
Workgroup: Network File System Version 4

Internet-Draft: draft-ietf-nfsv4-nfs-ulb-v2-07

Published: 13 May 2022

Intended Status: Standards Track

Expires: 14 November 2022

Authors: C. Lever

Oracle

Network File System (NFS) Upper-Layer Binding To RPC-Over-RDMA Version

2

Abstract

This document specifies Upper-Layer Bindings of Network File System

(NFS) protocol versions to RPC-over-RDMA version 2.

Note

Discussion of this draft takes place on the NFSv4 working group

mailing list, archived at https://mailarchive.ietf.org/arch/browse/

nfsv4/. Working Group information is available at https://

datatracker.ietf.org/wg/nfsv4/about/.

Submit suggestions and changes as pull requests at https://

github.com/chucklever/i-d-nfs-ulb-v2. Instructions are on that page.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/nfsv4@ietf.org
https://datatracker.ietf.org/nfsv4@ietf.org
https://mailarchive.ietf.org/arch/browse/nfsv4/
https://mailarchive.ietf.org/arch/browse/nfsv4/
https://datatracker.ietf.org/wg/nfsv4/about/
https://datatracker.ietf.org/wg/nfsv4/about/
https://github.com/chucklever/i-d-nfs-ulb-v2
https://github.com/chucklever/i-d-nfs-ulb-v2
https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Requirements Language

3. Upper-Layer Binding for NFS Versions 2 and 3

3.1. DDP-Eligibility

3.2. Reply Size Estimation

3.3. RPC Binding Considerations

3.4. Transport Considerations

3.4.1. Keep-Alive

3.4.2. Replay Detection

4. Upper-Layer Bindings for NFS Version 2 and 3 Auxiliary Protocols

4.1. MOUNT, NLM, and NSM Protocols

4.2. NFSACL Protocol

5. Upper-Layer Binding For NFS Version 4

5.1. DDP-Eligibility

5.1.1. The NFSv4.2 READ_PLUS operation

5.1.2. NFS Version 4 COMPOUND Requests

5.2. Reply Size Estimation

5.2.1. Reply Size Estimation for Minor Version 0

5.2.2. Reply Size Estimation for Minor Version 1 and Newer

5.3. RPC Binding Considerations

5.4. Transport Considerations

5.4.1. Congestion Avoidance

5.4.2. Retransmission and Keep-alive

5.5. Session-Related Considerations

6. Upper-Layer Binding For NFS Version 4 Callbacks

6.1. NFS Version 4.0 Callback

6.2. NFS Version 4.1 Callback

7. Extending NFS Upper-Layer Bindings

8. Security Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

Author's Address

¶

https://trustee.ietf.org/license-info

1. Introduction

The RPC-over-RDMA version 2 transport can employ direct data

placement to convey data payloads associated with RPC transactions,

as described in [I-D.ietf-nfsv4-rpcrdma-version-two]. As mandated by

that document, RPC client and server implementations using RPC-over-

RDMA version 2 MUST agree in advance which XDR data items and RPC

procedures are eligible for direct data placement (DDP).

An Upper-Layer Binding specifies this agreement for one or more

versions of one RPC program. Other operational details, such as RPC

binding assignments, pairing Write chunks with result data items,

and reply size estimation, are also specified by such a Binding.

This document contains material required of Upper-Layer Bindings, as

specified in Appendix A of [I-D.ietf-nfsv4-rpcrdma-version-two], for

the following NFS protocol versions:

NFS version 2 [RFC1094]

NFS version 3 [RFC1813]

NFS version 4.0 [RFC7530]

NFS version 4.1 [RFC8881]

NFS version 4.2 [RFC7862]

The current document also provides Upper-Layer Bindings for

auxiliary protocols used with NFS versions 2 and 3 (see Section 4).

This document assumes the reader is already familiar with concepts

and terminology defined throughout [I-D.ietf-nfsv4-rpcrdma-version-

two] and the documents it references.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Upper-Layer Binding for NFS Versions 2 and 3

The Upper-Layer Binding specification in this section applies to NFS

version 2 [RFC1094] and NFS version 3 [RFC1813]. For brevity, in

this document, a "Legacy NFS client" refers to an NFS client using

version 2 or version 3 of the NFS RPC program (100003) to

communicate with an NFS server. Likewise, a "Legacy NFS server" is

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

an NFS server communicating with clients using NFS version 2 or NFS

version 3.

3.1. DDP-Eligibility

Generally, storage protocols based on RDMA divide both read and

write operations into two steps. This division enables the payload

receiver to allocate the sink buffer for each I/O operation in

advance of the network payload transfer. By allocating the sink

buffer tactically, a good quality receiver implementation reduces

the amount of data movement it must perform during and after the I/O

operation.

During an NFS WRITE that involves explicit RDMA, first the NFS

client sends a request that indicates where the NFS server can find

the payload buffer, then the NFS server pulls the WRITE payload from

that buffer. Likewise, during an NFS READ that involves explicit

RDMA, the NFS client provides the location of the destination

buffer, then the NFS server pushes the READ payload to that buffer.

Therefore, the following XDR data items in NFS versions 2 and 3 are

DDP-eligible:

The opaque file data argument in the NFS WRITE procedure

The pathname argument in the NFS SYMLINK procedure

The opaque file data result in the NFS READ procedure

The pathname result in the NFS READLINK procedure

All other argument or result data items in NFS versions 2 and 3 are

not DDP-eligible.

Regardless of whether an NFS operation is considered non-idempotent,

a transport error might not indicate whether the server has

processed the arguments of the RPC Call or whether the server has

accessed or modified client memory associated with that RPC.

3.2. Reply Size Estimation

During the construction of each RPC Call message, a Requester is

responsible for allocating appropriate RDMA resources to receive the

corresponding Reply message. These resources must be capable of

holding the entire Reply. Therefore the Requester needs to estimate

the maximum possible size of the expected Reply message.

Often, the expected Reply can fit in a limited number of RDMA

Send messages. The Requester need not provision any RDMA

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

*

resources for the Reply, relying instead on message continuation

to handle the entire Reply message.

In cases where the Upper Layer Binding permits direct data

placement of the results (DDP), a Requester can provision Write

chunks to receive those results. The Requester MUST reliably

estimate the maximum size of each result receive via a Write

chunk.

A Requester that expects a large Reply message can provision a

Reply chunk. The Requester MUST reliably estimate the maximum

size of the payload received via the Reply chunk.

If RDMA resources are not available to send a Reply, a Responder

falls back to message continuation.

A correctly implemented Legacy NFS client thus avoids retransmission

of non-idempotent NFS requests due to improperly estimated Reply

resources.

3.3. RPC Binding Considerations

Legacy NFS servers typically listen for clients on UDP and TCP port

2049. Additionally, they register these ports with a local

portmapper service [RFC1833].

A Legacy NFS server supporting RPC-over-RDMA version 2 and

registering itself with the RPC portmapper MAY choose an arbitrary

port or MAY use the alternative well-known port number for its RPC-

over-RDMA service (see Section 9). The chosen port MAY be registered

with the RPC portmapper using the netids assigned in Section 12 of

[I-D.ietf-nfsv4-rpcrdma-version-two].

3.4. Transport Considerations

3.4.1. Keep-Alive

Legacy NFS client implementations can rely on connection keep-alive

to detect when a Legacy NFS server has become unresponsive. When an

NFS server is no longer responsive, client-side keep-alive

terminates the connection, triggering reconnection and

retransmission of outstanding RPC transactions.

Some RDMA transports (such as the Reliable Connected QP type on

InfiniBand) have no keep-alive mechanism. Without a disconnect or

new RPC traffic, such connections can remain alive long after an NFS

server has become unresponsive or unreachable. Once an NFS client

has consumed all available RPC-over-RDMA version 2 credits on that

transport connection, it awaits a reply indefinitely before sending

another RPC request.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpcrdma-version-two-06#section-12

Legacy NFS clients SHOULD reserve one RPC-over-RDMA version 2 credit

to use for periodic server or connection health assessment. Either

peer can use this credit to drive an RPC request on an otherwise

idle connection, triggering either an affirmative server response or

a connection termination.

3.4.2. Replay Detection

Like NFSv4.0, Legacy NFS servers typically employ request replay

detection to reduce the risk of data and file namespace corruption

that could result when an NFS client retransmits a non-idempotent

NFS request. A Legacy NFS server can send a cached response when a

replay is detected, rather than executing the request again. Replay

detection is not perfect, but it is usually adequate.

For Legacy NFS servers, replay detection commonly utilizes heuristic

indicators such as the IP address of the NFS client, the source port

of the connection, the transaction ID of the request, and the

contents of the request's RPC and upper-layer protocol headers. A

Legacy NFS client is careful to re-use the same source port when

reconnecting so that Legacy NFS servers can better detect RPC

retransmission.

However, a Legacy NFS client operating over an RDMA transport has no

control over connection source ports. It is almost certain that an

RPC request retransmitted on a new connection can never be detected

as a replay if the receiving Legacy NFS server includes the

connection source port in its replay detection heuristics.

Therefore a Legacy NFS server using an RDMA transport should never

use a connection's source port as part of its NFS request replay

detection mechanism.

4. Upper-Layer Bindings for NFS Version 2 and 3 Auxiliary Protocols

Storage administrators typically deploy NFS versions 2 and 3 with

several other protocols, sometimes called the "NFS auxiliary

protocols." These are distinct RPC programs that define procedures

not part of the NFS RPC program (100003). The Upper-Layer Bindings

in this section apply to:

Versions 2 and 3 of the MOUNT RPC program (100005) [RFC1813]

Versions 1, 3, and 4 of the NLM RPC program (100021) [RFC1813]

Version 1 of the NSM RPC program (100024), described in Chapter

11 of [XNFS]

Versions 2 and 3 of the NFSACL RPC program (100227). The NFSACL

program does not have a public definition. This document treats

¶

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

the NFSACL program as a de facto standard, as there are several

interoperating implementations.

4.1. MOUNT, NLM, and NSM Protocols

Historically, NFS/RDMA implementations have conveyed the MOUNT, NLM,

and NSM protocols via TCP. A Legacy NFS server implementation MUST

provide support for these auxiliary protocols via TCP.

Moreover, there is little benefit from transporting these protocols

via RDMA. Thus this document does not provide an Upper-Layer binding

for them.

4.2. NFSACL Protocol

Legacy NFS clients and servers convey NFSACL procedures on the same

transport connection and port as the NFS RPC program (100003).

Utilizing the same port obviates the need for a separate rpcbind

query to discover server support for this RPC program.

ACLs are typically small, but even large ACLs must be encoded and

decoded to some degree before being being stored in local

filesystems. Thus no data item in this Upper-Layer Protocol is DDP-

eligible.

For procedures whose replies do not include an ACL object, the size

of each Reply is determined directly from the NFSACL RPC program's

XDR definition.

The NFSACL protocol does not provide a mechanism to determine the

size of a received ACL in advance. When preparing for responses that

include ACLs, Legacy NFS clients estimate a maximum reply size based

on limits within their local file systems. If that estimation is

inadequate, a Responder falls back to message continuation.

5. Upper-Layer Binding For NFS Version 4

The Upper-Layer Binding specification in this section applies to

versions of the NFS RPC program defined in NFS version 4.0

[RFC7530], NFS version 4.1 [RFC8881], and NFS version 4.2 [RFC7862].

5.1. DDP-Eligibility

Only the following XDR data items in the COMPOUND procedure of all

NFS version 4 minor versions are DDP-eligible:

The opaque data field in the WRITE4args structure

The linkdata field of the NF4LNK arm in the createtype4 union

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

The opaque data field in the READ4resok structure

The linkdata field in the READLINK4resok structure

5.1.1. The NFSv4.2 READ_PLUS operation

NFS version 4.2 introduces an enhanced READ operation called

READ_PLUS [RFC7862]. READ_PLUS enables an NFS server to compact

returned READ data payloads. No part of a READ_PLUS Reply is DDP-

eligible.

In a READ_PLUS result, returned file content appears as a list of

one or more of the following items:

Regular data content, the same as the result of a traditional

READ operation

Unallocated space in a file, where no data has been written, or

previously-written data has been removed via a hole-punch

operation

A counted pattern

Upon receipt of a READ_PLUS result, an NFSv4.2 client expands the

returned list into its preferred representation of the original file

content.

Before receiving that result, an NFSv4.2 client is unaware of how

the NFS server has organized the file content. Thus it is not

possible to predict the size or structure of a READ_PLUS Reply in

advance. The use of direct data placement is therefore challenging.

Moreover, the usual benefits of hardware-assisted data placement are

entirely lost if the client must parse the result of each READ I/O.

Therefore this Upper Layer Binding does not make elements of an

NFSv4.2 READ_PLUS Reply DDP-eligible. Further, this Upper Layer

Binding recommends that NFS client implemenations avoid using the

READ_PLUS operation on NFS/RDMA mount points.

5.1.2. NFS Version 4 COMPOUND Requests

5.1.2.1. Multiple DDP-eligible Data Items

An NFS version 4 COMPOUND procedure can contain more than one

operation that carries a DDP-eligible data item. An NFS version 4

client provides XDR Position values in each Read chunk to determine

which chunk is associated with which argument data item. However,

NFS version 4 server and client implementations must agree on how to

pair Write chunks with returned result data items.

* ¶

* ¶

¶

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

A "READ operation" refers to any NFS version 4 operation with a DDP-

eligible result data item in the following lists. An NFS version 4

client applies the mechanism specified in Section 4.3.2 of [I-

D.ietf-nfsv4-rpcrdma-version-two] to this class of operations as

follows:

If an NFS version 4 client wishes all DDP-eligible items in an

NFS reply to be conveyed inline, it leaves the Write list empty.

An NFS version 4 server acts as follows:

The first READ operation MUST use the first chunk in the Write

list in an NFS version 4 COMPOUND procedure. The next READ

operation uses the next Write chunk, and so on.

If an NFS version 4 client has provided a matching non-empty

Write chunk, then the corresponding READ operation MUST return

its DDP-eligible data item using that chunk.

If an NFS version 4 client has provided an empty matching Write

chunk, then the corresponding READ operation MUST return all of

its result data items inline.

If a READ operation returns a union arm which does not contain a

DDP-eligible result, and the NFS version 4 client has provided a

matching non-empty Write chunk, an NFS version 4 server MUST

return an empty Write chunk in that Write list position.

If there are more READ operations than Write chunks, then

remaining NFS Read operations in an NFS version 4 COMPOUND that

have no matching Write chunk MUST return their results inline.

5.1.2.2. Chunk List Complexity

By default, the RPC-over-RDMA version 2 protocol limits the number

of chunks or segments that may appear in Read or Write lists (see

Section 5.2 of [I-D.ietf-nfsv4-rpcrdma-version-two]).

These implementation limits are significant when Kerberos integrity

or privacy is in use [RFC7861]. GSS services increase the size of

credential material in RPC headers, potentially requiring the more

frequent use of less efficient Special Payload or Continued Payload

messages.

NFS version 4 clients follow the prescriptions listed below when

constructing RPC-over-RDMA version 2 messages in the absence of an

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpcrdma-version-two-06#section-4.3.2
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpcrdma-version-two-06#section-5.2

explicit transport property exchange that alters these limits. NFS

version 4 servers MUST accept and process all such requests.

The Read list can contain either a Call chunk, no more than one

Read chunk, or both a Call chunk and one Read chunk.

The Write list can contain no more than one Write chunk.

NFS version 4 clients wishing to send more complex chunk lists can

use transport properties to bound the complexity of NFS version 4

COMPOUNDs, limit the number of elements in scatter-gather

operations, and avoid other sources of chunk overruns at the

receiving peer.

5.1.2.3. NFS Version 4 COMPOUND Example

The following example shows a Write list with three Write chunks, A,

B, and C. The NFS version 4 server consumes the provided Write

chunks by writing the results of the designated operations in the

compound request (READ and READLINK) back to each chunk.

If the NFS version 4 client does not want the READLINK result

returned via RDMA, it provides an empty Write chunk for buffer B to

indicate that the READLINK result must be returned inline.

5.2. Reply Size Estimation

Within NFS version 4, there are certain variable-length result data

items whose maximum size cannot be estimated by clients reliably

because there is no protocol-specified size limit on these result

arrays. These include:

The attrlist4 field

Fields containing ACLs such as fattr4_acl, fattr4_dacl, and

fattr4_sacl

Fields in the fs_locations4 and fs_locations_info4 data

structures

¶

*

¶

* ¶

¶

¶

 Write list:

 A --> B --> C

 NFS version 4 COMPOUND request:

 PUTFH LOOKUP READ PUTFH LOOKUP READLINK PUTFH LOOKUP READ

 | | |

 v v v

 A B C

¶

¶

¶

* ¶

*

¶

*

¶

Fields which pertain to pNFS layout metadata, such as loc_body,

loh_body, da_addr_body, lou_body, lrf_body, fattr_layout_types,

and fs_layout_types

5.2.1. Reply Size Estimation for Minor Version 0

The NFS version 4.0 protocol itself does not impose any bound on the

size of NFS Calls or Replies.

Variable-length fattr4 attributes make it particularly difficult for

clients to predict the maximum size of some NFS version 4.0 Replies.

Client implementations might rely upon internal architectural limits

to constrain the reply size, but such limits are not always

reliable. When an NFS version 4.0 client cannot predict the size of

a Reply, it can rely on message continuation to enable a Reply under

any circumstances.

5.2.2. Reply Size Estimation for Minor Version 1 and Newer

In NFS version 4.1 and newer minor versions, the csa_fore_chan_attrs

argument of the CREATE_SESSION operation contains a

ca_maxresponsesize field. The value in this field is the absolute

maximum size of replies generated by an NFS version 4.1 server.

An NFS version 4 client can use this value when it is impossible to

estimate a reply size upper bound precisely. In practice, objects

such as ACLs, named attributes, layout bodies, and security labels

are much smaller than this maximum.

5.3. RPC Binding Considerations

NFS version 4 servers are required to listen on TCP port 2049 and

are not required to register with an rpcbind service [RFC7530].

Therefore, an NFS version 4 server supporting RPC-over-RDMA version

2 MUST use the alternative well-known port number for its RPC-over-

RDMA service defined in Section 9.

5.4. Transport Considerations

5.4.1. Congestion Avoidance

Section 3.1 of [RFC7530] states:

Where an NFS version 4 implementation supports operation over the

IP network protocol, the supported transport layer between NFS

and IP MUST be an IETF standardized transport protocol that is

specified to avoid network congestion; such transports include

TCP and the Stream Control Transmission Protocol (SCTP).

*

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7530#section-3.1

Section 2.9.1 of [RFC8881] further states:

Even if NFS version 4.1 is used over a non-IP network protocol,

it is RECOMMENDED that the transport support congestion control.

It is permissible for a connectionless transport to be used under

NFS version 4.1; however, reliable and in-order delivery of data

combined with congestion control by the connectionless transport

is REQUIRED. As a consequence, UDP by itself MUST NOT be used as

an NFS version 4.1 transport.

RPC-over-RDMA version 2 utilizes only reliable, connection-oriented

transports that guarantee in-order delivery, meeting all the above

requirements for NFS version 4.0 and 4.1. See Section 4.2.1 of [I-

D.ietf-nfsv4-rpcrdma-version-two] for more details.

5.4.2. Retransmission and Keep-alive

NFS version 4 client implementations often rely on a transport-layer

connection keep-alive mechanism to detect when an NFS version 4

server has become unresponsive. When an NFS server is no longer

responsive, client-side keep-alive terminates the connection,

triggering reconnection and RPC retransmission.

Some RDMA transports (such as the Reliable Connected QP type on

InfiniBand) have no keep-alive mechanism. Without a disconnect or

new RPC traffic, such connections can remain alive long after an NFS

server has become unresponsive. Once an NFS client has consumed all

available RPC-over-RDMA version 2 credits on that transport

connection, it indefinitely awaits a reply before sending another

RPC request.

NFS version 4 peers SHOULD reserve one RPC-over-RDMA version 2

credit for periodic server or connection health assessment. Either

peer can use this credit to drive an RPC request on an otherwise

idle connection, triggering either a quick affirmative server

response or immediate connection termination.

In addition to network partition and request loss scenarios, RPC-

over-RDMA version 2 peers can terminate a connection when a

Transport header is malformed or when too many RPC-over-RDMA

messages are sent without a credit update. In such cases:

If a transport error occurs (e.g., an RDMA2_ERROR type message is

received) just before the disconnect or instead of a disconnect,

the Requester MUST respond to that error as prescribed by the

specification of the RPC transport. Then the NFS version 4 rules

for handling retransmission apply.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

https://rfc-editor.org/rfc/rfc8881#section-2.9.1
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpcrdma-version-two-06#section-4.2.1

If there is a transport disconnect and the Responder has provided

no other response for a request, then only the NFS version 4

rules for handling retransmission apply.

5.5. Session-Related Considerations

The presence of an NFS version 4 session (as defined in [RFC8881])

does not affect the operation of RPC-over-RDMA version 2. None of

the operations introduced to support NFS sessions (e.g., the

SEQUENCE operation) contain DDP-eligible data items. There is no

need to match the number of session slots with the available RPC-

over-RDMA version 2 credits.

However, there are a few new cases where an RPC transaction can

fail. For example, a Requester might receive, in response to an RPC

request, an RDMA2_ERROR message with a rdma_err value of

RDMA2_ERR_BADXDR. These situations are not different from existing

RPC errors, which an NFS session implementation can already handle

for other transport types. Moreover, there might be no SEQUENCE

result available to the Requester to distinguish whether failure

occurred before or after the Responder executed the requested

operations.

When a transport error occurs (e.g., an RDMA2_ERROR type message is

received), the Requester proceeds, as usual, to match the incoming

XID value to a waiting RPC Call. The Requester terminates the RPC

transaction and reports the result status to the RPC consumer. The

Requester's session implementation then determines the session ID

and slot for the failed request and performs slot recovery to make

that slot usable again. Otherwise, that slot is rendered permanently

unavailable.

When an NFS session is not present (for example, when NFS version

4.0 is in use), a transport error does not indicate whether the

server has processed the arguments of the RPC Call, or whether the

server has accessed or modified client memory associated with that

RPC.

6. Upper-Layer Binding For NFS Version 4 Callbacks

The NFS version 4 family of protocols supports server-initiated

callbacks to notify NFS version 4 clients of events such as recalled

delegations.

6.1. NFS Version 4.0 Callback

An NFS version 4.0 client uses the SETCLIENTID operation for

advertising the IP address, port, and netid of its NFS version 4.0

callback service. When an NFS version 4.0 server provides a

backchannel service to an NFS version 4.0 client that uses RPC-over-

*

¶

¶

¶

¶

¶

¶

RDMA version 2 for its forward channel, the server MUST advertise

the backchannel service using either the "tcp" or "tcp6" netid.

Because the NFSv4.0 backchannel does not operate on RPC-over-RDMA,

this document does not specify an Upper-Layer binding for the

NFSv4.0 backchannel RPC program.

6.2. NFS Version 4.1 Callback

In NFS version 4.1 and newer minor versions, callback operations may

appear on the same connection that is in use for NFS version 4

forward channel client requests. NFS version 4 clients and servers

MUST use the mechanisms described in Section 4.5 of [I-D.ietf-nfsv4-

rpcrdma-version-two] to convey backchannel operations on an RPC-

over-RDMA version 2 transport.

The csa_back_chan_attrs argument of the CREATE_SESSION operation

contains a ca_maxresponsesize field. The value in this field is the

absolute maximum size of backchannel replies generated by a replying

NFS version 4 client.

There are no DDP-eligible data items in callback procedures defined

in NFS version 4.1 or NFS version 4.2. However, some callback

operations, such as messages that convey device ID information, can

be sizeable. A sender can use Message Continuation or a Special

Payload message in this situation.

When an NFS version 4.1 client can support Special Payload Calls in

its backchannel, it reports a backchannel ca_maxrequestsize that is

larger than the connection's inline thresholds. Otherwise, an NFS

version 4 server MUST use only Simple Payload or Continued Payload

messages to convey backchannel operations.

7. Extending NFS Upper-Layer Bindings

RPC programs such as NFS must have an Upper-Layer Binding

specification to operate on an RPC-over-RDMA version 2 transport [I-

D.ietf-nfsv4-rpcrdma-version-two]. Via standards action, the Upper-

Layer Binding specified in this document can be extended to cover

versions of the NFS version 4 protocol specified after NFS version 4

minor version 2, or to cover separately published extensions to an

existing NFS version 4 minor version, as described in [RFC8178].

8. Security Considerations

RPC-over-RDMA version 2 supports all RPC security models, including

RPCSEC_GSS security and transport-level security [RFC7861]. The

choice of what Direct Data Placement mechanism to convey RPC

argument and results does not affect this since it changes only the

method of data transfer. Because the current document defines only

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpcrdma-version-two-06#section-4.5

[I-D.ietf-nfsv4-rpcrdma-version-two]

[RFC1833]

[RFC2119]

[RFC6335]

the binding of the NFS protocols atop RPC-over-RDMA version 2 [I-

D.ietf-nfsv4-rpcrdma-version-two], all relevant security

considerations are, therefore, described at that layer.

9. IANA Considerations

The use of direct data placement in NFS introduces a need for an

additional port number assignment for networks that share

traditional UDP and TCP port spaces with RDMA services. The DDP

protocol is such an example [RFC5041].

For this purpose, the current document lists a set of port number

assignments that IANA has already assigned for NFS/RDMA in the IANA

port registry, according to the guidelines described in [RFC6335].

The author requests that IANA add the current document as a

reference for the existing nfsrdma port assignments. This document

does not alter these assignments.

10. References

10.1. Normative References

Lever, C. and D. Noveck, "RPC-

over-RDMA Version 2 Protocol", Work in Progress,

Internet-Draft, draft-ietf-nfsv4-rpcrdma-version-two-06,

2 January 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-nfsv4-rpcrdma-version-two-06>.

Srinivasan, R., "Binding Protocols for ONC RPC Version

2", RFC 1833, DOI 10.17487/RFC1833, August 1995,

<https://www.rfc-editor.org/rfc/rfc1833>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.

Cheshire, "Internet Assigned Numbers Authority (IANA)

Procedures for the Management of the Service Name and

Transport Protocol Port Number Registry", BCP 165, RFC

¶

¶

¶

 nfsrdma 20049/tcp Network File System (NFS) over RDMA

 nfsrdma 20049/udp Network File System (NFS) over RDMA

 nfsrdma 20049/sctp Network File System (NFS) over RDMA

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpcrdma-version-two-06
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpcrdma-version-two-06
https://www.rfc-editor.org/rfc/rfc1833
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119

[RFC7530]

[RFC7861]

[RFC7862]

[RFC8174]

[RFC8881]

[RFC1094]

[RFC1813]

[RFC5041]

[RFC8178]

[XNFS]

6335, DOI 10.17487/RFC6335, August 2011, <https://

www.rfc-editor.org/rfc/rfc6335>.

Haynes, T., Ed. and D. Noveck, Ed., "Network File System

(NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/

RFC7530, March 2015, <https://www.rfc-editor.org/rfc/

rfc7530>.

Adamson, A. and N. Williams, "Remote Procedure Call (RPC)

Security Version 3", RFC 7861, DOI 10.17487/RFC7861,

November 2016, <https://www.rfc-editor.org/rfc/rfc7861>.

Haynes, T., "Network File System (NFS) Version 4 Minor

Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862,

November 2016, <https://www.rfc-editor.org/rfc/rfc7862>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Noveck, D., Ed. and C. Lever, "Network File System (NFS)

Version 4 Minor Version 1 Protocol", RFC 8881, DOI

10.17487/RFC8881, August 2020, <https://www.rfc-

editor.org/rfc/rfc8881>.

10.2. Informative References

Nowicki, B., "NFS: Network File System Protocol

specification", RFC 1094, DOI 10.17487/RFC1094, March

1989, <https://www.rfc-editor.org/rfc/rfc1094>.

Callaghan, B., Pawlowski, B., and P. Staubach, "NFS

Version 3 Protocol Specification", RFC 1813, DOI

10.17487/RFC1813, June 1995, <https://www.rfc-editor.org/

rfc/rfc1813>.

Shah, H., Pinkerton, J., Recio, R., and P. Culley,

"Direct Data Placement over Reliable Transports", RFC

5041, DOI 10.17487/RFC5041, October 2007, <https://

www.rfc-editor.org/rfc/rfc5041>.

Noveck, D., "Rules for NFSv4 Extensions and Minor

Versions", RFC 8178, DOI 10.17487/RFC8178, July 2017,

<https://www.rfc-editor.org/rfc/rfc8178>.

The Open Group, "Protocols for Interworking: XNFS,

Version 3W", January 1998.

https://www.rfc-editor.org/rfc/rfc6335
https://www.rfc-editor.org/rfc/rfc6335
https://www.rfc-editor.org/rfc/rfc7530
https://www.rfc-editor.org/rfc/rfc7530
https://www.rfc-editor.org/rfc/rfc7861
https://www.rfc-editor.org/rfc/rfc7862
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8881
https://www.rfc-editor.org/rfc/rfc8881
https://www.rfc-editor.org/rfc/rfc1094
https://www.rfc-editor.org/rfc/rfc1813
https://www.rfc-editor.org/rfc/rfc1813
https://www.rfc-editor.org/rfc/rfc5041
https://www.rfc-editor.org/rfc/rfc5041
https://www.rfc-editor.org/rfc/rfc8178

Acknowledgments

Thanks to Tom Talpey, who contributed the text of Section 5.1.2.2.

David Noveck contributed the text of Section 5.5 and Section 7. The

author also wishes to thank Bill Baker and Greg Marsden for their

support of this work.

Special thanks go to Transport Area Directors Zaheduzzaman Sarker,

NFSV4 Working Group Chairs Brian Pawlowski, and David Noveck, and

NFSV4 Working Group Secretary Thomas Haynes for their support.

Author's Address

Charles Lever

Oracle Corporation

United States of America

Email: chuck.lever@oracle.com

¶

¶

mailto:chuck.lever@oracle.com

	Network File System (NFS) Upper-Layer Binding To RPC-Over-RDMA Version 2
	Abstract
	Note
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. Upper-Layer Binding for NFS Versions 2 and 3
	3.1. DDP-Eligibility
	3.2. Reply Size Estimation
	3.3. RPC Binding Considerations
	3.4. Transport Considerations
	3.4.1. Keep-Alive
	3.4.2. Replay Detection

	4. Upper-Layer Bindings for NFS Version 2 and 3 Auxiliary Protocols
	4.1. MOUNT, NLM, and NSM Protocols
	4.2. NFSACL Protocol

	5. Upper-Layer Binding For NFS Version 4
	5.1. DDP-Eligibility
	5.1.1. The NFSv4.2 READ_PLUS operation
	5.1.2. NFS Version 4 COMPOUND Requests
	5.1.2.1. Multiple DDP-eligible Data Items
	5.1.2.2. Chunk List Complexity
	5.1.2.3. NFS Version 4 COMPOUND Example

	5.2. Reply Size Estimation
	5.2.1. Reply Size Estimation for Minor Version 0
	5.2.2. Reply Size Estimation for Minor Version 1 and Newer

	5.3. RPC Binding Considerations
	5.4. Transport Considerations
	5.4.1. Congestion Avoidance
	5.4.2. Retransmission and Keep-alive

	5.5. Session-Related Considerations

	6. Upper-Layer Binding For NFS Version 4 Callbacks
	6.1. NFS Version 4.0 Callback
	6.2. NFS Version 4.1 Callback

	7. Extending NFS Upper-Layer Bindings
	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Author's Address

