
NFSv4 D. Noveck, Ed.
Internet-Draft NetApp
Updates: 5661 (if approved) C. Lever
Intended status: Standards Track ORACLE
Expires: December 11, 2018 June 9, 2018

NFSv4.1 Update for Multi-Server Namespace
draft-ietf-nfsv4-mv1-msns-update-01

Abstract

 This document presents necessary clarifications and corrections
 concerning features related to the use of location-related attributes
 in NFSv4.1. These include migration, which transfers responsibility
 for a file system from one server to another, and facilities to
 support trunking by allowing discovery of the set of network
 addresses to use to access a file system. This document updates

RFC5661.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 11, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Noveck & Lever Expires December 11, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft nfsv4.1-msns-update June 2018

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Requirements Language . 4
3. Preliminaries . 4
3.1. Terminology . 4
3.2. Summary of Issues . 6
3.3. Relationship of this Document to RFC5661 8

4. Changes to Section 11 of RFC5661 9
4.1. Multi-Server Namespace (as updated) 10
4.2. Location-related Terminology (to be added) 10
4.3. Location Attributes (as updated) 12
4.4. Re-organization of Sections 11.4 and 11.5 of RFC5661 . . 13
4.5. Uses of Location Information (as updated) 13

 4.5.1. Combining Multiple Uses in a Single Attribute (to be
 added) . 14

4.5.2. Location Attributes and Trunking (to be added) . . . 15
 4.5.3. Location Attributes and Connection Type Selection (to
 be added) . 15

4.5.4. File System Replication (as updated) 16
4.5.5. File System Migration (as updated) 16
4.5.6. Referrals (as updated) 17
4.5.7. Changes in a Location Attribute (to be added) 19

5. Re-organization of Section 11.7 of RFC5661 20
6. Overview of File Access Transitions (to be added) 20
7. Effecting Network Endpoint Transitions (to be added) 21
8. Effecting File System Transitions (as updated) 22

 8.1. File System Transitions and Simultaneous Access (as
 updated) . 23

8.2. Filehandles and File System Transitions (as updated) . . 23
8.3. Fileids and File System Transitions (as updated) 24
8.4. Fsids and File System Transitions (as updated) 25
8.4.1. File System Splitting (as updated) 25

 8.5. The Change Attribute and File System Transitions (as
 updated) . 26
 8.6. Write Verifiers and File System Transitions (as updated) 26
 8.7. Readdir Cookies and Verifiers and File System Transitions
 (as updated) . 26
 8.8. File System Data and File System Transitions (as updated) 27

8.9. Lock State and File System Transitions (as updated) . . . 28
9. Transferring State upon Migration (to be added) 29
9.1. Transparent State Migration and pNFS (to be added) . . . 29

 10. Client Responsibilities when Access is Transitioned (to be
 added) . 30

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-11
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-11.7

Noveck & Lever Expires December 11, 2018 [Page 2]

Internet-Draft nfsv4.1-msns-update June 2018

10.1. Client Transition Notifications (to be added) 31
10.2. Performing Migration Discovery (to be added) 33

 10.3. Overview of Client Response to NFS4ERR_MOVED (to be
 added) . 36
 10.4. Obtaining Access to Sessions and State after Migration
 (to be added) . 37
 10.5. Obtaining Access to Sessions and State after Network
 Address Transfer (to be added) 39

11. Server Responsibilities Upon Migration (to be added) 40
 11.1. Server Responsibilities in Effecting Transparent State
 Migration (to be added) 40
 11.2. Server Responsibilities in Effecting Session Transfer
 (to be added) . 42

12. Changes to RFC5661 outside Section 11 44
 12.1. (Introduction to) Multi-Server Namespace (as updated) . 45

12.2. Server Scope (as updated) 46
12.3. Revised Treatment of NFS4ERR_MOVED 47
12.4. Revised Discussion of Server_owner changes 48
12.5. Revision to Treatment of EXCHANGE_ID 49

 13. Operation 42: EXCHANGE_ID - Instantiate Client ID (as
 updated) . 50

14. Security Considerations 68
15. IANA Considerations . 70
16. References . 71
16.1. Normative References 71
16.2. Informative References 72

Appendix A. Classification of Document Sections 72
Appendix B. Updates to RFC5661 74

 Acknowledgments . 76
 Authors' Addresses . 77

1. Introduction

 This document defines the proper handling, within NFSv4.1, of the
 location-related attributes fs_locations and fs_locations_info and
 how necessary changes in those attributes are to be dealt with. The
 necessary corrections and clarifications parallel those done for
 NFSv4.0 in [RFC7931] and [I-D.cel-nfsv4-mv0-trunking-update].

 A large part of the changes to be made are necessary to clarify the
 handling of Transparent State Migration in NFSv4.1, which was omitted
 in [RFC5661]. Many of the issues dealt with in [RFC7931] need to be
 addressed in the context of NFSv4.1.

 Another important issue to be dealt with concerns the handling of
 multiple entries within location-related attributes that represent
 different ways to access the same file system. Unfortunately
 [RFC5661], while recognizing that these entries can represent

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc7931
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc7931
https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 3]

Internet-Draft nfsv4.1-msns-update June 2018

 different ways to access the same file system, confuses the matter by
 treating network access paths as "replicas", making it difficult for
 these attributes to be used to obtain information about the network
 addresses to be used to access particular file system instances and
 engendering confusion between two different sorts of transition:
 those involving a change of network access paths to the same file
 system instance and those in which there is shift between two
 distinct replicas.

 When location information is used to determine the set of network
 addresses to access a particular file system instance (i.e. to
 perform trunking discovery), clarification is needed regarding the
 interaction of trunking and transitions between file system replicas,
 including migration. Unfortunately [RFC5661], while it provided a
 method of determining whether two network addresses were connected to
 the same server, did not address the issue of trunking discovery,
 making it necessary to address it in this document.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Preliminaries

3.1. Terminology

 While most of the terms related to multi-server namespace issues are
 appropriately defined in the replacement for Section 11 in [RFC5661]
 and appear in Section 4.2 below, there are a number of terms used
 outside that context that are explained here.

 In this document, the phrase "client ID" always refers to the 64-bit
 shorthand identifier assigned by the server (a clientid4) and never
 to the structure which the client uses to identify itself to the
 server (called an nfs_client_id4 or client_owner in NFSv4.0 and
 NFSv4.1 respectively). The opaque identifier within those structures
 is referred to as a "client id string".

 It is particularly important to clarify the distinction between
 trunking detection and trunking discovery. The definitions we
 present will be applicable to all minor versions of NFSv4, but we
 will put particular emphasis on how these terms apply to NFS version
 4.1.

 o Trunking detection refers to ways of deciding whether two specific
 network addresses are connected to the same NFSv4 server. The

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5661#section-11

Noveck & Lever Expires December 11, 2018 [Page 4]

Internet-Draft nfsv4.1-msns-update June 2018

 means available to make this determination depends on the protocol
 version, and, in some cases, on the client implementation.

 In the case of NFS version 4.1 and later minor versions, the means
 of trunking detection are as described by [RFC5661] and are
 available to every client. Two network addresses connected to the
 same server are always server-trunkable but are not necessarily
 session-trunkable.

 o Trunking discovery is a process by which a client using one
 network address can obtain other addresses that are connected to
 the same server Typically it builds on a trunking detection
 facility by providing one or more methods by which candidate
 addresses are made available to the client who can then use
 trunking detection to appropriately filter them.

 Despite the support for trunking detection there was no
 description of trunking discovery provided in [RFC5661].

 Regarding network addresses and the handling of trunking we use the
 following terminology:

 o Each NFSv4 server is assumed to have a set of IP addresses to
 which NFSv4 requests may be sent by clients. These are referred
 to as the server's network addresses. Access to a specfic server
 network address may involve the use of multiple ports, since the
 ports to be used for various types of connections might be
 required to be different.

 o Each network address, when combined with a pathname providing the
 location of a file system root directory relative to the
 associated server root file handle, defines a file system network
 access path.

 o Server network addresses are used to establish connections to
 servers which may be of a number of connection types. Separate
 connection types are used to support NFSv4 layered on top of the
 RPC stream transport as described in [RFC5531] and on top of RPC-
 over-RDMA as described in [RFC8166].

 o The combination of a server network address and a particular
 connection type to be used by a connection is referred to as a
 "server endpoint". Although using different connection types may
 result in different ports being used, the use of different ports
 by multiple connections to the same network address is not the
 essence of the distinction between the two endpoints used.

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5531
https://datatracker.ietf.org/doc/html/rfc8166

Noveck & Lever Expires December 11, 2018 [Page 5]

Internet-Draft nfsv4.1-msns-update June 2018

 o Two network addresses connected to the same server are said to be
 server-trunkable.

 o Two network addresses connected to the same server such that those
 addresses can be used to support a single common session are
 referred to as session-trunkable. Note that two addresses may be
 server-trunkable without being session-trunkable and that when two
 connections of different connection types are made to the same
 network address and are based on a single-location entry they are
 always session-trunkable, independent of the connection type, as
 specified by [RFC5661], since their derivation from the same
 location entry assures that both connections are to the same
 server.

 Discussion of the term "replica" is complicated for a number of
 reasons:

 o Even though the term is used in explaining the issues in [RFC5661]
 that need to be addressed in this document, a full explanation of
 this term requires explanation of related terms connected to the
 location attributes which are provided in Section 4.2 of the
 current document.

 o The term is also used in [RFC5661], with a meaning different from
 that in the current document. In short, in [RFC5661] each replica
 is a identified by a single network access path while, in the
 current document a set of network access paths which have server-
 trunkable network addresses and the same root-relative file system
 pathname are considered to be a single replica with multiple
 network access paths.

3.2. Summary of Issues

 This document explains how clients and servers are to determine the
 particular network access paths to be used to access a file system.
 This includes describing how changes to the specific replica or to
 the set of addresses to be used are to be dealt with, and how
 transfers of responsibility that need to be made can be dealt with
 transparently. This includes cases in which there is a shift between
 one replica and another and those in which different network access
 paths are used to access the same replica.

 As a result of the following problems in [RFC5661], it is necessary
 to provide the updates described later in this document.

 o [RFC5661], while it dealt with situations in which various forms
 of clustering allowed co-ordination of the state assigned by co-
 operating servers to be used, made no provisions for Transparent

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 6]

Internet-Draft nfsv4.1-msns-update June 2018

 State Migration, as introduced by [RFC7530] and corrected and
 clarified by [RFC7931].

 o Although NFSv4.1 was defined with a clear definition of how
 trunking detection was to be done, there was no clear
 specification of how trunking discovery was to be done, despite
 the fact that the specification clearly indicated that this
 information could be made available via the location attributes.

 o Because the existence of multiple network access paths to the same
 file system was dealt with as if there were multiple replicas,
 issues relating to transitions between replicas could never be
 clearly distinguished from trunking-related transitions between
 the addresses used to access a particular file system instance.
 As a result, in situations in which both migration and trunking
 configuration changes were involved, neither of these could be
 clearly dealt with and the relationship between these two features
 was not seriously addressed.

 o Because use of two network access paths to the same file system
 instance (i.e. trunking) was often treated as if two replicas were
 involved, it was considered that two replicas were being used
 simultaneously. As a result, the treatment of replicas being used
 simultaneously in [RFC5661] was not clear as it covered the two
 distinct cases of a single file system instance being accessed by
 two different network access paths and two replicas being accessed
 simultaneously, with the limitations of the latter case not being
 clearly laid out.

 The majority of the consequences of these issues are dealt with via
 the updates in various subsections of Section 4 of the current
 document which deal with problems within Section 11 of [RFC5661].
 These include:

 o Reorganization made necessary by the fact that two network access
 paths to the same file system instance needs to be distinguished
 clearly from two different replicas since the former share locking
 state and can share session state.

 o The need for a clear statement regarding the desirability of
 transparent transfer of state together with a recommendation that
 either that or a single-fs grace period be provided.

 o Specifically delineating how such transfers are to be dealt with
 by the client, taking into account the differences from the
 treatment in [RFC7931] made necessary by the major protocol
 changes made in NFSv4.1.

https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7931
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-11
https://datatracker.ietf.org/doc/html/rfc7931

Noveck & Lever Expires December 11, 2018 [Page 7]

Internet-Draft nfsv4.1-msns-update June 2018

 o Discussion of the relationship between transparent state transfer
 and Parallel NFS (pNFS).

 In addition, there are also updates to other sections of [RFC5661],
 where the consequences of the incorrect assumptions underlying the
 current treatment of multi-server namespace issues also need to be
 corrected. These are to be dealt with as described in various
 subsections of Section 12 of the current document.

 o A revised introductory section regarding multi-server namespace
 facilities is provided.

 o A more realistic treatment of server scope is provided, which
 reflects the more limited co-ordination of locking state adopted
 by servers actually sharing a common server scope.

 o Some confusing text regarding changes in server_owner needs to be
 clarified.

 o The description of NFS4ERR_MOVED needs to be updated since two
 different network access paths to the same file system are no
 longer considered to be two instances of the same file system.

 o A new treatment of EXCHANGE_ID is needed, replacing that which
 appeared in Section 18.35 of [RFC5661]

3.3. Relationship of this Document to RFC5661

 The role of this document is to explain and specify a set of needed
 changes to [RFC5661]. All of these changes are related to the multi-
 server namespace features of NFSv4.1.

 This document contains sections that propose additions to and other
 modifications of [RFC5661] as well as others that explain the reasons
 for modifications but do not directly affect existing specifications.

 In consequence, the sections of this document can be divided into
 four groups based on how they relate to the eventual updating of the
 NFSv4.1 specification. Once the update is published, NFSv4.1 will be
 specified by two documents that need to be read together, until such
 time as a consolidated specification is produced.

 o Explanatory sections do not contain any material that is meant to
 update the specification of NFSv4.1. Such sections may contain
 explanations about why and how changes are to be done, without
 including any text that is to update [RFC5661] or appear in an
 eventual consolidated document,

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-18.35
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 8]

Internet-Draft nfsv4.1-msns-update June 2018

 o Replacement sections contain text that is to replace and thus
 supersede text within [RFC5661] and then appear in an eventual
 consolidated document. Replacement sections have the phrase "(as
 updated)" appended to the section title.

 o Additional sections contain text which, although not replacing
 anything in [RFC5661], will be part of the specification of
 NFSv4.1 and will be expected to be part of an eventual
 consolidated document. Additional sections have the phrase "(to
 be added)" appended to the section title.

 o Editing sections contain some text that replaces text within
 [RFC5661], although the entire section will not consist of such
 text and will include other text as well. Such sections make
 relatively minor adjustments in the existing NFSv4.1 specification
 which are expected to reflected in an eventual consolidated
 document. Generally such replacement text appears as a quotation,
 which may take the form of an indented set of paragraphs.

 See Appendix A for a classification of the sections of this document
 according the categories above.

 When this document is approved and published, [RFC5661] would be
 significantly updated with most of the changed sections within the
 current Section 11 of that document. A detailed discussion of the
 necessary updates can be found in Appendix B.

4. Changes to Section 11 of RFC5661

 A number of sections need to be revised, replacing existing sub-
 sections within section 11 of [RFC5661]:

 o New introductory material, including a terminology section,
 replaces the existing material in [RFC5661] ranging from the start
 of the existing Section 11 up to and including the existing

Section 11.1. The new material appears in Sections 4.1 through
 4.3 below.

 o A significant reorganization of the material in the existing
 Sections 11.4 and 11.5 (of [RFC5661]) is necessary. The reasons
 for the reorganization of these sections into a single section
 with multiple subsections are discussed in Section 4.4 below.
 This replacement appears as Section 4.5 below.

 New material relating to the handling of the location attributes
 is contained in Sections 4.5.1 and 4.5.7 below.

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-11
https://datatracker.ietf.org/doc/html/rfc5661#section-11
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 9]

Internet-Draft nfsv4.1-msns-update June 2018

 o A major replacement for the existing Section 11.7 of [RFC5661]
 entitled "Effecting File System Transitions", will appear as
 Sections 6 through 11 of the current document. The reasons for
 the reorganization of this section into multiple sections are
 discussed below in Section 5 of the current document.

4.1. Multi-Server Namespace (as updated)

 NFSv4.1 supports attributes that allow a namespace to extend beyond
 the boundaries of a single server. It is desirable that clients and
 servers support construction of such multi-server namespaces. Use of
 such multi-server namespaces is OPTIONAL however, and for many
 purposes, single-server namespaces are perfectly acceptable. Use of
 multi-server namespaces can provide many advantages, by separating a
 file system's logical position in a namespace from the (possibly
 changing) logistical and administrative considerations that result in
 particular file systems being located on particular servers.

4.2. Location-related Terminology (to be added)

 Regarding terminology relating to the construction of multi-server
 namespaces out of a set of local per-server namespaces:

 o Each server has a set of exported file systems which may accessed
 by NFSv4 clients. Typically, this is done by assigning each file
 system a name within the pseudo-fs associated with the server,
 although the pseudo-fs may be dispensed with if there is only a
 single exported file system. Each such file system is part of the
 server's local namespace, and can be considered as a file system
 instance within a larger multi-server namespace.

 o The set of all exported file systems for a given server
 constitutes that server's local namespace.

 o In some cases, a server will have a namespace, more extensive than
 its local namespace, by using features associated with attributes
 that provide location information. These features, which allow
 construction of a multi-server namespace are all described in
 individual sections below and include referrals (described in

Section 4.5.6), migration (described in Section 4.5.5), and
 replication (described in Section 4.5.4).

 o A file system present in a server's pseudo-fs may have multiple
 file system instances on different servers associated with it.
 All such instances are considered replicas of one another.

 o When a file system is present in a server's pseudo-fs, but there
 is no corresponding local file system, it is said to be "absent".

https://datatracker.ietf.org/doc/html/rfc5661#section-11.7

Noveck & Lever Expires December 11, 2018 [Page 10]

Internet-Draft nfsv4.1-msns-update June 2018

 In such cases, all associated instances will be accessed on other
 servers.

 Regarding terminology relating to attributes used in trunking
 discovery and other multi-server namespace features:

 o Location attributes include the fs_locations and fs_locations_info
 attributes.

 o Location entries are the individual file system locations in the
 location attributes. Each such entry specifies a server, in the
 form of a host name or IP address, and an fs name, which
 designates the location of the file system within the server's
 pseudo-fs. A location entry designates a set of server endpoints
 to which the client may establish connections. There may be
 multiple endpoints because a host name may map to multiple network
 addresses and because multiple connection types may be used to
 communicate with a single network address. However, all such
 endpoints MUST provide a way of connecting to a single server.
 The exact form of the location entry varies with the particular
 location attribute used as described in Section 4.3.

 o Location elements are derived from location entries and each
 describes a particular network access path, consisting of a
 network address and a location within the server's pseudo-fs.
 Location elements need not appear within a location attribute, but
 the existence of each location element derives from a
 corresponding location entry. When a location entry specifies an
 IP address there is only a single corresponding location element.
 Location entries that contain a host name, are resolved using DNS,
 and may result in one or more location elements. All location
 elements consist of a location address which is the IP address of
 an interface to a server and an fs name which is the location of
 the file system within the server's pseudo-fs. The fs name is
 empty if the server has no pseudo-fs and only a single exported
 file system at the root filehandle.

 o Two location elements are said to be server-trunkable if they
 specify the same fs name and the location addresses are such that
 the location addresses are server-trunkable.

 o Two location elements are said to be session-trunkable if they
 specify the same fs name and the location addresses are such that
 the location addresses are session-trunkable.

 Each set of server-trunkable location elements defines a set of
 available network access paths to a particular file system. When
 there are multiple such file systems, each of which contains the same

Noveck & Lever Expires December 11, 2018 [Page 11]

Internet-Draft nfsv4.1-msns-update June 2018

 data, these file systems are considered replicas of one another.
 Logically, such replication is symmetric, since the fs currently in
 use and an alternate fs are replicas of each other. Often, in other
 documents, the term "replica" is not applied to the fs currently in
 use, despite the fact that the replication relation is inherently
 symmetric.

4.3. Location Attributes (as updated)

 NFSv4.1 contains RECOMMENDED attributes that provide information
 about how (i.e. at what network address and namespace position) a
 given file system may be accessed. As a result, file systems in the
 namespace of one server can be associated with one or more instances
 of that file system on other servers. These attributes contain
 location entries specifying a server address target (either as a DNS
 name representing one or more IP addresses or as a specific IP
 address) together with the pathname of that file system within the
 associated single-server namespace.

 The fs_locations_info RECOMMENDED attribute allows specification of
 one or more file system instance locations where the data
 corresponding to a given file system may be found. This attribute
 provides to the client, in to addition to specification of file
 system instance locations, other helpful information such as:

 o Information guiding choices among the various file system
 instances provided (e.g., priority for use, writability, currency,
 etc.).

 o Information to help the client efficiently effect as seamless a
 transition as possible among multiple file system instances, when
 and if that should be necessary.

 o Information helping to guide the selection of the appropriate
 connection type to be used when establishing a connection.

 Within the fs_locations_info attribute, each fs_locations_server4
 entry corresponds to a location entry with the fls_server field
 designating the server, with the location pathname within the
 server's pseudo-fs given by the fl_rootpath field of the encompassing
 fs_locations_item4.

 The fs_locations attribute defined in NFSv4.0 is also a part of
 NFSv4.1. This attribute only allows specification of the file system
 locations where the data corresponding to a given file system may be
 found. Servers should make this attribute available whenever
 fs_locations_info is supported, but client use of fs_locations_info
 is preferable.

Noveck & Lever Expires December 11, 2018 [Page 12]

Internet-Draft nfsv4.1-msns-update June 2018

 Within the fs_location attribute, each fs_location4 contains a
 location entry with the server field designating the server and the
 rootpath field giving the location pathname within the server's
 pseudo-fs.

4.4. Re-organization of Sections 11.4 and 11.5 of RFC5661

 Previously, issues related to the fact that multiple location entries
 directed the client to the same file system instance were dealt with
 in a separate Section 11.5 of [RFC5661]. Because of the new
 treatment of trunking, these issues now belong within Section 4.5
 below.

 In this new section of the current document, trunking is dealt with
 in Section 4.5.2 together with the other uses of location information
 described in Sections 4.5.4, 4.5.5, and 4.5.6.

4.5. Uses of Location Information (as updated)

 The location attributes (i.e. fs_locations and fs_locations_info),
 together with the possibility of absent file systems, provide a
 number of important facilities in providing reliable, manageable, and
 scalable data access.

 When a file system is present, these attributes can provide

 o The locations of alternative replicas, to be used to access the
 same data in the event of server failures, communications
 problems, or other difficulties that make continued access to the
 current replica impossible or otherwise impractical. Provision
 and use of such alternate replicas is referred to as "replication"
 and is discussed in Section 4.5.4 below.

 o The network address(es) to be used to access the current file
 system instance or replicas of it. Client use of this information
 is discussed in Section 4.5.2 below.

 Under some circumstances, multiple replicas may be used
 simultaneously to provide higher-performance access to the file
 system in question, although the lack of state sharing between
 servers may be an impediment to such use.

 When a file system is present and becomes absent, clients can be
 given the opportunity to have continued access to their data, using a
 different replica. In this case, a continued attempt to use the data
 in the now-absent file system will result in an NFS4ERR_MOVED error
 and, at that point, the successor replica or set of possible replica
 choices can be fetched and used to continue access. Transfer of

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-11.5

Noveck & Lever Expires December 11, 2018 [Page 13]

Internet-Draft nfsv4.1-msns-update June 2018

 access to the new replica location is referred to as "migration", and
 is discussed in Section 4.5.4 below.

 Where a file system was previously absent, specification of file
 system location provides a means by which file systems located on one
 server can be associated with a namespace defined by another server,
 thus allowing a general multi-server namespace facility. A
 designation of such a remote instance, in place of a file system
 never previously present , is called a "pure referral" and is
 discussed in Section 4.5.6 below.

 Because client support for location-related attributes is OPTIONAL, a
 server may (but is not required to) take action to hide migration and
 referral events from such clients, by acting as a proxy, for example.
 The server can determine the presence of client support from the
 arguments of the EXCHANGE_ID operation (see Section 13.3 in the
 current document).

4.5.1. Combining Multiple Uses in a Single Attribute (to be added)

 A location attribute will sometimes contain information relating to
 the location of multiple replicas which may be used in different
 ways.

 o Location entries that relate to the file system instance currently
 in use provide trunking information, allowing the client to find
 additional network addresses by which the instance may be
 accessed.

 o Location entries that provide information about replicas to which
 access is to be transferred.

 o Other location entries that relate to replicas that are available
 to use in the event that access to the current replica becomes
 unsatisfactory.

 In order to simplify client handling and allow the best choice of
 replicas to access, the server should adhere to the following
 guidelines.

 o All location entries that relate to a single file system instance
 should be adjacent.

 o Location entries that relate to the instance currently in use
 should appear first.

Noveck & Lever Expires December 11, 2018 [Page 14]

Internet-Draft nfsv4.1-msns-update June 2018

 o Location entries that relate to replica(s) to which migration is
 occurring should appear before replicas which are available for
 later use if the current replica should become inaccessible.

4.5.2. Location Attributes and Trunking (to be added)

 Trunking is the use of multiple connections between a client and
 server in order to increase the speed of data transfer. A client may
 determine the set of network addresses to use to access a given file
 system in a number of ways:

 o When the name of the server is known to the client, it may use DNS
 to obtain a set of network addresses to use in accessing the
 server.

 o It may fetch the location attribute for the filesystem which will
 provide either the name of the server (which can be turned into a
 set of network addresses using DNS), or it will find a set of
 server-trunkable location entries which can provide the addresses
 specified by the server as desirable to use to access the file
 system in question.

 The server can provide location entries that include either names or
 network addresses. It might use the latter form because of DNS-
 related security concerns or because the set of addresses to be used
 might require active management by the server.

 Locations entries used to discover candidate addresses for use in
 trunking are subject to change, as discussed in Section 4.5.7 below.
 The client may respond to such changes by using additional addresses
 once they are verified or by ceasing to use existing ones. The
 server can force the client to cease using an address by returning
 NFS4ERR_MOVED when that address is used to access a file system.
 This allows a transfer of access similar to migration, although the
 same file system instance is accessed throughout.

4.5.3. Location Attributes and Connection Type Selection (to be added)

 Because of the need to support multiple connections, clients face the
 issue of determining the proper connection type to use when
 establishing a connection to a given server network address. In some
 cases, this issue can be addressed through the use of the connection
 "step-up" facility described in Section 18.16 of [RFC5661]. However,
 because there are cases is which that fcility is not available, the
 client may have to choose a connection type with no possibility of
 changing it within the scope of a single connection.

https://datatracker.ietf.org/doc/html/rfc5661#section-18.16

Noveck & Lever Expires December 11, 2018 [Page 15]

Internet-Draft nfsv4.1-msns-update June 2018

 The two location attributes differ as to the information made
 available in this regard. Fs_locations provides no information to
 support connection type selection. As a result, clients supporting
 multiple connection types need to attempt to establish a connection
 on multiple connection types until the one preferred by the client is
 successfully established.

 Fs_locations_info provides a flag, FSLI4TF_RDMA flag. indicating
 that RPC-over-RDMA support is available using the specfied location
 entry. This flag makes it for a convenient for a client wishing to
 use RDMA, to establish a TCP connection and then convert to use of
 RDMA. After establishing a TCP connection, the step-up facility, can
 be used, if available, to convert that connection to RDMA mode.
 Otherwise, if RDMA availability is indicated, a new RDMA connection
 can be established and it can be bound to the sessiion already
 established by the TCP connection, allowing the TCP connection to be
 dropped and the session converted to further use in RDMA node.

4.5.4. File System Replication (as updated)

 The fs_locations and fs_locations_info attributes provide alternative
 locations, to be used to access data in place of or in addition to
 the current file system instance. On first access to a file system,
 the client should obtain the set of alternate locations by
 interrogating the fs_locations or fs_locations_info attribute, with
 the latter being preferred.

 In the event that server failures, communications problems, or other
 difficulties make continued access to the current file system
 impossible or otherwise impractical, the client can use the alternate
 locations as a way to get continued access to its data.

 The alternate locations may be physical replicas of the (typically
 read-only) file system data, or they may provide for the use of
 various forms of server clustering in which multiple servers provide
 alternate ways of accessing the same physical file system. How these
 different modes of file system transition are represented within the
 fs_locations and fs_locations_info attributes and how the client
 deals with file system transition issues will be discussed in detail
 below.

4.5.5. File System Migration (as updated)

 When a file system is present and becomes absent, clients can be
 given the opportunity to have continued access to their data, at an
 alternate location, as specified by a location attribute. This
 migration of access to another replica includes the ability to retain

Noveck & Lever Expires December 11, 2018 [Page 16]

Internet-Draft nfsv4.1-msns-update June 2018

 locks across the transition, either by reclaim or by Transparent
 State Migration.

 Typically, a client will be accessing the file system in question,
 get an NFS4ERR_MOVED error, and then use a location attribute to
 determine the new location of the data. When fs_locations_info is
 used, additional information will be available that will define the
 nature of the client's handling of the transition to a new server.

 Such migration can be helpful in providing load balancing or general
 resource reallocation. The protocol does not specify how the file
 system will be moved between servers. It is anticipated that a
 number of different server-to-server transfer mechanisms might be
 used with the choice left to the server implementer. The NFSv4.1
 protocol specifies the method used to communicate the migration event
 between client and server.

 The new location may be, in the case of various forms of server
 clustering, another server providing access to the same physical file
 system. The client's responsibilities in dealing with this
 transition will depend on whether migration has occurred and the
 means the server has chosen to provide continuity of locking state.
 These issues will be discussed in detail below.

 Although a single successor location is typical, multiple locations
 may be provided. When multiple locations are provided, the client
 use the first one provided. If that is inaccessible for some reason,
 later ones can be used. In such cases the client might consider that
 the transition to the new replica is a migration event, although it
 would lose access to locking state if it did so.

 When an alternate location is designated as the target for migration,
 it must designate the same data (with metadata being the same to the
 degree indicated by the fs_locations_info attribute). Where file
 systems are writable, a change made on the original file system must
 be visible on all migration targets. Where a file system is not
 writable but represents a read-only copy (possibly periodically
 updated) of a writable file system, similar requirements apply to the
 propagation of updates. Any change visible in the original file
 system must already be effected on all migration targets, to avoid
 any possibility that a client, in effecting a transition to the
 migration target, will see any reversion in file system state.

4.5.6. Referrals (as updated)

 Referrals allow the server to associate a file system located on one
 server with file system located on another server. When this
 includes the use of pure referrals, servers are provided a way of

Noveck & Lever Expires December 11, 2018 [Page 17]

Internet-Draft nfsv4.1-msns-update June 2018

 placing a file system in a location within the namespace essentially
 without respect to its physical location on a particular server.
 This allows a single server or a set of servers to present a multi-
 server namespace that encompasses file systems located on a wider
 range of servers. Some likely uses of this facility include
 establishment of site-wide or organization-wide namespaces, with the
 eventual possibility of combining such together into a truly global
 namespace.

 Referrals occur when a client determines, upon first referencing a
 position in the current namespace, that it is part of a new file
 system and that the file system is absent. When this occurs,
 typically by receiving the error NFS4ERR_MOVED, the actual location
 or locations of the file system can be determined by fetching the
 fs_locations or fs_locations_info attribute.

 The locations-related attribute may designate a single file system
 location or multiple file system locations, to be selected based on
 the needs of the client. The server, in the fs_locations_info
 attribute, may specify priorities to be associated with various file
 system location choices. The server may assign different priorities
 to different locations as reported to individual clients, in order to
 adapt to client physical location or to effect load balancing. When
 both read-only and read-write file systems are present, some of the
 read-only locations might not be absolutely up-to-date (as they would
 have to be in the case of replication and migration). Servers may
 also specify file system locations that include client-substituted
 variables so that different clients are referred to different file
 systems (with different data contents) based on client attributes
 such as CPU architecture.

 When the fs_locations_info attribute is such that that there are
 multiple possible targets listed, the relationships among them may be
 important to the client in selecting which one to use. The same
 rules specified in Section 4.5.5 below regarding multiple migration
 targets apply to these multiple replicas as well. For example, the
 client might prefer a writable target on a server that has additional
 writable replicas to which it subsequently might switch. Note that,
 as distinguished from the case of replication, there is no need to
 deal with the case of propagation of updates made by the current
 client, since the current client has not accessed the file system in
 question.

 Use of multi-server namespaces is enabled by NFSv4.1 but is not
 required. The use of multi-server namespaces and their scope will
 depend on the applications used and system administration
 preferences.

Noveck & Lever Expires December 11, 2018 [Page 18]

Internet-Draft nfsv4.1-msns-update June 2018

 Multi-server namespaces can be established by a single server
 providing a large set of pure referrals to all of the included file
 systems. Alternatively, a single multi-server namespace may be
 administratively segmented with separate referral file systems (on
 separate servers) for each separately administered portion of the
 namespace. The top-level referral file system or any segment may use
 replicated referral file systems for higher availability.

 Generally, multi-server namespaces are for the most part uniform, in
 that the same data made available to one client at a given location
 in the namespace is made available to all clients at that location.
 However, there are facilities provided that allow different clients
 to be directed different sets of data, to enable adaptation to such
 client characteristics as CPU architecture.

4.5.7. Changes in a Location Attribute (to be added)

 Although clients will typically fetch a location attribute when first
 accessing a file system and when NFS4ERR_MOVED is returned, a client
 can choose to fetch the attribute periodically, in which case, the
 value fetched may change over time.

 For clients not prepared to access multiple replicas simultaneously
 (see Section 8.1 of the current document), the handling of the
 various cases of change are as follows:

 o Changes in the list of replicas or in the network addresses
 associated with replicas do not require immediate action. The
 client will typically update its list of replicas to reflect the
 new information.

 o Additions to the list of network addresses for the current file
 system instance need not be acted on promptly. However the client
 can choose to use the new address whenever it needs to switch
 access to a new replica.

 o Deletions from the list of network addresses for the current file
 system instance need not be acted on immediately, although the
 client might need to be prepared for a shift in access whenever
 the server indicates that a network access path is not usable to
 access the current file system, by returning NFS4ERR_MOVED.

 For clients that are prepared to access several replicas
 simultaneously, the following additional cases need to be addressed.
 As in the cases discussed above, changes in the set of replicas need
 not be acted upon promptly, although the client has the option of
 adjusting its access even in the absence of difficulties that would
 lead to a new replica to be selected.

Noveck & Lever Expires December 11, 2018 [Page 19]

Internet-Draft nfsv4.1-msns-update June 2018

 o When a new replica is added which may be accessed simultaneously
 with one currently in use, the client is free to use the new
 replica immediately.

 o When a replica currently in use is deleted from the list, the
 client need not cease using it immediately. However, since the
 server may subsequently force such use to cease (by returning
 NFS4ERR_MOVED), clients can decide to limit the need for later
 state transfer. For example, new opens might be done on other
 replicas, rather than on one not present in the list.

5. Re-organization of Section 11.7 of RFC5661

 The material in Section 11.7 of [RFC5661] has been reorganized and
 augmented as specified below:

 o Because there can be a shift of the network access paths used to
 access a file system instance without any shift between replicas,
 a new Section 6 in the current document distinguishes between
 those cases in which there is a shift between distinct replicas
 and those involving a shift in network access paths with no shift
 between replicas.

 As a result, a new Section 7 in the current document deals with
 network address transitions while the bulk of the former

Section 11.7 (in [RFC5661]) is replaced by Section 8 in the
 current document which is now limited to cases in which there is a
 shift between two different sets of replicas.

 o The additional Section 9 in the current document discusses the
 case in which a shift to a different replica is made and state is
 transferred to allow the client the ability to have continues
 access to the accumulated locking state on the new server.

 o The additional Section 10 in the current document discusses the
 client's response to access transitions and how it determines
 whether migration has occurred, and how it gets access to any
 transferred locking and session state.

 o The additional Section 11 in the current document discusses the
 responsibilities of the source and destination servers when
 transferring locking and session state.

6. Overview of File Access Transitions (to be added)

 File access transitions are of two types:

https://datatracker.ietf.org/doc/html/rfc5661#section-11.7
https://datatracker.ietf.org/doc/html/rfc5661#section-11.7
https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 20]

Internet-Draft nfsv4.1-msns-update June 2018

 o Those that involve a transition from accessing the current replica
 to another one in connection with either replication or migration.
 How these are dealt with is discussed in Section 8 of the current
 document.

 o Those in which access to the current file system instance is
 retained, while the network path used to access that instance is
 changed. This case is discussed in Section 7 of the current
 document.

7. Effecting Network Endpoint Transitions (to be added)

 The endpoints used to access a particular file system instance may
 change in a number of ways, as listed below. In each of these cases,
 the same filehandles, stateids, client IDs and session are used to
 continue access, with a continuity of lock state.

 o When use of a particular address is to cease and there is also one
 currently in use which is server-trunkable with it, requests that
 would have been issued on the address whose use is to be
 discontinued can be issued on the remaining address(es). When an
 address is not a session-trunkable one, the request might need to
 be modified to reflect the fact that a different session will be
 used.

 o When use of a particular connection is to cease, as indicated by
 receiving NFS4ERR_MOVED when using that connection but that
 address is still indicated as accessible according to the
 appropriate location entries, it is likely that requests can be
 issued on a new connection of a different connection type, once
 that connection is established. Since any two server endpoints
 that share a network address are inherently session-trunkable, the
 client can use BIND_CONN_TO_SESSION to access the existing session
 using the new connection and proceed to access the file system
 using the new connection.

 o When there are no potential replacement addresses in use but there
 are valid addresses session-trunkable with the one whose use is to
 be discontinued, the client can use BIND_CONN_TO_SESSION to access
 the existing session using the new address. Although the target
 session will generally be accessible, there may be cases in which
 that session in no longer accessible, in which case a new session
 can be created to provide the client continued access to the
 existing instance.

 o When there is no potential replacement address in use and there
 are no valid addresses session-trunkable with the one whose use is
 to be discontinued, other server-trunkable addresses may be used

Noveck & Lever Expires December 11, 2018 [Page 21]

Internet-Draft nfsv4.1-msns-update June 2018

 to provide continued access. Although use of CREATE_SESSION is
 available to provide continued access to the existing instance,
 servers have the option of providing continued access to the
 existing session through the new network access path in a fashion
 similar to that provided by session migration (see Section 9 of
 the current document). To take advantage of this possibility,
 clients can perform an initial BIND_CONN_TO_SESSION, as in the
 previous case, and use CREATE_SESSION only when that fails.

8. Effecting File System Transitions (as updated)

 There are a range of situations in which there is a change to be
 effected in the set of replicas used to access a particular file
 system. Some of these may involve an expansion or contraction of the
 set of replicas used as discussed in Section 8.1 below.

 For reasons explained in that section, most transitions will involve
 a transition from a single replica to a corresponding replacement
 replica. When effecting replica transition, some types of sharing
 between the replicas may affect handling of the transition as
 described in Sections 8.2 through 8.8 below. The attribute
 fs_locations_info provides helpful information to allow the client to
 determine the degree of inter-replica sharing.

 With regard to some types of state, the degree of continuity across
 the transition depends on the occasion prompting the transition, with
 transitions initiated by the servers (i.e. migration) offering much
 more scope for a non-disruptive transition than cases in which the
 client on its own shifts its access to another replica (i.e.
 replication). This issue potentially applies to locking state and to
 session state, which are dealt with below as follows:

 o An introduction to the possible means of providing continuity of
 these areas appears in Section 8.9 below.

 o Transparent State Migration is introduced in Section 9 of the
 current document. The possible transfer of session state is
 addressed there as well.

 o The client handling of transitions, including determining how to
 deal with the various means that the server might take to supply
 effective continuity of locking state are discussed in Section 10
 of the current document.

 o The servers' (source and destination) responsibilities in
 effecting Transparent Migration of locking and session state are
 discussed in Section 11 of the current document.

Noveck & Lever Expires December 11, 2018 [Page 22]

Internet-Draft nfsv4.1-msns-update June 2018

8.1. File System Transitions and Simultaneous Access (as updated)

 The fs_locations_info attribute (described in Section 11.10.1 of
 [RFC5661]) may indicate that two replicas may be used simultaneously
 (see Section 11.7.2.1 of [RFC5661] for details). Although situations
 in which multiple replicas may be accessed simultaneously are
 somewhat similar to those in which a single replica is accessed by
 multiple network addresses, there are important differences, since
 locking state is not shared among multiple replicas.

 Because of this difference in state handling, many clients will not
 have the ability to take advantage of the fact that such replicas
 represent the same data. Such clients will not be prepared to use
 multiple replicas simultaneously but will access each file system
 using only a single replica, although the replica selected may make
 multiple server-trunkable addresses available.

 Clients who are prepared to use multiple replicas simultaneously will
 divide opens among replicas however they choose. Once that choice is
 made, any subsequent transitions will treat the set of locking state
 associated with each replica as a single entity.

 For example, if one of the replicas become unavailable, access will
 be transferred to a different replica, also capable of simultaneous
 access with the one still in use.

 When there is no such replica, the transition may be to the replica
 already in use. At this point, the client has a choice between
 merging the locking state for the two replicas under the aegis of the
 sole replica in use or treating these separately, until another
 replica capable of simultaneous access presents itself.

8.2. Filehandles and File System Transitions (as updated)

 There are a number of ways in which filehandles can be handled across
 a file system transition. These can be divided into two broad
 classes depending upon whether the two file systems across which the
 transition happens share sufficient state to effect some sort of
 continuity of file system handling.

 When there is no such cooperation in filehandle assignment, the two
 file systems are reported as being in different handle classes. In
 this case, all filehandles are assumed to expire as part of the file
 system transition. Note that this behavior does not depend on the
 fh_expire_type attribute and supersedes the specification of the
 FH4_VOL_MIGRATION bit, which only affects behavior when
 fs_locations_info is not available.

https://datatracker.ietf.org/doc/html/rfc5661#section-11.10.1
https://datatracker.ietf.org/doc/html/rfc5661#section-11.10.1
https://datatracker.ietf.org/doc/html/rfc5661#section-11.7.2.1

Noveck & Lever Expires December 11, 2018 [Page 23]

Internet-Draft nfsv4.1-msns-update June 2018

 When there is cooperation in filehandle assignment, the two file
 systems are reported as being in the same handle classes. In this
 case, persistent filehandles remain valid after the file system
 transition, while volatile filehandles (excluding those that are only
 volatile due to the FH4_VOL_MIGRATION bit) are subject to expiration
 on the target server.

8.3. Fileids and File System Transitions (as updated)

 In NFSv4.0, the issue of continuity of fileids in the event of a file
 system transition was not addressed. The general expectation had
 been that in situations in which the two file system instances are
 created by a single vendor using some sort of file system image copy,
 fileids would be consistent across the transition, while in the
 analogous multi-vendor transitions they would not. This poses
 difficulties, especially for the client without special knowledge of
 the transition mechanisms adopted by the server. Note that although
 fileid is not a REQUIRED attribute, many servers support fileids and
 many clients provide APIs that depend on fileids.

 It is important to note that while clients themselves may have no
 trouble with a fileid changing as a result of a file system
 transition event, applications do typically have access to the fileid
 (e.g., via stat). The result is that an application may work
 perfectly well if there is no file system instance transition or if
 any such transition is among instances created by a single vendor,
 yet be unable to deal with the situation in which a multi-vendor
 transition occurs at the wrong time.

 Providing the same fileids in a multi-vendor (multiple server
 vendors) environment has generally been held to be quite difficult.
 While there is work to be done, it needs to be pointed out that this
 difficulty is partly self-imposed. Servers have typically identified
 fileid with inode number, i.e. with a quantity used to find the file
 in question. This identification poses special difficulties for
 migration of a file system between vendors where assigning the same
 index to a given file may not be possible. Note here that a fileid
 is not required to be useful to find the file in question, only that
 it is unique within the given file system. Servers prepared to
 accept a fileid as a single piece of metadata and store it apart from
 the value used to index the file information can relatively easily
 maintain a fileid value across a migration event, allowing a truly
 transparent migration event.

 In any case, where servers can provide continuity of fileids, they
 should, and the client should be able to find out that such
 continuity is available and take appropriate action. Information
 about the continuity (or lack thereof) of fileids across a file

Noveck & Lever Expires December 11, 2018 [Page 24]

Internet-Draft nfsv4.1-msns-update June 2018

 system transition is represented by specifying whether the file
 systems in question are of the same fileid class.

 Note that when consistent fileids do not exist across a transition
 (either because there is no continuity of fileids or because fileid
 is not a supported attribute on one of instances involved), and there
 are no reliable filehandles across a transition event (either because
 there is no filehandle continuity or because the filehandles are
 volatile), the client is in a position where it cannot verify that
 files it was accessing before the transition are the same objects.
 It is forced to assume that no object has been renamed, and, unless
 there are guarantees that provide this (e.g., the file system is
 read-only), problems for applications may occur. Therefore, use of
 such configurations should be limited to situations where the
 problems that this may cause can be tolerated.

8.4. Fsids and File System Transitions (as updated)

 Since fsids are generally only unique on a per-server basis, it is
 likely that they will change during a file system transition.
 Clients should not make the fsids received from the server visible to
 applications since they may not be globally unique, and because they
 may change during a file system transition event. Applications are
 best served if they are isolated from such transitions to the extent
 possible.

 Although normally a single source file system will transition to a
 single target file system, there is a provision for splitting a
 single source file system into multiple target file systems, by
 specifying the FSLI4F_MULTI_FS flag.

8.4.1. File System Splitting (as updated)

 When a file system transition is made and the fs_locations_info
 indicates that the file system in question may be split into multiple
 file systems (via the FSLI4F_MULTI_FS flag), the client SHOULD do
 GETATTRs to determine the fsid attribute on all known objects within
 the file system undergoing transition to determine the new file
 system boundaries.

 Clients may maintain the fsids passed to existing applications by
 mapping all of the fsids for the descendant file systems to the
 common fsid used for the original file system.

 Splitting a file system may be done on a transition between file
 systems of the same fileid class, since the fact that fileids are
 unique within the source file system ensure they will be unique in
 each of the target file systems.

Noveck & Lever Expires December 11, 2018 [Page 25]

Internet-Draft nfsv4.1-msns-update June 2018

8.5. The Change Attribute and File System Transitions (as updated)

 Since the change attribute is defined as a server-specific one,
 change attributes fetched from one server are normally presumed to be
 invalid on another server. Such a presumption is troublesome since
 it would invalidate all cached change attributes, requiring
 refetching. Even more disruptive, the absence of any assured
 continuity for the change attribute means that even if the same value
 is retrieved on refetch, no conclusions can be drawn as to whether
 the object in question has changed. The identical change attribute
 could be merely an artifact of a modified file with a different
 change attribute construction algorithm, with that new algorithm just
 happening to result in an identical change value.

 When the two file systems have consistent change attribute formats,
 and this fact is communicated to the client by reporting in the same
 change class, the client may assume a continuity of change attribute
 construction and handle this situation just as it would be handled
 without any file system transition.

8.6. Write Verifiers and File System Transitions (as updated)

 In a file system transition, the two file systems may be clustered in
 the handling of unstably written data. When this is the case, and
 the two file systems belong to the same write-verifier class, write
 verifiers returned from one system may be compared to those returned
 by the other and superfluous writes avoided.

 When two file systems belong to different write-verifier classes, any
 verifier generated by one must not be compared to one provided by the
 other. Instead, the two verifiers should be treated as not equal
 even when the values are identical.

8.7. Readdir Cookies and Verifiers and File System Transitions (as
 updated)

 In a file system transition, the two file systems may be consistent
 in their handling of READDIR cookies and verifiers. When this is the
 case, and the two file systems belong to the same readdir class,
 READDIR cookies and verifiers from one system may be recognized by
 the other and READDIR operations started on one server may be validly
 continued on the other, simply by presenting the cookie and verifier
 returned by a READDIR operation done on the first file system to the
 second.

 When two file systems belong to different readdir classes, any
 READDIR cookie and verifier generated by one is not valid on the

Noveck & Lever Expires December 11, 2018 [Page 26]

Internet-Draft nfsv4.1-msns-update June 2018

 second, and must not be presented to that server by the client. The
 client should act as if the verifier was rejected.

8.8. File System Data and File System Transitions (as updated)

 When multiple replicas exist and are used simultaneously or in
 succession by a client, applications using them will normally expect
 that they contain either the same data or data that is consistent
 with the normal sorts of changes that are made by other clients
 updating the data of the file system (with metadata being the same to
 the degree indicated by the fs_locations_info attribute). However,
 when multiple file systems are presented as replicas of one another,
 the precise relationship between the data of one and the data of
 another is not, as a general matter, specified by the NFSv4.1
 protocol. It is quite possible to present as replicas file systems
 where the data of those file systems is sufficiently different that
 some applications have problems dealing with the transition between
 replicas. The namespace will typically be constructed so that
 applications can choose an appropriate level of support, so that in
 one position in the namespace a varied set of replicas will be
 listed, while in another only those that are up-to-date may be
 considered replicas. The protocol does define three special cases of
 the relationship among replicas to be specified by the server and
 relied upon by clients:

 o When multiple replicas exist and are used simultaneously by a
 client (see the FSLIB4_CLSIMUL definition within
 fs_locations_info), they must designate the same data. Where file
 systems are writable, a change made on one instance must be
 visible on all instances, immediately upon the earlier of the
 return of the modifying requester or the visibility of that change
 on any of the associated replicas. This allows a client to use
 these replicas simultaneously without any special adaptation to
 the fact that there are multiple replicas, beyond adapting to the
 fact that locks obtained on one replica are maintained separately
 (i.e. under a different client ID). In this case, locks (whether
 share reservations or byte-range locks) and delegations obtained
 on one replica are immediately reflected on all replicas, in the
 sense that access from all other servers is prevented regardless
 of the replica used. However, because the servers are not
 required to treat two associated client IDs as representing the
 same client, it is best to access each file using only a single
 client ID.

 o When one replica is designated as the successor instance to
 another existing instance after return NFS4ERR_MOVED (i.e., the
 case of migration), the client may depend on the fact that all
 changes written to stable storage on the original instance are

Noveck & Lever Expires December 11, 2018 [Page 27]

Internet-Draft nfsv4.1-msns-update June 2018

 written to stable storage of the successor (uncommitted writes are
 dealt with in Section 8.6 above).

 o Where a file system is not writable but represents a read-only
 copy (possibly periodically updated) of a writable file system,
 clients have similar requirements with regard to the propagation
 of updates. They may need a guarantee that any change visible on
 the original file system instance must be immediately visible on
 any replica before the client transitions access to that replica,
 in order to avoid any possibility that a client, in effecting a
 transition to a replica, will see any reversion in file system
 state. The specific means of this guarantee varies based on the
 value of the fss_type field that is reported as part of the
 fs_status attribute (see Section 11.11 of [RFC5661]). Since these
 file systems are presumed to be unsuitable for simultaneous use,
 there is no specification of how locking is handled; in general,
 locks obtained on one file system will be separate from those on
 others. Since these are expected to be read-only file systems,
 this is not likely to pose an issue for clients or applications.

8.9. Lock State and File System Transitions (as updated)

 While accessing a file system, clients obtain locks enforced by the
 server which may prevent actions by other clients that are
 inconsistent with those locks.

 When access is transferred between replicas, clients need to be
 assured that the actions disallowed by holding these locks cannot
 have occurred during the transition. This can be ensured by the
 methods below. If at least one of these is not implemented, clients
 will not be assured of continuity of lock possession across a
 migration event.

 o Providing the client an opportunity to re-obtain his locks via a
 per-fs grace period on the destination server. Because the lock
 reclaim mechanism was originally defined to support server reboot,
 it implicitly assumes that file handles will on reclaim will be
 the same as those at open. In the case of migration this requires
 that source and destination servers use the same filehandles, as
 evidenced by using the same server scope (see Section 12.2 of the
 current document) or by showing this agreement using
 fs_locations_info (see Section 8.2 above).

 o Transferring locking state as part of the transition as described
 in Section 9 of the current document to provide Transparent State
 Migration.

https://datatracker.ietf.org/doc/html/rfc5661#section-11.11

Noveck & Lever Expires December 11, 2018 [Page 28]

Internet-Draft nfsv4.1-msns-update June 2018

 Of these, Transparent State Migration provides the smoother
 experience for clients in that there is no grace-period-based delay
 before new locks can be obtained. However, it requires a greater
 degree of inter-server co-ordination. In general, the servers taking
 part in migration are free to provide either facility. However, when
 the filehandles can differ across the migration event, Transparent
 State Migration is the only available means of providing the needed
 functionality.

 It should be noted that these two methods are not mutually exclusive
 and that a server might well provide both. In particular, if there
 is some circumstance preventing a specific lock from being
 transferred transparently, the server can allow it to be reclaimed.

9. Transferring State upon Migration (to be added)

 When the transition is a result of a server-initiated decision to
 transition access and the source and destination servers have
 implemented appropriate co-operation, it is possible to:

 o Transfer locking state from the source to the destination server,
 in a fashion similar to that provide by Transparent State
 Migration in NFSv4.0, as described in [RFC7931]. Server
 responsibilities are described in Section 11.1 of the current
 document.

 o Transfer session state from the source to the destination server.
 Server responsibilities in effecting such a transfer are described
 in Section 11.2 of the current document.

 The means by which the client determines which of these transfer
 events has occurred are described in Section 10 of the current
 document.

9.1. Transparent State Migration and pNFS (to be added)

 When pNFS is involved, the protocol is capable of supporting:

 o Migration of the Metadata Server (MDS), leaving the Data Servers
 (DS's) in place.

 o Migration of the file system as a whole, including the MDS and
 associated DS's.

 o Replacement of one DS by another.

 o Migration of a pNFS file system to one in which pNFS is not used.

https://datatracker.ietf.org/doc/html/rfc7931

Noveck & Lever Expires December 11, 2018 [Page 29]

Internet-Draft nfsv4.1-msns-update June 2018

 o Migration of a file system not using pNFS to one in which layouts
 are available.

 Migration of the MDS function is directly supported by Transparent
 State Migration. Layout state will normally be transparently
 transferred, just as other state is. As a result, Transparent State
 Migration provides a framework in which, given appropriate inter-MDS
 data transfer, one MDS can be substituted for another.

 Migration of the file system function as a whole can be accomplished
 by recalling all layouts as part of the initial phase of the
 migration process. As a result, IO will be done through the MDS
 during the migration process, and new layouts can be granted once the
 client is interacting with the new MDS. An MDS can also effect this
 sort of transition by revoking all layouts as part of Transparent
 State Migration, as long as the client is notified about the loss of
 locking state.

 In order to allow migration to a file system on which pNFS is not
 supported, clients need to be prepared for a situation in which
 layouts are not available or supported on the destination file system
 and so direct IO requests to the destination server, rather than
 depending on layouts being available.

 Replacement of one DS by another is not addressed by migration as
 such but can be effected by an MDS recalling layouts for the DS to be
 replaced and issuing new ones to be served by the successor DS.

 Migration may transfer a file system from a server which does not
 support pNFS to one which does. In order to properly adapt to this
 situation, clients which support pNFS, but function adequately in its
 absence should check for pNFS support when a file system is migrated
 and be prepared to use pNFS when support is available on the
 destination.

10. Client Responsibilities when Access is Transitioned (to be added)

 For a client to respond to an access transition, it must be made
 aware of it. The ways in which this can happen are discussed in

Section 10.1 which discusses indications that a specific file system
 access path has transitioned as well as situations in which
 additional activity is necessary to determine the set of file systems
 that have been migrated. Section 10.2 goes on to complete the
 discussion of how the set of migrated file systems might be
 determined. Sections 10.3 through 10.5 discuss how the client should
 deal with each transition it becomes aware of, either directly or as
 a result of migration discovery.

Noveck & Lever Expires December 11, 2018 [Page 30]

Internet-Draft nfsv4.1-msns-update June 2018

 The following terms are used to describe client activities:

 o "Transition recovery" refers to the process of restoring access to
 a file system on which NFS4ERR_MOVED was received.

 o "Migration recovery" to that subset of transition recovery which
 applies when the file system has migrated to a different replica.

 o "Migration discovery" refers to the process of determining which
 file system(s) have been migrated. It is necessary to avoid a
 situation in which leases could expire when a file system is not
 accessed for a long period of time, since a client unaware of the
 migration might be referencing an unmigrated file system and not
 renewing the lease associated with the migrated file system.

10.1. Client Transition Notifications (to be added)

 When there is a change in the network access path which a client is
 to use to access a file system, there are a number of related status
 indications with which clients need to deal:

 o If an attempt is made to use or return a filehandle within a file
 system that is no longer accessible at the address previously used
 to access it, the error NFS4ERR_MOVED is returned.

 Exceptions are made to allow such file handles to be used when
 interrogating a location attribute. This enables a client to
 determine a new replica's location or a new network access path.

 This condition continues on subsequent attempts to access the file
 system in question. The only way the client can avoid the error
 is to cease accessing the filesystem in question at its old server
 location and access it instead using a different address at which
 it is now available.

 o Whenever a SEQUENCE operation is sent by a client to a server
 which generated state held on that client which is associated with
 a file system that is no longer accessible on the server at which
 it was previously available, a lease-migrated indication, in the
 form the SEQ4_STATUS_LEASE_MOVED status bit being set, appears in
 the response.

 This condition continues until the client acknowledges the
 notification by fetching a location attribute for the file system
 whose network access path is being changed. When there are
 multiple such file systems, a location attribute for each such
 file system needs to be fetched. The location attribute for all
 migrated file system needs to be fetched in order to clear the

Noveck & Lever Expires December 11, 2018 [Page 31]

Internet-Draft nfsv4.1-msns-update June 2018

 condition. Even after the condition is cleared, the client needs
 to respond by using the location information to access the file
 system at its new location to ensure that leases are not
 needlessly expired.

 Unlike the case of NFSv4.0, in which the corresponding conditions are
 both errors and thus mutually exclusive, in NFSv4.1 the client can,
 and often will, receive both indications on the same request. As a
 result, implementations need to address the question of how to co-
 ordinate the necessary recovery actions when both indications arrive
 in the response to the same request. It should be noted that when
 processing an NFSv4 COMPOUND, the server decides whether
 SEQ4_STATUS_LEASE_MOVED is to be set before it determines which file
 system will be referenced or whether NFS4ERR_MOVED is to be returned.

 Since these indications are not mutually exclusive in NFSv4.1, the
 following combinations are possible results when a COMPOUND is
 issued:

 o The COMPOUND status is NFS4ERR_MOVED and SEQ4_STATUS_LEASE_MOVED
 is asserted.

 In this case, transition recovery is required. While it is
 possible that migration discovery is needed in addition, it is
 likely that only the accessed file system has transitioned. In
 any case, because addressing NFS4ERR_MOVED is necessary to allow
 the rejected requests to be processed on the target, dealing with
 it will typically have priority over migration discovery.

 o The COMPOUND status is NFS4ERR_MOVED and SEQ4_STATUS_LEASE_MOVED
 is clear.

 In this case, transition recovery is also required. It is clear
 that migration discovery is not needed to find file systems that
 have been migrated other that the one returning NFS4ERR_MOVED.
 Cases in which this result can arise include a referral or a
 migration for which there is no associated locking state. This
 can also arise in cases in which an access path transition other
 than migration occurs within the same server. In such a case,
 there is no need to set SEQ4_STATUS_LEASE_MOVED, since the lease
 remains associated with the current server even though the access
 path has changed.

 o The COMPOUND status is not NFS4ERR_MOVED and
 SEQ4_STATUS_LEASE_MOVED is asserted.

Noveck & Lever Expires December 11, 2018 [Page 32]

Internet-Draft nfsv4.1-msns-update June 2018

 In this case, no transition recovery activity is required on the
 file system(s) accessed by the request. However, to prevent
 avoidable lease expiration, migration discovery needs to be done

 o The COMPOUND status is not NFS4ERR_MOVED and
 SEQ4_STATUS_LEASE_MOVED is clear.

 In this case, neither transition-related activity nor migration
 discovery is required.

 Note that the specified actions only need to be taken if they are not
 already going on. For example NFS4ERR_MOVED on a file system for
 which transition recovery already going on merely waits for that
 recovery to be completed while SEQ4_STATUS_LEASE_MOVED only needs to
 initiate migration discovery for a server if it is not going on for
 that server.

 The fact that a lease-migrated condition does not result in an error
 in NFSv4.1 has a number of important consequences. In addition to
 the fact, discussed above, that the two indications are not mutually
 exclusive, there are number of issues that are important in
 considering implementation of migration discovery, as discussed in

Section 10.2.

 Because of the absence of NFSV4ERR_LEASE_MOVED, it is possible for
 file systems whose access path has not changed to be successfully
 accessed on a given server even though recovery is necessary for
 other file systems on the same server. As a result, access can go on
 while,

 o The migration discovery process is going on for that server.

 o The transition recovery process is going on for on other file
 systems connected to that server.

10.2. Performing Migration Discovery (to be added)

 Migration discovery can be performed in the same context as
 transition recovery, allowing recovery for each migrated file system
 to be invoked as it is discovered. Alternatively, it may be done in
 a separate migration discovery thread, allowing migration discovery
 to be done in parallel with one or more instances of transition
 recovery.

 In either case, because the lease-migrated indication does not result
 in an error. other access to file systems on the server can proceed
 normally, with the possibility that further such indications will be

Noveck & Lever Expires December 11, 2018 [Page 33]

Internet-Draft nfsv4.1-msns-update June 2018

 received, raising the issue of how such indications are to be dealt
 with. In general,

 o No action needs to be taken for such indications received by the
 those performing migration discovery, since continuation of that
 work will address the issue.

 o In other cases in which migration discovery is currently being
 performed, nothing further needs to be done to respond to such
 lease migration indications, as long as one can be certain that
 the migration discovery process would deal with those indications.
 See below for details.

 o For such indications received in all other contexts, the
 appropriate response is to initiate or otherwise provide for the
 execution of migration discovery for file systems associated with
 the server IP address returning the indication.

 This leaves a potential difficulty in situations in which the
 migration discovery process is near to completion but is still
 operating. One should not ignore a LEASE_MOVED indication if the
 migration discovery process is not able to respond to the discovery
 of additional migrating file system without additional aid. A
 further complexity relevant in addressing such situations is that a
 lease-migrated indication may reflect the server's state at the time
 the SEQUENCE operation was processed, which may be different from
 that in effect at the time the response is received. Because new
 migration events may occur at any time, and because a LEASE_MOVED
 indication may reflect the situation in effect a considerable time
 before the indication is received, special care needs to be taken to
 ensure that LEASE_MOVED indications are not inappropriately ignored.

 A useful approach to this issue involves the use of separate
 externally-visible migration discovery states for each server.
 Separate values could represent the various possible states for the
 migration discovery process for a server:

 o non-operation, in which migration discovery is not being performed

 o normal operation, in which there is an ongoing scan for migrated
 file systems.

 o completion/verification of migration discovery processing, in
 which the possible completion of migration discovery processing
 needs to be verified.

 Given that framework, migration discovery processing would proceed as
 follows.

Noveck & Lever Expires December 11, 2018 [Page 34]

Internet-Draft nfsv4.1-msns-update June 2018

 o While in the normal-operation state, the thread performing
 discovery would fetch, for successive file systems known to the
 client on the server being worked on, a location attribute plus
 the fs_status attribute.

 o If the fs_status attribute indicates that the file system is a
 migrated one (i.e. fss_absent is true and fss_type !=
 STATUS4_REFERRAL) and thus that it is likely that the fetch of the
 location attribute has cleared one the file systems contributing
 to the lease-migrated indication.

 o In cases in which that happened, the thread cannot know whether
 the lease-migrated indication has been cleared and so it enters
 the completion/verification state and proceeds to issue a COMPOUND
 to see if the LEASE_MOVED indication has been cleared.

 o When the discovery process is in the completion/verification
 state, if others get a lease-migrated indication they note the it
 was received and the existence of such indications is used when
 the request completes, as described below.

 When the request used in the completion/verification state completes:

 o If a lease-migrated indication is returned, the discovery
 continues normally. Note that this is so even if all file systems
 have traversed, since new migrations could have occurred while the
 process was going on.

 o Otherwise, if there is any record that other requests saw a lease-
 migrated indication, that record is cleared and the verification
 request retried. The discovery process remains in completion/
 verification state.

 o If there have been no lease-migrated indications, the work of
 migration discovery is considered completed and it enters the non-
 operating state. Once it enters this state, subsequent lease-
 migrated indication will trigger a new migration discovery
 process.

 It should be noted that the process described above is not guaranteed
 to terminate, as a long series of new migration events might
 continually delay the clearing of the LEASE_MOVED indication. To
 prevent unnecessary lease expiration, it is appropriate for clients
 to use the discovery of migrations to effect lease renewal
 immediately, rather than waiting for clearing of the LEASE_MOVED
 indication when the complete set of migrations is available.

Noveck & Lever Expires December 11, 2018 [Page 35]

Internet-Draft nfsv4.1-msns-update June 2018

10.3. Overview of Client Response to NFS4ERR_MOVED (to be added)

 This section outlines a way in which a client that receives
 NFS4ERR_MOVED can effect transition recovery by using a new server or
 server endpoint if one is available. As part of that process, it
 will determine:

 o Whether the NFS4ERR_MOVED indicates migration has occurred, or
 whether it indicates another sort of file system access transition
 as discussed in Section 7 above.

 o In the case of migration, whether Transparent State Migration has
 occurred.

 o Whether any state has been lost during the process of Transparent
 State Migration.

 o Whether sessions have been transferred as part of Transparent
 State Migration.

 During the first phase of this process, the client proceeds to
 examine location entries to find the initial network address it will
 use to continue access to the file system or its replacement. For
 each location entry that the client examines, the process consists of
 five steps:

 1. Performing an EXCHANGE_ID directed at the location address. This
 operation is used to register the client-owner with the server,
 to obtain a client ID to be use subsequently to communicate with
 it, to obtain tat client ID's confirmation status and, to
 determine server_owner and scope for the purpose of determining
 if the entry is trunkable with that previously being used to
 access the file system (i.e. that it represents another network
 access path to the same file system and can share locking state
 with it).

 2. Making an initial determination of whether migration has
 occurred. The initial determination will be based on whether the
 EXCHANGE_ID results indicate that the current location element is
 server-trunkable with that used to access the file system when
 access was terminated by receiving NFS4ERR_MOVED. If it is, then
 migration has not occurred and the transition is dealt with, at
 least initially, as one involving continued access to the same
 file system on the same server through a new network address.

 3. Obtaining access to existing session state or creating new
 sessions. How this is done depends on the initial determination
 of whether migration has occurred and can be done as described in

Noveck & Lever Expires December 11, 2018 [Page 36]

Internet-Draft nfsv4.1-msns-update June 2018

Section 10.4 below in the case of migration or as described in
Section 10.5 below in the case of a network address transfer

 without migration.

 4. Verification of the trunking relationship assumed in step 2 as
 discussed in Section 2.10.5.1 of [RFC5661]. Although this step
 will generally confirm the initial determination, it is possible
 for verification to fail with the result that an initial
 determination that a network address shift (without migration)
 has occurred may be invalidated and migration determined to have
 occurred. There is no need to redo step 3 above, since it will
 be possible to continue use of the session established already.

 5. Obtaining access to existing locking state and/or reobtaining it.
 How this is done depends on the final determination of whether
 migration has occurred and can be done as described below in

Section 10.4 in the case of migration or as described in
Section 10.5 in the case of a network address transfer without

 migration.

 Once the initial address has been determined, clients are free to
 apply an abbreviated process to find additional addresses trunkable
 with it (clients may seek session-trunkable or server-trunkable
 addresses depending on whether they support clientid trunking).
 During this later phase of the process, further location entries are
 examined using the abbreviated procedure specified below:

 1. Before the EXCHANGE_ID, the fs name of the location entry is
 examined and if it does not match that currently being used, the
 entry is ignored. otherwise, one proceeds as specified by step 1
 above,.

 2. In the case that the network address is session-trunkable with
 one used previously a BIND_CONN_TO_SESSION is used to access that
 session using new network address. Otherwise, or if the bind
 operation fails, a CREATE_SESSION is done.

 3. The verification procedure referred to in step 4 above is used.
 However, if it fails, the entry is ignored and the next available
 entry is used.

10.4. Obtaining Access to Sessions and State after Migration (to be
 added)

 In the event that migration has occurred, migration recovery will
 involve determining whether Transparent State Migration has occurred.
 This decision is made based on the client ID returned by the
 EXCHANGE_ID and the reported confirmation status.

https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.5.1

Noveck & Lever Expires December 11, 2018 [Page 37]

Internet-Draft nfsv4.1-msns-update June 2018

 o If the client ID is an unconfirmed client ID not previously known
 to the client, then Transparent State Migration has not occurred.

 o If the client ID is a confirmed client ID previously known to the
 client, then any transferred state would have been merged with an
 existing client ID representing the client to the destination
 server. In this state merger case, Transparent State Migration
 might or might not have occurred and a determination as to whether
 it has occurred is deferred until sessions are established and the
 client is ready to begin state recovery.

 o If the client ID is a confirmed client ID not previously known to
 the client, then the client can conclude that the client ID was
 transferred as part of Transparent State Migration. In this
 transferred client ID case, Transparent State Migration has
 occurred although some state may have been lost.

 Once the client ID has been obtained, it is necessary to obtain
 access to sessions to continue communication with the new server. In
 any of the cases in which Transparent State Migration has occurred,
 it is possible that a session was transferred as well. To deal with
 that possibility, clients can, after doing the EXCHANGE_ID, issue a
 BIND_CONN_TO_SESSION to connect the transferred session to a
 connection to the new server. If that fails, it is an indication
 that the session was not transferred and that a new session needs to
 be created to take its place.

 In some situations, it is possible for a BIND_CONN_TO_SESSION to
 succeed without session migration having occurred. If state merger
 has taken place then the associated client ID may have already had a
 set of existing sessions, with it being possible that the sessionid
 of a given session is the same as one that might have been migrated.
 In that event, a BIND_CONN_TO_SESSION might succeed, even though
 there could have been no migration of the session with that
 sessionid.

 Once the client has determined the initial migration status, and
 determined that there was a shift to a new server, it needs to re-
 establish its locking state, if possible. To enable this to happen
 without loss of the guarantees normally provided by locking, the
 destination server needs to implement a per-fs grace period in all
 cases in which lock state was lost, including those in which
 Transparent State Migration was not implemented.

 Clients need to be deal with the following cases:

 o In the state merger case, it is possible that the server has not
 attempted Transparent State Migration, in which case state may

Noveck & Lever Expires December 11, 2018 [Page 38]

Internet-Draft nfsv4.1-msns-update June 2018

 have been lost without it being reflected in the SEQ4_STATUS bits.
 To determine whether this has happened, the client can use
 TEST_STATEID to check whether the stateids created on the source
 server are still accessible on the destination server. Once a
 single stateid is found to have been successfully transferred, the
 client can conclude that Transparent State Migration was begun and
 any failure to transport all of the stateids will be reflected in
 the SEQ4_STATUS bits. Otherwise. Transparent State Migration has
 not occurred.

 o In a case in which Transparent State Migration has not occurred,
 the client can use the per-fs grace period provided by the
 destination server to reclaim locks that were held on the source
 server.

 o In a case in which Transparent State Migration has occurred, and
 no lock state was lost (as shown by SEQ4_STATUS flags), no lock
 reclaim is necessary.

 o In a case in which Transparent State Migration has occurred, and
 some lock state was lost (as shown by SEQ4_STATUS flags), existing
 stateids need to be checked for validity using TEST_STATEID, and
 reclaim used to re-establish any that were not transferred.

 For all of the cases above, RECLAIM_COMPLETE with an rca_one_fs value
 of true should be done before normal use of the file system including
 obtaining new locks for the file system. This applies even if no
 locks were lost and there was no need for any to be reclaimed.

10.5. Obtaining Access to Sessions and State after Network Address
 Transfer (to be added)

 The case in which there is a transfer to a new network address
 without migration is similar to that described in Section 10.4 above
 in that there is a need to obtain access to needed sessions and
 locking state. However, the details are simpler and will vary
 depending on the type of trunking between the address receiving
 NFS4ERR_MOVED and that to which the transfer is to be made

 To make a session available for use, a BIND_CONN_TO_SESSION should be
 used to obtain access to the session previously in use. Only if this
 fails, should a CREATE_SESSION be done. While this procedure mirrors
 that in Section 10.4 above, there is an important difference in that
 preservation of the session is not purely optional but depends on the
 type of trunking.

 Access to appropriate locking state should need no actions beyond
 access to the session. However. the SEQ4_STATUS bits should be

Noveck & Lever Expires December 11, 2018 [Page 39]

Internet-Draft nfsv4.1-msns-update June 2018

 checked for lost locking state, including the need to reclaim locks
 after a server reboot.

11. Server Responsibilities Upon Migration (to be added)

 In order to effect Transparent State Migration and possibly session
 migration, the source and server need to co-operate to transfer
 certain client-relevant information. The sections below discuss the
 information to be transferred but do not define the specifics of the
 transfer protocol. This is left as an implementation choice although
 standards in this area could be developed at a later time.

 Transparent State Migration and session migration are discussed
 separately, in Sections 11.1 and 11.2 below respectively. In each
 case, the discussion addresses the issue of providing the client a
 consistent view of the transferred state, even though the transfer
 might take an extended time.

11.1. Server Responsibilities in Effecting Transparent State Migration
 (to be added)

 The basic responsibility of the source server in effecting
 Transparent State Migration is to make available to the destination
 server a description of each piece of locking state associated with
 the file system being migrated. In addition to client id string and
 verifier, the source server needs to provide, for each stateid:

 o The stateid including the current sequence value.

 o The associated client ID.

 o The handle of the associated file.

 o The type of the lock, such as open, byte-range lock, delegation,
 layout.

 o For locks such as opens and byte-range locks, there will be
 information about the owner(s) of the lock.

 o For recallable/revocable lock types, the current recall status
 needs to be included.

 o For each lock type there will by type-specific information, such
 as share and deny modes for opens and type and byte ranges for
 byte-range locks and layouts.

 A further server responsibility concerns locks that are revoked or
 otherwise lost during the process of file system migration. Because

Noveck & Lever Expires December 11, 2018 [Page 40]

Internet-Draft nfsv4.1-msns-update June 2018

 locks that appear to be lost during the process of migration will be
 reclaimed by the client, the servers have to take steps to ensure
 that locks revoked soon before or soon after migration are not
 inadvertently allowed to be reclaimed in situations in which the
 continuity of lock possession cannot be assured.

 o For locks lost on the source but whose loss has not yet been
 acknowledged by the client (by using FREE_STATEID), the
 destination must be aware of this loss so that it can deny a
 request to reclaim them.

 o For locks lost on the destination after the state transfer but
 before the client's RECLAIM_COMPLTE is done, the destination
 server should note these and not allow them to be reclaimed.

 An additional responsibility of the cooperating servers concerns
 situations in which a stateid cannot be transferred transparently
 because it conflicts with an existing stateid held by the client and
 associated with a different file system. In this case there are two
 valid choices:

 o Treat the transfer, as in NFSv4.0, as one without Transparent
 State Migration. In this case, conflicting locks cannot be
 granted until the client does a RECLAIM_COMPLETE, after reclaiming
 the locks it had, with the exception of reclaims denied because
 they were attempts to reclaim locks that had been lost.

 o Implement Transparent State Migration, except for the lock with
 the conflicting stateid. In this case, the client will be aware
 of a lost lock (through the SEQ4_STATUS flags) and be allowed to
 reclaim it.

 When transferring state between the source and destination, the
 issues discussed in Section 7.2 of [RFC7931] must still be attended
 to. In this case, the use of NFS4ERR_DELAY may still necessary in
 NFSv4.1, as it was in NFSv4.0, to prevent locking state changing
 while it is being transferred.

 There are a number of important differences in the NFS4.1 context:

 o The absence of RELEASE_LOCKOWNER means that the one case in which
 an operation could not be deferred by use of NFS4ERR_DELAY no
 longer exists.

 o Sequencing of operations is no longer done using owner-based
 operation sequences numbers. Instead, sequencing is session-
 based

https://datatracker.ietf.org/doc/html/rfc7931#section-7.2

Noveck & Lever Expires December 11, 2018 [Page 41]

Internet-Draft nfsv4.1-msns-update June 2018

 As a result, when sessions are not transferred, the techniques
 discussed in Section 7.2 of [RFC7931] are adequate and will not be
 further discussed.

11.2. Server Responsibilities in Effecting Session Transfer (to be
 added)

 The basic responsibility of the source server in effecting session
 transfer is to make available to the destination server a description
 of the current state of each slot with the session, including:

 o The last sequence value received for that slot.

 o Whether there is cached reply data for the last request executed
 and, if so, the cached reply.

 When sessions are transferred, there are a number of issues that pose
 challenges in terms of making the transferred state unmodifiable
 during the period it is gathered up and transferred to the
 destination server.

 o A single session may be used to access multiple file systems, not
 all of which are being transferred.

 o Requests made on a session may, even if rejected, affect the state
 of the session by advancing the sequence number associated with
 the slot used.

 As a result, when the filesystem state might otherwise be considered
 unmodifiable, the client might have any number of in-flight requests,
 each of which is capable of changing session state, which may be of a
 number of types:

 1. Those requests that were processed on the migrating file system,
 before migration began.

 2. Those requests which got the error NFS4ERR_DELAY because the file
 system being accessed was in the process of being migrated.

 3. Those requests which got the error NFS4ERR_MOVED because the file
 system being accessed had been migrated.

 4. Those requests that accessed the migrating file system, in order
 to obtain location or status information.

 5. Those requests that did not reference the migrating file system.

https://datatracker.ietf.org/doc/html/rfc7931#section-7.2

Noveck & Lever Expires December 11, 2018 [Page 42]

Internet-Draft nfsv4.1-msns-update June 2018

 It should be noted that the history of any particular slot is likely
 to include a number of these request classes. In the case in which a
 session which is migrated is used by filesystems other than the one
 migrated, requests of class 5 may be common and be the last request
 processed, for many slots.

 Since session state can change even after the locking state has been
 fixed as part of the migration process, the session state known to
 the client could be different from that on the destination server,
 which necessarily reflects the session state on the source server, at
 an earlier time. In deciding how to deal with this situation, it is
 helpful to distinguish between two sorts of behavioral consequences
 of the choice of initial sequence ID values.

 o The error NFS4ERR_SEQ_MISORDERED is returned when the sequence ID
 in a request is neither equal to the last one seen for the current
 slot nor the next greater one.

 In view of the difficulty of arriving at a mutually acceptable
 value for the correct last sequence value at the point of
 migration, it may be necessary for the server to show some degree
 of forbearance, when the sequence ID is one that would be
 considered unacceptable if session migration were not involved.

 o Returning the cached reply for a previously executed request when
 the sequence ID in the request matches the last value recorded for
 the slot.

 In the cases in which an error is returned and there is no
 possibility of any non-idempotent operation having been executed,
 it may not be necessary to adhere to this as strictly as might be
 proper if session migration were not involved. For example, the
 fact that the error NFS4ERR_DELAY was returned may not assist the
 client in any material way, while the fact that NFS4ERR_MOVED was
 returned by the source server may not be relevant when the request
 was reissued, directed to the destination server.

 One part of the necessary adaptation to these sorts of issues would
 restrict enforcement of normal slot sequence enforcement semantics
 until the client itself, by issuing a request using a particular slot
 on the destination server, established the new starting sequence for
 that slot on the migrated session.

 An important issue is that the specification needs to take note of
 all potential COMPOUNDs, even if they might be unlikely in practice.
 For example, a COMPOUND is allowed to access multiple file systems
 and might perform non-idempotent operations in some of them before
 accessing a file system being migrated. Also, a COMPOUND may return

Noveck & Lever Expires December 11, 2018 [Page 43]

Internet-Draft nfsv4.1-msns-update June 2018

 considerable data in the response, before being rejected with
 NFS4ERR_DELAY or NFS4ERR_MOVED, and may in addition be marked as
 sa_cachethis.

 To address these issues, the destination server MAY do any of the
 following.

 o Avoid enforcing any sequencing semantics for a particular slot
 until the client has established the starting sequence for that
 slot on the destination server.

 o For each slot, avoid returning a cached reply returning
 NFS4ERR_DELAY or NFS4ERR_MOVED until the client has established
 the starting sequence for that slot on the destination server.

 o Until the client has established the starting sequence for a
 particular slot on the destination server, avoid reporting
 NFS4ERR_SEQ_MISORDERED or return a cached reply returning
 NFS4ERR_DELAY or NFS4ERR_MOVED, where the reply consists solely of
 a series of operations where the response is NFS4_OK until the
 final error.

12. Changes to RFC5661 outside Section 11

 Beside the major rework of Section 11, there are a number of related
 changes that are necessary:

 o The summary that appeared in Section 1.7.3.3 of [RFC5661] needs to
 be revised to reflect the changes called for in Section 4 of the
 current document. The updated summary appears as Section 12.1
 below.

 o The discussion of server scope which appeared in Section 2.10.4 of
 [RFC5661] needs to be replaced, since the existing text appears to
 require a level of inter-server co-ordination incompatible with
 its basic function of avoiding the need for a globally uniform
 means of assigning server_owner values. A revised treatment
 appears Section 12.2 below.

 o While the last paragraph (exclusive of sub-sections) of
Section 2.10.5 in [RFC5661], dealing with server_owner changes, is

 literally true, it has been a source of confusion. Since the
 existing paragraph can be read as suggesting that such changes be
 dealt with non-disruptively, the treatment in Section 12.4 below
 needs to be substituted.

 o The existing definition of NFS4ERR_MOVED (in Section 15.1.2.4 of
 [RFC5661]) needs to be updated to reflect the different handling

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661#section-1.7.3.3
https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.4
https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.4
https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.5
https://datatracker.ietf.org/doc/html/rfc5661#section-15.1.2.4
https://datatracker.ietf.org/doc/html/rfc5661#section-15.1.2.4

Noveck & Lever Expires December 11, 2018 [Page 44]

Internet-Draft nfsv4.1-msns-update June 2018

 of unavailability of a particular fs via a specific network
 address. Since such a situation is no longer considered to
 constitute unavailability of a file system instance, the
 description needs to change even though the instances in which it
 is returned remain the same. The updated description appears in

Section 12.3 below.

 o The existing treatment of EXCHANGE_ID (in Section 18.35 of
 [RFC5661]) assumes that client IDs cannot be created/ confirmed
 other than by the EXCHANGE_ID and CREATE_SESSION operations.
 Also, the necessary use of EXCHANGE_ID in recovery from migration
 and related situations is not addressed clearly. A revised
 treatment of EXCHANGE_ID is necessary and it appears in Section 13
 below while the specific differences between it and the treatment
 within [RFC5661] are explained in Section 12.5 below.

12.1. (Introduction to) Multi-Server Namespace (as updated)

 NFSv4.1 contains a number of features to allow implementation of
 namespaces that cross server boundaries and that allow and facilitate
 a non-disruptive transfer of support for individual file systems
 between servers. They are all based upon attributes that allow one
 file system to specify alternate, additional, and new location
 information which specifies how the client may access to access that
 file system.

 These attributes can be used to provide for individual active file
 systems:

 o Alternate network addresses to access the current file system
 instance.

 o The locations of alternate file system instances or replicas to be
 used in the event that the current file system instance becomes
 unavailable.

 These attributes may be used together with the concept of absent file
 systems, in which a position in the server namespace is associated
 with locations on other servers without any file system instance on
 the current server.

 o Location attributes may be used with absent file systems to
 implement referrals whereby one server may direct the client to a
 file system provided by another server. This allows extensive
 multi-server namespaces to be constructed.

https://datatracker.ietf.org/doc/html/rfc5661#section-18.35
https://datatracker.ietf.org/doc/html/rfc5661#section-18.35
https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 45]

Internet-Draft nfsv4.1-msns-update June 2018

 o Location attributes may be provided when a previously present file
 system becomes absent. This allows non-disruptive migration of
 file systems to alternate servers.

12.2. Server Scope (as updated)

 Servers each specify a server scope value in the form of an opaque
 string eir_server_scope returned as part of the results of an
 EXCHANGE_ID operation. The purpose of the server scope is to allow a
 group of servers to indicate to clients that a set of servers sharing
 the same server scope value has arranged to use compatible values of
 otherwise opaque identifiers. Thus, the identifiers generated by two
 servers within that set can be assumed compatible so that, in some
 cases, identifiers by one server in that set that set may be
 presented to another server of the same scope.

 The use of such compatible values does not imply that a value
 generated by one server will always be accepted by another. In most
 cases, it will not. However, a server will not accept a value
 generated by another inadvertently. When it does accept it, it will
 be because it is recognized as valid and carrying the same meaning as
 on another server of the same scope.

 When servers are of the same server scope, this compatibility of
 values applies to the following identifiers:

 o Filehandle values. A filehandle value accepted by two servers of
 the same server scope denotes the same object. A WRITE operation
 sent to one server is reflected immediately in a READ sent to the
 other.

 o Server owner values. When the server scope values are the same,
 server owner value may be validly compared. In cases where the
 server scope values are different, server owner values are treated
 as different even if they contain identical strings of bytes.

 The coordination among servers required to provide such compatibility
 can be quite minimal, and limited to a simple partition of the ID
 space. The recognition of common values requires additional
 implementation, but this can be tailored to the specific situations
 in which that recognition is desired.

 Clients will have occasion to compare the server scope values of
 multiple servers under a number of circumstances, each of which will
 be discussed under the appropriate functional section:

 o When server owner values received in response to EXCHANGE_ID
 operations sent to multiple network addresses are compared for the

Noveck & Lever Expires December 11, 2018 [Page 46]

Internet-Draft nfsv4.1-msns-update June 2018

 purpose of determining the validity of various forms of trunking,
 as described in Section 4.5.2 of the current document.

 o When network or server reconfiguration causes the same network
 address to possibly be directed to different servers, with the
 necessity for the client to determine when lock reclaim should be
 attempted, as described in Section 8.4.2.1 of [RFC5661].

 When two replies from EXCHANGE_ID, each from two different server
 network addresses, have the same server scope, there are a number of
 ways a client can validate that the common server scope is due to two
 servers cooperating in a group.

 o If both EXCHANGE_ID requests were sent with RPCSEC_GSS ([RFC2203],
 [RFC5403], [RFC7861]) authentication and the server principal is
 the same for both targets, the equality of server scope is
 validated. It is RECOMMENDED that two servers intending to share
 the same server scope also share the same principal name.

 o The client may accept the appearance of the second server in the
 fs_locations or fs_locations_info attribute for a relevant file
 system. For example, if there is a migration event for a
 particular file system or there are locks to be reclaimed on a
 particular file system, the attributes for that particular file
 system may be used. The client sends the GETATTR request to the
 first server for the fs_locations or fs_locations_info attribute
 with RPCSEC_GSS authentication. It may need to do this in advance
 of the need to verify the common server scope. If the client
 successfully authenticates the reply to GETATTR, and the GETATTR
 request and reply containing the fs_locations or fs_locations_info
 attribute refers to the second server, then the equality of server
 scope is supported. A client may choose to limit the use of this
 form of support to information relevant to the specific file
 system involved (e.g. a file system being migrated).

12.3. Revised Treatment of NFS4ERR_MOVED

 Because the term "replica" is now used differently, the current
 description of NFS4ERR_MOVED needs to be changed to the one below.
 The new paragraph explicitly recognizes that a different network
 address might be used, while the previous description, misleadingly,
 treated this as a shift between two replicas while only a single file
 system instance might be involved.

 The file system that contains the current filehandle object is not
 accessible using the address on which the request was made. It
 still might be accessible using other addresses server-trunkable
 with it or it might not be present at the server. In the latter

https://datatracker.ietf.org/doc/html/rfc5661#section-8.4.2.1
https://datatracker.ietf.org/doc/html/rfc2203
https://datatracker.ietf.org/doc/html/rfc5403
https://datatracker.ietf.org/doc/html/rfc7861

Noveck & Lever Expires December 11, 2018 [Page 47]

Internet-Draft nfsv4.1-msns-update June 2018

 case, it might have been relocated or migrated to another server,
 or it might have never been present. The client may obtain
 information regarding access to the file system location by
 obtaining the "fs_locations" or "fs_locations_info" attribute for
 the current filehandle. For further discussion, refer to

Section 11 of [RFC5661], as modified by the current document.

12.4. Revised Discussion of Server_owner changes

 Because of problems with the treatment of such changes, the confusing
 paragraph, which simply says that such changes need to be dealt with,
 is to be replaced by the one below.

 It is always possible that, as a result of various sorts of
 reconfiguration events, eir_server_scope and eir_server_owner
 values may be different on subsequent EXCHANGE_ID requests made to
 the same network address.

 In most cases such reconfiguration events will be disruptive and
 indicate that an IP address formerly connected to one server is
 now connected to an entirely different one.

 Some guidelines on client handling of such situations follow:

 * When eir_server_scope changes, the client has no assurance that
 any id's it obtained previously (e.g. file handles) can be
 validly used on the new server, and, even if the new server
 accepts them, there is no assurance that this is not due to
 accident. Thus it is best to treat all such state as lost/
 stale although a client may assume that the probability of
 inadvertent acceptance is low and treat this situation as
 within the next case.

 * When eir_server_scope remains the same and
 eir_server_owner.so_major_id changes, the client can use
 filehandles it has and attempt reclaims. It may find that
 these are now stale but if NFS4ERR_STALE is not received, he
 can proceed to reclaim his opens.

 * When eir_server_scope and eir_server_owner.so_major_id remain
 the same, the client has to use the now-current values of
 eir_server_owner.so_minor_id in deciding on appropriate forms
 of trunking.

https://datatracker.ietf.org/doc/html/rfc5661#section-11

Noveck & Lever Expires December 11, 2018 [Page 48]

Internet-Draft nfsv4.1-msns-update June 2018

12.5. Revision to Treatment of EXCHANGE_ID

 There are a number of issues in the original treatment of EXCHANGE_ID
 (in [RFC5661]) that cause problems for Transparent State Migration
 and for the transfer of access between different network access paths
 to the same file system instance.

 These issues arise from the fact that this treatment was written:

 o assuming that a client ID can only become known to a server by
 having been created by executing an EXCHANGE_ID, with confirmation
 of the ID only possible by execution of a CREATE_SESSION.

 o Considering the interactions between a client and a server only on
 a single network address

 As these assumptions have become invalid in the context of
 Transparent State Migration and active use of trunking, the treatment
 has been modified in several respects.

 o It had been assumed that an EXCHANGED_ID executed when the server
 is already aware of a given client instance must be either
 updating associated parameters (e.g. with respect to callbacks) or
 a lingering retransmission to deal with a previously lost reply.
 As result, any slot sequence returned would be of no use. The
 existing treatment goes so far as to say that it "MUST NOT" be
 used, although this usage is not in accord with [RFC2119]. This
 created a difficulty when an EXCHANGE_ID is done after Transparent
 State Migration since that slot sequence needs to be used in a
 subsequent CREATE_SESSION.

 In the updated treatment, CREATE_SESSION is a way that client IDs
 are confirmed but it is understood that other ways are possible.
 The slot sequence can be used as needed and cases in which it
 would be of no use are appropriately noted.

 o It was assumed that the only functions of EXCHANGE_ID were to
 inform the server of the client, create the client ID, and
 communicate it to the client. When multiple simultaneous
 connections are involved, as often happens when trunking, that
 treatment was inadequate in that it ignored the role of
 EXCHANGE_ID in associating the client ID with the connection on
 which it was done, so that it could be used by a subsequent
 CREATE_SESSSION, whose parameters do not include an explicit
 client ID.

 The new treatment explicitly discusses the role of EXCHANGE_ID in
 associating the client ID with the connection so it can be used by

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc2119

Noveck & Lever Expires December 11, 2018 [Page 49]

Internet-Draft nfsv4.1-msns-update June 2018

 CREATE_SESSION and in associating a connection with an existing
 session.

 The new treatment can be found in Section 13 below. It is intended
 to supersede the treatment in Section 18.35 of [RFC5661]. Publishing
 a complete replacement for Section 18.35 allows the corrected
 definition to be read as a whole once [RFC5661] is updated

13. Operation 42: EXCHANGE_ID - Instantiate Client ID (as updated)

 The EXCHANGE_ID exchanges long-hand client and server identifiers
 (owners), and provides access to a client ID, creating one if
 necessary. This client ID becomes associated with the connection on
 which the operation is done, so that it is available when a
 CREATE_SESSION is done or when the connection is used to issue a
 request on an existing session associated with the current client.

13.1. ARGUMENT

 const EXCHGID4_FLAG_SUPP_MOVED_REFER = 0x00000001;
 const EXCHGID4_FLAG_SUPP_MOVED_MIGR = 0x00000002;

 const EXCHGID4_FLAG_BIND_PRINC_STATEID = 0x00000100;

 const EXCHGID4_FLAG_USE_NON_PNFS = 0x00010000;
 const EXCHGID4_FLAG_USE_PNFS_MDS = 0x00020000;
 const EXCHGID4_FLAG_USE_PNFS_DS = 0x00040000;

 const EXCHGID4_FLAG_MASK_PNFS = 0x00070000;

 const EXCHGID4_FLAG_UPD_CONFIRMED_REC_A = 0x40000000;
 const EXCHGID4_FLAG_CONFIRMED_R = 0x80000000;

 struct state_protect_ops4 {
 bitmap4 spo_must_enforce;
 bitmap4 spo_must_allow;
 };

 struct ssv_sp_parms4 {
 state_protect_ops4 ssp_ops;
 sec_oid4 ssp_hash_algs<>;
 sec_oid4 ssp_encr_algs<>;
 uint32_t ssp_window;
 uint32_t ssp_num_gss_handles;
 };

 enum state_protect_how4 {
 SP4_NONE = 0,

https://datatracker.ietf.org/doc/html/rfc5661#section-18.35
https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 50]

Internet-Draft nfsv4.1-msns-update June 2018

 SP4_MACH_CRED = 1,
 SP4_SSV = 2
 };

 union state_protect4_a switch(state_protect_how4 spa_how) {
 case SP4_NONE:
 void;
 case SP4_MACH_CRED:
 state_protect_ops4 spa_mach_ops;
 case SP4_SSV:
 ssv_sp_parms4 spa_ssv_parms;
 };

 struct EXCHANGE_ID4args {
 client_owner4 eia_clientowner;
 uint32_t eia_flags;
 state_protect4_a eia_state_protect;
 nfs_impl_id4 eia_client_impl_id<1>;
 };

13.2. RESULT

Noveck & Lever Expires December 11, 2018 [Page 51]

Internet-Draft nfsv4.1-msns-update June 2018

 struct ssv_prot_info4 {
 state_protect_ops4 spi_ops;
 uint32_t spi_hash_alg;
 uint32_t spi_encr_alg;
 uint32_t spi_ssv_len;
 uint32_t spi_window;
 gsshandle4_t spi_handles<>;
 };

 union state_protect4_r switch(state_protect_how4 spr_how) {
 case SP4_NONE:
 void;
 case SP4_MACH_CRED:
 state_protect_ops4 spr_mach_ops;
 case SP4_SSV:
 ssv_prot_info4 spr_ssv_info;
 };

 struct EXCHANGE_ID4resok {
 clientid4 eir_clientid;
 sequenceid4 eir_sequenceid;
 uint32_t eir_flags;
 state_protect4_r eir_state_protect;
 server_owner4 eir_server_owner;
 opaque eir_server_scope<NFS4_OPAQUE_LIMIT>;
 nfs_impl_id4 eir_server_impl_id<1>;
 };

 union EXCHANGE_ID4res switch (nfsstat4 eir_status) {
 case NFS4_OK:
 EXCHANGE_ID4resok eir_resok4;

 default:
 void;
 };

13.3. DESCRIPTION

 The client uses the EXCHANGE_ID operation to register a particular
 client_owner with the server. However, when the client_owner has
 been already been registered by other means (e.g. Transparent State
 Migration), the client may still use EXCHANGE_ID to obtain the client
 ID assigned previously.

 The client ID returned from this operation will be associated with
 the connection on which the EXHANGE_ID is received and will serve as
 a parent object for sessions created by the client on this connection
 or to which the connection is bound. As a result of using those

Noveck & Lever Expires December 11, 2018 [Page 52]

Internet-Draft nfsv4.1-msns-update June 2018

 sessions to make requests involving the creation of state, that state
 will become associated with the client ID returned.

 In situations in which the registration of the client_owner has not
 occurred previously, the client ID must first be used, along with the
 returned eir_sequenceid, in creating an associated session using
 CREATE_SESSION.

 If the flag EXCHGID4_FLAG_CONFIRMED_R is set in the result,
 eir_flags, then it is an indication that the registration of the
 client_owner has already occurred and that a further CREATE_SESSION
 is not needed to confirm it. Of course, subsequent CREATE_SESSION
 operations may be needed for other reasons.

 The value eir_sequenceid is used to establish an initial sequence
 value associate with the client ID returned. In cases in which a
 CREATE_SESSION has already been done, there is no need for this
 value, since sequencing of such request has already been established
 and the client has no need for this value and will ignore it

 EXCHANGE_ID MAY be sent in a COMPOUND procedure that starts with
 SEQUENCE. However, when a client communicates with a server for the
 first time, it will not have a session, so using SEQUENCE will not be
 possible. If EXCHANGE_ID is sent without a preceding SEQUENCE, then
 it MUST be the only operation in the COMPOUND procedure's request.
 If it is not, the server MUST return NFS4ERR_NOT_ONLY_OP.

 The eia_clientowner field is composed of a co_verifier field and a
 co_ownerid string. As noted in section 2.4 of [RFC5661], the
 co_ownerid describes the client, and the co_verifier is the
 incarnation of the client. An EXCHANGE_ID sent with a new
 incarnation of the client will lead to the server removing lock state
 of the old incarnation. Whereas an EXCHANGE_ID sent with the current
 incarnation and co_ownerid will result in an error or an update of
 the client ID's properties, depending on the arguments to
 EXCHANGE_ID.

 A server MUST NOT use the same client ID for two different
 incarnations of an eir_clientowner.

 In addition to the client ID and sequence ID, the server returns a
 server owner (eir_server_owner) and server scope (eir_server_scope).
 The former field is used for network trunking as described in

Section 2.10.54 of [RFC5661]. The latter field is used to allow
 clients to determine when client IDs sent by one server may be
 recognized by another in the event of file system migration (see

Section 8.9 of the current document).

https://datatracker.ietf.org/doc/html/rfc5661#section-2.4
https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.54

Noveck & Lever Expires December 11, 2018 [Page 53]

Internet-Draft nfsv4.1-msns-update June 2018

 The client ID returned by EXCHANGE_ID is only unique relative to the
 combination of eir_server_owner.so_major_id and eir_server_scope.
 Thus, if two servers return the same client ID, the onus is on the
 client to distinguish the client IDs on the basis of
 eir_server_owner.so_major_id and eir_server_scope. In the event two
 different servers claim matching server_owner.so_major_id and
 eir_server_scope, the client can use the verification techniques
 discussed in Section 2.10.5 of [RFC5661] to determine if the servers
 are distinct. If they are distinct, then the client will need to
 note the destination network addresses of the connections used with
 each server, and use the network address as the final discriminator.

 The server, as defined by the unique identity expressed in the
 so_major_id of the server owner and the server scope, needs to track
 several properties of each client ID it hands out. The properties
 apply to the client ID and all sessions associated with the client
 ID. The properties are derived from the arguments and results of
 EXCHANGE_ID. The client ID properties include:

 o The capabilities expressed by the following bits, which come from
 the results of EXCHANGE_ID:

 * EXCHGID4_FLAG_SUPP_MOVED_REFER

 * EXCHGID4_FLAG_SUPP_MOVED_MIGR

 * EXCHGID4_FLAG_BIND_PRINC_STATEID

 * EXCHGID4_FLAG_USE_NON_PNFS

 * EXCHGID4_FLAG_USE_PNFS_MDS

 * EXCHGID4_FLAG_USE_PNFS_DS

 These properties may be updated by subsequent EXCHANGE_ID requests
 on confirmed client IDs though the server MAY refuse to change
 them.

 o The state protection method used, one of SP4_NONE, SP4_MACH_CRED,
 or SP4_SSV, as set by the spa_how field of the arguments to
 EXCHANGE_ID. Once the client ID is confirmed, this property
 cannot be updated by subsequent EXCHANGE_ID requests.

 o For SP4_MACH_CRED or SP4_SSV state protection:

 * The list of operations (spo_must_enforce) that MUST use the
 specified state protection. This list comes from the results
 of EXCHANGE_ID.

https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.5

Noveck & Lever Expires December 11, 2018 [Page 54]

Internet-Draft nfsv4.1-msns-update June 2018

 * The list of operations (spo_must_allow) that MAY use the
 specified state protection. This list comes from the results
 of EXCHANGE_ID.

 Once the client ID is confirmed, these properties cannot be
 updated by subsequent EXCHANGE_ID requests.

 o For SP4_SSV protection:

 * The OID of the hash algorithm. This property is represented by
 one of the algorithms in the ssp_hash_algs field of the
 EXCHANGE_ID arguments. Once the client ID is confirmed, this
 property cannot be updated by subsequent EXCHANGE_ID requests.

 * The OID of the encryption algorithm. This property is
 represented by one of the algorithms in the ssp_encr_algs field
 of the EXCHANGE_ID arguments. Once the client ID is confirmed,
 this property cannot be updated by subsequent EXCHANGE_ID
 requests.

 * The length of the SSV. This property is represented by the
 spi_ssv_len field in the EXCHANGE_ID results. Once the client
 ID is confirmed, this property cannot be updated by subsequent
 EXCHANGE_ID requests.

 There are REQUIRED and RECOMMENDED relationships among the
 length of the key of the encryption algorithm ("key length"),
 the length of the output of hash algorithm ("hash length"), and
 the length of the SSV ("SSV length").

 + key length MUST be <= hash length. This is because the keys
 used for the encryption algorithm are actually subkeys
 derived from the SSV, and the derivation is via the hash
 algorithm. The selection of an encryption algorithm with a
 key length that exceeded the length of the output of the
 hash algorithm would require padding, and thus weaken the
 use of the encryption algorithm.

 + hash length SHOULD be <= SSV length. This is because the
 SSV is a key used to derive subkeys via an HMAC, and it is
 recommended that the key used as input to an HMAC be at
 least as long as the length of the HMAC's hash algorithm's
 output (see Section 3 of [RFC2104]).

 + key length SHOULD be <= SSV length. This is a transitive
 result of the above two invariants.

https://datatracker.ietf.org/doc/html/rfc2104#section-3

Noveck & Lever Expires December 11, 2018 [Page 55]

Internet-Draft nfsv4.1-msns-update June 2018

 + key length SHOULD be >= hash length / 2. This is because
 the subkey derivation is via an HMAC and it is recommended
 that if the HMAC has to be truncated, it should not be
 truncated to less than half the hash length (see Section 4
 of RFC2104 [RFC2104]).

 * Number of concurrent versions of the SSV the client and server
 will support (see Section 2.10.9 of [RFC5661]). This property
 is represented by spi_window in the EXCHANGE_ID results. The
 property may be updated by subsequent EXCHANGE_ID requests.

 o The client's implementation ID as represented by the
 eia_client_impl_id field of the arguments. The property may be
 updated by subsequent EXCHANGE_ID requests.

 o The server's implementation ID as represented by the
 eir_server_impl_id field of the reply. The property may be
 updated by replies to subsequent EXCHANGE_ID requests.

 The eia_flags passed as part of the arguments and the eir_flags
 results allow the client and server to inform each other of their
 capabilities as well as indicate how the client ID will be used.
 Whether a bit is set or cleared on the arguments' flags does not
 force the server to set or clear the same bit on the results' side.
 Bits not defined above cannot be set in the eia_flags field. If they
 are, the server MUST reject the operation with NFS4ERR_INVAL.

 The EXCHGID4_FLAG_UPD_CONFIRMED_REC_A bit can only be set in
 eia_flags; it is always off in eir_flags. The
 EXCHGID4_FLAG_CONFIRMED_R bit can only be set in eir_flags; it is
 always off in eia_flags. If the server recognizes the co_ownerid and
 co_verifier as mapping to a confirmed client ID, it sets
 EXCHGID4_FLAG_CONFIRMED_R in eir_flags. The
 EXCHGID4_FLAG_CONFIRMED_R flag allows a client to tell if the client
 ID it is trying to create already exists and is confirmed.

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set in eia_flags, this means
 that the client is attempting to update properties of an existing
 confirmed client ID (if the client wants to update properties of an
 unconfirmed client ID, it MUST NOT set
 EXCHGID4_FLAG_UPD_CONFIRMED_REC_A). If so, it is RECOMMENDED that
 the client send the update EXCHANGE_ID operation in the same COMPOUND
 as a SEQUENCE so that the EXCHANGE_ID is executed exactly once.
 Whether the client can update the properties of client ID depends on
 the state protection it selected when the client ID was created, and
 the principal and security flavor it uses when sending the
 EXCHANGE_ID request. The situations described in items 6, 7, 8, or 9
 of the second numbered list of Section 13.4 below will apply. Note

https://datatracker.ietf.org/doc/html/rfc2104#section-4
https://datatracker.ietf.org/doc/html/rfc2104#section-4
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.9

Noveck & Lever Expires December 11, 2018 [Page 56]

Internet-Draft nfsv4.1-msns-update June 2018

 that if the operation succeeds and returns a client ID that is
 already confirmed, the server MUST set the EXCHGID4_FLAG_CONFIRMED_R
 bit in eir_flags.

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set in eia_flags, this
 means that the client is trying to establish a new client ID; it is
 attempting to trunk data communication to the server (See

Section 2.10.5 of [RFC5661]); or it is attempting to update
 properties of an unconfirmed client ID. The situations described in
 items 1, 2, 3, 4, or 5 of the second numbered list of Section 13.4
 below will apply. Note that if the operation succeeds and returns a
 client ID that was previously confirmed, the server MUST set the
 EXCHGID4_FLAG_CONFIRMED_R bit in eir_flags.

 When the EXCHGID4_FLAG_SUPP_MOVED_REFER flag bit is set, the client
 indicates that it is capable of dealing with an NFS4ERR_MOVED error
 as part of a referral sequence. When this bit is not set, it is
 still legal for the server to perform a referral sequence. However,
 a server may use the fact that the client is incapable of correctly
 responding to a referral, by avoiding it for that particular client.
 It may, for instance, act as a proxy for that particular file system,
 at some cost in performance, although it is not obligated to do so.
 If the server will potentially perform a referral, it MUST set
 EXCHGID4_FLAG_SUPP_MOVED_REFER in eir_flags.

 When the EXCHGID4_FLAG_SUPP_MOVED_MIGR is set, the client indicates
 that it is capable of dealing with an NFS4ERR_MOVED error as part of
 a file system migration sequence. When this bit is not set, it is
 still legal for the server to indicate that a file system has moved,
 when this in fact happens. However, a server may use the fact that
 the client is incapable of correctly responding to a migration in its
 scheduling of file systems to migrate so as to avoid migration of
 file systems being actively used. It may also hide actual migrations
 from clients unable to deal with them by acting as a proxy for a
 migrated file system for particular clients, at some cost in
 performance, although it is not obligated to do so. If the server
 will potentially perform a migration, it MUST set
 EXCHGID4_FLAG_SUPP_MOVED_MIGR in eir_flags.

 When EXCHGID4_FLAG_BIND_PRINC_STATEID is set, the client indicates
 that it wants the server to bind the stateid to the principal. This
 means that when a principal creates a stateid, it has to be the one
 to use the stateid. If the server will perform binding, it will
 return EXCHGID4_FLAG_BIND_PRINC_STATEID. The server MAY return
 EXCHGID4_FLAG_BIND_PRINC_STATEID even if the client does not request
 it. If an update to the client ID changes the value of
 EXCHGID4_FLAG_BIND_PRINC_STATEID's client ID property, the effect
 applies only to new stateids. Existing stateids (and all stateids

https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.5

Noveck & Lever Expires December 11, 2018 [Page 57]

Internet-Draft nfsv4.1-msns-update June 2018

 with the same "other" field) that were created with stateid to
 principal binding in force will continue to have binding in force.
 Existing stateids (and all stateids with the same "other" field) that
 were created with stateid to principal not in force will continue to
 have binding not in force.

 The EXCHGID4_FLAG_USE_NON_PNFS, EXCHGID4_FLAG_USE_PNFS_MDS, and
 EXCHGID4_FLAG_USE_PNFS_DS bits are described in Section 13.1 of
 [RFC5661] and convey roles the client ID is to be used for in a pNFS
 environment. The server MUST set one of the acceptable combinations
 of these bits (roles) in eir_flags, as specified in that section.
 Note that the same client owner/server owner pair can have multiple
 roles. Multiple roles can be associated with the same client ID or
 with different client IDs. Thus, if a client sends EXCHANGE_ID from
 the same client owner to the same server owner multiple times, but
 specifies different pNFS roles each time, the server might return
 different client IDs. Given that different pNFS roles might have
 different client IDs, the client may ask for different properties for
 each role/client ID.

 The spa_how field of the eia_state_protect field specifies how the
 client wants to protect its client, locking, and session states from
 unauthorized changes (Section 2.10.8.3 of [RFC5661]):

 o SP4_NONE. The client does not request the NFSv4.1 server to
 enforce state protection. The NFSv4.1 server MUST NOT enforce
 state protection for the returned client ID.

 o SP4_MACH_CRED. If spa_how is SP4_MACH_CRED, then the client MUST
 send the EXCHANGE_ID request with RPCSEC_GSS as the security
 flavor, and with a service of RPC_GSS_SVC_INTEGRITY or
 RPC_GSS_SVC_PRIVACY. If SP4_MACH_CRED is specified, then the
 client wants to use an RPCSEC_GSS-based machine credential to
 protect its state. The server MUST note the principal the
 EXCHANGE_ID operation was sent with, and the GSS mechanism used.
 These notes collectively comprise the machine credential.

 After the client ID is confirmed, as long as the lease associated
 with the client ID is unexpired, a subsequent EXCHANGE_ID
 operation that uses the same eia_clientowner.co_owner as the first
 EXCHANGE_ID MUST also use the same machine credential as the first
 EXCHANGE_ID. The server returns the same client ID for the
 subsequent EXCHANGE_ID as that returned from the first
 EXCHANGE_ID.

 o SP4_SSV. If spa_how is SP4_SSV, then the client MUST send the
 EXCHANGE_ID request with RPCSEC_GSS as the security flavor, and
 with a service of RPC_GSS_SVC_INTEGRITY or RPC_GSS_SVC_PRIVACY.

https://datatracker.ietf.org/doc/html/rfc5661#section-13.1
https://datatracker.ietf.org/doc/html/rfc5661#section-13.1
https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.8.3

Noveck & Lever Expires December 11, 2018 [Page 58]

Internet-Draft nfsv4.1-msns-update June 2018

 If SP4_SSV is specified, then the client wants to use the SSV to
 protect its state. The server records the credential used in the
 request as the machine credential (as defined above) for the
 eia_clientowner.co_owner. The CREATE_SESSION operation that
 confirms the client ID MUST use the same machine credential.

 When a client specifies SP4_MACH_CRED or SP4_SSV, it also provides
 two lists of operations (each expressed as a bitmap). The first list
 is spo_must_enforce and consists of those operations the client MUST
 send (subject to the server confirming the list of operations in the
 result of EXCHANGE_ID) with the machine credential (if SP4_MACH_CRED
 protection is specified) or the SSV-based credential (if SP4_SSV
 protection is used). The client MUST send the operations with
 RPCSEC_GSS credentials that specify the RPC_GSS_SVC_INTEGRITY or
 RPC_GSS_SVC_PRIVACY security service. Typically, the first list of
 operations includes EXCHANGE_ID, CREATE_SESSION, DELEGPURGE,
 DESTROY_SESSION, BIND_CONN_TO_SESSION, and DESTROY_CLIENTID. The
 client SHOULD NOT specify in this list any operations that require a
 filehandle because the server's access policies MAY conflict with the
 client's choice, and thus the client would then be unable to access a
 subset of the server's namespace.

 Note that if SP4_SSV protection is specified, and the client
 indicates that CREATE_SESSION must be protected with SP4_SSV, because
 the SSV cannot exist without a confirmed client ID, the first
 CREATE_SESSION MUST instead be sent using the machine credential, and
 the server MUST accept the machine credential.

 There is a corresponding result, also called spo_must_enforce, of the
 operations for which the server will require SP4_MACH_CRED or SP4_SSV
 protection. Normally, the server's result equals the client's
 argument, but the result MAY be different. If the client requests
 one or more operations in the set { EXCHANGE_ID, CREATE_SESSION,
 DELEGPURGE, DESTROY_SESSION, BIND_CONN_TO_SESSION, DESTROY_CLIENTID
 }, then the result spo_must_enforce MUST include the operations the
 client requested from that set.

 If spo_must_enforce in the results has BIND_CONN_TO_SESSION set, then
 connection binding enforcement is enabled, and the client MUST use
 the machine (if SP4_MACH_CRED protection is used) or SSV (if SP4_SSV
 protection is used) credential on calls to BIND_CONN_TO_SESSION.

 The second list is spo_must_allow and consists of those operations
 the client wants to have the option of sending with the machine
 credential or the SSV-based credential, even if the object the
 operations are performed on is not owned by the machine or SSV
 credential.

Noveck & Lever Expires December 11, 2018 [Page 59]

Internet-Draft nfsv4.1-msns-update June 2018

 The corresponding result, also called spo_must_allow, consists of the
 operations the server will allow the client to use SP4_SSV or
 SP4_MACH_CRED credentials with. Normally, the server's result equals
 the client's argument, but the result MAY be different.

 The purpose of spo_must_allow is to allow clients to solve the
 following conundrum. Suppose the client ID is confirmed with
 EXCHGID4_FLAG_BIND_PRINC_STATEID, and it calls OPEN with the
 RPCSEC_GSS credentials of a normal user. Now suppose the user's
 credentials expire, and cannot be renewed (e.g., a Kerberos ticket
 granting ticket expires, and the user has logged off and will not be
 acquiring a new ticket granting ticket). The client will be unable
 to send CLOSE without the user's credentials, which is to say the
 client has to either leave the state on the server or re-send
 EXCHANGE_ID with a new verifier to clear all state, that is, unless
 the client includes CLOSE on the list of operations in spo_must_allow
 and the server agrees.

 The SP4_SSV protection parameters also have:

 ssp_hash_algs:

 This is the set of algorithms the client supports for the purpose
 of computing the digests needed for the internal SSV GSS mechanism
 and for the SET_SSV operation. Each algorithm is specified as an
 object identifier (OID). The REQUIRED algorithms for a server are
 id-sha1, id-sha224, id-sha256, id-sha384, and id-sha512 [RFC4055].
 The algorithm the server selects among the set is indicated in
 spi_hash_alg, a field of spr_ssv_prot_info. The field
 spi_hash_alg is an index into the array ssp_hash_algs. If the
 server does not support any of the offered algorithms, it returns
 NFS4ERR_HASH_ALG_UNSUPP. If ssp_hash_algs is empty, the server
 MUST return NFS4ERR_INVAL.

 ssp_encr_algs:

 This is the set of algorithms the client supports for the purpose
 of providing privacy protection for the internal SSV GSS
 mechanism. Each algorithm is specified as an OID. The REQUIRED
 algorithm for a server is id-aes256-CBC. The RECOMMENDED
 algorithms are id-aes192-CBC and id-aes128-CBC [CSOR_AES]. The
 selected algorithm is returned in spi_encr_alg, an index into
 ssp_encr_algs. If the server does not support any of the offered
 algorithms, it returns NFS4ERR_ENCR_ALG_UNSUPP. If ssp_encr_algs
 is empty, the server MUST return NFS4ERR_INVAL. Note that due to
 previously stated requirements and recommendations on the
 relationships between key length and hash length, some
 combinations of RECOMMENDED and REQUIRED encryption algorithm and

https://datatracker.ietf.org/doc/html/rfc4055

Noveck & Lever Expires December 11, 2018 [Page 60]

Internet-Draft nfsv4.1-msns-update June 2018

 hash algorithm either SHOULD NOT or MUST NOT be used. Table 1
 summarizes the illegal and discouraged combinations.

 ssp_window:

 This is the number of SSV versions the client wants the server to
 maintain (i.e., each successful call to SET_SSV produces a new
 version of the SSV). If ssp_window is zero, the server MUST
 return NFS4ERR_INVAL. The server responds with spi_window, which
 MUST NOT exceed ssp_window, and MUST be at least one. Any
 requests on the backchannel or fore channel that are using a
 version of the SSV that is outside the window will fail with an
 ONC RPC authentication error, and the requester will have to retry
 them with the same slot ID and sequence ID.

 ssp_num_gss_handles:

 This is the number of RPCSEC_GSS handles the server should create
 that are based on the GSS SSV mechanism (see section 2.10.9 of
 [RFC5661]). It is not the total number of RPCSEC_GSS handles for
 the client ID. Indeed, subsequent calls to EXCHANGE_ID will add
 RPCSEC_GSS handles. The server responds with a list of handles in
 spi_handles. If the client asks for at least one handle and the
 server cannot create it, the server MUST return an error. The
 handles in spi_handles are not available for use until the client
 ID is confirmed, which could be immediately if EXCHANGE_ID returns
 EXCHGID4_FLAG_CONFIRMED_R, or upon successful confirmation from
 CREATE_SESSION.

 While a client ID can span all the connections that are connected
 to a server sharing the same eir_server_owner.so_major_id, the
 RPCSEC_GSS handles returned in spi_handles can only be used on
 connections connected to a server that returns the same the
 eir_server_owner.so_major_id and eir_server_owner.so_minor_id on
 each connection. It is permissible for the client to set
 ssp_num_gss_handles to zero; the client can create more handles
 with another EXCHANGE_ID call.

 Because each SSV RPCSEC_GSS handle shares a common SSV GSS
 context, there are security considerations specific to this
 situation discussed in Section 2.10.10 of [RFC5661].

 The seq_window (see Section 5.2.3.1 of [RFC2203]) of each
 RPCSEC_GSS handle in spi_handle MUST be the same as the seq_window
 of the RPCSEC_GSS handle used for the credential of the RPC
 request that the EXCHANGE_ID request was sent with.

https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.9
https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.9
https://datatracker.ietf.org/doc/html/rfc5661#section-2.10.10
https://datatracker.ietf.org/doc/html/rfc2203#section-5.2.3.1

Noveck & Lever Expires December 11, 2018 [Page 61]

Internet-Draft nfsv4.1-msns-update June 2018

 +-------------------+----------------------+------------------------+
 | Encryption | MUST NOT be combined | SHOULD NOT be combined |
 | Algorithm | with | with |
 +-------------------+----------------------+------------------------+
id-aes128-CBC		id-sha384, id-sha512
id-aes192-CBC	id-sha1	id-sha512
id-aes256-CBC	id-sha1, id-sha224	
 +-------------------+----------------------+------------------------+

 Table 1

 The arguments include an array of up to one element in length called
 eia_client_impl_id. If eia_client_impl_id is present, it contains
 the information identifying the implementation of the client.
 Similarly, the results include an array of up to one element in
 length called eir_server_impl_id that identifies the implementation
 of the server. Servers MUST accept a zero-length eia_client_impl_id
 array, and clients MUST accept a zero-length eir_server_impl_id
 array.

 A possible use for implementation identifiers would be in diagnostic
 software that extracts this information in an attempt to identify
 interoperability problems, performance workload behaviors, or general
 usage statistics. Since the intent of having access to this
 information is for planning or general diagnosis only, the client and
 server MUST NOT interpret this implementation identity information in
 a way that affects how the implementation behaves in interacting with
 its peer. The client and server are not allowed to depend on the
 peer's manifesting a particular allowed behavior based on an
 implementation identifier but are required to interoperate as
 specified elsewhere in the protocol specification.

 Because it is possible that some implementations might violate the
 protocol specification and interpret the identity information,
 implementations MUST provide facilities to allow the NFSv4 client and
 server be configured to set the contents of the nfs_impl_id
 structures sent to any specified value.

13.4. IMPLEMENTATION

 A server's client record is a 5-tuple:

 1. co_ownerid

 The client identifier string, from the eia_clientowner
 structure of the EXCHANGE_ID4args structure.

 2. co_verifier:

Noveck & Lever Expires December 11, 2018 [Page 62]

Internet-Draft nfsv4.1-msns-update June 2018

 A client-specific value used to indicate incarnations (where a
 client restart represents a new incarnation), from the
 eia_clientowner structure of the EXCHANGE_ID4args structure.

 3. principal:

 The principal that was defined in the RPC header's credential
 and/or verifier at the time the client record was established.

 4. client ID:

 The shorthand client identifier, generated by the server and
 returned via the eir_clientid field in the EXCHANGE_ID4resok
 structure.

 5. confirmed:

 A private field on the server indicating whether or not a
 client record has been confirmed. A client record is
 confirmed if there has been a successful CREATE_SESSION
 operation to confirm it. Otherwise, it is unconfirmed. An
 unconfirmed record is established by an EXCHANGE_ID call. Any
 unconfirmed record that is not confirmed within a lease period
 SHOULD be removed.

 The following identifiers represent special values for the fields in
 the records.

 ownerid_arg:

 The value of the eia_clientowner.co_ownerid subfield of the
 EXCHANGE_ID4args structure of the current request.

 verifier_arg:

 The value of the eia_clientowner.co_verifier subfield of the
 EXCHANGE_ID4args structure of the current request.

 old_verifier_arg:

 A value of the eia_clientowner.co_verifier field of a client
 record received in a previous request; this is distinct from
 verifier_arg.

 principal_arg:

 The value of the RPCSEC_GSS principal for the current request.

Noveck & Lever Expires December 11, 2018 [Page 63]

Internet-Draft nfsv4.1-msns-update June 2018

 old_principal_arg:

 A value of the principal of a client record as defined by the RPC
 header's credential or verifier of a previous request. This is
 distinct from principal_arg.

 clientid_ret:

 The value of the eir_clientid field the server will return in the
 EXCHANGE_ID4resok structure for the current request.

 old_clientid_ret:

 The value of the eir_clientid field the server returned in the
 EXCHANGE_ID4resok structure for a previous request. This is
 distinct from clientid_ret.

 confirmed:

 The client ID has been confirmed.

 unconfirmed:

 The client ID has not been confirmed.

 Since EXCHANGE_ID is a non-idempotent operation, we must consider the
 possibility that retries occur as a result of a client restart,
 network partition, malfunctioning router, etc. Retries are
 identified by the value of the eia_clientowner field of
 EXCHANGE_ID4args, and the method for dealing with them is outlined in
 the scenarios below.

 The scenarios are described in terms of the client record(s) a server
 has for a given co_ownerid. Note that if the client ID was created
 specifying SP4_SSV state protection and EXCHANGE_ID as the one of the
 operations in spo_must_allow, then the server MUST authorize
 EXCHANGE_IDs with the SSV principal in addition to the principal that
 created the client ID.

 1. New Owner ID

 If the server has no client records with
 eia_clientowner.co_ownerid matching ownerid_arg, and
 EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set in the
 EXCHANGE_ID, then a new shorthand client ID (let us call it
 clientid_ret) is generated, and the following unconfirmed
 record is added to the server's state.

Noveck & Lever Expires December 11, 2018 [Page 64]

Internet-Draft nfsv4.1-msns-update June 2018

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 unconfirmed }

 Subsequently, the server returns clientid_ret.

 2. Non-Update on Existing Client ID

 If the server has the following confirmed record, and the
 request does not have EXCHGID4_FLAG_UPD_CONFIRMED_REC_A set,
 then the request is the result of a retried request due to a
 faulty router or lost connection, or the client is trying to
 determine if it can perform trunking.

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 confirmed }

 Since the record has been confirmed, the client must have
 received the server's reply from the initial EXCHANGE_ID
 request. Since the server has a confirmed record, and since
 EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, with the
 possible exception of eir_server_owner.so_minor_id, the server
 returns the same result it did when the client ID's properties
 were last updated (or if never updated, the result when the
 client ID was created). The confirmed record is unchanged.

 3. Client Collision

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, and if the
 server has the following confirmed record, then this request
 is likely the result of a chance collision between the values
 of the eia_clientowner.co_ownerid subfield of EXCHANGE_ID4args
 for two different clients.

 { ownerid_arg, *, old_principal_arg, old_clientid_ret,
 confirmed }

 If there is currently no state associated with
 old_clientid_ret, or if there is state but the lease has
 expired, then this case is effectively equivalent to the New
 Owner ID case of Paragraph 1. The confirmed record is
 deleted, the old_clientid_ret and its lock state are deleted,
 a new shorthand client ID is generated, and the following
 unconfirmed record is added to the server's state.

Noveck & Lever Expires December 11, 2018 [Page 65]

Internet-Draft nfsv4.1-msns-update June 2018

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 unconfirmed }

 Subsequently, the server returns clientid_ret.

 If old_clientid_ret has an unexpired lease with state, then no
 state of old_clientid_ret is changed or deleted. The server
 returns NFS4ERR_CLID_INUSE to indicate that the client should
 retry with a different value for the
 eia_clientowner.co_ownerid subfield of EXCHANGE_ID4args. The
 client record is not changed.

 4. Replacement of Unconfirmed Record

 If the EXCHGID4_FLAG_UPD_CONFIRMED_REC_A flag is not set, and
 the server has the following unconfirmed record, then the
 client is attempting EXCHANGE_ID again on an unconfirmed
 client ID, perhaps due to a retry, a client restart before
 client ID confirmation (i.e., before CREATE_SESSION was
 called), or some other reason.

 { ownerid_arg, *, *, old_clientid_ret, unconfirmed }

 It is possible that the properties of old_clientid_ret are
 different than those specified in the current EXCHANGE_ID.
 Whether or not the properties are being updated, to eliminate
 ambiguity, the server deletes the unconfirmed record,
 generates a new client ID (clientid_ret), and establishes the
 following unconfirmed record:

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 unconfirmed }

 5. Client Restart

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is not set, and if the
 server has the following confirmed client record, then this
 request is likely from a previously confirmed client that has
 restarted.

 { ownerid_arg, old_verifier_arg, principal_arg,
 old_clientid_ret, confirmed }

Noveck & Lever Expires December 11, 2018 [Page 66]

Internet-Draft nfsv4.1-msns-update June 2018

 Since the previous incarnation of the same client will no
 longer be making requests, once the new client ID is confirmed
 by CREATE_SESSION, byte-range locks and share reservations
 should be released immediately rather than forcing the new
 incarnation to wait for the lease time on the previous
 incarnation to expire. Furthermore, session state should be
 removed since if the client had maintained that information
 across restart, this request would not have been sent. If the
 server supports neither the CLAIM_DELEGATE_PREV nor
 CLAIM_DELEG_PREV_FH claim types, associated delegations should
 be purged as well; otherwise, delegations are retained and
 recovery proceeds according to section 10.2.1 of [RFC5661].

 After processing, clientid_ret is returned to the client and
 this client record is added:

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 unconfirmed }

 The previously described confirmed record continues to exist,
 and thus the same ownerid_arg exists in both a confirmed and
 unconfirmed state at the same time. The number of states can
 collapse to one once the server receives an applicable
 CREATE_SESSION or EXCHANGE_ID.

 + If the server subsequently receives a successful
 CREATE_SESSION that confirms clientid_ret, then the server
 atomically destroys the confirmed record and makes the
 unconfirmed record confirmed as described in section

16.36.3 of [RFC5661].

 + If the server instead subsequently receives an EXCHANGE_ID
 with the client owner equal to ownerid_arg, one strategy is
 to simply delete the unconfirmed record, and process the
 EXCHANGE_ID as described in the entirety of Section 13.4.

 6. Update

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server
 has the following confirmed record, then this request is an
 attempt at an update.

 { ownerid_arg, verifier_arg, principal_arg, clientid_ret,
 confirmed }

https://datatracker.ietf.org/doc/html/rfc5661#section-10.2.1
https://datatracker.ietf.org/doc/html/rfc5661#section-16.36.3
https://datatracker.ietf.org/doc/html/rfc5661#section-16.36.3

Noveck & Lever Expires December 11, 2018 [Page 67]

Internet-Draft nfsv4.1-msns-update June 2018

 Since the record has been confirmed, the client must have
 received the server's reply from the initial EXCHANGE_ID
 request. The server allows the update, and the client record
 is left intact.

 7. Update but No Confirmed Record

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server
 has no confirmed record corresponding ownerid_arg, then the
 server returns NFS4ERR_NOENT and leaves any unconfirmed record
 intact.

 8. Update but Wrong Verifier

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server
 has the following confirmed record, then this request is an
 illegal attempt at an update, perhaps because of a retry from
 a previous client incarnation.

 { ownerid_arg, old_verifier_arg, *, clientid_ret, confirmed }

 The server returns NFS4ERR_NOT_SAME and leaves the client
 record intact.

 9. Update but Wrong Principal

 If EXCHGID4_FLAG_UPD_CONFIRMED_REC_A is set, and the server
 has the following confirmed record, then this request is an
 illegal attempt at an update by an unauthorized principal.

 { ownerid_arg, verifier_arg, old_principal_arg, clientid_ret,
 confirmed }

 The server returns NFS4ERR_PERM and leaves the client record
 intact.

14. Security Considerations

 The Security Considerations section of [RFC5661] needs the additions
 below to properly address some aspects of trunking discovery,
 referral, migration and replication.

 The possibility that requests to determine the set of network
 addresses corresponding to a given server might be interfered with
 or have their responses corrupted needs to be taken into account.
 In light of this, the following considerations should be taken
 note of:

https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 68]

Internet-Draft nfsv4.1-msns-update June 2018

 o When DNS is used to convert server named to addresses and
 DNSSEC [RFC4033] is not available, the validity of the network
 addresses returned cannot be relied upon. However, when the
 client uses RPCSEC_GSS to access the designated server, it is
 possible for mutual authentication to discover invalid server
 addresses provided.

 o The fetching of attributes containing location information
 SHOULD be performed using RPCSEC_GSS with integrity protection,
 as previously explained in the Security Considerations section
 of [RFC5661]. It is important to note here that a client
 making a request of this sort without using RPCSEC_GSS
 including integrity protection needs be aware of the negative
 consequences of doing so, which can lead to invalid host names
 or network addresses being returned. In light of this, the
 client needs to recognize that using such returned location
 information to access an NFSv4 server without use of RPCSEC_GSS
 (i.e. by using AUTH_SYS) poses dangers as it can result in the
 client interacting with an unverified network address posing as
 an NFSv4 server.

 o Despite the fact that it is a REQUIREMENT (of [RFC5661]) that
 "implementations" provide "support" for use of RPCSEC_GSS, it
 cannot be assumed that use of RPCSEC_GSS is always available
 between any particular client-server pair.

 o When a client has the network addresses of a server but not the
 associated host names, that would interfere with its ability to
 use RPCSEC_GSS.

 In light of the above, a server should present location entries
 that correspond to file systems on other servers using a host
 name. This would allow the client to interrogate the fs_locations
 on the destination server to obtain trunking information (as well
 as replica information) using RPCSEC_GSS with integrity,
 validating the name provided while assuring that the response has
 not been corrupted.

 When RPCSEC_GSS is not available on a server, the client needs to
 be aware of the fact that the location entries are subject to
 corruption and cannot be relied upon. In the case of a client
 being directed to another server after NFS4ERR_MOVED, this could
 vitiate the authentication provided by the use of RPCSEC_GSS on
 the destination. Even when RPCSEC_GSS authentication is available
 on the destination, the server might validly represent itself as
 the server to which the client was erroneously directed. Without
 a way to decide whether the server is a valid one, the client can
 only determine, using RPCSEC_GSS, that the server corresponds to

https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 69]

Internet-Draft nfsv4.1-msns-update June 2018

 the name provided, with no basis for trusting that server. As a
 result, the client should not use such unverified location entries
 as a basis for migration, even though RPCSEC_GSS might be
 available on the destination.

 When a location attribute is fetched upon connecting with an NFS
 server, it SHOULD, as stated above, be done using RPCSEC_GSS with
 integrity protection. When this not possible, it is generally
 best for the client to ignore trunking and replica information or
 simply not fetch the location information for these purposes.

 When location information cannot be verified, it can be subjected
 to additional filtering to prevent the client from being
 inappropriately directed. For example, if a range of network
 addresses can be determined that assure that the servers and
 clients using AUTH_SYS are subject to the appropriate set of
 constrains (e.g. physical network isolation, administrative
 controls on the operating systems used), then network addresses in
 the appropriate range can be used with others discarded or
 restricted in their use of AUTH_SYS.

 To summarize considerations regarding the use of RPCSEC_GSS in
 fetching location information, we need to consider the following
 possibilities for requests to interrogate location information,
 with interrogation approaches on the referring and destination
 servers arrived at separately:

 o The use of RPCSEC_GSS with integrity protection is RECOMMENDED
 in all cases, since the absence of integrity protection exposes
 the client to the possibility of the results being modified in
 transit.

 o The use of requests issued without RPCSEC_GSS (i.e. using
 AUTH_SYS), while undesirable, may not be avoidable in all
 cases. Where the use of the returned information cannot be
 avoided, it should be subject to filtering to eliminate the
 possibility that the client would treat an invalid address as
 if it were a NFSv4 server. The specifics will vary depending
 on the degree of network isolation and whether the request is
 to the referring or destination servers.

15. IANA Considerations

 This document does not require actions by IANA.

Noveck & Lever Expires December 11, 2018 [Page 70]

Internet-Draft nfsv4.1-msns-update June 2018

16. References

16.1. Normative References

 [CSOR_AES]
 National Institute of Standards and Technology,
 "Cryptographic Algorithm Object Registration", URL

http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/
algorithms.html, November 2007.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, DOI 10.17487/RFC2203, September
 1997, <https://www.rfc-editor.org/info/rfc2203>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",

RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional
 Algorithms and Identifiers for RSA Cryptography for use in
 the Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile", RFC 4055,
 DOI 10.17487/RFC4055, June 2005,
 <https://www.rfc-editor.org/info/rfc4055>.

 [RFC5403] Eisler, M., "RPCSEC_GSS Version 2", RFC 5403,
 DOI 10.17487/RFC5403, February 2009,
 <https://www.rfc-editor.org/info/rfc5403>.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,
 May 2009, <https://www.rfc-editor.org/info/rfc5531>.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <https://www.rfc-editor.org/info/rfc5661>.

 [RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
 March 2015, <https://www.rfc-editor.org/info/rfc7530>.

http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html
http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2203
https://www.rfc-editor.org/info/rfc2203
https://datatracker.ietf.org/doc/html/rfc4033
https://www.rfc-editor.org/info/rfc4033
https://datatracker.ietf.org/doc/html/rfc4055
https://www.rfc-editor.org/info/rfc4055
https://datatracker.ietf.org/doc/html/rfc5403
https://www.rfc-editor.org/info/rfc5403
https://datatracker.ietf.org/doc/html/rfc5531
https://www.rfc-editor.org/info/rfc5531
https://datatracker.ietf.org/doc/html/rfc5661
https://www.rfc-editor.org/info/rfc5661
https://datatracker.ietf.org/doc/html/rfc7530
https://www.rfc-editor.org/info/rfc7530

Noveck & Lever Expires December 11, 2018 [Page 71]

Internet-Draft nfsv4.1-msns-update June 2018

 [RFC7861] Adamson, A. and N. Williams, "Remote Procedure Call (RPC)
 Security Version 3", RFC 7861, DOI 10.17487/RFC7861,
 November 2016, <https://www.rfc-editor.org/info/rfc7861>.

 [RFC7931] Noveck, D., Ed., Shivam, P., Lever, C., and B. Baker,
 "NFSv4.0 Migration: Specification Update", RFC 7931,
 DOI 10.17487/RFC7931, July 2016,
 <https://www.rfc-editor.org/info/rfc7931>.

 [RFC8166] Lever, C., Ed., Simpson, W., and T. Talpey, "Remote Direct
 Memory Access Transport for Remote Procedure Call Version
 1", RFC 8166, DOI 10.17487/RFC8166, June 2017,
 <https://www.rfc-editor.org/info/rfc8166>.

16.2. Informative References

 [I-D.cel-nfsv4-mv0-trunking-update]
 Lever, C. and D. Noveck, "NFS version 4.0 Trunking
 Update", draft-cel-nfsv4-mv0-trunking-update-00 (work in
 progress), November 2017.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

Appendix A. Classification of Document Sections

 Using the classification appearing in Section 3.3, we can proceed
 through the current document and classify its sections as listed
 below. In this listing, when we refer to a Section X and there is a
 Section X.1 within it, the classification of Section X refers to the
 part of that section exclusive of subsections. In the case when that
 portion is empty, the section is not counted.

 o Sections 1 through 4, a total of five sections, are all
 explanatory.

 o Section 4.1 is a replacement section.

 o Section 4.3 is an additional section.

 o Section 4.3 is a replacement section.

 o Section 4.4 is explanatory.

 o Section 4.5 is a replacement section.

https://datatracker.ietf.org/doc/html/rfc7861
https://www.rfc-editor.org/info/rfc7861
https://datatracker.ietf.org/doc/html/rfc7931
https://www.rfc-editor.org/info/rfc7931
https://datatracker.ietf.org/doc/html/rfc8166
https://www.rfc-editor.org/info/rfc8166
https://datatracker.ietf.org/doc/html/draft-cel-nfsv4-mv0-trunking-update-00
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104

Noveck & Lever Expires December 11, 2018 [Page 72]

Internet-Draft nfsv4.1-msns-update June 2018

 o Sections 4.5.1 through 4.5.3, a total of three sections, are all
 additional sections.

 o Sections 4.5.4 through 4.5.6, a total of three sections, are all
 replacement sections.

 o Section 4.5.7 is an additional section.

 o Section 5 is explanatory.

 o Sections 6 and 7 are additional sections.

 o Sections 8 through 8.9, a total of ten sections, are all
 replacement sections.

 o Sections 9 through 11.2, a total of eleven sections, are all
 additional sections.

 o Section 12 is explanatory.

 o Sections 12.1 and 12.2 are replacement sections.

 o Sections 12.3 and 12.4 are editing sections.

 o Section 12.5 is explanatory.

 o Section 13 is a replacement section, which consists of a total of
 five sections.

 o Section 14 is an editing section.

 o Section 15 through Acknowledgments, a total of six sections, are
 all explanatory.

 To summarize:

 o There are fifteen explanatory sections.

 o There are twenty-two replacement sections.

 o There are eightteen additional sections.

 o There are three editing sections.

Noveck & Lever Expires December 11, 2018 [Page 73]

Internet-Draft nfsv4.1-msns-update June 2018

Appendix B. Updates to RFC5661

 In this appendix, we proceed through [RFC5661] identifying sections
 as unchanged, modified, deleted, or replaced and indicating where
 additional sections from the current document would appear in an
 eventual consolidated description of NFSv4.1. In this presentation,
 when section X is referred to, it denotes that section plus all
 included subsections. When it is necessary to refer to the part of a
 section outside any included subsections, the exclusion is noted
 explicitly.

 o Section 1 is unmodified except that Section 1.7.3.3 is to be
 replaced by Section 12.1 from the current document.

 o Section 2 is unmodified except for the specific items listed
 below:

 o Section 2.10.4 is replaced by Section 12.2 from the current
 document.

 o Section 2.10.5 is modified as discussed in Section 12.4 of the
 current document.

 o Sections 3 through 10 are unchanged.

 o Section 11 is extensively modified as discussed below.

 o Section 11, exclusive of subsections, is replaced by Sections
 4.1 and 4.2 from the current document.

 o Section 11.1 is replaced by Section 4.3 from the current
 document.

 o Sections 11.2, 11.3, 11.3.1, and 11.3.2 are unchanged.

 o Section 11.4 is replaced by Section 4.5 from the current
 document. For details regarding subsections see below.

 o New sections corresponding to Sections 4.5.1 through 4.5.3
 from the current document appear next.

 o Section 11.4.1 is replaced by Section 4.5.4

 o Section 11.4.2 is replaced by Section 4.5.5

 o Section 11.4.3 is replaced by Section 4.5.6

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 74]

Internet-Draft nfsv4.1-msns-update June 2018

 o A new section corresponding to Section 4.5.7 from the
 current document appears next.

 o Section 11.5 is to be deleted.

 o Section 11.6 is unchanged.

 o New sections corresponding to Sections 6 and 7 from the current
 document appear next.

 o Section 11.7 is replaced by Section 8 from the current
 document. For details regarding subsections see below.

 o Section 11.7.1 is replaced by Section 8.1

 o Sections 11.7.2, 11.7.2.1, and 11.7.2.2 are deleted.

 o Section 11.7.3 is replaced by Section 8.2

 o Section 11.7.4 is replaced by Section 8.3

 o Sections 11.7.5 and 11.7.5.1 are replaced by Sections 8.4
 and 8.4.1 respectively.

 o Section 11.7.6 is replaced by Section 8.5

 o Section 11.7.7, exclusive of subsections, is replaced by
Section 8.9. Sections 11.7.7.1 and 11.7.72 are unchanged.

 o Section 11.7.8 is replaced by Section 8.6

 o Section 11.7.9 is replaced by Section 8.7

 o Section 11.7.10 is replaced by Section 8.8

 o Sections 11.8, 11.8.1, 11.8.2, 11.9, 11.10, 11.10.1, 11.10.2,
 11.10.3, and 11.11 are unchanged.

 o New sections corresponding to Sections 9, 10, and 11 from the
 current document appear next as additional sub-sections of

Section 11. Each of these has subsections, so there is a total
 of seventeen sections added.

 o Sections 12 through 14 are unchanged.

 o Section 15 is unmodified except that the description of
 NFS4ERR_MOVED in Section 15.1 is revised as described in

Section 12.3 of the current document.

Noveck & Lever Expires December 11, 2018 [Page 75]

Internet-Draft nfsv4.1-msns-update June 2018

 o Sections 16 and 17 are unchanged.

 o Section 18 is unmodified except that section 18.35 is replaced by
Section 13 in the current document.

 o Sections 19 through 23 are unchanged.

 In terms of top-level sections, exclusive of appendices:

 o There is one heavily modified top-level section (Section 11)

 o There are four other modified top-level sections (Sections 1, 2,
 15, and 18).

 o The other eighteen top-level sections are unchanged.

 The disposition of sections of [RFC5661] is summarized in the
 following table which provides counts of sections replaced, added,
 deleted, modified, or unchanged. Separate counts are provided for:

 o Top-level sections.

 o Sections with TOC entries.

 o Sections within Section 11.

 o Sections outside Section 11.

 In this table, the counts for top-level sections and TOC entries are
 for sections including subsections while other counts are for
 sections exclusive of included subsections.

 +------------+------+------+--------+------------+--------+
 | Status | Top | TOC | in 11 | not in 11 | Total |
 +------------+------+------+--------+------------+--------+
 | Replaced | 0 | 3 | 17 | 7 | 24 |
 | Added | 0 | 6 | 23 | 0 | 23 |
 | Deleted | 0 | 1 | 4 | 0 | 4 |
 | Modified | 5 | 4 | 0 | 2 | 2 |
 | Unchanged | 18 | 212 | 16 | 918 | 934 |
 | in RFC5661 | 23 | 220 | 37 | 927 | 964 |
 +------------+------+------+--------+------------+--------+

Acknowledgments

 The authors wish to acknowledge the important role of Andy Adamson of
 Netapp in clarifying the need for trunking discovery functionality,

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661

Noveck & Lever Expires December 11, 2018 [Page 76]

Internet-Draft nfsv4.1-msns-update June 2018

 and exploring the role of the location attributes in providing the
 necessary support.

 The authors also wish to acknowledge the work of Xuan Qi of Oracle
 with NFSv4.1 client and server prototypes of transparent state
 migration functionality.

 The authors wish to thank Trond Myklebust of Primary Data for his
 comments related to trunking, helping to clarify the role of DNS in
 trunking discovery.

 The authors wish to thank Olga Kornievskaia of Netapp for her helpful
 review comments.

Authors' Addresses

 David Noveck (editor)
 NetApp
 1601 Trapelo Road
 Waltham, MA 02451
 United States of America

 Phone: +1 781 572 8038
 Email: davenoveck@gmail.com

 Charles Lever
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 United States of America

 Phone: +1 248 614 5091
 Email: chuck.lever@oracle.com

Noveck & Lever Expires December 11, 2018 [Page 77]

