proposed as a basis for discussion, with

the understanding that it would need to be changed, if it could

raise interoperability issues.

This attribute provides a simple way of determining whether a

particular file system behaves as a UTF-8-only server and rejects

file names which are not valid UTF-8 strings. When this attribute

is supported and the value returned has the

FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 flag set, the error NFS4ERR_INVAL

MUST be returned if any file name argument contains a string

which is not a valid UTF-8 string.

When this attribute is supported and the value returned has the

FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 flag clear, the error

NFS4ERR_INVAL will not be returned based on adherence to the

rules of UTF-8. While such file systems are generally UTF-8-

unaware, this cannot be assumed, since server are allowed (in

some circumstances; it is a "SHOULD NOT") to accept non-UTF-8

names while being aware of the structure of UTF-8-conforming

names, for the purposes of determining canonical equivalence, for

example. See Section 6.

With regard to the flag FSCHARSET_CAP4_CONTAINS_NON_UTF8, it has

proved impossible to determine, from existing treatments of this

attribute, any value that might be helpful here. As a result, we

are forced to assume that this flag is always a complement of

FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 and that any result in which it

is not so is to be ignored, with the appropriate handling being

the same as would apply if the attribute were not supported.

When this attribute is not supported, the client can perform a

LOOKUP using a name not conforming to the rules of UTF-8 and use

the error returned to determine whether non-UTF-8 names are

accepted.

8. String Encoding

Strings that potentially contain characters outside the ASCII range

[RFC20] are generally represented in NFSv4 using the UTF-8 encoding

[RFC3629] of Unicode [UNICODE]. See [RFC3629] for precise encoding

and decoding rules.

¶

 const FSCHARSET_CAP4_CONTAINS_NON_UTF8 = 0x1;

 const FSCHARSET_CAP4_ALLOWS_ONLY_UTF8 = 0x2;

 typedef uint32_t fs_charset_cap4;

¶

¶

¶

¶

¶

¶

Some details of the protocol treatment depend on the type of string:

For strings that are component names, the preferred encoding for

any non-ASCII characters is the UTF-8 representation of Unicode.

In many cases, clients have no knowledge of the encoding being

used, with the encoding done at the user level under the control

of a per-process locale specification. As a result, it may be

impossible for the NFSv4 client to enforce the use of UTF-8. The

use of non-UTF-8 encodings can be problematic, since it may

interfere with access to files stored using other forms of name

encoding. Also, normalization-related processing (see Section 9)

of a string not encoded in UTF-8 could result in inappropriate

name modification or aliasing. In cases in which one has a non-

UTF-8 encoded name that accidentally conforms to UTF-8 rules,

substitution of canonically equivalent strings can change the

non-UTF-8 encoded name drastically.

For similar reasons, where non-UTF-8 encoded names are accepted,

case-related mappings cannot be relied upon. For this reason, the

attribute case_insensitive MUST NOT be returned as TRUE for file

systems which accept non-UTF-8 encoded file names.

The kinds of modification and aliasing mentioned here can lead to

both false negatives and false positives, depending on the

strings in question, which can result in security issues such as

elevation of privilege and denial of service (see [RFC6943] for

further discussion).

For strings based on domain names, non-ASCII characters MUST be

represented using the UTF-8 encoding of Unicode or some encoding

based on that (e.g. xn-labels including Punycoe, and additional

string format restrictions will apply. See Section 12 for

details.

The contents of symbolic links (of type linktext4 in the XDR)

MUST be treated as opaque data by NFSv4 servers. Although UTF-8

encoding is often used, it need not be. In this respect, the

contents of symbolic links are like the contents of regular files

in that their encoding is not within the scope of this

specification.

For other sorts of strings, any non-ASCII characters SHOULD be

represented using the UTF-8 encoding of Unicode.

9. Normalization

The client and server operating environments can potentially differ

in their policies and operational methods with respect to character

normalization (see [UNICODE] for a discussion of normalization

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

forms). This difference may also exist between multile applications

on the same client. This adds to the difficulty of providing a

single normalization policy for the protocol that allows for maximal

interoperability. This issue is similar to the issues of character

case where the server may or may not support case-insensitive file

name matching and may or may not preserve the character case when

storing file names. The protocol does not mandate a particular

behavior but allows for a range of useful behaviors.

The NFSv4 protocol does not mandate the use of a particular

normalization form. A subsequent minor version of the NFSv4 protocol

might specify a particular normalization form, although there would

be difficulties in doing so (see Section 15 for details). In any

case, the server and client can expect that they might receive

unnormalized strings within protocol requests and responses. If the

operating environment requires normalization, then the

implementation will need to normalize the various UTF-8 encoded

strings within the protocol before presenting the information to an

application (at the client) or local file system (at the server).

Server implementations MAY normalize file names to conform to a

particular normalization form before using the resulting string when

looking up or creating a file. Servers MAY also perform

normalization-insensitive string comparisons without modifying the

names to match a particular normalization form. Except in cases in

which component names are excluded from normalization-related

handling because they are not valid UTF-8 strings, a server MUST

make the same choice (as to whether to normalize or not, the target

form of normalization, and whether to do normalization-insensitive

string comparisons) in the same way for all accesses to a particular

file system. Servers SHOULD NOT reject a file name because it does

not conform to a particular normalization form, as this would deny

access to clients that use a different normalization form or clients

acting on behalf of applications that use a different normalization

form.

10. Case-Insensitive Processing of File Names

When the server is to process file names in a case-insensitive way

in a given file system, it may choose to do so in a number of ways.

It can force all characters which have multiple forms to a common

case, whether upper case or lower case. Although this may cause

the file name shown in the directory to be different from that

specified when the file is created, these two names will be

judged as equivalent when a case-insensitive comparison is used.

Such file systems are case-insensitive but not case-preserving.

¶

¶

¶

¶

*

¶

It can preserve all names, presented as valid and not subject to

case-based modification, while treating two names that are

equivalent when a case-insensitive comparison is used as

referring to the same file. Such file systems are both case-

insensitive and case-preserving.

When a server implements case-insensitive file name handling, it is

necessary that clients do so as well. For example, if a client

possessing the cached contents of a directory, notes that the file

"a" does not exist, it cannot immediately act on that presumed non-

existence, without checking for the potential existence of "A" as

well. As a result, clients need to be able to provide case-

insensitive name comparisons, irrespective of whether the server

handling is case-preserving or not.

Because case-insensitive name comparisons are not always as

straightforward as the above example suggests, the client, if it is

to emulate the server's name handling, would need information about

how certain cases are to be dealt with. In cases in which that

information is unavailable, the client needs to avoid making

assumptions about the server's handling, since it will be unaware of

the Unicode version implemented by the server, or many of the

details of specific issues that might need to be addressed

differently by different server file systems in implementing case-

insensitive name handling.

Many of the problematic issues with regard to the case-insensitive

handling of names are discussed in Section 5.18 of the Unicode

Standard [UNICODE-CASEM] which deals with case mapping. While we

need to address all of these issues as well, our approach will not

be exactly the same.

Since the client will be doing case-insensitive comparisons,

issues that apply only to uppercasing or lowercasing do not have

the same significance.

Many clients will have to operate correctly even in the absence

of detailed information about the specifics of server-side case-

mapping or the version of Unicode implemented by the server.

Clients will have to accommodate server behaviors not anticipated

by the Unicode Specification since it might be that neither the

server nor the client would have any relavant locale knowledge

when file names are processed.

Another source of information about case-folding, and indirectly

about case-insensitive comparisons, is the case-folding text file

which is part of the Unicode Standard [UNICODE-CASEF]. This file

contains, for each Unicode character that can be uppercased or

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

lowercased, a single character, or, in some cases a string of

characters of the other case. For characters in capital case, the

lowercase counterpart is given. Each of the mappings is

characterized as of one of four types:

Common case folding, denoted by a status field of "C". These are

used for mapping where a single character can be mapped to a

single character of another case. These are always valid with one

potential exception being the mappings of LATIN CAPITAL LETTER I

to LATIN SMALL LETTER I and vice versa, which might be superseded

by the T-type mappings associated with some Turkic languages.

Full case folding, denoted by a status field of "F". These are

used for mappings in which single character is mapped to a multi-

character string of a different case.

Special case folding, denoted by a status field of "S". These

provide additional single-character-to-single-character which

might be used when there is also an F-type mapping of the same

character. In the case of case folding, this is an alternative to

the corresponding F-type, although, for the purposes of case-

insensitive string comparison, it is possible for both to be in

considered valid at the same time

Special case foldings for Turkic languages, denoted by a status

field of "T". These consist of the invertible case mappings

between LATIN SMALL LETTER I (U+0069) and LATIN CAPITAL LETTER I

WITH DOT ABOVE (U+0130) and between LATIN CAPITAL LETTER I

(U+0049) and LATIN SMALL LETTER DOTLESS I (U+0131). The

relationship between these mappings and the C-type mappings for

LETTER I is discussed below in item EX8.

While the case mapping section does discuss case-insensitive string

comparisons, and describes a procedure for constructing equivalence

classes of Unicode characters, the description does not deal clearly

with the effect of F-type mappings. There are a number of problems

with dealing with F-type mappings for case folding and basing case-

insensitive string comparisons on those mappings, particularly in

situations, such as file systems, in which extensive processing of

strings is unlikely to be practical.

Mappings from single characters to multi-character strings, are,

for case-folding purposes, not invertible. However, case-

insensitive name comparison, by its nature, requires invertible

mappings, in which a multi-character string is mapped to a single

character of a different case. This is not compatible with any

existing simple case-mapping models.

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

Scanning of names for multi-character sequences might well be too

complicated, especially since such sequences might overlap in

complicated ways.

Case foldings which map single characters to multi-character

sequences (see item EX4 below for an important example), would

give rise, because of the invertibility of case mappings when

used to determine case-insensitive string equivalence for very

large sets of strings. For example, a string of eight copies of

the letter S would give rise to an set of 256 equivalent strings

plus over two thousand others when the German SHARP S characters

discussed in item EX4 are included.

Despite these potential difficulties, case mappings involving multi-

character sequences can be reversed when used as a basis for case-

insensitive string comparisons and incorporated into a set of

equivalence classes on name strings, as descibed below.

Case-insensitive servers MAY do either case-mapping to a chosen

case or case-insensitive string comparisons when providing a

case-preserving implementation. In either case, it MAY include F-

type mappings, which map a single character to a multi-character

string. However, only the case in which it is doing case-

insensitive string comparison will it use the inverse of F-type

mappings, in which a multi-character string is mapped to a single

character of a different case

In these cases, the server can choose to use either a C-type

mapping or an F-type mapping, or both, when both exist. Similarly

the server may choose to implement the C-type mappings of LATIN

CAPITAL LETTER I to LATIN SMALL LETTER I and vice versa, the

corresponding T-type mappings or both, although using only the

second of these is not allowed, unless there is a means of

informing the client that it has been chosen.

The client, when informed of the details of the client's handling

of case, has the ability to efficiently implement an appropriate

case-insensitive name comparison compatible with that of the

server. This includes the ability to handle mappings between

single characters and multi-character strings.

Implementation of case-insensitive name comparisons will

typically require a case-insensitive name hash.

10.1. Implementing Case-Insensitive Comparison of File Names

Implementing case-insensitive string comparisons based on

equivalence classes including multi-character strings can be

performed as described below. This algorithm requires that if there

is more than one multi-character string within a given equivalence

*

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

class, they must all be equivalent, with any equivalences derivable

from case-insensitive string equivalence using single-character

equivalence classes.

Although other sources are possible (see items EX2 and EX3 in

Section 10.2), multi-character sequences often appear in case-

insensitive equivalence classes as the result of the canonical

decomposition of one or more precomposed characters as elements of a

case-insensitive equivalence class.

While the algorithm described in this section can deal with certain

case-based equivalences deriving from canonical decomposition, it is

not capable of providing general handling of the combination of

canonical equivalence and case-based equivalence. While this can be

addressed by normalizing strings before doing case-insensitive

comparison, it is more efficient to do a general form-insensitive

and case-insensitive string comparison in a single step as described

in Appendix B

The following tables would be used by the comparison algorithm

presented below.

For each possible character value, the associated equivalence

class for case-insensitive comparison will be identified

For each such equivalence class, the hash value contribution will

be provided. In the case of equivalence class that do not include

multi-character including equivalence classes that only include a

single member, this will be the hash value contribution of one

particular variant (usually lower case) of the character

In the case of equivalence classes that do include multi-

character strings, the hash value contribution needs to

equivalent to the combined contribution of each character within

the multi-character string. In addition, for each such

equivalence class, the length of the multicharacter string will

be provided together with a pointer to an array describing the

multi-character string, most probably presenting each character

as an equivalence class identifier.

Case-insensitive comparison proceeds as follows:

Implementation of case-insensitive name comparisons will

typically require a case-insensitive name hash using the tables

described above. If such a hash value is kept for all cached

names, comparisons of hashes can be used instead of the detailed

comparison set forth below. Using such hash comparisons, a large

set of potentially equivalent names can be excluded based on the

occurrence of hash mismatches, since case-equivalent names would

have the same hash value. value.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

For names with matching hash values, a detailed case-insensitive

comparison will be necessary. This can proceed character-by-

character or byte-by-byte. However, in the byte-by-byte case,

processing in the event of a mismatch must start at the start of

the current character, rather than the byte at which the

difference was detected.

In cases in which there is a mismatch, the associated equivalence

classes will be compared. When these are identical, indicating

the case equivalence of the two characters, the comparison of the

two strings continues at the next character of each string.

When the two equivalence classes are not identical, further

comparisons to determine if a single character within one string

matches (except for case) a multi-character string within the

other. For each of two equivalence classes being compared that

include a multi-character string, the check below must be made to

determine whether the multi-character string at the corresponding

position of the other string being compared, is within the

current equivalence class. If neither of the two equivalence

classes include multi-character strings, the comparison

terminates with a mismatch indication.

For each equivalence class that does include a multi-character

string (there might be one or two), a scan needs to be made to

see of the characters at the current position if the other string

matches (except for case) the multi-character string which is

included in the current equivalence class. If this check

succeeds, for either equivalence class, the comparison of the two

strings continues at the next character of each string. In the

event of failure, the same sort of comparison is done using the

other current equivalence class, if it include multi-character

strings. Once this check fails for all equivalence classes that

include multi-character strings, the comparison terminates with a

mismatch indication.

10.2. Important Examples of Case-insensitive Handling of File Names

In this section, we discuss many of the interesting and/or

troublesome issues that the need for case-insensitive handling gives

rise to in fully internationalized environments. Many of these are

also discussed in [UNICODE-CASEM]. However, our treatment of these

issues, while not inconsistent with that in [UNICODE-CASEM], differs

significantly for a number of reasons:

Our primary focus is on case-insensitive string comparison rather

than with case mapping per se. While such comparison is natural

for the client and allowed for servers, its greater flexibility

makes it important to understand its capabilities in dealing with

*

¶

*

¶

*

¶

*

¶

¶

*

EX1:

EX2:

potentially troublesome issues in providing case-insensitive file

name handling.

Because a case mapping model forces the specification of a single

case mapping result when there are multiple potentially valid

results, there are inevitably cases in which the result chosen is

inappropriate for some users. These are cases in which F-type and

S-type mappings are present and in which C-type and T-type

mappings conflict. Normally, an appropriate choice is selected by

use of the locale, but in a filesystem environment, valid locale

information might not be present. As a result, case-insensitive

string comparison, which does not force such case mapping

choices, will be more desirable.

The examples below present common situations that go beyond the

simple invertible case mappings of Latin characters and the

straightforward adaptation of that model to Greek and Cyrillic. In

EX4 and EX5 we have case-based equivalence classes including multi-

character strings not derived from canonical equivalences while for

EX7 and EX8 all multi-character strings are derived from canonical

equivalences. In addition, EX1, EX2, EX3 and EX6 discuss other

situations in which an equivalence class has more than two elements.

Certain digraph characters such LATIN SMALL LETTER DZ (U+01F3)

have additional case variants to consider such as the

titlecase character LATIN CAPTAL LETTER D WITH SMALL LETTER Z

(U+01F2) in addition to the uppercase LATIN CAPITAL LETTER DZ

(U+01F1). While the titlecased variant would not appear in

names in case-insensitive non-case-preserving file systems,

case-insensitive string comparison has no problem in treating

these three characters as within the same equivalence class.

This equivalence class can be derived from only C-type

mappings. The possibility of mapping these characters to two-

character sequences they represent is not a troublesome issue

since that would be derived from a compatibility equivalence,

rather than a canonical equivalence, and there is no F-type

mapping making it an option.

To deal with the case of the OHM SIGN (U+2126) which is

essentially identical to the GREEK CAPITAL LETTER OMEGA

(U+03A9), one can construct an equivalence class consisting of

OHM SIGN (U+2126), GREEK CAPITAL LETTER OMEGA (U+03A9), and

GREEK SMALL LETTER OMEGA (U+03C9).

This equivalence class can be derived only from C-type

mappings. Both OHM SIGN (U+2126), and GREEK CAPITAL LETTER

OMEGA (U+03A9) lowercase to GREEK LETTER OMEGA (U+03C9), while

¶

*

¶

¶

¶

¶

¶

EX3:

EX4:

EX5:

that character only uppercases to GREEK CAPITAL LETTER OMEGA

(U+03A9).

To deal with the case of the ANGSTROM SIGN (U+212B) which is

essentially identical to LATIN CAPITAL LETTER A WITH RING

ABOVE (U+00C5), one can construct an equivalence class

consisting of ANGSTROM SIGN (U+212B), LATIN CAPITAL LETTER A

WITH RING ABOVE (U+00C5), LATIN SMALL LETTER A WITH RING ABOVE

(U+00E5), together with the two-character sequences involving

LATIN CAPITAL LETTER A (U+0041) or LATIN SMALL LETTER A

(U+0061) followed by COMBINING RING ABOVE (U+030A).

This equivalence class can be derived from C-type mappings

together with the ability to map characters to canonically

equivalent strings. Both ANGSTROM SIGN (U+212B), and LATIN

CAPITAL LETTER A WITH RING ABOVE (U+00C5) lowercase to LATIN

SMALL LETTER A WITH RING ABOVE (U+00E5), while that character

only uppercases to CAPITAL LETTER A WITH RING ABOVE (U+00C5).

In some cases, case mapping of a single character will result

in a multi-character string. For example, the German character

LATIN SMALL LETTER SHARP S (U+00DF) would be uppercased to

"SS", i.e. two copies of LATIN CAPITAL LETTER S (U+0053). On

the other hand, in some situations, it would be uppercased to

the character LATIN CAPITAL LETTER SHARP S (U+1E9E), using an

S-type mapping, referred to as an instance of "Tailored

Casing". Unfortunately, in the context of a file system, there

is unlikely to be available information that provides guidance

about which of these case mappings should be chosen. However,

the use of case-insensitive mappings with larger equivalence

classes often provides handling that is acceptable to a wider

variety of users. In this case, German-speakers get the

mapping they expect while those unfamiliar with these

characters only see them when they access a file whose name

contains such characters.

It appears that if the construction of case-based equivalence

classes were generalized to include multi-character sequences,

then all of LATIN SMALL LETTER SHARP S (U+00DF), LATIN CAPITAL

LETTER SHARP S (U+1E9E), "ss", "sS", "Ss", and "SS" would

belong to the same equivalence class and could be handled by

the general algorithm described in Section 10.1, as well by

code specifically written to deal with this particular issue.

Other ligatures, such as LATIN SMALL LIGATURE FFL (U+FB04),

could be handled similarly by this algorithm, if there were

felt to be a need to do so. However, because the decomposition

of this character into the string consisting of the three

letters LATIN SMALL LETTER F (U+0066), LATIN SMALL LETTER F

¶

¶

¶

¶

¶

EX6:

EX7:

EX8:

(U+0066), LATIN SMALL LETTER L (U+006C), is a compatibility

equivalence, and the F-type mapping of this ligature to the

three constituent is to be treated as optional,

implementations can choose either to treat this character as

having no uppercase equivalent or treat it as part of larger

equivalence class including "ffl", "ffL", "fFl", etc.).

The character COMBINING GREEK YPOGEGRAMMENI (U+0345), also

known as "iota-subscript" requires special handling when

uppercasing and lowercasing. While the description of the

appropriate handling for this character, in the case mapping

section, is focused on multi- character sequences representing

diphthongs, case-insensitive comparisons can be performed

without consideration of multi-character sequences. This can

be done by assigning COMBINING GREEK YPOGEGRAMMENI (U+0345),

GREEK SMALL LETTER IOTA (U+03B9), and GREEK CAPITAL LETTER

IOTA (U+0399) to the same equivalence class, even though the

first of these is a combining character and the others are

not.

In some cases, context-dependent case mapping is required. For

example, GREEK CAPITAL LETTER SIGMA (U+03A3) lowercases to

GREEK SMALL LETTER SIGMA (U+03C3) if it is followed by another

letter and to GREEK SMALL LETTER FINAL SIGMA (U+03C2) if it is

not.

Despite this, case-insensitive comparisons can be implemented,

by considering all of these characters as part of the same

equivalence class, without any context-dependence, and this

equivalence class can be derived using only C-type mappings.

In most languages written using Latin characters, the

uppercase and lowercase varieties of the letter "I" map to one

nother. In a number of Turkic languages, there are two

distinct characters derived from "I" which differ only with

regard to the presence or absence of a dot so that there are

both capital and small i's with each having dotted and dotless

variants. Within such languages, the dotted and dotless I's

represent different vowel sounds and are treated as separate

characters with respect to case mapping. The uppercase of

LATIN SMALL LETTER I (U+0069) is LATIN CAPITAL LETTER I WITH

DOT ABOVE (U+0130), rather than LATIN CAPITAL LETTER I

(U+0049). Similarly the lowercase of LATIN CAPITAL LETTER I

(U+0049) is LATIN SMALL LETTER DOTLESS I (U+0131) rather than

LATIN SMALL LETTER I (U+0069).

When doing case mapping, the server must choose to uppercase

LATIN SMALL LETTER I (U+0069) to either LATIN CAPITAL LETTER I

(U+0049), based on a C-type mapping to LATIN CAPITAL LETTER I

¶

¶

¶

¶

¶

WITH DOT ABOVE (U+0130), based on a T-type mapping. The former

is acceptable to most people but confusing to speakers of the

Turkic languages in question since the case mapping changes

the character to represent a different vowel sound. On the

other hand, the latter mapping seemingly inexplicably results

in a character many users have never seen before. Normally

such choices are dealt with based on a locale but, in a file

system environment, no locale information is likely to be

available.

In the context of case-insensitive string comparison, it is

possible to create a larger equivalence class, including all

of the letters LATIN SMALL LETTER I (U+0069), LATIN CAPITAL

LETTER I (U+0049), LATIN CAPITAL LETTER I WITH DOT ABOVE

(U+0130), LATIN SMALL LETTER DOTLESS I (U+0131) together with

the two-character string consisting of LATIN CAPITAL LETTER I

(U+0049) followed by COMBINING DOT ABOVE (U+0307).

11. Internationalization-related Processing of File Names by Clients

Given the way that internationalization is addressed within the

NFSv4 protocols, clients and applications accessing NFS files can

generally remain unaware of the specific type of

internationalization-related processing implemented by the server.

For example, although a server MAY store all file names according to

the rules appropriate to a particular normalization form, it MUST

NOT reject names solely because they are not encoded using this

normalization form, allowing the clients and applications to avoid

knowledge of normalization choices.

However, as has been pointed out in [I-D.williams-filesystem-18n],

there are situations in which clients implementing local

optimizations use the saved contents of directories fetched from the

server, making it necessary that the client's and the server's

handling of internationalization-related name mapping issues be in

concord. There are two basic ways this issue can be addressed:

Where the protocol has not defined a means whereby the client can

obtain information about the details of internationalized name

handling implemented within the server, the client can avoid

conflict with the server by limiting its use of local

optimizations. While positive name caching can be used without

adverse effects, negative name caching has to limited to avoid

situations in which a given name is not present but an equivalent

one may exist, as far as the server is concerned. This situation,

which applies to all current NFSv4 protocols is discussed in

Section 11.2.

¶

¶

¶

¶

*

¶

The client could be provided complete information about the

server's internationalization-related name handling (typically

implemented within the server-based file system. This sort of

information, which could be implemented in later NFSv4 minor

versions, or in an extension to an existing extensible minor

version, is discussed in Section 11.3.

Note that when case-insensitive handling of file names is

implemented by a server-side filesystem, further complications

can arise. For the most part, these are addressed in Sections

11.2 and 11.3 by treating the particulars of case-handling as

another element of the name handling implemented by the server.

However, some of the specific complexities are addressed

separately in Section 10.

11.1. Server Restrictions to Deal with Lack of Client Knowledge

There are a number of restrictions, not previously specified in

[RFC7530], on server implementation of internationalized file name

handling. These restrictions apply to both case-sensitive and case-

insensitive file systems and are designed to limit the options that

servers have in choosing server-side internationalized file name

handling so as to enable the clients to either duplicate that

handling or to limit it so as to avoid relying on cases in which the

proper handling cannot be determined or duplicated by the client.

The canonical equivalence relation implemented by the server, for

each internationalization-aware filesystem MUST match that

defined by some particular UNICODE version equal to or later than

version 4.0.

The case-equivalence relationship implemented by the server, for

each case-insensitive filesystem MUST include all C-type case

mappings included by the particular UNICODE version whose

canonical equivalence relation is implemented by the server, with

the possible exception of those conflicting with T-type case

mappings. by some particular Unicode version equal to or later

than version 4.0.

In cases in which the server provides no way of determining the

details of the case-equivalence relationship implemented by the

server for a particular file system, that mapping MUST include

all C-type case mappings included by the particular UNICODE

version whose canonical equivalence relation is implemented by

the server, e.g. it MUST map between LATIN SMALL LETTER I

(U+0069)and LATIN CAPITAL LETTER I (U+0049).

*

¶

*

¶

¶

*

¶

*

¶

*

¶

11.2. Client Processing of File Names for Current NFSv4 Protocols

The existing minor versions, NFSv4.0 [RFC7530], NFSv4.1 [RFC5661],

and NFSv4.2 [RFC7862], have very limited facilities allowing a

client to get information about the server's internationalization-

related file name handling. Because these protocols were all defined

when it was assumed that the server's internationalized file name

handling could be specified in great detail, there no provision was

made for attributes defining the server's choices. As a result, the

information available to the client is quite limited:

The client can determine that the server is not performing

internationalized file name processing. It can do this by looking

up a file name using a string which is not valid UTF-8,

concluding that if the LOOKUP is not rejected on that basis, then

the file system is not internationalization-aware, allowing the

client to ignore the potential difficulties which server-based

internationalized file name processing might give rise to.

The client can use the optional per-fs attributes

case_insensitive and case_preserving to how the server deals with

character case for particular file system. When one of these

attributes is not supported by a particular file system, the

client treats the attribute as if it were false.

When a file system is internationalization-unaware, the client can

use both positive and negative name caching, without any issues

arising from the potential for conflict between distinct file names

that would be considered equivalent by the server. In other cases,

the handling is more restricted in the use of negative name caching.

The issue with regard to case-sensitive and case-insensitive file

systems are discussed separately below. In each case, the client has

a range of choices trading off the possibility forgone optimization

opportunities against the difficulty of implementation. In doing so,

it can avoid the negative consequences arising from the fact that

certain details of the server's name handling are not known to it.

In the case of case-sensitive file systems, the uncertainty to be

dealt with concerns the version of Unicode implemented by the

server, given that different versions may have different canonical

equivalence relationships. However, whether the server implements a

particular normalization form or implements form-insensitive file

name matching has no effect on client behavior. In light of the

uncertainty created by the lack of knowledge of the precise Unicode

version used by the server to implement its canonical equivalence

relation, the following possibilities, arranged in order of

increasing value (and difficulty of implementation) need to be

considered by client implementers.

¶

*

¶

*

¶

¶

¶

A1:

A2:

A3:

The client can simply decline to implement optimizations based

on negative name caching on internationalization-aware file

systems.

While this might have a negative effect on performance, it

might be the best option for clients not heavily used to

access internationalization-aware filesystems, or where, due

to a lack of directory delegation support, the client has no

assurance that it will be notified of the invalidation of a

previous assumption that a particular file does not exist.

Relatively simple name filtering can exclude the names for

which negative name caching might cause difficulties. For

example, the client could scan file names for characters whose

presence might pose difficulties and allow negative name

caching only for strings known not to contain such characters.

Because the Unicode version used by the server file system is

not known, this treatment would be limited to strings only

containing characters defined in the earliest version of

Unicode which could be supported, that is, Unicode 4.0.

One simple way for a client to provide such filtering would be

to establish an upper limit (e.g. U+00FF) and

disallow negative name caching for strings containing

characters above that value or characters below that value

that might cause there to be canonically equivalent strings on

the server. A simple mask could be used to allow each

character to be examined allowing composed and

combining characters to be identified together with code

points unassigned in Unicode 4.0.

This approach would allow negative name caching to be

disallowed for strings containing those characters while

allowing it for other strings that do not. A larger limit (and

a corresponding mask) would make sense for clients used to

access many file names containing characters from non-Latin

alphabets.

A client might implement its own internationalized file name

handling paralleling that of the server. Because the Unicode

version used by the server filesystem is unknown, strings for

which it is possible that the canonically equivalent string

might be different depending on the version of Unicode

implemented by the server will have to be identified and

excluded from using negative name caching. This would require

that strings containing code points unassigned in Unicode

version 4.0, and those denoting combining characters that

could be parts of precomposed character added to later

¶

¶

¶

¶

¶

B1:

B2:

versions of Unicode be excluded from negative name caching.

The necessary filtering could apply to all potential code

points although clients might choose to simplify

implementation by excluding strings containing code points

beyond a certain point, e.g. (U+0FFFF).

When a client implements internationalized name handling, it

needs to be able to detect when the apparent absence of a file

within a directory is contradicted by the occurrence of a file

with a distinct, but canonically equivalent, name. In order to

efficiently find such names, when they exist, a client

typically needs to implement a form of name hashing which

always produces the same result for two canonically equivalent

names. This can be done by making the contribution of any

character to the name hash, equal to the contribution of the

corresponding canonical decomposition string.

In the case of case-insensitive file systems, the uncertainty to be

dealt with includes the version of Unicode implemented by the server

as well as the details of the possible case-handling implemented by

the server. In addition to the fact that different Unicode versions

may have different canonical equivalence relationships, the server

may implement different approaches to the handling of issues related

to the handling of dotted and dotless i, in Turkish and Azeri.

However, the question of whether the server's handling is case-

preserving has no effect on client behavior, as is the question of

whether the server implements a particular normalization form or

implements form-insensitive file name matching. In light of the

uncertainty created by the lack of knowledge of the details of the

case-related equivalence relation together with the precise Unicode

version used by the server to implement its canonical equivalence

relation, the following possibilities, arranged in order of

increasing value (and difficulty of implementation) should be

considered.

The client can simply decline to implement optimizations based

on negative name caching on case-insensitive file systems.

While this might have a negative effect on performance where

significant benefits from negative name caching might be

expected, it might be the best option for clients not heavily

used to access case-insensitive filesystems.

Filtering similar to that discussed in item A2 could be

implemented, although a higher limit is likely to be chosen

(e.g. U+07FF) if significant use of non-Latin scripts is

expected. Because of the uncertainty regarding the handling of

case relationship among characters used for the variants of

"I" used by Turkic languages, this filtering would have to

¶

¶

¶

¶

¶

B3:

exclude names containing LATIN CAPITAL LETTER I WITH DOT ABOVE

and LATIN SMALL LETTER DOTLESS I together with precomposed

characters derived from them.

In cases in which such filtering did not exclude the item from

consideration, it would need to search for files with possibly

equivalent names, including those equivalent by canonical

equivalence, case-insensitive equivalence, or a combination of

the two. This will typically require a form of name hashing

which always produces the same hash for equivalent names,

similar to that discussed in item A3 but including case-

insensitive equivalence as well.

A client might implement its own internationalized, case-

insensitive file name handling paralleling that of the server.

Because the case mappings are uncertain and the Unicode

version used by the server filesystem is unknown, strings for

which it is possible that the equivalent string might be

different depending on the version of Unicode implemented by

the server or the choice of case mappings would have to be

identified and excluded from using negative name caching. This

would require that strings containing code points unassigned

in Unicode version 4.0, and those denoting combining

characters that could be parts of precomposed characters added

to later versions of Unicode be excluded from negative name

caching. The necessary filtering could apply to all potential

code points although clients might choose to simplify

implementation by excluding strings containing code points

beyond a certain point (e.g. U+00FFFF).

When a client implements internationalized name handling, it

needs to be able to detect when the apparent absence of a file

within a directory is contradicted by the occurrence of a file

with a distinct, but canonically equivalent name. In order to

efficiently find such names, when they exist, a client

typically needs to implements a form of name hashing which

always produces the same result for two canonically equivalent

names. This can be done by making the contribution of any

character to the name hash, equal to contribution of the

correspond canonical decomposition string.

11.3. Client Processing of File Names for Future NFSv4 Protocols

Because of NFSv4 has an extension framework allowing the addition of

new attributes in later minor version or in extensions to extensible

minor versions. Such new attributes are likely to be OPTIONAL. They

¶

¶

¶

¶

C1:

could include a number of useful per-fs attributes to deal with the

information gaps discussed in Section 11.2:

The Unicode version used to define the canonical equivalence

relation implemented by the server could be provided as an fs-

scope attribute.

For case-insensitive filesystems, details regarding the actual

case mapping used could be provided as an fs-scope attribute.

These details would include the case mapping associated with

LATIN LETTER I (i.e. whether the C-type or T-type case mappings

or both are to be used). Similarly for characters having F-type

case mappings, information needs to be provided about whether the

F-type, mapping, the S-type mapping, or both, are to be used.

There is little prospect of such additional attributes being

REQUIRED. Although the term "RECOMMENDED" has been used to describe

NFSv4 attributes that are not REQUIRED, any such attributes are best

considered OPTIONAL for the server to support with the client

required to deal with the case in which the attribute is not

supported.

When such attributes are defined and implemented, it would be

possible for the client and server to implement compatible

internationalization-related file name handling. However, as a

practical matter, providing such compatibility would be considerably

eased if there existed unencumbered open-source implementations of

the algorithm and tables described in Appendix B. This would allow

clients, servers, and server-based file systems, to easily adopt

compatible approaches to these issues, each calling a common set of

primitives, even though each might have a different execution

environment and might be processing file names for different

purposes.

In the case of a case-sensitive file system, the case-mapping

attribute is not relevant. In dealing with the non-support of the

Unicode version attribute, the client is in the same position as

that of clients described in Section 11.2. In the case in which the

Unicode version is supported, the client would be able to implement

the same version of the canonical equivalence relation implemented

by the server, thus avoiding the need for the sort of overbroad

filtering mentioned in items A2 and A3 within Section 11.2

The case of case-insensitive file systems is more complicated, since

there are two OPTIONAL attributes to deal with:

When neither of these OPTIONAL attributes is supported, the

client is in the same position as that of clients described in

Section 11.2 in dealing with a case-insensitive file system.

¶

*

¶

*

¶

¶

¶

¶

¶

¶

C2:

C3:

C4:

When the Unicode version is available but the details of case

mapping are not, the client handling will be similar to that

specified the options B1 through B3 defined in Section 11.2.

However, in cases B2 and B3, it will be possible to reduce the

scope of the character filtering applied, by enabling names

containing characters defined after Unicode version 4.0 to be

processed, as long as none of the case mapping options for

those characters is at all problematic.

When the details of case mapping are available but Unicode

version is not, the client handling will be similar to that

specified the options B1 through B3 defined in Section 11.2.

However, in cases B2 and B3 However, in cases B2 and B3, it

will be possible to reduce the scope of the character

filtering by enabling names containing characters of uncertain

case mapping to be processed as long as those character were

defined in Unicode version 4.0.

When both of these OPTIONAL attributes are supported, the

client has the ability, at least theoretically, to reproduce

the internationalization-related file name handling

implemented by a server for a case-insensitive file system.

However, when the client is unable to provide such an

implementation, it is free to ignore the attribute and

implement one of the options B1 through B3 defined in Section

11.2.

12. String Types with Processing Defined by Other Internet Areas

There are two types of strings that NFSv4 deals with that are based

on domain names. Processing of such strings is defined by other

standards-track documents, and hence the processing behavior for

such strings should be consistent across all server and client

operating systems and server file systems.

This section differs from other sections of this document in two

respects:

Although the normative statements within this section are derived

from the behavior of existing NFSv4 implementations, they need to

be consistent with existing RFCs regarding domain handling.

Because of the switch from IDNA2003 [RFC3490] [RFC3491] to

IDNA2008 [RFC5890], this section is necessarily different from

the corresponding section (i.e. Section 12.6) of [RFC7530]. The

differences are discussed in Section 12.1.

Because of this shift, there could be compatibility issues to be

expected between implementations obeying Section 12.6 of [RFC7530],

¶

¶

¶

¶

¶

*

¶

*

¶

if any such implementations exist, and those following this

document. Whether such compatibility issues actually exist depends

on the behavior of NFSv4 implementations and how domain names are

actually used in existing implementations. These matters will be

discussed in Section 12.2.

The types of strings referred to above are as follows:

Server names as they appear in the fs_locations and

fs_locations_info attribute. Notes that for most purposes, such

server names will only be sent by the server to the client. The

exception is the use of these attributes in a VERIFY or NVERIFY

operation.

Principal suffixes that are used to denote sets of users and

groups, and are in the form of domain names. These may apprear in

the owner and group attributes and as ace_who values within ACL

attributes. Such values are sent by the client to the server in

performing SETATTR, VERIFY, and NVERIFY operations and returned

to the client in performing GETATTR opererations.

There is likely to be few or no implementations conformng to Section

12.6) of [RFC7530] as a result of how internationalization was

supported previously.

When [RFC3530] was published, its discussion of

internationalization was ignored as unimplementable and

inappropriate. This included the handling of domain names,

although the reasons for ignoring the specifcation may have been

different.

When [RFC7530] was published, implementors saw no reason to

modify the existing domain-handling code which worked adequately

for valid domain names.

These strings can be expressed in two ways:

As the UTF-8 representation of the string represented. This

includes cases in which all of the characters are within the

Ascii range. We refer to such representations as the U-label

form.

As the string "xn--" followed by the text of the string

transformed using the Punycode encoding described in [RFC3492].

We refer to such representations as the xn-label form.

In cases in which such strings are sent by the client to the server:

The server MUST accept such strings in xn-label form.

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

* ¶

When it does so, MAY reject, using the error NFS4ERR_INVAL, any

of the following:

a string for which the characters after "xn--" are not valid

output of the Punycode algorithm [RFC3492].

a string that contains a reserved LDH label which is not an

XN‑label.

The server MAY accept such strings in U-label form and is

REQUIRED to do so only in the case in which the string conists

only of ascii characters.

The server MAY reject, using the error NFS4ERR_INVAL, strings

which are not valid UTF-8 or do not form a valid U-label for

other reasons.

When the server does not make the validity checks mentioned above,

the result will be use of an invalid domain name. Since such domains

do not exist, clients are unlikely to use them and servers will be

unable to access such domains.

Servers MUST NOT modify the string to a canonically equivalent one

(e.g. as part of normalization-related processing). Further, changes

of case SHOULD NOT be done and MUST NOT be done for strings that

contain multi-byte Unicode characters.

In cases in which such strings are sent by the server to the client,

they MAY be presented in either form. In view of this, clients than

anticipate receiving internationalized domain names will find it

advisable to convert such strings to a common form, preferred by the

client's users.

A domain name returned by GETATTR will generally be exactly the same

as that presented by SETATTR. The following exceptions are possible:

There is a change of case when the domain string does not contain

any multi-byte Unicode characters.

The server converts an xn-label string to the corresponding U-

label string or vice versa..

For VERIFY and NVERIFY, additional string processing requirements

apply to verification of the owner and owner_group attributes; see

the section entitled "Interpreting owner and owner_group" for the

document specifying the minor version in question (RFC7530

[RFC7530], RFC5661 [RFC5661])

¶

-

¶

-

¶

*

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

12.1. Effect of IDNA Changes

Overall, the effect of the shift to IDNA2008 is to limit the degree

of understanding of the IDNA-based restrictions on domain names that

were expected of NFSv4 in RFC7530 [RFC7530]. Despite this

specification, the degree to which implementations actually

implemented such restrictions is open to question and will be

discussed in detail in Section 12.2.

In analyzing how various cases are to be dealt with according to

RFC7530, there a number of troubling uncertainties that arise in

trying to interpret the existing specification:

There are a number of cases in which "SHOULD" is used that are

confusing. According to RFC2119 [RFC2119], "SHOULD" means that

"there may exist valid reasons in particular circumstances to

ignore a particular item, but the full implications must be

understood and carefully weighed before choosing a different

course". To fully understand a particular "SHOULD", there needs

to be enough context to determine whether particular reasons for

ignoring the item are in fact valid, and sufficient guidance to

understand the implication of ignoring the item. In the absence

of such information, the relevant fact is that the peer needs to

deal with the item being ignored, making the implications of a

"SHOULD" hard to distinguish from those of "MAY".

While the document states, "the general rules for handling all of

these domain-related strings are similar and independent of the

role of the sender or receiver as client or server", all of the

following text is explicitly about the server's options, choices

and responsibilities, leaving the client case unclear.

In a number of places within the paragraph describing server

approach #1, the word "can" is used as in the text "the server

can use the ToUnicode function", leaving it unclear whether the

server can choose to do anything else and if so what.

The following cases are those where RFC7530 requires use of IDNA

handling and this requirement could, if implementations follow them,

create potential compatibility issues, which need to be understood.

The degree to which RFC3490 [RFC3490] requires that characters

other than U+002E (full stop) be treated as label separators,

including U+3002 (ideographic full stop), U+FF0E (fullwidth full

stop), U+FF61 (halfwidth ideographic full stop).

The degree to which RFC3490 [RFC3490] might require that server

or client needs to validate a putative A-label or U-label or to

rectify it if it is not valid.

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

12.2. Potential Compatibility Issues Related to IDNA Changes

There are a number of factors relating to the handling of domain

names within NFSv4 implementations that are important in

understanding why any compatibility issues might be less troubling

than a comparison of the two IDNA approaches might suggest:

Much of the potentially conflicting IDNA-related behavior

required or recommended for the server by RFC7530 [RFC7530]

appears to be not actually be implemented, limiting the potential

harmful effects of ceasing to mandate it.

Even if such behavior were implemented by servers, no

compatibility issue would arise unless clients actually relied on

the server to implement it. Given that none of this behavior is

made required, the chances of that occurring is quite small.

The range of potential values for user and group attributes sent

by clients are often quite small with implementations commonly

restricting all such values to a single domain string. This is

even though RFCs 7530 [RFC7530] and 5661 [RFC5661] are written

without mention of such restrictions.

Specification of users and groups in the "id@domain" format

within NFSv4 was adopted to enable expansion of the spaces of

users and groups beyond the 32-bit id spaces mandated in NFSv3

[RFC1813] and NFsv2 [RFC1094]. While one obstacle to expansion

was eliminated, most implementations were unable to actually

effect that expansion, principally because the physical file

systems used assume that user and group identifiers fit in 32

bits each and the vnode interfaces used by server implementations

make similar assumptions.

Given these restrictions, the typical implementation pattern is

for servers to accept only a single domain, specified as part of

the server configuration, together with information necessary to

effect the appropriate name-to-id mappings.

For the other uses of domain names in NFSv4, to represent host

names in location attributes, the values are generated by the

server and will normally include only include host names within

DNS-registered domains.

Keeping the above in mind, we can see that interoperability issues,

while they might exist, are unlikely to raise major challenges as

looking to the following specific cases shows.

When an internationalized domain name is used as part of a user

or group, it would need to be configured as such, with the domain

string known to both client and server.

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

¶

*

¶

While it is theoretically possible that a client might work with

an invalid domain string and rely on the server to correct it to

an IDNA-acceptable one, such a scenario has to be considered

extremely unlikely, since it would depend on multiple servers

implementing the same correction, especially since there is no

evidence of such corrections ever having been implemented by

NFSv4 servers.

When an internationalized domain in a location string is meant to

specify a registered domain, similar considerations apply.

While it is theoretically possible that a client might work with

an invalid domain string and rely on the server to correct it to

an appropriate registered one, such a scenario has to be

considered extremely unlikely, since it would depend on multiple

servers implementing the same correction, especially since there

is no evidence of such corrections ever having been implemented

by NFSv4 servers.

When an internationalized domain in a location string is meant to

specify a non-registered domain, any such server-applied

corrections would be useless.

In this situation, any potential interoperability issue would

arise from rejecting the name, which has to be considered as what

should have been done in the first place.

13. Errors Related to UTF-8

Where the client sends an invalid UTF-8 string, the server MAY

return an NFS4ERR_INVAL error. This includes cases in which

inappropriate prefixes are detected and where the count includes

trailing bytes that do not constitute a full Multiple-Octet Coded

Universal Character Set (UCS) character.

Requirements for server handling of component names that are not

valid UTF-8, when a server does not return NFS4ERR_INVAL in response

to receiving them, are described in Section 14.

Where the string supplied by the client is not rejected with

NFS4ERR_INVAL but contains characters that are not supported by the

server as a value for that string (e.g., names containing slashes,

or characters that do not fit into 16 bits when converted from UTF-8

to a Unicode codepoint), the server should return an NFS4ERR_BADCHAR

error.

Where a UTF-8 string is used as a file name, and the file system,

while supporting all of the characters within the name, does not

allow that particular name to be used, the server should return the

error NFS4ERR_BADNAME. This includes such situations as file system

¶

*

¶

¶

*

¶

¶

¶

¶

¶

prohibitions of "." and ".." as file names for certain operations,

and similar constraints.

14. Servers That Accept File Component Names That Are Not Valid UTF-8

Strings

As stated previously, servers MAY accept, on all or on some subset

of the physical file systems exported, component names that are not

valid UTF-8 strings. A typical pattern is for a server to use UTF‑8-

unaware physical file systems that treat component names as

uninterpreted strings of bytes, rather than having any awareness of

the character set being used.

Such servers SHOULD NOT change the stored representation of

component names from those received on the wire and SHOULD use an

octet-by-octet comparison of component name strings to determine

equivalence (as opposed to any broader notion of string comparison).

This is because the server has no knowledge of the character

encoding being used.

Nonetheless, when such a server uses a broader notion of string

equivalence than what is recommended in the preceding paragraph, the

following considerations apply:

Outside of 7-bit ASCII, string processing that changes string

contents is usually specific to a character set and hence is

generally unsafe when the character set is unknown. This

processing could change the file name in an unexpected fashion,

rendering the file inaccessible to the application or client that

created or renamed the file and to others expecting the original

file name. Hence, such processing is best not performed, because

doing so is likely to result in incorrect string modification or

aliasing.

Unicode normalization is particularly dangerous, as such

processing assumes that the string is UTF-8. When that assumption

is false because a different character set was used to create the

file name, normalization may corrupt the file name with respect

to that character set, rendering the file inaccessible to the

application that created it and others expecting the original

file name. Hence, Unicode normalization SHOULD NOT be performed,

because it may cause incorrect string modification or aliasing.

When the above recommendations are not followed, the resulting

string modification and aliasing can lead to both false negatives

and false positives, depending on the strings in question, which can

result in security issues such as elevation of privilege and denial

of service (see [RFC6943] for further discussion).

¶

¶

¶

¶

*

¶

*

¶

¶

15. Future Minor Versions and Extensions

As stated above, all current NFSv4 minor versions allow use of non-

UTF-8 encodings, allow servers a choice of whether to be aware of

normalization issues or not, and allows servers a number of choices

about how to address normalization issues. This range of choices

reflects the need to accommodate existing file systems and user

expectations about character handling which in turn reflect the

assumptions of the POSIX model of handling file names.

While it is theoretically possible for a subsequent minor version to

change these aspects of the protocol (see [RFC8178]), this section

will explain why any such change is highly unlikely, making it

expected that these aspects of NFSv4 internationalization handling

will be retained indefinitely. As a result, any new minor version

specification document that made such a change would have to be

marked as updating or obsoleting this document

No such change could be done as an extension to an existing minor

version or in a new minor version consisting only of OPTIONAL

features. Such a change could only be done in a new minor version,

which, like minor version one, was prepared to be incompatible to

some degree with the previous minor versions. While it appears

unlikely that such minor versions will be adopted, the possibility

cannot be excluded, so we need to explore the difficulties of

changing the aspects of internationalization handling mentioned

above.

Establishing UTF-8 as the sole means of encoding for

internationalized characters, would make inaccessible existing

files stored with other encodings. Further, unless there were a

corresponding change in the UNIX file interface model, it would

cause the set of valid names for local and remote files to

diverge.

Imposing a particular normalization form, in the sense of

refusing to create to allow access to files whose UTF-8-encoded

names are not of the selected normalization form would give rise

to similar difficulties.

Defining a preferred normalization form to be returned as the

names of all internationalized files, would result in

applications having to deal with sudden unexplained changes of

file names for existing files.

None of the above appears likely since there does not seem to be any

corresponding benefits to justify the difficulties that they would

create.

¶

¶

¶

*

¶

*

¶

*

¶

¶

There would also be difficulties in otherwise reducing the set of

three acceptable normalization handling options, without reducing it

to a single option by imposing a specific normalization form.

Eliminating the possibility of a single possible normalization

form, would pose similar difficulties to imposing the other one,

even if representation-independent comparisons were also allowed.

In either case, a specific normalization form would be

disfavored, with no corresponding benefit.

Allowing only representation-independent lookups would not impose

difficulties for clients, but there are reasons to doubt it could

be universally implemented, since such name comparisons would

have to be done within the file system itself.

Such a change could only be made once file system support for

representation-independent file lookups would become commonly

available. As long as the POSIX file naming model continues its

sway, that would be unlikely to happen.

One possible internationalization-related extension that the working

could adopt would be definition of OPTIONAL per-fs attributes

defining the internationalization-related handling for that file

system. That would allow clients to be aware of server choices in

this area and could be adopted without disrupting existing clients

and servers.

16. IANA Considerations

The current document does not require any actions by IANA.

17. Security Considerations

Unicode in the form of UTF-8 is generally used for file component

names (i.e., both directory and file components). However, other

character sets may also be allowed for these names. For the owner

and owner_group attributes and other sorts strings whose form is

affected by standards outside NFSv4 (see Section 12.) are always

encoded as UTF-8. String processing (e.g., Unicode normalization)

raises security concerns for string comparison. See Sections 12 and

9 as well as the respective Sections 5.9 of RFC7530 [RFC7530] and

RFC5661 [RFC5661] for further discussion. See [RFC6943] for related

identifier comparison security considerations. File component names

are identifiers with respect to the identifier comparison discussion

in [RFC6943] because they are used to identify the objects to which

ACLs are applied (See the respective Sections 6 of RFC7530 [RFC7530]

and RFC5661 [RFC5661]).

¶

*

¶

¶

*

¶

¶

¶

¶

¶

[RFC20]

[RFC2119]

[RFC3492]

[RFC3629]

[RFC5890]

[RFC7530]

[RFC7862]

[RFC8174]

[RFC8178]

[RFC8881]

18. References

18.1. Normative References

Cerf, V., "ASCII format for network interchange", STD 80,

RFC 20, October 1969, <http://www.rfc-editor.org/info/

rfc20>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Costello, A., "Punycode: A Bootstring encoding of Unicode

for Internationalized Domain Names in Applications

(IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,

<https://www.rfc-editor.org/info/rfc3492>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Klensin, J., "Internationalized Domain Names for

Applications (IDNA): Definitions and Document Framework",

RFC 5890, DOI 10.17487/RFC5890, August 2010, <https://

www.rfc-editor.org/info/rfc5890>.

Haynes, T., Ed. and D. Noveck, Ed., "Network File System

(NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/

RFC7530, March 2015, <https://www.rfc-editor.org/info/

rfc7530>.

Haynes, T., "Network File System (NFS) Version 4 Minor

Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862,

November 2016, <https://www.rfc-editor.org/info/rfc7862>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Noveck, D., "Rules for NFSv4 Extensions and Minor

Versions", RFC 8178, DOI 10.17487/RFC8178, July 2017,

<https://www.rfc-editor.org/info/rfc8178>.

Noveck, D., Ed. and C. Lever, "Network File System (NFS)

Version 4 Minor Version 1 Protocol", RFC 8881, DOI

http://www.rfc-editor.org/info/rfc20
http://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3492
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc7530
https://www.rfc-editor.org/info/rfc7530
https://www.rfc-editor.org/info/rfc7862
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8178

[UNICODE]

[UNICODE-CASEF]

[UNICODE-CASEM]

[I-D.ietf-nfsv4-rfc3010bis]

[I-D.williams-filesystem-18n]

[RFC1094]

[RFC1813]

[RFC3010]

10.17487/RFC8881, August 2020, <https://www.rfc-

editor.org/info/rfc8881>.

The Unicode Consortium, "The Unicode Standard, Version

7.0.0", (Mountain View, CA: The Unicode Consortium, 2014

ISBN 978-1-936213-09-2), June 2014, <http://

www.unicode.org/versions/Unicode7.0.0/>.

The Unicode Consortium, "CaseFolding-13.0.0.txt",

(Mountain View, CA: The Unicode Consortium, 2014 ISBN

978-1-936213-26-9), March 2020, <https://www.unicode.org/

Public/13.0.0/ucd/CaseFolding.txt>.

The Unicode Consortium, "The Unicode Standard,

Version 13.0.0, Section 5.18 Case Mappings", (Mountain

View, CA: The Unicode Consortium, 2014 ISBN

978-1-936213-26-9), March 2020, <http://www.unicode.org/

versions/Unicode13.0.0/ch05.pdf#G21180>.

18.2. Informative References

Beame, C., Thurlow, R., Callaghan, B., Robinson, D.,

Noveck, D., Eisler, M., and S. Shepler, "Network File

System (NFS) version 4 Protocol", Work in Progress,

Internet-Draft, draft-ietf-nfsv4-rfc3010bis-05, 7

November 2002, <https://www.ietf.org/archive/id/draft-

ietf-nfsv4-rfc3010bis-05.txt>.

Williams, N., "Internationalization Considerations for

Filesystems and Filesystem Protocols", Work in Progress,

Internet-Draft, draft-williams-filesystem-18n-00, 6 July

2020, <https://www.ietf.org/archive/id/draft-williams-

filesystem-18n-00.txt>.

Nowicki, B., "NFS: Network File System Protocol

specification", RFC 1094, DOI 10.17487/RFC1094, March

1989, <https://www.rfc-editor.org/info/rfc1094>.

Callaghan, B., Pawlowski, B., and P. Staubach, "NFS

Version 3 Protocol Specification", RFC 1813, DOI

10.17487/RFC1813, June 1995, <https://www.rfc-editor.org/

info/rfc1813>.

Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,

Beame, C., Eisler, M., and D. Noveck, "NFS version 4

Protocol", RFC 3010, DOI 10.17487/RFC3010, December 2000,

<https://www.rfc-editor.org/info/rfc3010>.

https://www.rfc-editor.org/info/rfc8881
https://www.rfc-editor.org/info/rfc8881
http://www.unicode.org/versions/Unicode7.0.0/
http://www.unicode.org/versions/Unicode7.0.0/
https://www.unicode.org/Public/13.0.0/ucd/CaseFolding.txt
https://www.unicode.org/Public/13.0.0/ucd/CaseFolding.txt
http://www.unicode.org/versions/Unicode13.0.0/ch05.pdf#G21180
http://www.unicode.org/versions/Unicode13.0.0/ch05.pdf#G21180
https://www.ietf.org/archive/id/draft-ietf-nfsv4-rfc3010bis-05.txt
https://www.ietf.org/archive/id/draft-ietf-nfsv4-rfc3010bis-05.txt
https://www.ietf.org/archive/id/draft-williams-filesystem-18n-00.txt
https://www.ietf.org/archive/id/draft-williams-filesystem-18n-00.txt
https://www.rfc-editor.org/info/rfc1094
https://www.rfc-editor.org/info/rfc1813
https://www.rfc-editor.org/info/rfc1813
https://www.rfc-editor.org/info/rfc3010

[RFC3454]

[RFC3490]

[RFC3491]

[RFC3530]

[RFC5661]

[RFC6365]

[RFC6943]

Hoffman, P. and M. Blanchet, "Preparation of

Internationalized Strings ("stringprep")", RFC 3454, DOI

10.17487/RFC3454, December 2002, <https://www.rfc-

editor.org/info/rfc3454>.

Faltstrom, P., Hoffman, P., and A. Costello,

"Internationalizing Domain Names in Applications (IDNA)",

RFC 3490, DOI 10.17487/RFC3490, March 2003, <https://

www.rfc-editor.org/info/rfc3490>.

Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep

Profile for Internationalized Domain Names (IDN)", RFC

3491, DOI 10.17487/RFC3491, March 2003, <https://www.rfc-

editor.org/info/rfc3491>.

Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,

Beame, C., Eisler, M., and D. Noveck, "Network File

System (NFS) version 4 Protocol", RFC 3530, DOI 10.17487/

RFC3530, April 2003, <https://www.rfc-editor.org/info/

rfc3530>.

Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,

"Network File System (NFS) Version 4 Minor Version 1

Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,

<https://www.rfc-editor.org/info/rfc5661>.

Hoffman, P. and J. Klensin, "Terminology Used in

Internationalization in the IETF", BCP 166, RFC 6365, DOI

10.17487/RFC6365, September 2011, <https://www.rfc-

editor.org/info/rfc6365>.

Thaler, D., Ed., "Issues in Identifier Comparison for

Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May

2013, <https://www.rfc-editor.org/info/rfc6943>.

Appendix A. History

This section describes the history of internationalization within

NFSv4. Despite the fact that NFSv4.0 and subsequent minor versions

have differed in many ways, the actual implementations of

internationalization have remained the same and internationalized

names have been handled without regard to the minor version being

used. This is the reason the document is able to treat

internationalization for all NFSv4 minor versions together.

During the period from the publication of RFC3010 [RFC3010] until

now, two different perspectives with regard to internationalization

¶

https://www.rfc-editor.org/info/rfc3454
https://www.rfc-editor.org/info/rfc3454
https://www.rfc-editor.org/info/rfc3490
https://www.rfc-editor.org/info/rfc3490
https://www.rfc-editor.org/info/rfc3491
https://www.rfc-editor.org/info/rfc3491
https://www.rfc-editor.org/info/rfc3530
https://www.rfc-editor.org/info/rfc3530
https://www.rfc-editor.org/info/rfc5661
https://www.rfc-editor.org/info/rfc6365
https://www.rfc-editor.org/info/rfc6365
https://www.rfc-editor.org/info/rfc6943

have been held and represented, to varying degrees, in

specifications for NFSv4 minor versions.

The perspective held by NFSv4 implementers treated most aspects

of internationalization as basically outside the scope of what

NFSv4 client and server implementers could deal with. This was

because the POSIX interface treated file names as uninterpreted

strings of bytes, because the file systems used by NFSv4 servers

treated file names similarly, and because those file systems

contained files with internationalized names using a number of

different encoding methods, chosen by the users of the POSIX

interface. From this perspective, wider support for

internationalized names and general use of universal encodings

was a matter for users and applications and not for protocol

implementers or designers.

Within the IETF in general and in the IESG, there was a feeling

that new protocols, such as NFSv4, could not avoid dealing with

internationalization issues, making it difficult to treat these

matters, as the implementers' perspective would have it, as

essentially out of scope.

As specifications were developed, approved, and at times rewritten,

this fundamental difference of approach was never fully resolved,

although, with the publication of RFC7530 [RFC7530], a satisfactory

modus vivendi may have been arrived at.

Although many specifications were published dealing with NFSv4

internationalization, all minor versions used the same

implementation approach, even when the current specification for

that minor version specified an entirely different approach. As a

result, we need to treat the history of NFSv4 internationalization

below as an integrated whole, rather than treating individual minor

versions separately.

The approach to internationalization specified in RFC3010

[RFC3010] sidestepped the conflict of approaches cited above by

discussing the reasons that UTF-8 encoding was desirable while

leaving file names as uninterpreted strings of bytes. The issue

of string normalization was avoided by saying "The NFS version 4

protocol does not mandate the use of a particular normalization

form at this time."

Despite this approach's inconsistency with general IETF

expectations regarding internationalization, RFC3010 was

published as a Proposed Standard. NFSv4.0 implementation related

to internationalization of file names followed the same paradigm

used by NFSv3, assuring interoperability with files created using

¶

*

¶

*

¶

¶

¶

*

¶

that protocol, as well as with those created using local means of

file creation.

When it became necessary, because of issues with byte-range

locking, to create an rfc3010bis, no change to the previously

approved approach seemed indicated and the drafts submitted up

until [I-D.ietf-nfsv4-rfc3010bis] closely followed RFC3010 as

regards internationalization. The IESG then decided that a

different approach to internationalization was required, to be

based on stringprep [RFC3454] and rfc3010bis was accordingly

revised, replacing all of the Internationalization section,

before being published as RFC3530 [RFC3530].

These changes required the rejection of file names that were not

valid UTF-8, file names that included code points not, at the

time of publication, assigned a Unicode character (e.g. capital

eszett) or that were not allowed by stringprep (e.g. Zero-width

joiner and non-joiner characters). Because these restrictions

would have caused the set of valid file names to be different on

NFS-mounted and local file systems there was no chance of them

ever being implemented.

Because these specification changes were made without working

group involvement, most implementers were unaware of them while

those who were aware of the changes ignored them and continued to

develop implementations based on the internationalization

approach specified in RFC3010.

When NFsv4.1 was being developed, it seemed that no changes in

internationalization would be required. Many people were unaware

of the stringprep-based requirements which made the NFSv4.0

internationalization specified in RFC3530 unimplementable. As a

result, the internationalization specified in RFC5661 [RFC5661]

was based on that in RFC3530 [RFC3530], although the addition of

the attribute fs_charset_cap, discussed below, provided

additional flexibility.

The attribute fs_charset_cap, discussed below in Section 7

provides flags allowing the server to indicate that it accepts

and processes non-UTF-8 file names. Rejecting them was a "MUST"

in RFC3530 and became a "SHOULD" in RFC5661, although there is no

evidence that any of these designations ever affected server

behavior.

As a result of this treatment of internationalization, even

though NFSv4.1 was a separate protocol and could have had a

different approach to internationalization, for a considerable

time, the internationalization specification for both protocols

was based on stringprep (in RFC3530 and RFC5661) while the actual

¶

*

¶

¶

¶

*

¶

¶

implementations of the two minor versions both followed the

approach specified in RFC3010, despite its obsoleted status.

When work started on rfc3530bis it was clear that issues related

to internationalization had to be addressed. When the

implications of the stringprep references in RFC3530 were

discussed with implementers it became clear that mandating that

NFSv4.0 file names conform to stringprep was not appropriate.

While some working group members articulated the view that,

because of the need to maintain compatibility with the POSIX

interface and existing file systems, internationalization for

NFSv4 could not be successfully addressed by the IETF, the

rfc3530bis draft submitted to the IESG did not explicitly embrace

the implementers' perspective set forth above.

The draft submitted to the IESG and RFC7530 [RFC7530] as

published provided an explanation (see Section 5) as to why

restrictions on character encodings were not viable. It allowed

non-UTF-8 encodings to be used for internationalized file names

while defining UTF-8 as the preferred encoding and allowing

servers to reject non-UTF-8 string as invalid. Other stringprep-

based string restrictions were eliminated. With regard to

normalization, it continued to defer the matter, leaving open the

possibility that one might be chosen later.

This approach is compatible, in implementation terms, with that

specified in RFC3010 [RFC3010], allowing it to be used compatibly

with existing implementations for all existing minor versions.

This is despite the fact that RFC5661 [RFC5661] specifies an

entirely different approach.

As a result of discussions leading up to the publishing of

RFC7530, it was discovered that some local file systems used with

NFSv4 were configured to be both normalization-aware and

normalization-preserving, mapping all canonically equivalent file

names to the same file while preserving the form actually used to

create the file, of whatever form, normalized or not. This

behavior, which is legal according to RFC3010, which says little

about name mapping is probably illegal according to stringprep.

Nevertheless, it was expressly pointed out in RFC7530 as a valid

choice to deal with normalization issues, since it allows

normalization-aware processing without the difficulties that

arise in imposing a particular normalization form, as described

in Section 9.

In its discussion of internationalized domain names, RFC7530

[RFC7530] adopted an approach compatible with IDNA2003, rather

than attempting to derive the specification from the behavior of

existing implementations.

¶

*

¶

¶

¶

¶

¶

When IDNA2003 was replaced by IDNA2008, the internationalization

specified by [RFC7530] was not changed. Also, it appears unlikely

that implementations were changed to reflect that shift.

NFSv4.2 made no changes to internationalization. As a result,

RFC7862 [RFC7862] which made no mention of internationalization,

implicitly aligned internationalization in NFSv4.2 with that in

NFSv4.1, as specified by RFC5661 [RFC5661].

As a result of this implicit alignment, there is no need for this

document to specifically address NFSv4.2 or be marked as updating

RFC7862. It is sufficient that it updates RFC5661, which

specifies the internationalization for NFSv4.1, inherited by

NFSv4.2.

Later, as work on the predecessors of this document was underway,

[I-D.williams-filesystem-18n] was submitted, making it necessary

that some gaps the discussion of internationalization in

[RFC7530] be filled in. These gaps primarily concerned the need

of NFSv4 clients to match the handling of the corresponding

server when using cached file name data locally, or to avoid

making invalid assumptions about that handling, when information

on the details of such handling was not available.

The above history, can, for the purposes of the rest of this

document be summarized in the following statements:

The actual treatment of internationalization within NFSv4 has not

been affected by the particular minor version used, despite the

fact that the specifications for the minor versions have often

differed in their treatment of internationalization.

With regard to file names, implementations have followed the

internationalization approach specified in RFC3010, which is

compatible with the treatment in RFC7530.

With regard to internationalized domain names, RFC7530 [RFC7530]

specified an approach compatible with IDNA at the time of

publication. However, no detailed analysis was done to determine

whether NFSv4 implementations actually followed that approach and

it appears that many implementations used approaches that were

much simpler.

Because [RFC7530] did not specifically address the special issues

that clients would face, relying on the assumption that each file

is accessible only by its name. As this assumption is no longer

true when internationalized name handling is in effect, the

appropriate handling is discusssed below. Section 11.2 explains

the options for handling in the case in which the client has very

limited information about the details about the server's

*

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

*

¶

*

internationalization-related handling of file names while Section

11.3 discusses how a client might use more complete information

provided by new attributes.

In order to deal with all NFSv4 minor versions, this document

follows the internationalization approach defined in RFC7530, with

some changes discussed in Section 4 and applies that approach to all

NFSv4 minor versions.

Appendix B. Form-insensitive String Comparisons

This section deal with two varieties of form-insensitive string

comparison:

Providing a comparison function which is form-insensitive only.

For any string, whether normalized or not, this function will

determine it to be equivalent to all canonically equivalent

strings, including but not limited, to the normalized forms NFC

and NFD

Providing a comparison function which is both form-insensitive

and case-insensitive. This function will determine strings that

only differ in case to be equal but will also be form-

insensitive, as described above.

The non-normative guidance provided in this Appendix is intended to

be helpful in dealing with two distinct implementation areas:

Implementation of server-side file systems intended to be

accessed using NFSv4 protocols. While it is often the case that

such filesystems are developed by separate organizations from

those concerned with NFSv4 server development, the

internationalization- related requirements specified in this

document must be adhered to for successful inter-operation,

making this implementation guidance apropos despite any potential

organizational barriers.

Implementation of NFSv4 clients that need to provide matching

internationalization-related handling for reason discussed in

Section 11.

There are three basic reasons that two strings being compared might

be canonically equivalent even though not identical. For each such

reason, the implementation will be similar in the cases in which

form-insensitive comparison (only) is being done and in which the

comparison is both case-insensitive and form- insensitive.

Two strings may differ only because each has a different one of

two code points that are essentially the same. Three code points

assigned to represent units, are essentially equivalent to the

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

*

character denoting those units. For example, the OHM SIGN

(U+2126) is essentially identical to the GREEK CAPITAL LETTER

OMEGA (U+03A9) as MICRO SIGN (U+00B5) is to GREEK SMALL LETTER MU

(U+03BC) and ANGSTROM SIGN (U+212B) is to LATIN CAPITAL LETTER A

WITH RING ABOVE (U+00C5).

As discussed in items EX2 and EX3 in Section 10.2, it is possible

to adjust for this situation using tables designed to resolve

case-insensitive equivalence, essentially treating the unit

symbols as an additional case variant, essentially ignoring the

fact that the graphic representation is the same. As a result,

those doing string comparisons that are both form-insensitive and

case-insensitive do not need to address this issue as part of

form-insensitivity, since it would be dealt with by existing

case-insensitive comparison logic.

Where there is no case-insensitive comparison logic, this

function needs to be performed using similar tables whose primary

function is to provide the decomposition of precomposed

characters, as described in Appendix B.2.

Two strings may differ in that one has the decomposed form

consisting of a base character and an associated combining

character while the other has a precomposed character equivalent.

Although, as discussed in items EX3 in Section 10.2, it is

possible to use tables designed to resolve case-insensitive

equivalence by providing as possible case-insensitively

equivalent string, multi-character string providing the

decomposition of precomposed characters, special logic to do so

is only necessary when the decomposition is not a canonical one,

i.e. it is a compatibility equivalence.

In general, the table used to do comparisons, whether case-

sensitive or not, need to provide information about the canonical

decomposition of precomposed characters. See Appendix B.2 for

details.

Two strings may differ in that the strings consist of combining

characters that have the same effect differ as to the order in

which the characters appear.

There is no way this function could be performed within code

primarily devoted to case-insensitive equivalence. However, this

function could be added to implementations, providing both sorts

of equivalence once it is determined that the base characters are

case-equivalent while there is a difference of combining

characters in to be resolved. (See Appendix B.5 for a discussion

of how sets of combining characters can be compared).

¶

¶

¶

*

¶

¶

¶

*

¶

¶

B.1. Name Hashes

We discussed in Section 10.1 the construction of a case-insensitive

file name hash. While such a hash could also be form-insensitive if

the hash contribution of every pre-composed character matched the

combined contribution of the characters that it decomposes into.

However, there is no obvious way that sort of hash could respect the

canonical equivalence of multiple combining characters modifying the

same base character, when those combining characters appear in

different orders. Addressing that issue would require a

significantly different sort of hash, in which combining characters

are treated differently from others, so that the re-ordering of a

string of combining characters applying to the same base character

will not affect the hash.

In the hash discussed in Section 10.1, there is no guarantee that

the hash for multiple combining characters presented in different

orders will be the same. This is because typically such hashes

implement some transformation on the existing hash, together with

adding the new character to the hash being accumulated. Such methods

of hash construction will arrive at different values if the ordering

of combining characters changes.

In order to create a hash with the necessary characteristics, one

can construct a separate sub-hash for composite character,

consisting of one non-combining character (may be pre-composed)

together with the set (possibly null) of combining characters

immediately following it. Each such composed character, whether

precomposed or not, will have its own sub-hash, which will be the

same regardless of the order of the combining characters.

If the hash is to include case-insensitivity, special handling is

needed to deal with issues arising from the handling of COMBINING

GREEK YPOGEGRAMMENI (U+0345). That combining character, as discussed

in item EX6 of Section 10.2 is uppercased to the non-combining

character GREEK CAPITAL LETTER IOTA (U+0399) which is in turn

lowercased to the non-combining character GREEK SMALL LETTER IOTA

(U+03B9). As a result, when computing a case-insensitive hash, when

a base character is IOTA (of either case) and the previous base

character is ALPHA, ETA, or OMEGA (of the same case as the IOTA),

that IOTA is treated, for the purpose of defining the composite

characters for which to generate sub-hashes as if it were a

combining character. As a result, in this case a string of

containing two composite characters will be treated as were a single

composite character since the iota will be treated as if it were a

combining character. This string will have its own sub-hash, which

will be the same regardless of the order of combining characters.

¶

¶

¶

¶

¶

The same outline will be followed for generating hashes which are to

be form-insensitive (only) and for those which are to be both form-

insensitive and case-insensitive. The initial value, representing

the base character, will differ based on the type of hash, as

discussed below.

In the case-sensitive case, the initial value of the sub-hash

will reflect the value of the base character with the only

possible need to map to a different value deriving from the

existence of OHM SIGN (U+2126), ANGSTROM SIGN (U+212B), and MICRO

SIGN (U+00B5) as characters distinct from the letters that

represent these code points. This could be done with a mapping

table but most implementations would probably choose to implement

special-purpose code to do this.

In the case-insensitive case, the initial value of the sub-hash

will reflect the case-based equivalence class to which the

character (the lower-case equivalent is generally suitable). In

this context a table-based mapping is required and this mapping

can shift OHM SIGN, ANGSTROM SIGN, and MICRO SIGN to the case-

based equivalence class for the corresponding character.

Regardless of the type of hash to be produced, values based on the

following combining characters need to reflected in the sub-hash. In

order to make the sub-hash invariant to changes in the order of

combining characters, values based on the particular combining

character are combined with the hash being computed using a

commutative associative operation, such as addition.

To reduce false-positives it is desirable to make the hash

relatively wide (i.e. 32-64 bits) with the value based on base

character in the upper portion of the word with the values for the

combining characters appearing in a wide range of bit positions in

the rest of the word to limit the degree that multiple distinct sets

of combining characters have value that are the same. Although the

details will be affected by processor cache structure and the

distribution of names processed, a table of values will be used but

typical implementations will be different in the two cases we are

dealing as described in Appendix B.2.

As each sub-hash is computed, it is combined into a name-wide hash.

There is no need for this computation to be order-independent and it

will probably include a circular shift of the hash computed so far

to be added to the contribution of the sub-hash for the new base or

composed character.

As described in Appendix B.3 the appropriate full name hash will

have the major role in excluding potential matches efficiently.

However, in some small number of cases, there will be a hash match

¶

*

¶

*

¶

¶

¶

¶

in which the names to be compared are not equivalent, requiring more

involved processing. It is assumed below that a given name will be

searching for potential cached matches within the directory so that

for that name, on will be able retain information used to construct

the full name hash (e.g. individual sub-hashes plus the bounds of

each composite character. These will be compared against cached

entries where only the full (e.g. 64-bit) name hash and the name

itself will be available for comparison.

B.2. Character Tables

The per-character tables used in these algorithms have a number of

type of entries for different types of characters. In some cases,

information for a given character type will be essentially the same

whether the comparison is to be form-insensitive or case-

insensitive. In others, there will be differences. Also, there may

be entry types that only exist for particular types of comparisons.

In any case, some bits within the table entry will be devoted to

representing the type of character and entry:

For combining characters, the entry will provide information

about the character's contribution to the composite character

sub-hash in which it appears.

For case-insensitive comparisons, there need to be special

entries for characters, which, while not themselves combining

characters, are the case-insensitive equivalents of combining

characters. An example of this situation is provided in item EX6

within Section 10.2.

For pre-composed characters, the entry needs to provide the

initial hash value which is to be the basis for the sub-hash for

the name substring including contributions for the base character

together with contribution of included combining characters. In

addition, such entries will provide, separately, information

about the character's canonical decomposition.

For case-insensitive comparisons, there needs to be, for base

characters, entries assigning each base character to the case-

based equivalence class to which it belongs, although such

entries can be avoided if the equivalence class matches the

character (usually caseless and lowercase characters.

Also, for case-insensitive comparisons, there will need to be

special entries for characters which multi-character string as

case-insensitive equivalent of the base character. Examples of

this situation are provided in items EX4 and EX5 within Section

10.2. Such entries will need to have a hash-contribution that

¶

¶

*

¶

*

¶

*

¶

*

¶

*

reflects the hash that would be computed for the multi-character

string.

For form-insensitive comparisons, there will be special entries

to provide special handling for those cases in which there are

two canonically equivalent single characters. Such entries do not

exist for case-insensitive comparison since this situation can be

handled by a non-standard use of case mapping for base characters

by placing these two characters in the same case-based

equivalence

In the common case in which a two-stage mapping will be used, there

will be common groups of characters in which no table entry will be

required, allowing a default entry type to be used for some

character groups with entry contents easily calculable from the code

point.

In the case form-insensitive comparison, this consists of all

base characters, with the hash contribution of the character

derivable by a pre-specified transformation of the code point

value.

In the case case-insensitive comparison, this consists of all

base character which are either caseless or equivalence class is

the same as the code point, typically lowercase characters. As in

the form-insensitive case, the hash contribution of the character

is derivable by a pre-specified transformation of the code point

value, which matches, in this case, the id assigned to the case-

based equivalence class.

B.3. Outline of comparison

We are assuming that comparisons will be based on the hash values

computed as described in Appendix B.1, whether the comparison is to

be form-insensitive or both case-insensitive and form-insensitive.

To facilitate this comparison, the name hash will be stored with the

names to be compared. As a result, when there is a need to

investigate a new name and whether there are existing matches, it

will be possible to search for matches with existing names cached

for that directory, using a hash for the new name which is computed

and compared to all the existing names, with the result that the

detailed comparisons described in Appendices B.4 and B.5 have to be

done relatively rarely, since non-matching names together with

matching hashes are likely to be atypical.

Given the above, it is a reasonable assumption, which we will take

note of in the sections below, that for one of the names to be

compared, we will have access to data generated in the process of

computing the name hash while for the other names, such data would

¶

*

¶

¶

*

¶

*

¶

¶

¶

have to be generated anew, when necessary. When that data includes,

as we expect it will, the offset and length of the string regions

covered by each sub-hash, direct byte-by-byte comparisons between

corresponding regions of the two strings can exclude the possibility

of difference without invoking any detailed logic to deal with the

possibility of canonical equivalence or case-based equivalence in

the absence of identical name segment.

In the case in which the byte-by-byte comparisons fail, further

analysis is necessary:

First, the associated base characters are compared, as is

discussed in Appendix B.4. When doing form-insensitive comparison

this is straightforward. However, when case-insensitive

comparison is to be done, there is the possibility that the sub-

hash boundaries of the two comparands are different, requiring

that a common point in both comparands be found to resume

comparison after a successful match. For either form of

comparison, if a mismatch is found at this point then the

comparison fails, while, if there is match, there must be a

comparison of any following combining characters, as described

below, before moving on to the region covered by the appropriate

sub-string covered by the appropriate next sub-hash for each

comparand.

If there is no mismatch as to the base characters, the set of

associated combining characters (might be null) must be compared,

as is discussed in Appendix B.5. If a mismatch is found at this

point then the comparison fails. This may be because the sets of

combining characters are different, because there are multiple

copies of the same combining character in one of the string, or

because the difference in combining character is not one that

maintains canonical equivalence (due to combining classes).

When both comparisons show a match, the comparison resumes at the

next substring, using a byte-by-byte comparison initially. If the

comparison cannot be resumed because one of the strings is

exhausted, the comparison terminate, succeeding only if both

strings are exhausted while failing if only one of the strings is

exhausted.

B.4. Comparing Base Characters

In general, the task of comparing based characters is simple, using

a table lookup using the numeric value of the initial character in

the substring. When doing form-insensitive comparison this is the

base character associated with the initial (possibly pre-composed)

character, while for case-insensitive comparison it is the case-

based equivalence class associated with that character.

¶

¶

*

¶

*

¶

*

¶

¶

When doing case-insensitive comparison, issues may arise that result

when there is a multi-character string that as the case- insensitive

equivalent of a single base character, as discussed in items EX4 and

EX5 within Section 10.2. These are best dealt with using the

approach outlined in Section 10.1. When it is noted that the current

base character (for either comparand) is a character whose

associated equivalence class contains one or more multi-character

strings, then these comparisons, normally requiring that each base

character be mapped to the same case-based equivalence class by

modified to allow equivalences allowed by these multi-character

sequences.

In such cases, there may need to be comparisons involving the multi-

character string, in addition to the normal comparisons using the

base characters' equivalence class. As an illustration, we will

consider possible comparison results that involve characters string

within the equivalence class mentioned in item EX4 within Section

10.2.

When the base character for both comparands are either LATIN

SMALL LETTER SHARP S (U+00DF) or LATIN CAPITAL LETTER SHARP S

(U+1E9E), then a match is recognized.

When the base character for one comparand is either LATIN SMALL

LETTER SHARP S (U+00DF) or LATIN CAPITAL LETTER SHARP S (U+1E9E),

while the other is not, each character in the that other

comparand is case-insensitively compared to the corresponding

character of the string "ss" with a match being signaled when all

such subsequent characters match, except for possibly being of a

different case. Because that comparison will involve multiple

base characters, the overall comparison point for that comparand

will have to be adjusted to reflect character already processed

as part of the comparison.

When the base character for neither comparands is either LATIN

SMALL LETTER SHARP S (U+00DF) or LATIN CAPITAL LETTER SHARP S

(U+1E9E), then matching proceeds normally. As a result, the only

cases in which character strings within the equivalence class

being discussed will result is where both comparands have one of

the strings "ss", "sS", "Ss", or "SS" at the current comparison

point.

B.5. Comparing Combining Characters

In order to effect the necessary comparison, one needs to assemble,

for each comparand, the set of combining characters within the

current substring. The means used might be different for different

comparands since there might be useful information retained from the

¶

¶

*

¶

*

¶

*

¶

generation of the associated string hash for one of the comparands.

In any case, there are two potential sources for these characters:

Those deriving from the canonical decomposition of a pre-composed

character, treated as a null set of if the base character is not

a precomposed one.

Those combining characters that immediate following the base

character, which will be a null set if the immediately following

character is not a combining character. Note that it is possible,

when doing case-insensitive comparison to treat certain

character, not normally combining characters, as if they are.

Such situations can arise, when, as described in item EX6 within

Section 10.2, such non-combining character are the uppercase or

lowercase equivalents of combining characters.

Although, the two sets of character can be checked to see if they

are identical, this is a sufficient but not a necessary condition

for equivalence since some permutations of a set of combining

characters are considered canonically equivalent. To summarize the

appropriate equivalence rules:

Combining characters of different combining classes may be freely

reordered.

If combining characters of the same combining class are

reordered, then result is not canonically equivalent

The rules above do not directly apply to the case, discussed above,

in which some non-combining characters are the case-based

equivalents of combining characters such as COMBINING GREEK

YPOGEGRAMMENI (U+0345). Nevertheless, because of this equivalence,

those implementing case-insensitive comparisons do have to deal with

this potential equivalence when considering whether two strings

containing combining characters or their case-based equivalents

match. As a result when comparing strings of combining characters,

we need to implement the following modified rules.

When one comparand has a true combining character and the other

comparand has an identical one, they may differ in location as

long as there is no permutation of combining characters of the

same combining class.

When one comparand has a true combining character and the other

has a case-insensitive equivalent which is not a combining

character, that character must appear last in its string while

the combining may character appear in its string in any position

except the last. In this case, there are no restrictions based on

combining classes.

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

When both comparands contain a non-combining character case-

insensitively equivalent to a combining character, these

character must appear last in their respective strings.

Although it is possible to divide combining characters based on

their combining classes, sort each of the list and compare, that

approach will not be discussed here. Even though the use of sorts

might allow use of an overall N log N algorithm, the number of

combining characters is likely to be too low for this to be a

practical benefit. Instead, we present below an order N-squared

algorithm based on searches.

In this algorithm, one string, chosen arbitrarily id designated the

"source string" and successive character from it, are searched for

in the other, designated the "target string". Associated with the

target string is a mask to allow characters search for a found to be

marked so that they will not be found a second time. In the

treatment below, when a character is "searched for" only characters

not yet in the mask are examined and the character sought has its

associated mask bit set when it is found.

Each character in the source string is processed in turn with the

actual processing depending on particular character being processed,

with the following three possibilities to be dealt with.

For the typical case (i.e. a combining character with no case-

insensitive equivalents), the character is searched for in the

target string with the compare failing if it is not found.

If it is found, then the region of the target string between

the point corresponding to the current position in the source

string and the character found is examined to check for

characters of the same combining class. If any are found, the

overall comparison fails.

For the case of a combining character with a case- insensitive

equivalents, the character is searched for as described in the

first paragraph of item 1. However, the compare does not fail

if it is not found. Instead, a case-insensitive equivalent

character is searched for at the final position of the string

and the compare fails if that is not found.

For the case of a non-combining character that has a combining

character as a case-insensitive equivalents, the overall

comparison fail if the character is not in the final position

within the source string or has already been successfully

searched for. Otherwise, the corresponding combining character

is searched for in the target as described in in the first

*

¶

¶

¶

¶

1.

¶

¶

2.

¶

3.

paragraph of item 1. The overall compare fails if it is not

found.

Once all characters in the source string has been processed, the

mask associated is examined to see if there are combining character

that were not found in the matching process described above.

Normally, if there are such characters, the overall comparison

fails. However, if the last character of the target was not matched

and if it is a non-combining character that is case-insensitively

equivalent to a combining character, then comparison succeeds and

the remaining character needs to be matched with the next substring

in the source.

Acknowledgements

This document is based, in large part, on Section 12 of [RFC7530]

and all the people who contributed to that work, have helped make

this document possible, including David Black, Peter Staubach, Nico

Williams, Mike Eisler, Trond Myklebust, James Lentini, Mike Kupfer

and Peter Saint-Andre.

The author wishes to thank Tom Haynes for his timely suggestion to

pursue the task of dealing with internationalization on an NFSv4-

wide basis.

The author wishes to thank Nico WIlliams for his insights regarding

the need for clients implementing file access protocols to be aware

of the details of the server's internationalization-related name

processing, particularly when case-insensitive file systems are

being accessed.

Author's Address

David Noveck

NetApp

1601 Trapelo Road

Waltham, MA 02451

United States of America

Phone: +1 781 572 8038

Email: davenoveck@gmail.com

¶

¶

¶

¶

¶

tel:+1%20781%20572%208038
mailto:davenoveck@gmail.com

	Internationalization for the NFSv4 Protocols
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	2.1. Requirements Language Definition
	2.2. Requirements Language Derivation

	3. Internationalization and Minor Versioning
	4. Changes Relative to RFC7530
	5. Limitations on Internationalization-Related Processing in the NFSv4 Context
	6. Summary of Server Behavior Types
	7. The Attribute Fs_charset_cap
	7.1. The Attribute Fs_charset_cap in Published NFSv4.1 Specifications
	7.2. The Attribute Fs_charset_cap in Future NFSv4.1 Specifications

	8. String Encoding
	9. Normalization
	10. Case-Insensitive Processing of File Names
	10.1. Implementing Case-Insensitive Comparison of File Names
	10.2. Important Examples of Case-insensitive Handling of File Names

	11. Internationalization-related Processing of File Names by Clients
	11.1. Server Restrictions to Deal with Lack of Client Knowledge
	11.2. Client Processing of File Names for Current NFSv4 Protocols
	11.3. Client Processing of File Names for Future NFSv4 Protocols

	12. String Types with Processing Defined by Other Internet Areas
	12.1. Effect of IDNA Changes
	12.2. Potential Compatibility Issues Related to IDNA Changes

	13. Errors Related to UTF-8
	14. Servers That Accept File Component Names That Are Not Valid UTF-8 Strings
	15. Future Minor Versions and Extensions
	16. IANA Considerations
	17. Security Considerations
	18. References
	18.1. Normative References
	18.2. Informative References

	Appendix A. History
	Appendix B. Form-insensitive String Comparisons
	B.1. Name Hashes
	B.2. Character Tables
	B.3. Outline of comparison
	B.4. Comparing Base Characters
	B.5. Comparing Combining Characters

	Acknowledgements
	Author's Address

