Internet Engineering Task T0C

M. Eisler, Ed.

Force

Internet-Draft NetApp
Intended status: September 17,
Informational 2010

Expires: March 21, 2011

Requirements for NFSv4.2
draft-ietf-nfsv4-minorversion-2-requirements-00

Abstract
This document proposes requirements for NFSv4.2.
Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on March 21, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

Introduction

1.1. Requirements Language

Efficiency and Utilization Requirements
2.1. Capacity

2.2. Network Bandwidth and Processing
Flash Memory Requirements

Compliance

Incremental Improvements

IANA Considerations

Security Considerations
Acknowledgements

References

9.1. Normative References

9.2. Informative References

8§ Author's Address

=

A

[[

1. Introduction TOC

NFSv4.1 [I-D.ietf-nfsv4-minorversionl] (Shepler, S., Eisler, M., and D.
Noveck, “NFS Version 4 Minor Version 1,” December 2008.) is an approved
specification. The NFSv4 [RFC3530] (Shepler, S., Callaghan, B.,
Robinson, D., Thurlow, R., Beame, C., Eisler, M., and D. Noveck,
“Network File System (NFS) version 4 Protocol,” April 2003.) community
has indicated a desire to continue innovating NFS, and specifically via
a new minor version of NFSv4, namely NFSv4.2. The desire for future
innovation is primarily driven by two trends in the storage industry:

*High efficiency and utilization of resources such as, capacity,
network bandwidth, and processors.

*Solid state flash storage which promises faster throughput and
lower latency than magnetic disk drives and lower cost than
dynamic random access memory.

Secondarily, innovation is being driver by the trend to stronger
compliance with information management. In addition, as might be
expected with a complex protocol like NFSv4.1, implementation
experience has shown that minor changes to the protocol would be useful
to improve the end user experience.

This document proposes requirements along these four themes, and
attempts to strike a balance between stating the problem and proposing
solutions. With respect to the latter, some thinking among the NFS
community has taken place, and a future revision of this document will
reference embodiments of such thinking.

1.1. Requirements Language TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY'", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

2. Efficiency and Utilization Requirements TOC

2.1. Capacity TOC

Despite the capacity of magnetic disk continuing to increase at
exponential rates, the storage industry is under pressure to make the
storage of data increasingly efficient, so that more data can be stored
within the same physical space. The driver for this counter-intuitive
demand is that disk access times are not improving anywhere near as
quickly as capacities. The industry has responded to this development
by increasing data density via limiting the number of times a unique
pattern of data is stored in a storage device. For example some storage
devices support de-duplication. When storing two files, a storage
device might compare them for shared patterns of data, and store the
pattern just once, and setting reference counts on the blocks of the
unique pattern to two. With de-duplication the number of times a
storage device has to read a particular pattern would be reduced to
just once, thus improving average access time.

For a file access protocol such as NFS, there are several implied
requirements for addressing this capacity efficiency trend:

*The "space_used" attribute of NFSv4 does not report meaningful
information. Removing a file with a "space_used" value of X bytes
does not mean that the file system will see an increase of X
available bytes. Providing more meaningful information is a
requirement.

*Because it 1is probable, especially for applications such as
hypervisors, the NFSv4 client is accessing multiple files with
shared blocks of data, it is in the interest of the client and
server for the client to know which blocks are share so that they

are are not read multiple times, and not cached multiple times.
Providing a block map of shared blocks is a requirement. For an
example of how NFSv4 could deal with this, see
[I-D.eisler-nfsv4-pnfs-dedupe] (Eisler, M., “Storage De-
Duplication Awareness in NFS,” October 2008.).

*If an NFSv4 client is aware of which patterns exist on which
files, when it wants to write pattern X to file B to offset J,
and it knows that X also exists in offset I of file A, then if it
can advise the server of its intent, the server can arrange for
pattern X to appear in file A being a zero copy. Even if the
server does not support de-duplication, it can at least perform a
local copy that saves network bandwidth and processor overhead on
the client and server.

*File holes are patterns of zeros that in some file systems do are
unallocated blocks. In a sense, holes are the ultimate de-
duplicated pattern. While proposals to extend NFS to support hole
punching have been around since the 1980s, until recently there
have not been NFS clients that could make use of hole punching.
The Information Technology (IT) trend toward virtualizing
operating environments via hypervisors has resulted in a need for
hypervisors to translate a (virtual) disk command to free a block
into an NFS request to free that block. On the read side, if a
file contains holes, then again, as the ultimate in de-
duplication, it would be better for the client to be told the
region it wants to read has a hole, instead of of returning long
arrays of zero bytes. Even if a server does not support holes on
write or read, avoiding the transmission of zeroes will save
network bandwidth and reduce processor overhead.

2.2. Network Bandwidth and Processing TOC

The computational capabilities of processors continues to grow at an
exponential rate. However, as noted previously, because disk access
times are not showing a commensurate exponential decrease, disk
performance is not tracking processor performance. In addition, while
network bandwidth is exponentially increasing, unlike disk capacities
and processor bandwidth, the improvement is not seen on a 1-2 year
cycle, but happens on something closer to a 10 year cycle. The lag
between disk and network performance compared to processor performance
means that there is often a discontinuity between the processing
capabilities of NFS clients and the speed at which they can extract
data from an NFS server. For some use cases, much of the data that is
read by one client from an NFS server also needs to be read by other
clients. Re-reading this data is will result in a waste of the network

bandwidth and processing of the NFS server. This same observation has
driven the creation of peer-to-peer content distribution protocols,
where data is directly read from peers rather than servers. It is
apparent that a similar technique could be used to offload primary
storage, such as that proposed in [I-D.myklebust-nfsv4-pnfs-backend]
(Myklebust, T., “Network File System (NFS) version 4 pNFS back end
protocol extensions,” July 2009.)

The pNFS protocol distributes the I/0 to a set of files across a
cluster of data servers. Arguably, its primary value is in balancing
load across storage devices, especially when it can leverage a back end
file system or storage cluster with automatic load balancing
capabilities. In NFSv4.1, no consideration was given to metadata.
Metadata is critical to several workloads, to the point that, as
defined in NFSv4.1, pNFS will not not offer much value in those cases.
The load balancing capabilities of pNFS need to be brought to metadata.
An example of how to do so is in [I-D.eisler-nfsv4-pnfs-metastripe]
(Eisler, M., “Metadata Striping for pNFS,” October 2008.).

From an end user perspective, the operations performed on a file
include creating, reading, writing, deleting, and copying. NFSv4 has
operations for all but the last. While file copy has been proposed for
NFS in the past, it was always rejected because of the lack of
Application Programming Interfaces (APIs) within existing operating
environments to send a copy operation. The IT trend toward
virtualization via hypervisors has changed the situation, where the
emerging use case is to copy a virtual disk. The use of a copy
operation will save network bandwidth on the client and server, and
where the server supports it, intra-server file copy has the potential
to avoid all physical data copy. For an example, see
[I-D.lentini-nfsv4-server-side-copy] (Lentini, J., Eisler, M.,
Kenchammana, D., Madan, A., and R. Iyer, “NFS Server-side Copy,”

July 2010.).

3. Flash Memory Requirements TOC

Flash memory is rapidly filling the wide gap between expensive but fast
Dynamic Random Access Memory (DRAM) and inexpensive but cheap magnetic
disk. The cost per bit of flash is between DRAM and disk. The access
time pet bit of flash is between DRAM and disk. This has resulted in
the File access Operations Per Second (FOPS) per unit of cost of flash
exceeding DRAM and disk. Flash can be easily added as another storage
medium to NFS servers, and this does not require a change to the NFS
protocol. However, the value of flash's superior FOPS is best realized
when flash is closest to the application, i.e. on the NFS client. One
approach would be to forgo the use of network storage and de-evolve
back to Direct Attached Storage (DAS). However, this would require that
data protection value that exists in modern storage devices be brought

into DAS, and this is not always convenient or cost effective. A less
traumatic way to leverage the full FOPS of flash would be for NFSv4
clients to leverage flash for caching of data.

Today NFSv4 supports whole file delegations for enabling caching. Such
a granularity is useful for applications like user home directories
where there is little file sharing. However, NFS is used for many more
workloads, which include file sharing. In these workloads, files are
shared, whereas individual blocks might not be. This drives a
requirement for sub-file caching. A derivative of
[I-D.eisler-nfsv4-pnfs-dedupe] (Eisler, M., “Storage De-Duplication
Awareness in NFS,” October 2008.) could provide sub-file caching, and
could be integrated with [I-D.myklebust-nfsv4-pnfs-backend] (Myklebust,
T., “Network File System (NFS) version 4 pNFS back end protocol
extensions,” July 2009.) to provide off-NFS-server sub-file caching.

4. Compliance TOC

New regulations for the IT industry limit who can view what data. NFSv4
has Access Control Lists (ACLs), but the ACL can be changed by the
nominal file owner. In practice, the end user that owns the file
(essentially, has the right to delete the file or give permissions to
other users), is often not the legal owner of the file. The legal owner
of the file wants to control not just who can access (both read and
modify) the file, but who they can pass the content of the file to. The
legal owner of the file also wants to control which software can
manipulate the files of the legal owner (for example the legal owner
might want to only allow software that has been certified).

In the past, the IT industry has addressed these requirements with
notion of security labeling. Labels are attached to devices, files,
users, applications, network connections, etc. When the labels of two
objects match, data can be transferred from one to another. For example
a label called "Secret" on a file results in only users with a
compatible security clearance (e.g. "Secret" or higher) being allowed
to view the file, despite what the ACL says.

In environments where labeling is mandated, this often means that a
file access protocol like NFSv4 is not permitted, despite the fact that
NFSv4 meets many of the other security and non-security requirements of
such environments. Thus, it is necessary NFSv4 support labeling and
highly desired that label enforcement and application be supported by
both the NFSv4 client and server.

To attach a label on a file requires that it be created atomically with
the file, which means that a new RECOMMENDED attribute for a security
label is needed such as that proposed in [I-D.quigley-nfsv4-sec-label]
(Quigley, D. and J. Morris, “MAC Security Label Support for NFSv4,”
February 2010.).

5. Incremental Improvements TOC

Implementation experience with NFSv4.1 and related protocols, such as
SMB2, has shown a number of areas where the protocol can be improved.

*Hints for the type of file access, such as sequential read. While
traditionally NFS servers have been able to detect read-a-head
patterns, with the introduction of pNFS, this will be harder.
Since NFS clients can detect patterns of access, they can advise
servers. In addition, the UNIX/Linux madvise() API is an example
of where applications can provide direct advice to the NFS
server.

*Head of line blocking. Consider a client that wants to send a
three operations: a file creation, a read for one megabyte, and a
write for one megabyte. Each of these might be sent on a separate
slot. The client determines that it is not desirable for the read
operation to wait for the write operation to be sent, so it sends
the create. However, it does not want to serialize the read and
write behind the create, so the read gets sent, followed by the
write. On the reply side, the server does not know that client
wants the create satisfied first, so read and write operations
are first processed. By the time the create is performed on the
server, the response to the read is still filling the reply side.
While NFSv4.1 could solve this problem by associating two
connections with the session, and using one connection for
create, and the other for read or write, multiple connections
come at a cost. The requirement is to solve this head of line
blocking problem. Tagging a request as one that should go to the
head of the line for request and response processing is one
possible way to address it.

*pNFS connectivity/access indication. If a pNFS client is given a
layout that directs it to a storage device it cannot access due
to connectivity of access control issues, it has no way in
NFSv4.1 to indicate the problem to the metadata server. See a
proposal to address this in
[I-D.faibish-nfsv4-pnfs-access-permissions-check] (Faibish, S.,
Black, D., Eisler, M., and J. Glasgow, “pNFS Access Permissions
Check,” July 2010.).

*RPCSEC_GSS sequence window size on backchannel. The NFSv4.1
specification does not have a way to for the client to tell the
server what window size to use on the backchannel. The
specification says that the window size will be the same as what
the server uses. Potentially, a server could use a very large
window size that the client does not want.

*Trunking discovery. The NFSv4.1 specification is long on how a
client verifies if trunking is available between two connections,
but short on how a client can discover destination addresses that
can be trunked. It would be useful if there was a method (such as
an operation) to get a list of destinations that can be session
or client ID trunked, as well as a notification when the set of
destinations changes.

6. IANA Considerations TOC
None.
7. Security Considerations TOC
None.
8. Acknowledgements TOC

Thanks to Dave Noveck and David Quigley for reviewing this document and
providing valuable feedback.

9. References TOC

9.1. Normative References
TOC
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).

9.2. Informative References
TOC
[I-D.eisler-nfsv4-
pnfs-dedupe]

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml

[I-D.eisler-nfsv4-
pnfs-metastripe]

[I-D.faibish-nfsv4-
pnfs-access-
permissions-check]
[I-D.ietf-nfsv4-

minorversioni]

[I-D.lentini-nfsv4-
server-side-copy]

[I-D.myklebust-
nfsv4-pnfs-backend]

[I-D.quigley-nfsv4-
sec-label]

[RFC3530]

Author's Address

Eisler, M., “Storage De-Duplication Awareness
in NFS,” draft-eisler-nfsv4-pnfs-dedupe-00
(work in progress), October 2008 (TXT).
Eisler, M., “Metadata Striping for pNFS,”
draft-eisler-nfsv4-pnfs-metastripe-01 (work in
progress), October 2008 (TXT).

Faibish, S., Black, D., Eisler, M., and J.
Glasgow, “pNFES Access Permissions Check,”
draft-faibish-nfsv4-pnfs-access-permissions-
check-03 (work in progress), July 2010 (TXT).
Shepler, S., Eisler, M., and D. Noveck, “NES
Version 4 Minor Version 1,” draft-ietf-nfsv4-
minorversionl-29 (work in progress),

December 2008 (TXT).

Lentini, J., Eisler, M., Kenchammana, D.,
Madan, A., and R. Iyer, “NFES Server-side
Copy,” draft-lentini-nfsv4-server-side-copy-05
(work in progress), July 2010 (TXT).
Myklebust, T., “Network File System (NFS)
version 4 pNFS back end protocol extensions,”
draft-myklebust-nfsv4-pnfs-backend-00 (work in
progress), July 2009 (TXT).

Quigley, D. and J. Morris, “MAC Security Label
Support for NESv4,” draft-quigley-nfsv4-sec-
label-01 (work in progress), February 2010
(TXT).

Shepler, S., Callaghan, B., Robinson, D.,
Thurlow, R., Beame, C., Eisler, M., and D.
Noveck, “Network File System (NFS) version 4
Protocol,” RFC 3530, April 2003 (TXT).

_T0C
Michael Eisler (editor)
NetApp
5765 Chase Point Circle
Colorado Springs, CO 80919
us

Phone: +1 719 599 9026
Email: mike@eisler.com

http://www.ietf.org/internet-drafts/draft-eisler-nfsv4-pnfs-dedupe-00.txt
http://www.ietf.org/internet-drafts/draft-eisler-nfsv4-pnfs-dedupe-00.txt
http://www.ietf.org/internet-drafts/draft-eisler-nfsv4-pnfs-dedupe-00.txt
http://www.ietf.org/internet-drafts/draft-eisler-nfsv4-pnfs-metastripe-01.txt
http://www.ietf.org/internet-drafts/draft-eisler-nfsv4-pnfs-metastripe-01.txt
http://www.ietf.org/internet-drafts/draft-faibish-nfsv4-pnfs-access-permissions-check-03.txt
http://www.ietf.org/internet-drafts/draft-faibish-nfsv4-pnfs-access-permissions-check-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-minorversion1-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-minorversion1-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-minorversion1-29.txt
http://www.ietf.org/internet-drafts/draft-lentini-nfsv4-server-side-copy-05.txt
http://www.ietf.org/internet-drafts/draft-lentini-nfsv4-server-side-copy-05.txt
http://www.ietf.org/internet-drafts/draft-lentini-nfsv4-server-side-copy-05.txt
http://www.ietf.org/internet-drafts/draft-myklebust-nfsv4-pnfs-backend-00.txt
http://www.ietf.org/internet-drafts/draft-myklebust-nfsv4-pnfs-backend-00.txt
http://www.ietf.org/internet-drafts/draft-myklebust-nfsv4-pnfs-backend-00.txt
http://www.ietf.org/internet-drafts/draft-quigley-nfsv4-sec-label-01.txt
http://www.ietf.org/internet-drafts/draft-quigley-nfsv4-sec-label-01.txt
http://www.ietf.org/internet-drafts/draft-quigley-nfsv4-sec-label-01.txt
http://tools.ietf.org/html/rfc3530
http://tools.ietf.org/html/rfc3530
http://www.rfc-editor.org/rfc/rfc3530.txt
mailto:mike@eisler.com

	Requirements for NFSv4.2draft-ietf-nfsv4-minorversion-2-requirements-00
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	2. Efficiency and Utilization Requirements
	2.1. Capacity
	2.2. Network Bandwidth and Processing
	3. Flash Memory Requirements
	4. Compliance
	5. Incremental Improvements
	6. IANA Considerations
	7. Security Considerations
	8. Acknowledgements
	9. References
	9.1. Normative References
	9.2. Informative References
	Author's Address

