
NFSv4 G. Goodson
Internet-Draft NetApp
Expires: April 10, 2006 B. Welch
 B. Halevy
 Panasas
 D. Black
 EMC
 A. Adamson
 CITI
 October 7, 2005

NFSv4 pNFS Extensions
draft-ietf-nfsv4-pnfs-00.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 10, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This Internet-Draft provides a description of the pNFS extension for
 NFSv4.

Goodson, et al. Expires April 10, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft NFSv4 pNFS Extensions October 2005

 The key feature of the protocol extension is the ability for clients
 to perform read and write operations that go directly from the client
 to individual storage system elements without funneling all such
 accesses through a single file server. Of course, the file server
 must provide sufficient coordination of the client I/O so that the
 file system retains its integrity.

 The extension adds operations that query and manage layout
 information that allows parallel I/O between clients and storage
 system elements. The layouts are managed in a similar way to
 delegations in that they are associated with leases and can be
 recalled by the server, but layout information is independent of
 delegations.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

https://datatracker.ietf.org/doc/html/rfc2119

Goodson, et al. Expires April 10, 2006 [Page 2]

Internet-Draft NFSv4 pNFS Extensions October 2005

Table of Contents

1. Introduction . 5
2. General Definitions . 7
2.1 Metadata Server . 7
2.2 Client . 7
2.3 Storage Device . 8
2.4 Storage Protocol . 8
2.5 Control Protocol . 8
2.6 Metadata . 9
2.7 Layout . 9

3. pNFS protocol semantics 9
3.1 Definitions . 9
3.1.1 Layout Types . 9
3.1.2 Layout Iomode . 10
3.1.3 Layout Segments 10
3.1.4 Device IDs . 11
3.1.5 Aggregation Schemes 12

3.2 Guarantees Provided by Layouts 12
3.3 Getting a Layout . 13
3.4 Committing a Layout 14
3.4.1 LAYOUTCOMMIT and mtime/atime/change 15
3.4.2 LAYOUTCOMMIT and size 15
3.4.3 LAYOUTCOMMIT and layoutupdate 16

3.5 Recalling a Layout . 17
3.5.1 Basic Operation 17
3.5.2 Recall Callback Robustness 18
3.5.3 Recall/Return Sequencing 19

3.6 Metadata Server Write Propagation 21
3.7 Crash Recovery . 21
3.7.1 Leases . 21
3.7.2 Client Recovery 23
3.7.3 Metadata Server Recovery 23
3.7.4 Storage Device Recovery 25

4. Security Considerations 26
4.1 File Layout Security 27
4.2 Object Layout Security 27
4.3 Block/Volume Layout Security 29

5. The NFSv4 File Layout Type 29
5.1 File Striping and Data Access 29
5.1.1 Sparse and Dense Storage Device Data Layouts 31
5.1.2 Metadata and Storage Device Roles 32
5.1.3 Device Multipathing 33
5.1.4 Operations Issued to Storage Devices 34

5.2 Global Stateid Requirements 35
5.3 The Layout Iomode . 35
5.4 Storage Device State Propagation 35
5.4.1 Lock State Propagation 36

Goodson, et al. Expires April 10, 2006 [Page 3]

Internet-Draft NFSv4 pNFS Extensions October 2005

5.4.2 Open-mode Validation 36
5.4.3 File Attributes 37

5.5 Storage Device Component File Size 38
5.6 Crash Recovery Considerations 38
5.7 Security Considerations 39
5.8 Alternate Approaches 39

6. pNFS Typed Data Structures 40
6.1 pnfs_layouttype4 . 40
6.2 pnfs_deviceid4 . 41
6.3 pnfs_deviceaddr4 . 41
6.4 pnfs_devlist_item4 . 42
6.5 pnfs_layout4 . 42
6.6 pnfs_layoutupdate4 . 43
6.7 pnfs_layouthint4 . 43
6.8 pnfs_layoutiomode4 . 43

7. pNFS File Attributes . 44
7.1 pnfs_layouttype4<> FS_LAYOUT_TYPES 44
7.2 pnfs_layouttype4<> FILE_LAYOUT_TYPES 44
7.3 pnfs_layouthint4 FILE_LAYOUT_HINT 44
7.4 uint32_t FS_LAYOUT_PREFERRED_BLOCKSIZE 44
7.5 uint32_t FS_LAYOUT_PREFERRED_ALIGNMENT 44

8. pNFS Error Definitions . 45
9. pNFS Operations . 45
9.1 LAYOUTGET - Get Layout Information 46
9.2 LAYOUTCOMMIT - Commit writes made using a layout 48
9.3 LAYOUTRETURN - Release Layout Information 51
9.4 GETDEVICEINFO - Get Device Information 53
9.5 GETDEVICELIST - Get List of Devices 54

10. Callback Operations . 55
10.1 CB_LAYOUTRECALL . 56
10.2 CB_SIZECHANGED . 58

11. Layouts and Aggregation 58
11.1 Simple Map . 59
11.2 Block Extent Map . 59
11.3 Striped Map (RAID 0) 59
11.4 Replicated Map . 59
11.5 Concatenated Map . 60
11.6 Nested Map . 60

12. References . 60
12.1 Normative References 60
12.2 Informative References 60

 Authors' Addresses . 61
A. Acknowledgments . 62

 Intellectual Property and Copyright Statements 63

Goodson, et al. Expires April 10, 2006 [Page 4]

Internet-Draft NFSv4 pNFS Extensions October 2005

1. Introduction

 The NFSv4 protocol [2] specifies the interaction between a client
 that accesses files and a server that provides access to files and is
 responsible for coordinating access by multiple clients. As
 described in the pNFS problem statement, this requires that all
 access to a set of files exported by a single NFSv4 server be
 performed by that server; at high data rates the server may become a
 bottleneck.

 The parallel NFS (pNFS) extensions to NFSv4 allow data accesses to
 bypass this bottleneck by permitting direct client access to the
 storage devices containing the file data. When file data for a
 single NFSv4 server is stored on multiple and/or higher throughput
 storage devices (by comparison to the server's throughput
 capability), the result can be significantly better file access
 performance. The relationship among multiple clients, a single
 server, and multiple storage devices for pNFS (server and clients
 have access to all storage devices) is shown in this diagram:

 +-----------+
 |+-----------+ +-----------+
 ||+-----------+ | |
 ||| | NFSv4 + pNFS | |
 +|| Clients |<------------------------------>| Server |
 +| | | |
 +-----------+ | |
 ||| +-----------+
 ||| | | |
 ||| |
 ||| Storage +-----------+ |
 ||| Protocol |+-----------+ |
 ||+----------------||+-----------+ Control|
 |+-----------------||| | Protocol|
 +------------------+|| Storage |------------+
 +| Devices |
 +-----------+

 Figure 1

 In this structure, the responsibility for coordination of file access
 by multiple clients is shared among the server, clients, and storage
 devices. This is in contrast to NFSv4 without pNFS extensions, in
 which this is primarily the server's responsibility, some of which
 can be delegated to clients under strictly specified conditions.

 The pNFS extension to NFSv4 takes the form of new operations that
 manage data location information called a "layout". The layout is

Goodson, et al. Expires April 10, 2006 [Page 5]

Internet-Draft NFSv4 pNFS Extensions October 2005

 managed in a similar fashion as NFSv4 data delegations (e.g., they
 are recallable and revocable). However, they are distinct
 abstractions and are manipulated with new operations that are
 described in Section 9. When a client holds a layout, it has rights
 to access the data directly using the location information in the
 layout.

 There are new attributes that describe general layout
 characteristics. However, much of the required information cannot be
 managed solely within the attribute framework, because it will need
 to have a strictly limited term of validity, subject to invalidation
 by the server. This requires the use of new operations to obtain,
 return, recall, and modify layouts, in addition to new attributes.

 This document specifies both the NFSv4 extensions required to
 distribute file access coordination between the server and its
 clients and a NFSv4 file storage protocol that may be used to access
 data stored on NFSv4 storage devices.

 Storage protocols used to access a variety of other storage devices
 are deliberately not specified here. These might include:

 o Block/volume protocols such as iSCSI ([4]), and FCP ([5]). The
 block/volume protocol support can be independent of the addressing
 structure of the block/volume protocol used, allowing more than
 one protocol to access the same file data and enabling
 extensibility to other block/volume protocols.

 o Object protocols such as OSD over iSCSI or Fibre Channel [6].

 o Other storage protocols, including PVFS and other file systems
 that are in use in HPC environments.

 pNFS is designed to accommodate these protocols and be extensible to
 new classes of storage protocols that may be of interest.

 The distribution of file access coordination between the server and
 its clients increases the level of responsibility placed on clients.
 Clients are already responsible for ensuring that suitable access
 checks are made to cached data and that attributes are suitably
 propagated to the server. Generally, a misbehaving client that hosts
 only a single-user can only impact files accessible to that single
 user. Misbehavior by a client hosting multiple users may impact
 files accessible to all of its users. NFSv4 delegations increase the
 level of client responsibility as a client that carries out actions
 requiring a delegation without obtaining that delegation will cause
 its user(s) to see unexpected and/or incorrect behavior.

Goodson, et al. Expires April 10, 2006 [Page 6]

Internet-Draft NFSv4 pNFS Extensions October 2005

 Some uses of pNFS extend the responsibility of clients beyond
 delegations. In some configurations, the storage devices cannot
 perform fine-grained access checks to ensure that clients are only
 performing accesses within the bounds permitted to them by the pNFS
 operations with the server (e.g., the checks may only be possible at
 file system granularity rather than file granularity). In situations
 where this added responsibility placed on clients creates
 unacceptable security risks, pNFS configurations in which storage
 devices cannot perform fine-grained access checks SHOULD NOT be used.
 All pNFS server implementations MUST support NFSv4 access to any file
 accessible via pNFS in order to provide an interoperable means of
 file access in such situations. See Section 4 on Security for
 further discussion.

 Finally, there are issues about how layouts interact with the
 existing NFSv4 abstractions of data delegations and byte range
 locking. These issues, and others, are also discussed here.

2. General Definitions

 This protocol extension partitions the NFSv4 file system protocol
 into two parts, the control path and the data path. The control path
 is implemented by the extended (p)NFSv4 server. When the file system
 being exported by (p)NFSv4 uses storage devices that are visible to
 clients over the network, the data path may be implemented by direct
 communication between the extended (p)NFSv4 file system client and
 the storage devices. This leads to a few new terms used to describe
 the protocol extension and some clarifications of existing terms.

2.1 Metadata Server

 A pNFS "server" or "metadata server" is a server as defined by
RFC3530 [2], which additionally provides support of the pNFS minor

 extension. When using the pNFS NFSv4 minor extension, the metadata
 server may hold only the metadata associated with a file, while the
 data can be stored on the storage devices. However, similar to
 NFSv4, data may also be written through the metadata server. Note:
 directory data is always accessed through the metadata server.

2.2 Client

 A pNFS "client" is a client as defined by RFC3530 [2], with the
 addition of supporting the pNFS minor extension server protocol and
 with the addition of supporting at least one storage protocol for
 performing I/O directly to storage devices.

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530

Goodson, et al. Expires April 10, 2006 [Page 7]

Internet-Draft NFSv4 pNFS Extensions October 2005

2.3 Storage Device

 This is a device, or server, that controls the file's data, but
 leaves other metadata management up to the metadata server. A
 storage device could be another NFS server, or an Object Storage
 Device (OSD) or a block device accessed over a SAN (e.g., either
 FiberChannel or iSCSI SAN). The goal of this extension is to allow
 direct communication between clients and storage devices.

2.4 Storage Protocol

 This is the protocol between the pNFS client and the storage device
 used to access the file data. Three following types have been
 described: file protocols (e.g., NFSv4), object protocols (e.g.,
 OSD), and block/volume protocols (e.g., based on SCSI-block
 commands). These protocols are in turn realizable over a variety of
 transport stacks. We anticipate there will be variations on these
 storage protocols, including new protocols that are unknown at this
 time or experimental in nature. The details of the storage protocols
 will be described in other documents so that pNFS clients can be
 written to use these storage protocols. Use of NFSv4 itself as a
 file-based storage protocol is described in Section 5.

2.5 Control Protocol

 This is a protocol used by the exported file system between the
 server and storage devices. Specification of such protocols is
 outside the scope of this draft. Such control protocols would be
 used to control such activities as the allocation and deallocation of
 storage and the management of state required by the storage devices
 to perform client access control. The control protocol should not be
 confused with protocols used to manage LUNs in a SAN and other
 sysadmin kinds of tasks.

 While the pNFS protocol allows for any control protocol, in practice
 the control protocol is closely related to the storage protocol. For
 example, if the storage devices are NFS servers, then the protocol
 between the pNFS metadata server and the storage devices is likely to
 involve NFS operations. Similarly, when object storage devices are
 used, the pNFS metadata server will likely use iSCSI/OSD commands to
 manipulate storage.

 However, this document does not mandate any particular control
 protocol. Instead, it just describes the requirements on the control
 protocol for maintaining attributes like modify time, the change
 attribute, and the end-of-file position.

Goodson, et al. Expires April 10, 2006 [Page 8]

Internet-Draft NFSv4 pNFS Extensions October 2005

2.6 Metadata

 This is information about a file, like its name, owner, where it
 stored, and so forth. The information is managed by the exported
 file system server (metadata server). Metadata also includes lower-
 level information like block addresses and indirect block pointers.
 Depending the storage protocol, block-level metadata may or may not
 be managed by the metadata server, but is instead managed by Object
 Storage Devices or other servers acting as a storage device.

2.7 Layout

 A layout defines how a file's data is organized on one or more
 storage devices. There are many possible layout types. They vary in
 the storage protocol used to access the data, and in the aggregation
 scheme that lays out the file data on the underlying storage devices.
 Layouts are described in more detail below.

3. pNFS protocol semantics

 This section describes the semantics of the pNFS protocol extension
 to NFSv4; this is the protocol between the client and the metadata
 server.

3.1 Definitions

 This sub-section defines a number of terms necessary for describing
 layouts and their semantics. In addition, it more precisely defines
 how layouts are identified and how they can be composed of smaller
 granularity layout segments.

3.1.1 Layout Types

 A layout describes the mapping of a file's data to the storage
 devices that hold the data. A layout is said to belong to a specific
 "layout type" (see Section 6.1 for its RPC definition). The layout
 type allows for variants to handle different storage protocols (e.g.,
 block/volume [7], object [8], and file [Section 5] layout types). A
 metadata server, along with its control protocol, must support at
 least one layout type. A private sub-range of the layout type name
 space is also defined. Values from the private layout type range can
 be used for internal testing or experimentation.

 As an example, a file layout type could be an array of tuples (e.g.,
 deviceID, file_handle), along with a definition of how the data is
 stored across the devices (e.g., striping). A block/volume layout
 might be an array of tuples that store <deviceID, block_number, block
 count> along with information about block size and the file offset of

Goodson, et al. Expires April 10, 2006 [Page 9]

Internet-Draft NFSv4 pNFS Extensions October 2005

 the first block. An object layout might be an array of tuples
 <deviceID, objectID> and an additional structure (i.e., the
 aggregation map) that defines how the logical byte sequence of the
 file data is serialized into the different objects. Note, the actual
 layouts are more complex than these simple expository examples.

 This document defines a NFSv4 file layout type using a stripe-based
 aggregation scheme (see Section 5). Adjunct specifications are being
 drafted that precisely define other layout formats (e.g., block/
 volume [7], and object [8] layouts) to allow interoperability among
 clients and metadata servers.

3.1.2 Layout Iomode

 The iomode indicates to the metadata server the client's intent to
 perform either READs (only) or a mixture of I/O possibly containing
 WRITEs as well as READs (i.e., READ/WRITE). For certain layout
 types, it is useful for a client to specify this intent at LAYOUTGET
 time. E.g., for block/volume based protocols, block allocation could
 occur when a READ/WRITE iomode is specified. A special
 LAYOUTIOMODE_ANY iomode is defined and can only be used for
 LAYOUTRETURN and LAYOUTRECALL, not for LAYOUTGET. It specifies that
 layouts pertaining to both READ and RW iomodes are being returned or
 recalled, respectively.

 A storage device may validate I/O with regards to the iomode; this is
 dependent upon storage device implementation. Thus, if the client's
 layout iomode differs from the I/O being performed the storage device
 may reject the client's I/O with an error indicating a new layout
 with the correct I/O mode should be fetched. E.g., if a client gets
 a layout with a READ iomode and performs a WRITE to a storage device,
 the storage device is allowed to reject that WRITE.

 The iomode does not conflict with OPEN share modes or lock requests;
 open mode checks and lock enforcement are always enforced, and are
 logically separate from the pNFS layout level. As well, open modes
 and locks are the preferred method for restricting user access to
 data files. E.g., an OPEN of read, deny-write does not conflict with
 a LAYOUTGET containing an iomode of READ/WRITE performed by another
 client. Applications that depend on writing into the same file
 concurrently may use byte range locking to serialize their accesses.

3.1.3 Layout Segments

 Until this point, layouts have been defined in a fairly vague manner.
 A layout is more precisely identified by the following tuple:
 <ClientID, FH, layout type>; the FH refers to the FH of the file on
 the metadata server. Note, layouts describe a file, not a byte-range

Goodson, et al. Expires April 10, 2006 [Page 10]

Internet-Draft NFSv4 pNFS Extensions October 2005

 of a file.

 Since a layout that describes an entire file may be very large, there
 is a desire to manage layouts in smaller chunks that correspond to
 byte-ranges of the file. For example, the entire layout need not be
 returned, recalled, or committed. These chunks are called "layout
 segments" and are further identified by the byte-range they
 represent. Layout operations require the identification of the
 layout segment (i.e., clientID, FH, layout type, and byte-range), as
 well as the iomode. This structure allows clients and metadata
 servers to aggregate the results of layout operations into a singly
 maintained layout.

 It is important to define when layout segments overlap and/or
 conflict with each other. For a layout segment to overlap another
 layout segment both segments must be of the same layout type,
 correspond to the same filehandle, and have the same iomode; in
 addition, the byte-ranges of the segments must overlap. Layout
 segments conflict, when they overlap and differ in the content of the
 layout (i.e., the storage device/file mapping parameters differ).
 Note, differing iomodes do not lead to conflicting layouts. It is
 permissible for layout segments with different iomodes, pertaining to
 the same byte range, to be held by the same client.

3.1.4 Device IDs

 The "deviceID" is a short name for a storage device. In practice, a
 significant amount of information may be required to fully identify a
 storage device. Instead of embedding all that information in a
 layout, a level of indirection is used. Layouts embed device IDs,
 and a new operation (GETDEVICEINFO) is used to retrieve the complete
 identity information about the storage device according to its layout
 type. For example, the identity of a file server or object server
 could be an IP address and port. The identity of a block device
 could be a volume label. Due to multipath connectivity in a SAN
 environment, agreement on a volume label is considered the reliable
 way to locate a particular storage device.

 The device ID is qualified by the layout type and unique per file
 system (FSID). This allows different layout drivers to generate
 device IDs without the need for co-ordination. In addition to
 GETDEVICEINFO, another operation, GETDEVICELIST, has been added to
 allow clients to fetch the mappings of multiple storage devices
 attached to a metadata server.

 Clients cannot expect the mapping between device ID and storage
 device address to persist across server reboots, hence a client MUST
 fetch new mappings on startup or upon detection of a metadata server

Goodson, et al. Expires April 10, 2006 [Page 11]

Internet-Draft NFSv4 pNFS Extensions October 2005

 reboot unless it can revalidate its existing mappings. Not all
 layout types support such revalidation, and the means of doing so is
 layout specific. If data are reorganized from a storage device with
 a given device ID to a different storage device (i.e., if the mapping
 between storage device and data changes), the layout describing the
 data MUST be recalled rather than assigning the new storage device to
 the old device ID.

3.1.5 Aggregation Schemes

 Aggregation schemes can describe layouts like simple one-to-one
 mapping, concatenation, and striping. A general aggregation scheme
 allows nested maps so that more complex layouts can be compactly
 described. The canonical aggregation type for this extension is
 striping, which allows a client to access storage devices in
 parallel. Even a one-to-one mapping is useful for a file server that
 wishes to distribute its load among a set of other file servers.

3.2 Guarantees Provided by Layouts

 Layouts delegate to the client the ability to access data out of
 band. The layout guarantees the holder that the layout will be
 recalled when the state encapsulated by the layout becomes invalid
 (e.g., through some operation that directly or indirectly modifies
 the layout) or, possibly, when a conflicting layout is requested, as
 determined by the layout's iomode. When a layout is recalled, and
 then returned by the client, the client retains the ability to access
 file data with normal NFSv4 I/O operations through the metadata
 server. Only the right to do I/O out-of-band is affected.

 Holding a layout does not guarantee that a user of the layout has the
 rights to access the data represented by the layout. All user access
 rights MUST be obtained through the appropriate open, lock, and
 access operations (i.e., those that would be used in the absence of
 pNFS). However, if a valid layout for a file is not held by the
 client, the storage device should reject all I/Os to that file's byte
 range that originate from that client. In summary, layouts and
 ordinary file access controls are independent. The act of modifying
 a file for which a layout is held, does not necessarily conflict with
 the holding of the layout that describes the file being modified.
 However, with certain layout types (e.g., block/volume layouts), the
 layout's iomode must agree with the type of I/O being performed.

 Depending upon the layout type and storage protocol in use, storage
 device access permissions may be granted by LAYOUTGET and may be
 encoded within the type specific layout. If access permissions are
 encoded within the layout, the metadata server must recall the layout
 when those permissions become invalid for any reason; for example

Goodson, et al. Expires April 10, 2006 [Page 12]

Internet-Draft NFSv4 pNFS Extensions October 2005

 when a file becomes unwritable or inaccessible to a client. Note,
 clients are still required to perform the appropriate access
 operations as described above (e.g., open and lock ops). The degree
 to which it is possible for the client to circumvent these access
 operations must be clearly addressed by the individual layout type
 documents, as well as the consequences of doing so. In addition,
 these documents must be clear about the requirements and non-
 requirements for the checking performed by the server.

 If the pNFS metadata server supports mandatory byte range locks then
 byte range locks must behave as specified by the NFSv4 protocol, as
 observed by users of files. If a storage device is unable to
 restrict access by a pNFS client who does not hold a required
 mandatory byte range lock then the metadata server must not grant
 layouts to a client, for that storage device, that permits any access
 that conflicts with a mandatory byte range lock held by another
 client. In this scenario, it is also necessary for the metadata
 server to ensure that byte range locks are not granted to a client if
 any other client holds a conflicting layout; in this case all
 conflicting layouts must be recalled and returned before the lock
 request can be granted. This requires the pNFS server to understand
 the capabilities of its storage devices.

3.3 Getting a Layout

 A client obtains a layout through a new operation, LAYOUTGET. The
 metadata server will give out layouts of a particular type (e.g.,
 block/volume, object, or file) and aggregation as requested by the
 client. The client selects an appropriate layout type which the
 server supports and the client is prepared to use. The layout
 returned to the client may not line up exactly with the requested
 byte range. A field within the LAYOUTGET request, "minlength",
 specifies the minimum overlap that MUST exist between the requested
 layout and the layout returned by the metadata server. The
 "minlength" field should specify a size of at least one. A metadata
 server may give-out multiple overlapping, non-conflicting layout
 segments to the same client in response to a LAYOUTGET.

 There is no implied ordering between getting a layout and performing
 a file OPEN. For example, a layout may first be retrieved by placing
 a LAYOUTGET operation in the same compound as the initial file OPEN.
 Once the layout has been retrieved, it can be held across multiple
 OPEN and CLOSE sequences.

 The storage protocol used by the client to access the data on the
 storage device is determined by the layout's type. The client needs
 to select a "layout driver" that understands how to interpret and use
 that layout. The API used by the client to talk to its drivers is

Goodson, et al. Expires April 10, 2006 [Page 13]

Internet-Draft NFSv4 pNFS Extensions October 2005

 outside the scope of the pNFS extension. The storage protocol
 between the client's layout driver and the actual storage is covered
 by other protocols specifications such as iSCSI (block storage), OSD
 (object storage) or NFS (file storage).

 Although, the metadata server is in control of the layout for a file,
 the pNFS client can provide hints to the server when a file is opened
 or created about preferred layout type and aggregation scheme. The
 pNFS extension introduces a LAYOUT_HINT attribute that the client can
 set at creation time to provide a hint to the server for new files.
 It is suggested that this attribute be set as one of the initial
 attributes to OPEN when creating a new file. Setting this attribute
 separately, after the file has been created could make it difficult,
 or impossible, for the server implementation to comply.

3.4 Committing a Layout

 Due to the nature of the protocol, the file attributes, and data
 location mapping (e.g., which offsets store data vs. store holes)
 that exist on the metadata storage device may become inconsistent in
 relation to the data stored on the storage devices; e.g., when WRITEs
 occur before a layout has been committed (e.g., between a LAYOUTGET
 and a LAYOUTCOMMIT). Thus, it is necessary to occasionally re-sync
 this state and make it visible to other clients through the metadata
 server.

 The LAYOUTCOMMIT operation is responsible for committing a modified
 layout segment to the metadata server. Note: the data should be
 written and committed to the appropriate storage devices before the
 LAYOUTCOMMIT occurs. Note, if the data is being written
 asynchronously through the metadata server a COMMIT to the metadata
 server is required to sync the data and make it visible on the
 storage devices (see Section 3.6 for more details). The scope of
 this operation depends on the storage protocol in use. For block/
 volume-based layouts, it may require updating the block list that
 comprises the file and committing this layout to stable storage.
 While, for file-layouts it requires some synchronization of
 attributes between the metadata and storage devices (i.e., mainly the
 size attribute; EOF). It is important to note that the level of
 synchronization is from the point of view of the client who issued
 the LAYOUTCOMMIT. The updated state on the metadata server need only
 reflect the state as of the client's last operation previous to the
 LAYOUTCOMMIT, it need not reflect a globally synchronized state
 (e.g., other clients may be performing, or may have performed I/O
 since the client's last operation and the LAYOUTCOMMIT).

 The control protocol is free to synchronize the attributes before it
 receives a LAYOUTCOMMIT, however upon successful completion of a

Goodson, et al. Expires April 10, 2006 [Page 14]

Internet-Draft NFSv4 pNFS Extensions October 2005

 LAYOUTCOMMIT, state that exists on the metadata server that describes
 the file MUST be in sync with the state existing on the storage
 devices that comprise that file as of the issuing client's last
 operation. Thus, a client that queries the size of a file between a
 WRITE to a storage device and the LAYOUTCOMMIT may observe a size
 that does not reflects the actual data written.

3.4.1 LAYOUTCOMMIT and mtime/atime/change

 The change attribute and the modify/access times may be updated, by
 the server, at LAYOUTCOMMIT time; since for some layout types, the
 change attribute and atime/mtime can not be updated by the
 appropriate I/O operation performed at a storage device. The
 arguments to LAYOUTCOMMIT allow the client to provide suggested
 access and modify time values to the server. Again, depending upon
 the layout type, these client provided values may or may not be used.
 The server should sanity check the client provided values before they
 are used. For example, the server should ensure that time does not
 flow backwards. According to the NFSv4 specification, The client
 always has the option to set these attributes through an explicit
 SETATTR operation.

 As mentioned, for some layout protocols the change attribute and
 mtime/atime may be updated at or after the time the I/O occurred
 (e.g., if the storage device is able to communicate these attributes
 to the metadata server). If, upon receiving a LAYOUTCOMMIT, the
 server implementation is able to determine that the file did not
 change since the last time the change attribute was updated (e.g., no
 WRITEs or over-writes occurred), the implementation need not update
 the change attribute; file-based protocols may have enough state to
 make this determination or may update the change attribute upon each
 file modification. This also applies for mtime and atime; if the
 server implementation is able to determine that the file has not been
 modified since the last mtime update, the server need not update
 mtime at LAYOUTCOMMIT time. Once LAYOUTCOMMIT completes, the new
 change attribute and mtime/atime should be visible if that file was
 modified since the latest previous LAYOUTCOMMIT or LAYOUTGET.

3.4.2 LAYOUTCOMMIT and size

 The file's size may be updated at LAYOUTCOMMIT time as well. The
 LAYOUTCOMMIT operation contains an argument that indicates the last
 byte offset to which the client wrote ("last_write_offset"). Note:
 for this offset to be viewed as a file size it must be incremented by
 one byte (e.g., a write to offset 0 would map into a file size of 1,
 but the last write offset is 0). The metadata server may do one of
 the following:

Goodson, et al. Expires April 10, 2006 [Page 15]

Internet-Draft NFSv4 pNFS Extensions October 2005

 1. It may update the file's size based on the last write offset.
 However, to the extent possible, the metadata server should
 sanity check any value to which the file's size is going to be
 set. E.g., it must not truncate the file based on the client
 presenting a smaller last write offset than the file's current
 size.

 2. If it has sufficient other knowledge of file size (e.g., by
 querying the storage devices through the control protocol), it
 may ignore the client provided argument and use the query-derived
 value.

 3. It may use the last write offset as a hint, subject to correction
 when other information is available as above.

 The method chosen to update the file's size will depend on the
 storage device's and/or the control protocol's implementation. For
 example, if the storage devices are block devices with no knowledge
 of file size, the metadata server must rely on the client to set the
 size appropriately. A new size flag and length are also returned in
 the results of a LAYOUTCOMMIT. This union indicates whether a new
 size was set, and to what length it was set. If a new size is set as
 a result of LAYOUTCOMMIT, then the metadata server must reply with
 the new size. As well, if the size is updated, the metadata server
 in conjunction with the control protocol SHOULD ensure that the new
 size is reflected by the storage devices immediately upon return of
 the LAYOUTCOMMIT operation; e.g., a READ up to the new file size
 should succeed on the storage devices (assuming no intervening
 truncations). Again, if the client wants to explicitly zero-extend
 or truncate a file, SETATTR must be used; it need not be used when
 simply writing past EOF.

 Since client layout holders may be unaware of changes made to the
 file's size, through LAYOUTCOMMIT or SETATTR, by other clients, an
 additional callback/notification has been added for pNFS.
 CB_SIZECHANGED is a notification that the metadata server sends to
 layout holders to notify them of a change in file size. This is
 preferred over issuing CB_LAYOUTRECALL to each of the layout holders.

3.4.3 LAYOUTCOMMIT and layoutupdate

 The LAYOUTCOMMIT operation contains a "layoutupdate" argument. This
 argument is a layout type specific structure. The structure can be
 used to pass arbitrary layout type specific information from the
 client to the metadata server at LAYOUTCOMMIT time. For example, if
 using a block/volume layout, the client can indicate to the metadata
 server which reserved or allocated blocks it used and which it did
 not. The "layoutupdate" structure need not be the same structure as

Goodson, et al. Expires April 10, 2006 [Page 16]

Internet-Draft NFSv4 pNFS Extensions October 2005

 the layout returned by LAYOUTGET. The structure is defined by the
 layout type and is opaque to LAYOUTCOMMIT.

3.5 Recalling a Layout

3.5.1 Basic Operation

 Since a layout protects a client's access to a file via a direct
 client-storage-device path, a layout need only be recalled when it is
 semantically unable to serve this function. Typically, this occurs
 when the layout no longer encapsulates the true location of the file
 over the byte range it represents. Any operation or action (e.g.,
 server driven restriping or load balancing) that changes the layout
 will result in a recall of the layout. A layout is recalled by the
 CB_LAYOUTRECALL callback operation (see Section 10.1). This callback
 can either recall a layout segment identified by a byte range, or all
 the layouts associated with a file system (FSID). However, there is
 no single operation to return all layouts associated with an FSID;
 multiple layout segments may be returned in a single compound
 operation. Section 3.5.3 discusses sequencing issues surrounding the
 getting, returning, and recalling of layouts.

 The iomode is also specified when recalling a layout or layout
 segment. Generally, the iomode in the recall request must match the
 layout, or segment, being returned; e.g., a recall with an iomode of
 RW should cause the client to only return RW layout segments (not R
 segments). However, a special LAYOUTIOMODE_ANY enumeration is
 defined to enable recalling a layout of any type (i.e., the client
 must return both read-only and read/write layouts).

 A REMOVE operation may cause the metadata server to recall the layout
 to prevent the client from accessing a non-existent file and to
 reclaim state stored on the client. Since a REMOVE may be delayed
 until the last close of the file has occurred, the recall may also be
 delayed until this time. As well, once the file has been removed,
 after the last reference, the client SHOULD no longer be able to
 perform I/O using the layout (e.g., with file-based layouts an error
 such as ESTALE could be returned).

 Although, the pNFS extension does not alter the caching capabilities
 of clients, or their semantics, it recognizes that some clients may
 perform more aggressive write-behind caching to optimize the benefits
 provided by pNFS. However, write-behind caching may impact the
 latency in returning a layout in response to a CB_LAYOUTRECALL; just
 as caching impacts DELEGRETURN with regards to data delegations.
 Client implementations should limit the amount of dirty data they
 have outstanding at any one time. Server implementations may fence
 clients from performing direct I/O to the storage devices if they

Goodson, et al. Expires April 10, 2006 [Page 17]

Internet-Draft NFSv4 pNFS Extensions October 2005

 perceive that the client is taking too long to return a layout once
 recalled. A server may be able to monitor client progress by
 watching client I/Os or by observing LAYOUTRETURNs of sub-portions of
 the recalled layout. The server can also limit the amount of dirty
 data to be flushed to storage devices by limiting the byte ranges
 covered in the layouts it gives out.

 Once a layout has been returned, the client MUST NOT issue I/Os to
 the storage devices for the file, byte range, and iomode represented
 by the returned layout. If a client does issue an I/O to a storage
 device for which it does not hold a layout, the storage device SHOULD
 reject the I/O.

3.5.2 Recall Callback Robustness

 For simplicity, the discussion thus far has assumed that pNFS client
 state for a file exactly matches the pNFS server state for that file
 and client regarding layout ranges and permissions. This assumption
 leads to the implicit assumption that any callback results in a
 LAYOUTRETURN or set of LAYOUTRETURNs that exactly match the range in
 the callback, since both client and server agree about the state
 being maintained. However, it can be useful if this assumption does
 not always hold. For example:

 o It may be useful for clients to be able to discard layout
 information without calling LAYOUTRETURN. If conflicts that
 require callbacks are very rare, and a server can use a multi-file
 callback to recover per-client resources (e.g., via a FSID recall,
 or a multi-file recall within a single compound), the result may
 be significantly less client-server pNFS traffic.

 o It may be similarly useful for servers to enhance information
 about what layout ranges are held by a client beyond what a client
 actually holds. In the extreme, a server could manage conflicts
 on a per-file basis, only issuing whole-file callbacks even though
 clients may request and be granted sub-file ranges.

 o As well, the synchronized state assumption is not robust to minor
 errors. A more robust design would allow for divergence between
 client and server and the ability to recover. It is vital that a
 client not assign itself layout permissions beyond what the server
 has granted and that the server not forget layout permissions that
 have been granted in order to avoid errors. On the other hand, if
 a server believes that a client holds a layout segment that the
 client does not know about, it's useful for the client to be able
 to issue the LAYOUTRETURN that the server is expecting in response
 to a recall.

Goodson, et al. Expires April 10, 2006 [Page 18]

Internet-Draft NFSv4 pNFS Extensions October 2005

 Thus, in light of the above, it is useful for a server to be able to
 issue callbacks for layout ranges it has not granted to a client, and
 for a client to return ranges it does not hold. A pNFS client must
 always return layout segments that comprise the full range specified
 by the recall. Note, the full recalled layout range need not be
 returned as part of a single operation, but may be returned in
 segments. This allows the client to stage the flushing of dirty
 data, layout commits, and returns. Also, it indicates to the
 metadata server that the client is making progress.

 In order to ensure client/server convergence on the layout state, the
 final LAYOUTRETURN operation in a sequence of returns for a
 particular recall, SHOULD specify the entire range being recalled,
 even if layout segments pertaining to partial ranges were previously
 returned. In addition, if the client holds no layout segment that
 overlaps the range being recalled, the client should return the
 NFS4ERR_NOMATCHING_LAYOUT error code. This allows the server to
 update its view of the client's layout state.

3.5.3 Recall/Return Sequencing

 As with other stateful operations, pNFS requires the correct
 sequencing of layout operations. This proposal assumes that sessions
 will precede or accompany pNFS into NFSv4.x and thus, pNFS will
 require the use of sessions. If the sessions proposal does not
 precede pNFS, then this proposal needs to be modified to provide for
 the correct sequencing of pNFS layout operations. Also, this
 specification is reliant on the sessions protocol to provide the
 correct sequencing between regular operations and callbacks. It is
 the server's responsibility to avoid inconsistencies regarding the
 layouts it hands out and the client's responsibility to properly
 serialize its layout requests.

 One critical issue with operation sequencing concerns callbacks. The
 protocol must defend against races between the reply to a LAYOUTGET
 operation and a subsequent CB_LAYOUTRECALL. It MUST NOT be possible
 for a client to process the CB_LAYOUTRECALL for a layout that it has
 not received in a reply message to a LAYOUTGET.

3.5.3.1 Client Side Considerations

 Consider a pNFS client that has issued a LAYOUTGET and then receives
 an overlapping recall callback for the same file. There are two
 possibilities, which the client cannot distinguish when the callback
 arrives:

 1. The server processed the LAYOUTGET before issuing the recall, so
 the LAYOUTGET response is in flight, and must be waited for

Goodson, et al. Expires April 10, 2006 [Page 19]

Internet-Draft NFSv4 pNFS Extensions October 2005

 because it may be carrying layout info that will need to be
 returned to deal with the recall callback.

 2. The server issued the callback before receiving the LAYOUTGET.
 The server will not respond to the LAYOUTGET until the recall
 callback is processed.

 This can cause deadlock, as the client must wait for the LAYOUTGET
 response before processing the recall in the first case, but that
 response will not arrive until after the recall is processed in the
 second case. This deadlock can be avoided by adhering to the
 following requirements:

 o A LAYOUTGET MUST be rejected with an error (i.e.,
 NFS4ERR_RECALLCONFLICT) if there's an overlapping outstanding
 recall callback to the same client

 o When processing a recall, the client MUST wait for a response to
 all conflicting outstanding LAYOUTGETs before performing any
 RETURN that could be affected by any such response.

 o The client SHOULD wait for responses to all operations required to
 complete a recall before sending any LAYOUTGETs that would
 conflict with the recall because the server is likely to return
 errors for them.

 Now the client can wait for the LAYOUTGET response, as it will be
 received in both cases.

3.5.3.2 Server Side Considerations

 Consider a related situation from the pNFS server's point of view.
 The server has issued a recall callback and receives an overlapping
 LAYOUTGET for the same file before the LAYOUTRETURN(s) that respond
 to the recall callback. Again, there are two cases:

 1. The client issued the LAYOUTGET before processing the recall
 callback.

 2. The client issued the LAYOUTGET after processing the recall
 callback, but it arrived before the LAYOUTRETURN that completed
 that processing.

 The simplest approach is to always reject the overlapping LAYOUTGET.
 The client has two ways to avoid this result - it can issue the
 LAYOUTGET as a subsequent element of a COMPOUND containing the
 LAYOUTRETURN that completes the recall callback, or it can wait for
 the response to that LAYOUTRETURN.

Goodson, et al. Expires April 10, 2006 [Page 20]

Internet-Draft NFSv4 pNFS Extensions October 2005

 This leads to a more general problem; in the absence of a callback if
 a client issues concurrent overlapping LAYOUTGET and LAYOUTRETURN
 operations, it is possible for the server to process them in either
 order. Again, a client must take the appropriate precautions in
 serializing its actions.

 [ASIDE: HighRoad forbids a client from doing this, as the per-file
 layout stateid will cause one of the two operations to be rejected
 with a stale layout stateid. This approach is simpler and produces
 better results by comparison to allowing concurrent operations, at
 least for this sort of conflict case, because server execution of
 operations in an order not anticipated by the client may produce
 results that are not useful to the client (e.g., if a LAYOUTRETURN is
 followed by a concurrent overlapping LAYOUTGET, but executed in the
 other order, the client will not retain layout extents for the
 overlapping range).]

3.6 Metadata Server Write Propagation

 Asynchronous writes written through the metadata server may be
 propagated lazily to the storage devices. For data written
 asynchronously through the metadata server, a client performing a
 read at the appropriate storage device is not guaranteed to see the
 newly written data until a COMMIT occurs at the metadata server.
 While the write is pending, reads to the storage device can give out
 either the old data, the new data, or a mixture thereof. After
 either a synchronous write completes, or a COMMIT is received (for
 asynchronously written data), the metadata server must ensure that
 storage devices give out the new data and that the data has been
 written to stable storage. If the server implements its storage in
 any way such that it cannot obey these constraints, then it must
 recall the layouts to prevent reads being done that cannot be handled
 correctly.

3.7 Crash Recovery

 Crash recovery is complicated due to the distributed nature of the
 pNFS protocol. In general, crash recovery for layouts is similar to
 crash recovery for delegations in the base NFSv4 protocol. However,
 the client's ability to perform I/O without contacting the metadata
 server introduces subtleties that must be handled correctly if file
 system corruption is to be avoided.

3.7.1 Leases

 The layout lease period plays a critical role in crash recovery.
 Depending on the capabilities of the storage protocol, it is crucial
 that the client is able to maintain an accurate layout lease timer to

Goodson, et al. Expires April 10, 2006 [Page 21]

Internet-Draft NFSv4 pNFS Extensions October 2005

 ensure that I/Os are not issued to storage devices after expiration
 of the layout lease period. In order for the client to do so, it
 must know which operations renew a lease.

3.7.1.1 Lease Renewal

 The current NFSv4 specification allows for implicit lease renewals to
 occur upon receiving an I/O. However, due to the distributed pNFS
 architecture, implicit lease renewals are limited to operations
 performed at the metadata server; this includes I/O performed through
 the metadata server. So, a client must not assume that READ and
 WRITE I/O to storage devices implicitly renew lease state.

 If sessions are required for pNFS, as has been suggested, then the
 SEQUENCE operation is to be used to explicitly renew leases. It is
 proposed that the SEQUENCE operation be extended to return all the
 specific information that RENEW does, but not as an error as RENEW
 returns it. Since, when using session, beginning each compound with
 the SEQUENCE op allows renews to be performed without an additional
 operation and without an additional request. Again, the client must
 not rely on any operation to the storage devices to renew a lease.
 Using the SEQUENCE operation for renewals, simplifies the client's
 perception of lease renewal.

3.7.1.2 Client Lease Timer

 Depending on the storage protocol and layout type in use, it may be
 crucial that the client not issue I/Os to storage devices if the
 corresponding layout's lease has expired. Doing so may lead to file
 system corruption if the layout has been given out and used by
 another client. In order to prevent this, the client must maintain
 an accurate lease timer for all layouts held. RFC3530 has the
 following to say regarding the maintenance of a client lease timer:

 ...the client must track operations which will renew the lease
 period. Using the time that each such request was sent and the
 time that the corresponding reply was received, the client should
 bound the time that the corresponding renewal could have occurred
 on the server and thus determine if it is possible that a lease
 period expiration could have occurred.

 To be conservative, the client should start its lease timer based on
 the time that the it issued the operation to the metadata server,
 rather than based on the time of the response.

 It is also necessary to take propagation delay into account when
 requesting a renewal of the lease:

https://datatracker.ietf.org/doc/html/rfc3530

Goodson, et al. Expires April 10, 2006 [Page 22]

Internet-Draft NFSv4 pNFS Extensions October 2005

 ...the client should subtract it from lease times (e.g., if the
 client estimates the one-way propagation delay as 200 msec, then
 it can assume that the lease is already 200 msec old when it gets
 it). In addition, it will take another 200 msec to get a response
 back to the server. So the client must send a lock renewal or
 write data back to the server 400 msec before the lease would
 expire.

 Thus, the client must be aware of the one-way propagation delay and
 should issue renewals well in advance of lease expiration. Clients,
 to the extent possible, should try not to issue I/Os that may extend
 past the lease expiration time period. However, since this is not
 always possible, the storage protocol must be able to protect against
 the effects of inflight I/Os, as is discussed later.

3.7.2 Client Recovery

 Client recovery for layouts works in much the same way as NFSv4
 client recovery works for other lock/delegation state. When an NFSv4
 client reboots, it will lose all information about the layouts that
 it previously owned. There are two methods by which the server can
 reclaim these resources and allow otherwise conflicting layouts to be
 provided to other clients.

 The first is through the expiry of the client's lease. If the client
 recovery time is longer than the lease period, the client's lease
 will expire and the server will know that state may be released. for
 layouts the server may release the state immediately upon lease
 expiry or it may allow the layout to persist awaiting possible lease
 revival, as long as there are no conflicting requests.

 On the other hand, the client may recover in less time than it takes
 for the lease period to expire. In such a case, the client will
 contact the server through the standard SETCLIENTID protocol. The
 server will find that the client's id matches the id of the previous
 client invocation, but that the verifier is different. The server
 uses this as a signal to release all the state associated with the
 client's previous invocation.

3.7.3 Metadata Server Recovery

 The server recovery case is slightly more complex. In general, the
 recovery process again follows the standard NFSv4 recovery model: the
 client will discover that the metadata server has rebooted when it
 receives an unexpected STALE_STATEID or STALE_CLIENTID reply from the
 server; it will then proceed to try to reclaim its previous
 delegations during the server's recovery grace period. However,
 layouts are not reclaimable in the same sense as data delegations;

Goodson, et al. Expires April 10, 2006 [Page 23]

Internet-Draft NFSv4 pNFS Extensions October 2005

 there is no reclaim bit, thus no guarantee of continuity between the
 previous and new layout. This is not necessarily required since a
 layout is not required to perform I/O; I/O can always be performed
 through the metadata server.

 [NOTE: there is no reclaim bit for getting a layout. Thus, in the
 case of reclaiming an old layout obtained through LAYOUTGET, there is
 no guarantee of continuity. If a reclaim bit existed a block/volume
 layout type might be happier knowing it got the layout back with the
 assurance of continuity. However, this would require the metadata
 server trusting the client in telling it the exact layout it had
 (i.e., the full block-list); however, divergence is avoided by having
 the server tell the client what is contained within the layout.]

 If the client has dirty data that it needs to write out, or an
 outstanding LAYOUTCOMMIT, the client should try to obtain a new
 layout segment covering the byte range covered by the previous layout
 segment. However, the client might not not get the same layout
 segment it had. The range might be different or it might get the
 same range but the content of the layout might be different. For
 example, if using a block/volume-based layout, the blocks
 provisionally assigned by the layout might be different, in which
 case the client will have to write the corresponding blocks again; in
 the interest of simplicity, the client might decide to always write
 them again. Alternatively, the client might be unable to obtain a
 new layout and thus, must write the data using normal NFSv4 through
 the metadata server.

 There is an important safety concern associated with layouts that
 does not come into play in the standard NFSv4 case. If a standard
 NFSv4 client makes use of a stale delegation, while reading, the
 consequence could be to deliver stale data to an application. If
 writing, using a stale delegation or a stale state stateid for an
 open or lock would result in the rejection of the client's write with
 the appropriate stale stateid error.

 However, the pNFS layout enables the client to directly access the
 file system storage---if this access is not properly managed by the
 NFSv4 server the client can potentially corrupt the file system data
 or metadata. Thus, it is vitally important that the client discover
 that the metadata server has rebooted, and that the client stops
 using stale layouts before the metadata server gives them away to
 other clients. To ensure this, the client must be implemented so
 that layouts are never used to access the storage after the client's
 lease timer has expired. It is crucial that clients have precise
 knowledge of the lease periods of their layouts. For specific
 details on lease renewal and client lease timers, see Section 3.7.1.

Goodson, et al. Expires April 10, 2006 [Page 24]

Internet-Draft NFSv4 pNFS Extensions October 2005

 The prohibition on using stale layouts applies to all layout related
 accesses, especially the flushing of dirty data to the storage
 devices. If the client's lease timer expires because the client
 could not contact the server for any reason, the client MUST
 immediately stop using the layout until the server can be contacted
 and the layout can be officially recovered or reclaimed. However,
 this is only part of the solution. It is also necessary to deal with
 the consequences of I/Os already in flight.

 The issue of the effects of I/Os started before lease expiration and
 possibly continuing through lease expiration is the responsibility of
 the data storage protocol and as such is layout type specific. There
 are two approaches the data storage protocol can take. The protocol
 may adopt a global solution which prevents all I/Os from being
 executed after the lease expiration and thus is safe against a client
 who issues I/Os after lease expiration. This is the preferred
 solution and the solution used by NFSv4 file based layouts (see

Section 5.6); as well, the object storage device protocol allows
 storage to fence clients after lease expiration. Alternatively, the
 storage protocol may rely on proper client operation and only deal
 with the effects of lingering I/Os. These solutions may impact the
 client layout-driver, the metadata server layout-driver, and the
 control protocol.

3.7.4 Storage Device Recovery

 Storage device crash recovery is mostly dependent upon the layout
 type in use. However, there are a few general techniques a client
 can use if it discovers a storage device has crashed while holding
 asynchronously written, non-committed, data. First and foremost, it
 is important to realize that the client is the only one who has the
 information necessary to recover asynchronously written data; since,
 it holds the dirty data and most probably nobody else does. Second,
 the best solution is for the client to err on the side or caution and
 attempt to re-write the dirty data through another path.

 The client, rather than hold the asynchronously written data
 indefinitely, is encouraged to, and can make sure that the data is
 written by using other paths to that data. The client may write the
 data to the metadata server, either synchronously or asynchronously
 with a subsequent COMMIT. Once it does this, there is no need to
 wait for the original storage device. In the event that the data
 range to be committed is transferred to a different storage device,
 as indicated in a new layout, the client may write to that storage
 device. Once the data has been committed at that storage device,
 either through a synchronous write or through a commit to that
 storage device (e.g., through the NFSv4 COMMIT operation for the
 NFSv4 file layout), the client should consider the transfer of

Goodson, et al. Expires April 10, 2006 [Page 25]

Internet-Draft NFSv4 pNFS Extensions October 2005

 responsibility for the data to the new server as strong evidence that
 this is the intended and most effective method for the client to get
 the data written. In either case, once the write is on stable
 storage (through either the storage device or metadata server), there
 is no need to continue either attempting to commit or attempting to
 synchronously write the data to the original storage device or wait
 for that storage device to become available. That storage device may
 never be visible to the client again.

 This approach does have a "lingering write" problem, similar to
 regular NFSv4. Suppose a WRITE is issued to a storage device for
 which no response is received. The client breaks the connection,
 trying to re-establish a new one, and gets a recall of the layout.
 The client issues the I/O for the dirty data through an alternative
 path, for example, through the metadata server and it succeeds. The
 client then goes on to perform additional writes that all succeed.
 If at some time later, the original write to the storage device
 succeeds, data inconsistency could result. The same problem can
 occur in regular NFSv4. For example, a WRITE is held in a switch for
 some period of time while other writes are issued and replied to, if
 the original WRITE finally succeeds, the same issues can occur.
 However, this is solved by sessions in NFSv4.x.

4. Security Considerations

 The pNFS extension partitions the NFSv4 file system protocol into two
 parts, the control path and the data path (i.e., storage protocol).
 The control path contains all the new operations described by this
 extension; all existing NFSv4 security mechanisms and features apply
 to the control path. The combination of components in a pNFS system
 (see Figure 1) is required to preserve the security properties of
 NFSv4 with respect to an entity accessing data via a client,
 including security countermeasures to defend against threats that
 NFSv4 provides defenses for in environments where these threats are
 considered significant.

 In some cases, the security countermeasures for connections to
 storage devices may take the form of physical isolation or a
 recommendation not to use pNFS in an environment. For example, it is
 currently infeasible to provide confidentiality protection for some
 storage device access protocols to protect against eavesdropping; in
 environments where eavesdropping on such protocols is of sufficient
 concern to require countermeasures, physical isolation of the
 communication channel (e.g., via direct connection from client(s) to
 storage device(s)) and/or a decision to forego use of pNFS (e.g., and
 fall back to NFSv4) may be appropriate courses of action.

 In full generality where communication with storage devices is

Goodson, et al. Expires April 10, 2006 [Page 26]

Internet-Draft NFSv4 pNFS Extensions October 2005

 subject to the same threats as client-server communication, the
 protocols used for that communication need to provide security
 mechanisms comparable to those available via RPSEC_GSS for NFSv4.
 Many situations in which pNFS is likely to be used will not be
 subject to the overall threat profile for which NFSv4 is required to
 provide countermeasures.

 pNFS implementations MUST NOT remove NFSv4's access controls. The
 combination of clients, storage devices, and the server are
 responsible for ensuring that all client to storage device file data
 access respects NFSv4 ACLs and file open modes. This entails
 performing both of these checks on every access in the client, the
 storage device, or both. If a pNFS configuration performs these
 checks only in the client, the risk of a misbehaving client obtaining
 unauthorized access is an important consideration in determining when
 it is appropriate to use such a pNFS configuration. Such
 configurations SHOULD NOT be used when client- only access checks do
 not provide sufficient assurance that NFSv4 access control is being
 applied correctly.

 The following subsections describe security considerations
 specifically applicable to each of the three major storage device
 protocol types supported for pNFS.

 [Requiring strict equivalence to NFSv4 security mechanisms is the
 wrong approach. Will need to lay down a set of statements that each
 protocol has to make starting with access check location/properties.]

4.1 File Layout Security

 A NFSv4 file layout type is defined in Section 5; see Section 5.7 for
 additional security considerations and details. In summary, the
 NFSv4 file layout type requires that all I/O access checks MUST be
 performed by the storage devices, as defined by the NFSv4
 specification. If another file layout type is being used, additional
 access checks may be required. But in all cases, the access control
 performed by the storage devices must be at least as strict as that
 specified by the NFSv4 protocol.

4.2 Object Layout Security

 The object storage protocol MUST implement the security aspects
 described in version 1 of the T10 OSD protocol definition [6]. The
 remainder of this section gives an overview of the security mechanism
 described in that standard. The goal is to give the reader a basic
 understanding of the object security model. Any discrepancies
 between this text and the actual standard are obviously to be
 resolved in favor of the OSD standard.

Goodson, et al. Expires April 10, 2006 [Page 27]

Internet-Draft NFSv4 pNFS Extensions October 2005

 The object storage protocol relies on a cryptographically secure
 capability to control accesses at the object storage devices.
 Capabilities are generated by the metadata server, returned to the
 client, and used by the client as described below to authenticate
 their requests to the Object Storage Device (OSD). Capabilities
 therefore achieve the required access and open mode checking. They
 allow the file server to define and check a policy (e.g., open mode)
 and the OSD to check and enforce that policy without knowing the
 details (e.g., user IDs and ACLs). Since capabilities are tied to
 layouts, and since they are used to enforce access control, the
 server should recall layouts and revoke capabilities when the file
 ACL or mode changes in order to signal the clients.

 Each capability is specific to a particular object, an operation on
 that object, a byte range w/in the object, and has an explicit
 expiration time. The capabilities are signed with a secret key that
 is shared by the object storage devices (OSD) and the metadata
 managers. clients do not have device keys so they are unable to forge
 capabilities. The the following sketch of the algorithm should help
 the reader understand the basic model.

 LAYOUTGET returns

 {CapKey = MAC<SecretKey>(CapArgs), CapArgs}

 The client uses CapKey to sign all the requests it issues for that
 object using the respective CapArgs. In other words, the CapArgs
 appears in the request to the storage device, and that request is
 signed with the CapKey as follows:

 ReqMAC = MAC<CapKey>(Req, Nonceln)

 The following is sent to the OSD: {CapArgs, Req, Nonceln, ReqMAC}.
 The OSD uses the SecretKey it shares with the metadata server to
 compare the ReqMAC the client sent with a locally computed

 MAC<MAC<SecretKey>(CapArgs)>(Req, Nonceln)

 and if they match the OSD assumes that the capabilities came from an
 authentic metadata server and allows access to the object, as allowed
 by the CapArgs. Therefore, if the server LAYOUTGET reply, holding
 CapKey and CapArgs, is snooped by another client, it can be used to
 generate valid OSD requests (within the CapArgs access restriction).

 To provide the required privacy requirements for the capabilities
 returned by LAYOUTGET, the GSS-API can be used, e.g. by using a
 session key known to the file server and to the client to encrypt the
 whole layout or parts of it. Two general ways to provide privacy in

Goodson, et al. Expires April 10, 2006 [Page 28]

Internet-Draft NFSv4 pNFS Extensions October 2005

 the absence of GSS-API that are independent of NFSv4 are either an
 isolated network such as a VLAN or a secure channel provided by
 IPsec.

4.3 Block/Volume Layout Security

 As typically used, block/volume protocols rely on clients to enforce
 file access checks since the storage devices are generally unaware of
 the files they are storing and in particular are unaware of which
 blocks belongs to which file. In such environments, the physical
 addresses of blocks are exported to pNFS clients via layouts. An
 alternative method of block/volume protocol use is for the storage
 devices to export virtualized block addresses, which do reflect the
 files to which blocks belong. These virtual block addresses are
 exported to pNFS clients via layouts. This allows the storage device
 to make appropriate access checks, while mapping virtual block
 addresses to physical block addresses.

 In environments where access control is important and client-only
 access checks provide insufficient assurance of access control
 enforcement (e.g., there is concern about a malicious of
 malfunctioning client skipping the access checks) and where physical
 block addresses are exported to clients, the storage devices will
 generally be unable to compensate for these client deficiencies.

 In such threat environments, block/volume protocols SHOULD NOT be
 used with pNFS, unless the storage device is able to implement the
 appropriate access checks, via use of virtualized block addresses, or
 other means. NFSv4 without pNFS or pNFS with a different type of
 storage protocol would be a more suitable means to access files in
 such environments. Storage-device/protocol-specific methods (e.g.
 LUN masking/mapping) may be available to prevent malicious or high-
 risk clients from directly accessing storage devices.

5. The NFSv4 File Layout Type

 This section describes the semantics and format of NFSv4 file-based
 layouts.

5.1 File Striping and Data Access

 The file layout type describes a method for striping data across
 multiple devices. The data for each stripe unit is stored within an
 NFSv4 file located on a particular storage device. The structures
 used to describe the stripe layout are as follows:

Goodson, et al. Expires April 10, 2006 [Page 29]

Internet-Draft NFSv4 pNFS Extensions October 2005

 enum stripetype4 {
 STRIPE_SPARSE = 1,
 STRIPE_DENSE = 2
 };

 struct nfsv4_file_layouthint {
 stripetype4 stripe_type;
 length4 stripe_unit;
 uint32_t stripe_width;
 };

 struct nfsv4_file_layout { /* Per data stripe */
 pnfs_deviceid4 dev_id<>;
 nfs_fh4 fh;
 };

 struct nfsv4_file_layouttype4 { /* Per file */
 stripetype4 stripe_type;
 length4 stripe_unit;
 length4 file_size;
 nfsv4_file_layout dev_list<>;
 };

 The file layout specifies an ordered array of <deviceID, filehandle>
 tuples, as well as the stripe size, type of stripe layout (discussed
 a little later), and the file's current size as of LAYOUTGET time.
 The filehandle, "fh", identifies the file on a storage device
 identified by "dev_id", that holds a particular stripe of the file.
 The "dev_id" array can be used for multipathing and is discussed
 further in Section 5.1.3. The stripe width is determined by the
 stripe unit size multiplied by the number of devices in the dev_list.
 The stripe held by <dev_id, fh> is determined by that tuples position
 within the device list, "dev_list". For example, consider a dev_list
 consisting of the following <dev_id, fh> pairs:

 <(1,0x12), (2,0x13), (1,0x15)> and stripe_unit = 32KB

 The stripe width is 32KB * 3 devices = 96KB. The first entry
 specifies that on device 1 in the data file with filehandle 0x12
 holds the first 32KB of data (and every 32KB stripe beginning where
 the file's offset % 96KB == 0).

 Devices may be repeated multiple times within the device list array;
 this is shown where storage device 1 holds both the first and third
 stripe of data. Filehandles can only be repeated if a sparse stripe
 type is used. Data is striped across the devices in the order listed
 in the device list array in increments of the stripe size. A data
 file stored on a storage device MUST map to a single file as defined

Goodson, et al. Expires April 10, 2006 [Page 30]

Internet-Draft NFSv4 pNFS Extensions October 2005

 by the metadata server; i.e., data from two files as viewed by the
 metadata server MUST NOT be stored within the same data file on any
 storage device.

 The "stripe_type" field specifies how the data is laid out within the
 data file on a storage device. It allows for two different data
 layouts: sparse and dense or packed. The stripe type determines the
 calculation that must be made to map the client visible file offset
 to the offset within the data file located on the storage device.

 The layout hint structure is described in more detail in Section 6.7.
 It is used, by the client, as by the FILE_LAYOUT_HINT attribute to
 specify the type of layout to be used for a newly created file.

5.1.1 Sparse and Dense Storage Device Data Layouts

 The stripe_type field allows for two storage device data file
 representations. Example sparse and dense storage device data
 layouts are illustrated below:

 Sparse file-layout (stripe_unit = 4KB)

 Is represented by the following file layout on the storage devices:

 Offset ID:0 ID:1 ID:2
 0 +--+ +--+ +--+ +--+ indicates a
 |//| | | | | |//| stripe that
 4KB +--+ +--+ +--+ +--+ contains data
 | | |//| | |
 8KB +--+ +--+ +--+
 | | | | |//|
 12KB +--+ +--+ +--+
 |//| | | | |
 16KB +--+ +--+ +--+
 | | |//| | |
 +--+ +--+ +--+

 The sparse file-layout has holes for the byte ranges not exported by
 that storage device. This allows clients to access data using the
 real offset into the file, regardless of the storage device's
 position within the stripe. However, if a client writes to one of
 the holes (e.g., offset 4-12KB on device 1), then an error MUST be
 returned by the storage device. This requires that the storage
 device have knowledge of the layout for each file.

 When using a sparse layout, the offset into the storage device data
 file is the same as the offset into the main file.

Goodson, et al. Expires April 10, 2006 [Page 31]

Internet-Draft NFSv4 pNFS Extensions October 2005

 Dense/packed file-layout (stripe_unit = 4KB)

 Is represented by the following file layout on the storage devices:

 Offset ID:0 ID:1 ID:2
 0 +--+ +--+ +--+
 |//| |//| |//|
 4KB +--+ +--+ +--+
 |//| |//| |//|
 8KB +--+ +--+ +--+
 |//| |//| |//|
 12KB +--+ +--+ +--+
 |//| |//| |//|
 16KB +--+ +--+ +--+
 |//| |//| |//|
 +--+ +--+ +--+

 The dense or packed file-layout does not leave holes on the storage
 devices. Each stripe unit is spread across the storage devices. As
 such, the storage devices need not know the file's layout since the
 client is allowed to write to any offset.

 The calculation to determine the byte offset within the data file for
 dense storage device layouts is:

 stripe_width = stripe_unit * N; where N = |dev_list|
 dev_offset = floor(file_offset / stripe_width) * stripe_unit +
 file_offset % stripe_unit

 Regardless of the storage device data file layout, the calculation to
 determine the index into the device array is the same:

 dev_idx = floor(file_offset / stripe_unit) mod N

Section 5.5 describe the semantics for dealing with reads to holes
 within the striped file. This is of particular concern, since each
 individual component stripe file (i.e., the component of the striped
 file that lives on a particular storage device) may be of different
 length. Thus, clients may experience 'short' reads when reading off
 the end of one of these component files.

5.1.2 Metadata and Storage Device Roles

 In many cases, the metadata server and the storage device will be
 separate pieces of physical hardware. The specification text is
 written as if that were always case. However, it can be the case
 that the same physical hardware is used to implement both a metadata

Goodson, et al. Expires April 10, 2006 [Page 32]

Internet-Draft NFSv4 pNFS Extensions October 2005

 and storage device and in this case, the specification text's
 references to these two entities are to be understood as referring to
 the same physical hardware implementing two distinct roles and it is
 important that it be clearly understood on behalf of which role the
 hardware is executing at any given time.

 Two sub-cases can be distinguished. In the first sub-case, the same
 physical hardware is used to implement both a metadata and data
 server in which each role is addressed through a distinct network
 interface (e.g., IP addresses for the metadata server and storage
 device are distinct). As long as the storage device address is
 obtained from the layout and is distinct from the metadata server's
 address, using the device ID therein to obtain the appropriate
 storage device address, it is always clear, for any given request, to
 what role it is directed, based on the destination IP address.

 However, it may also be the case that even though the metadata server
 and storage device are distinct from one client's point of view, the
 roles may be reversed according to another client's point of view.
 For example, in the cluster file system model a metadata server to
 one client, may be a storage device to another client. Thus, it is
 safer to always mark the filehandle so that operations addressed to
 storage devices can be distinguished.

 The second sub-case is where both the metadata and storage device
 have the same network address. This requires us to make the
 distinction as to which role each request is directed, on a another
 basis. Since the network address is the same, the request is
 understood as being directed at one or the other, based on the
 filehandle of the first current filehandle value for the request. If
 the first current file handle is one derived from a layout (i.e., it
 is specified within the layout) (and it is recommended that these be
 distinguishable), then the request is to be considered as executed by
 a storage device. Otherwise, the operation is to be understood as
 executed by the metadata server.

 If a current filehandle is set that is inconsistent with the role to
 which it is directed, then the error NFS4ERR_BADHANDLE should result.
 For example, if a request is directed at the storage device, because
 the first current handle is from a layout, any attempt to set the
 current filehandle to be a value not from a layout should be
 rejected. Similarly, if the first current file handle was for a
 value not from a layout, a subsequent attempt to set the current file
 handle to a value obtained from a layout should be rejected.

5.1.3 Device Multipathing

 The NFSv4 file layout supports multipathing to 'equivalent' devices.

Goodson, et al. Expires April 10, 2006 [Page 33]

Internet-Draft NFSv4 pNFS Extensions October 2005

 Device-level multipathing is primarily of use in the case of a data
 server failure --- it allows the client to switch to another storage
 device that is exporting the same data stripe, without having to
 contact the metadata server for a new layout.

 To support device multipathing, an array of device IDs is encoded
 within the data stripe portion of the file's layout. This array
 represents an ordered list of devices where the first element has the
 highest priority. Each device in the list MUST be 'equivalent' to
 every other device in the list and each device must be attempted in
 the order specified.

 Equivalent devices MUST export the same system image (e.g., the
 stateids and filehandles that they use are the same) and must provide
 the same consistency guarantees. Two equivalent storage devices must
 also have sufficient connections to the storage, such that writing to
 one storage device is equivalent to writing to another, this also
 applies to reading. Also, if multiple copies of the same data exist,
 reading from one must provide access to all existing copies. As
 such, it is unlikely that multipathing will provide additional
 benefit in the case of an I/O error.

 [NOTE: the error cases in which a client is expected to attempt an
 equivalent storage device should be specified.]

5.1.4 Operations Issued to Storage Devices

 Clients MUST use the filehandle described within the layout when
 accessing data on the storage devices. When using the layout's
 filehandle, the client MUST only issue READ, WRITE, PUTFH, COMMIT,
 and NULL operations to the storage device associated with that
 filehandle. If a client issues an operation other than those
 specified above, using the filehandle and storage device listed in
 the client's layout, that storage device SHOULD return an error to
 the client. The client MUST follow the instruction implied by the
 layout (i.e., which filehandles to use on which devices). As
 described in Section 3.2, a client MUST NOT issue I/Os to storage
 devices for which it does not hold a valid layout. The storage
 devices may reject such requests.

 GETATTR and SETATTR MUST be directed to the metadata server. In the
 case of a SETATTR of the size attribute, the control protocol is
 responsible for propagating size updates/truncations to the storage
 devices. In the case of extending WRITEs to the storage devices, the
 new size must be visible on the metadata server once a LAYOUTCOMMIT
 has completed (see Section 3.4.2). Section 5.5, describes the
 mechanism by which the client is to handle storage device file's that
 do not reflect the metadata server's size.

Goodson, et al. Expires April 10, 2006 [Page 34]

Internet-Draft NFSv4 pNFS Extensions October 2005

5.2 Global Stateid Requirements

 Note, there are no stateids returned embedded within the layout. The
 client MUST use the stateid representing open or lock state as
 returned by an earlier metadata operation (e.g., OPEN, LOCK), or a
 special stateid to perform I/O on the storage devices, as in regular
 NFSv4. Special stateid usage for I/O is subject to the NFSv4
 protocol specification. The stateid used for I/O MUST have the same
 effect and be subject to the same validation on storage device as it
 would if the I/O was being performed on the metadata server itself in
 the absence of pNFS. This has the implication that stateids are
 globally valid on both the metadata and storage devices. This
 requires the metadata server to propagate changes in lock and open
 state to the storage devices, so that the storage devices can
 validate I/O accesses. This is discussed further in Section 5.4.
 Depending on when stateids are propagated, the existence of a valid
 stateid on the storage device may act as proof of a valid layout.

 [NOTE: a number of proposals have been made that have the possibility
 of limiting the amount of validation performed by the storage device,
 if any of these proposals are accepted or obtain consensus, the
 global stateid requirement can be revisited.]

5.3 The Layout Iomode

 The layout iomode need not used by the metadata server when servicing
 NFSv4 file-based layouts, although in some circumstances it may be
 useful to use. For example, if the server implementation supports
 reading from read-only replicas or mirrors, it would be useful for
 the server to return a layout enabling the client to do so. As such,
 the client should set the iomode based on its intent to read or write
 the data. The client may default to an iomode of READ/WRITE
 (LAYOUTIOMODE_RW). The iomode need not be checked by the storage
 devices when clients perform I/O. However, the storage devices SHOULD
 still validate that the client holds a valid layout and return an
 error if the client does not.

5.4 Storage Device State Propagation

 Since the metadata server, which handles lock and open-mode state
 changes, as well as ACLs, may not be collocated with the storage
 devices where I/O access are validated, as such, the server
 implementation MUST take care of propagating changes of this state to
 the storage devices. Once the propagation to the storage devices is
 complete, the full effect of those changes must be in effect at the
 storage devices. However, some state changes need not be propagated
 immediately, although all changes SHOULD be propagated promptly.
 These state propagations have an impact on the design of the control

Goodson, et al. Expires April 10, 2006 [Page 35]

Internet-Draft NFSv4 pNFS Extensions October 2005

 protocol, even though the control protocol is outside of the scope of
 this specification. Immediate propagation refers to the synchronous
 propagation of state from the metadata server to the storage
 device(s); the propagation must be complete before returning to the
 client.

5.4.1 Lock State Propagation

 Mandatory locks MUST be made effective at the storage devices before
 the request that establishes them returns to the caller. Thus,
 mandatory lock state MUST be synchronously propagated to the storage
 devices. On the other hand, since advisory lock state is not used
 for checking I/O accesses at the storage devices, there is no
 semantic reason for propagating advisory lock state to the storage
 devices. However, since all lock, unlock, open downgrades and
 upgrades affect the sequence ID stored within the stateid, the
 stateid changes which may cause difficulty if this state is not
 propagated. Thus, when a client uses a stateid on a storage device
 for I/O with a newer sequence number than the one the storage device
 has, the storage device should query the metadata server and get any
 pending updates to that stateid. This allows stateid sequence number
 changes to be propagated lazily, on-demand.

 [NOTE: With the reliance on the sessions protocol, there is no real
 need for sequence ID portion of the stateid to be validated on I/O
 accesses. It is proposed that the seq. ID checking is obsoleted.]

 Since updates to advisory locks neither confer nor remove privileges,
 these changes need not be propagated immediately, and may not need to
 be propagated promptly. The updates to advisory locks need only be
 propagated when the storage device needs to resolve a question about
 a stateid. In fact, if byte-range locking is not mandatory (i.e., is
 advisory) the clients are advised not to use the lock-based stateids
 for I/O at all. The stateids returned by open are sufficient and
 eliminate overhead for this kind of state propagation.

5.4.2 Open-mode Validation

 Open-mode validation MUST be performed against the open mode(s) held
 by the storage devices. However, the server implementation may not
 always require the immediate propagation of changes. Reduction in
 access because of CLOSEs or DOWNGRADEs do not have to be propagated
 immediately, but SHOULD be propagated promptly; whereas changes due
 to revocation MUST be propagated immediately. On the other hand,
 changes that expand access (e.g., new OPEN's and upgrades) don't have
 to be propagated immediately but the storage device SHOULD NOT reject
 a request because of mode issues without making sure that the upgrade
 is not in flight.

Goodson, et al. Expires April 10, 2006 [Page 36]

Internet-Draft NFSv4 pNFS Extensions October 2005

5.4.3 File Attributes

 Since the SETATTR operation has the ability to modify state that is
 visible on both the metadata and storage devices (e.g., the size),
 care must be taken to ensure that the resultant state across the set
 of storage devices is consistent; especially when truncating or
 growing the file.

 As described earlier, the LAYOUTCOMMIT operation is used to ensure
 that the metadata is synced with changes made to the storage devices.
 For the file-based protocol, it is necessary to re-sync state such as
 the size attribute, and the setting of mtime/atime. See Section 3.4
 for a full description of the semantics regarding LAYOUTCOMMIT and
 attribute synchronization. It should be noted, that by using a file-
 based layout type, it is possible to synchronize this state before
 LAYOUTCOMMIT occurs. For example, the control protocol can be used
 to query the attributes present on the storage devices.

 Any changes to file attributes that control authorization or access
 as reflected by ACCESS calls or READs and WRITEs on the metadata
 server, MUST be propagated to the storage devices for enforcement on
 READ and WRITE I/O calls. If the changes made on the metadata server
 result in more restrictive access permissions for any user, those
 changes MUST be propagated to the storage devices synchronously.

 Recall that the NFSv4 protocol [2] specifies that:

 ...since the NFS version 4 protocol does not impose any
 requirement that READs and WRITEs issued for an open file have the
 same credentials as the OPEN itself, the server still must do
 appropriate access checking on the READs and WRITEs themselves.

 This also includes changes to ACLs. The propagation of access right
 changes due to changes in ACLs may be asynchronous only if the server
 implementation is able to determine that the updated ACL is not more
 restrictive for any user specified in the old ACL. Due to the
 relative infrequency of ACL updates, it is suggested that all changes
 be propagated synchronously.

 [NOTE: it has been suggested that the NFSv4 specification is in error
 with regard to allowing principles other than those used for OPEN to
 be used for file I/O. If changes within a minor version alter the
 behavior of NFSv4 with regard to OPEN principals and stateids some
 access control checking at the storage device can be made less
 expensive. pNFS should be altered to take full advantage of these
 changes.]

Goodson, et al. Expires April 10, 2006 [Page 37]

Internet-Draft NFSv4 pNFS Extensions October 2005

5.5 Storage Device Component File Size

 A potential problem exists when a component data file on a particular
 storage device is grown past EOF; the problem exists for both dense
 and sparse layouts. Imagine the following scenario: a client creates
 a new file (size == 0) and writes to byte 128KB; the client then
 seeks to the beginning of the file and reads byte 100. The client
 should receive 0s back as a result of the read. However, if the read
 falls on a different storage device to the client's original write,
 the storage device servicing the READ may still believe that the
 file's size is at 0 and return no data with the EOF flag set. The
 storage device can only return 0s if it knows that the file's size
 has been extended. This would require the immediate propagation of
 the file's size to all storage devices, which is potentially very
 costly, instead, another approach as outlined below.

 First, the file's size is returned within the layout by LAYOUTGET.
 This size must reflect the latest size at the metadata server as set
 by the most recent of either the last LAYOUTCOMMIT or SETATTR;
 however, it may be more recent. Second, if a client performs a read
 that is returned short (i.e., is fully within the file's size, but
 the storage device indicates EOF and returns partial or no data), the
 client must assume that it is a hole and substitute 0s for the data
 not read up until its known local file size. If a client extends the
 file, it must update its local file size. Third, if the metadata
 server receives a SETATTR of the size or a LAYOUTCOMMIT that alters
 the file's size, the metadata server must send out CB_SIZECHANGED
 messages with the new size to clients holding layouts; it need not
 send a notification to the client that performed the operation that
 resulted in the size changing). Upon reception of the CB_SIZECHANGED
 notification, clients must update their local size for that file. As
 well, if a new file size is returned as a result to LAYOUTCOMMIT, the
 client must update their local file size.

5.6 Crash Recovery Considerations

 As described in Section 3.7, the layout type specific storage
 protocol is responsible for handling the effects of I/Os started
 before lease expiration, extending through lease expiration. The
 NFSv4 file layout type prevents all I/Os from being executed after
 lease expiration, without relying on a precise client lease timer and
 without requiring storage devices to maintain lease timers.

 It works as follows. In the presence of sessions, each compound
 begins with a SEQUENCE operation that contains the "clientID". On
 the storage device, the clientID can be used to validate that the
 client has a valid layout for the I/O being performed, if it does
 not, the I/O is rejected. Before the metadata server takes any

Goodson, et al. Expires April 10, 2006 [Page 38]

Internet-Draft NFSv4 pNFS Extensions October 2005

 action to invalidate a layout given out by a previous instance, it
 must make sure that all layouts from that previous instance are
 invalidated at the storage devices. Note: it is sufficient to
 invalidate the stateids associated with the layout only if special
 stateids are not being used for I/O at the storage devices, otherwise
 the layout itself must be invalidated.

 This means that a metadata server may not restripe a file until it
 has contacted all of the storage devices to invalidate the layouts
 from the previous instance nor may it give out locks that conflict
 with locks embodied by the stateids associated with any layout from
 the previous instance without either doing a specific invalidation
 (as it would have to do anyway) or doing a global storage device
 invalidation.

5.7 Security Considerations

 The NFSv4 file layout type MUST adhere to the security considerations
 outlined in Section 4. More specifically, storage devices must make
 all of the required access checks on each READ or WRITE I/O as
 determined by the NFSv4 protocol [2]. This impacts the control
 protocol and the propagation of state from the metadata server to the
 storage devices; see Section 5.4 for more details.

5.8 Alternate Approaches

 Two alternate approaches exist for file-based layouts and the method
 used by clients to obtain stateids used for I/O. Both approaches
 embed stateids within the layout.

 However, before examining these approaches it is important to
 understand the distinction between clients and owners. Delegations
 belong to clients, while locks (e.g., record and share reservations)
 are held by owners which in turn belong to a specific client. As
 such, delegations can only protect against inter-client conflicts,
 not intra-client conflicts. Layouts are held by clients and SHOULD
 NOT be associated with state held by owners. Therefore, if stateids
 used for data access are embedded within a layout, these stateids can
 only act as delegation stateids, protecting against inter-client
 conflicts; stateids pertaining to an owner can not be embedded within
 the layout. This has the implication that the client MUST arbitrate
 among all intra-client conflicts (e.g., arbitrating among lock
 requests by different processes) before issuing pNFS operations.
 Using the stateids stored within the layout, storage devices can only
 arbitrate between clients (not owners).

 The first alternate approach is to do away with global stateids,
 stateids returned by OPEN/LOCK that are valid on the metadata server

Goodson, et al. Expires April 10, 2006 [Page 39]

Internet-Draft NFSv4 pNFS Extensions October 2005

 and storage devices, and use only stateids embedded within the
 layout. This approach has the drawback that the stateids used for
 I/O access can not be validated against per owner state, since they
 are only associated with the client holding the layout. It breaks
 the semantics of tieing a stateid used for I/O to an open instance.
 This has the implication that clients must delegate per owner lock
 and open requests internally, rather than push the work onto the
 storage devices. The storage devices can still arbitrate and enforce
 inter-client lock and open state.

 The second approach is a hybrid approach. This approach allows for
 stateids to be embedded with the layout, but also allows for the
 possibility of global stateids. If the stateid embedded within the
 layout is a special stateid of all zeros, then the stateid referring
 to the last successful OPEN/LOCK should be used. This approach is
 recommended if it is decided that using NFSv4 as a control protocol
 is required.

 This proposal suggests the global stateid approach due to the cleaner
 semantics it provides regarding the relationship between stateids
 used for I/O and their corresponding open instance or lock state.
 However, it does have a profound impact on the control protocol's
 implementation and the state propagation that is required (as
 described in Section 5.4).

6. pNFS Typed Data Structures

6.1 pnfs_layouttype4

 enum pnfs_layouttype4 {
 LAYOUT_NFSV4_FILES = 1,
 LAYOUT_OSD2_OBJECTS = 2,
 LAYOUT_BLOCK_VOLUME = 3
 };

 A layout type specifies the layout being used. The implication is
 that clients have "layout drivers" that support one or more layout
 types. The file server advertises the layout types it supports
 through the LAYOUT_TYPES file system attribute. A client asks for
 layouts of a particular type in LAYOUTGET, and passes those layouts
 to its layout driver. The set of well known layout types must be
 defined. As well, a private range of layout types is to be defined
 by this document. This would allow custom installations to introduce
 new layout types.

 [OPEN ISSUE: Determine private range of layout types]

 New layout types must be specified in RFCs approved by the IESG

Goodson, et al. Expires April 10, 2006 [Page 40]

Internet-Draft NFSv4 pNFS Extensions October 2005

 before becoming part of the pNFS specification.

 The LAYOUT_NFSV4_FILES enumeration specifies that the NFSv4 file
 layout type is to be used. The LAYOUT_OSD2_OBJECTS enumeration
 specifies that the object layout, as defined in [8], is to be used.
 Similarly, the LAYOUT_BLOCK_VOLUME enumeration that the block/volume
 layout, as defined in [7], is to be used.

6.2 pnfs_deviceid4

 typedef uint64_t pnfs_deviceid4; /* 64-bit device ID */

 Layout information includes device IDs that specify a storage device
 through a compact handle. Addressing and type information is
 obtained with the GETDEVICEINFO operation. A client must not assume
 that device IDs are valid across metadata server reboots. The device
 ID is qualified by the layout type and are unique per file system
 (FSID). This allows different layout drivers to generate device IDs
 without the need for co-ordination. See Section 3.1.4 for more
 details.

6.3 pnfs_deviceaddr4

 struct pnfs_netaddr4 {
 string r_netid<>; /* network ID */
 string r_addr<>; /* universal address */
 };

 union pnfs_deviceaddr4 switch (pnfs_layouttype4 layout_type) {
 case LAYOUT_NFSV4_FILES:
 pnfs_netaddr4 netaddr;
 default:
 opaque device_addr<>; /* Other layouts */
 };

 The device address is used to set up a communication channel with the
 storage device. Different layout types will require different types
 of structures to define how they communicate with storage devices.
 The union is switched on the layout type.

 Currently, the only device address defined is that for the NFSv4 file
 layout, which identifies a storage device by network IP address and
 port number. This is sufficient for the clients to communicate with
 the NFSv4 storage devices, and may also be sufficient for object-
 based storage drivers to communicate with OSDs. The other device
 address we expect to support is a SCSI volume identifier. The final
 protocol specification will detail the allowed values for device_type
 and the format of their associated location information.

Goodson, et al. Expires April 10, 2006 [Page 41]

Internet-Draft NFSv4 pNFS Extensions October 2005

 [NOTE: other device addresses will be added as the respective
 specifications mature. It has been suggested that a separate
 device_type enumeration is used as a switch to the pnfs_deviceaddr4
 structure (e.g., if multiple types of addresses exist for the same
 layout type). Until such a time as a real case is made and the
 respective layout types have matured, the device address structure
 will be left as is.]

6.4 pnfs_devlist_item4

 struct pnfs_devlist_item4 {
 pnfs_deviceid4 id;
 pnfs_deviceaddr4 addr;
 };

 An array of these values is returned by the GETDEVICELIST operation.
 They define the set of devices associated with a file system.

6.5 pnfs_layout4

 union pnfs_layoutdata4 switch (pnfs_layouttype4 layout_type) {
 case LAYOUT_NFSV4_FILES:
 nfsv4_file_layouttype4 file_layout;
 default:
 opaque layout_data<>;
 };

 struct pnfs_layout4 {
 offset4 offset;
 length4 length;
 pnfs_layoutiomode4 iomode;
 pnfs_layoutdata4 layout;
 };

 The pnfs_layout4 structure defines a layout for a file. The
 pnfs_layoutdata4 union contains the portion of the layout specific to
 the layout type. Currently, only the NFSv4 file layout type is
 defined; see Section 5.1 for its definition. Since layouts are sub-
 dividable, the offset and length together with the file's filehandle,
 the clientid, iomode, and layout type, identifies the layout.

 [OPEN ISSUE: there is a discussion of moving the striping
 information, or more generally the "aggregation scheme", up to the
 generic layout level. This creates a two-layer system where the top
 level is a switch on different data placement layouts, and the next
 level down is a switch on different data storage types. This lets
 different layouts (e.g., striping or mirroring or redundant servers)
 to be layered over different storage devices. This would move

Goodson, et al. Expires April 10, 2006 [Page 42]

Internet-Draft NFSv4 pNFS Extensions October 2005

 geometry information out of nfsv4_file_layouttype4 and up into a
 generic pnfs_striped_layout type that would specify a set of
 pnfs_deviceid4 and pnfs_devicetype4 to use for storage. Instead of
 nfsv4_file_layouttype4, there would be pnfs_nfsv4_devicetype4.]

6.6 pnfs_layoutupdate4

 union pnfs_layoutupdate4 switch (pnfs_layouttype4 layout_type) {
 case LAYOUT_NFSV4_FILES:
 void;
 default:
 opaque layout_data<>;
 };

 The pnfs_layoutupdate4 structure is used by the client to return
 'updated' layout information to the metadata server at LAYOUTCOMMIT
 time. This provides a channel to pass layout type specific
 information back to the metadata server. E.g., for block/volume
 layout types this could include the list of reserved blocks that were
 written. The contents of the structure are determined by the layout
 type and are defined in their context.

6.7 pnfs_layouthint4

 union pnfs_layouthint4 switch (pnfs_layouttype4 layout_type) {
 case LAYOUT_NFSV4_FILES:
 nfsv4_file_layouthint layout_hint;
 default:
 opaque layout_hint_data<>;
 };

 The pnfs_layouthint4 structure is used by the client to pass in a
 hint about the type of layout it would like created for a particular
 file. It is the structure specified by the FILE_LAYOUT_HINT
 attribute described below. The metadata server may ignore the hint,
 or may selectively ignore fields within the hint. This hint should
 be provided at create time as part of the initial attributes within
 OPEN. The "nfsv4_file_layouthint" structure is defined in

Section 5.1.

6.8 pnfs_layoutiomode4

 enum pnfs_layoutiomode4 {
 LAYOUTIOMODE_READ = 1,
 LAYOUTIOMODE_RW = 2,
 LAYOUTIOMODE_ANY = 3
 };

Goodson, et al. Expires April 10, 2006 [Page 43]

Internet-Draft NFSv4 pNFS Extensions October 2005

 The iomode specifies whether the client intends to read or write
 (with the possibility of reading) the data represented by the layout.
 The ANY iomode MUST NOT be used for LAYOUTGET, however, it can be
 used for LAYOUTRETURN and LAYOUTRECALL. The ANY iomode specifies
 that layouts pertaining to both READ and RW iomodes are being
 returned or recalled, respectively. The metadata server's use of the
 iomode may depend on the layout type being used. The storage devices
 may validate I/O accesses against the iomode and reject invalid
 accesses.

7. pNFS File Attributes

7.1 pnfs_layouttype4<> FS_LAYOUT_TYPES

 This attribute applies to a file system and indicates what layout
 types are supported by the file system. We expect this attribute to
 be queried when a client encounters a new fsid. This attribute is
 used by the client to determine if it has applicable layout drivers.

7.2 pnfs_layouttype4<> FILE_LAYOUT_TYPES

 This attribute indicates the particular layout type(s) used for a
 file. This is for informational purposes only. The client needs to
 use the LAYOUTGET operation in order to get enough information (e.g.,
 specific device information) in order to perform I/O.

7.3 pnfs_layouthint4 FILE_LAYOUT_HINT

 This attribute may be set on newly created files to influence the
 metadata server's choice for the file's layout. It is suggested that
 this attribute is set as one of the initial attributes within the
 OPEN call. The metadata server may ignore this attribute. This
 attribute is a sub-set of the layout structure returned by LAYOUTGET.
 For example, instead of specifying particular devices, this would be
 used to suggest the stripe width of a file. It is up to the server
 implementation to determine which fields within the layout it uses.

 [OPEN ISSUE: it has been suggested that the HINT is a well defined
 type other than pnfs_layoutdata4, similar to pnfs_layoutupdate4.]

7.4 uint32_t FS_LAYOUT_PREFERRED_BLOCKSIZE

 This attribute is a file system wide attribute and indicates the
 preferred block size for direct storage device access.

7.5 uint32_t FS_LAYOUT_PREFERRED_ALIGNMENT

 This attribute is a file system wide attribute and indicates the

Goodson, et al. Expires April 10, 2006 [Page 44]

Internet-Draft NFSv4 pNFS Extensions October 2005

 preferred alignment for direct storage device access.

8. pNFS Error Definitions

 NFS4ERR_BADLAYOUT Layout specified is invalid.

 NFS4ERR_BADIOMODE Layout iomode is invalid.

 NFS4ERR_LAYOUTUNAVAILABLE Layouts are not available for the file or
 its containing file system.

 NFS4ERR_LAYOUTTRYLATER Layouts are temporarily unavailable for the
 file, client should retry later.

 NFS4ERR_NOMATCHING_LAYOUT Client has no matching layout (segment) to
 return.

 NFS4ERR_RECALLCONFLICT Layout is unavailable due to a conflicting
 LAYOUTRECALL that is in progress.

 NFS4ERR_UNKNOWN_LAYOUTTYPE Layout type is unknown.

9. pNFS Operations

Goodson, et al. Expires April 10, 2006 [Page 45]

Internet-Draft NFSv4 pNFS Extensions October 2005

9.1 LAYOUTGET - Get Layout Information

 SYNOPSIS

 (cfh), clientid, layout_type, iomode, offset, length,
 minlength, maxcount -> layout

 ARGUMENT

 struct LAYOUTGET4args {
 /* CURRENT_FH: file */
 clientid4 clientid;
 pnfs_layouttype4 layout_type;
 pnfs_layoutiomode4 iomode;
 offset4 offset;
 length4 length;
 length4 minlength;
 count4 maxcount;
 };

 RESULT

 struct LAYOUTGET4resok {
 pnfs_layout4 layout;
 };

 union LAYOUTGET4res switch (nfsstat4 status) {
 case NFS4_OK:
 LAYOUTGET4resok resok4;
 default:
 void;
 };

 DESCRIPTION

 Requests a layout for reading or writing (and reading) the file given
 by the filehandle at the byte range specified by offset and length.
 Layouts are identified by the clientid, filehandle, and layout type.
 The use of the iomode depends upon the layout type, but should
 reflect the client's data access intent.

 The LAYOUTGET operation returns layout information for the specified
 byte range, a layout segment. To get a layout segment from a
 specific offset through the end-of-file, regardless of the file's
 length, a length field with all bits set to 1 (one) should be used.
 If the length is zero, or if a length which is not all bits set to
 one is specified, and length when added to the offset exceeds the
 maximum 64-bit unsigned integer value, the error NFS4ERR_INVAL will

Goodson, et al. Expires April 10, 2006 [Page 46]

Internet-Draft NFSv4 pNFS Extensions October 2005

 result.

 The "minlength" field specifies the minimum size overlap with the
 requested offset and length that is to be returned. If this
 requirement cannot be met, no layout must be returned; the error
 NFS4ERR_LAYOUTTRYLATER can be returned.

 The "maxcount" field specifies the maximum layout size (in bytes)
 that the client can handle. If the size of the layout structure
 exceeds the size specified by maxcount, the metadata server will
 return the NFS4ERR_TOOSMALL error.

 As well, the metadata server may adjust the range of the returned
 layout segment based on striping patterns and usage implied by the
 iomode. The client must be prepared to get a layout that does not
 line up exactly with their request; there MUST be at least an overlap
 of "minlength" between the layout returned by the server and the
 client's request, or the server SHOULD reject the request. See

Section 3.3 for more details.

 The metadata server may also return a layout segment with an iomode
 other than that requested by the client. If it does so, it must
 ensure that the iomode is more permissive than the iomode requested.
 E.g., this allows an implementation to upgrade read-only requests to
 read/write requests at its discretion, within the limits of the
 layout type specific protocol. An iomode of either LAYOUTIOMODE_READ
 or LAYOUTIOMODE_RW must be returned.

 The format of the returned layout is specific to the underlying file
 system. Layout types other than the NFSv4 file layout type should be
 specified outside of this document.

 If layouts are not supported for the requested file or its containing
 file system the server SHOULD return NFS4ERR_LAYOUTUNAVAILABLE. If
 the layout type is not supported, the metadata server should return
 NFS4ERR_UNKNOWN_LAYOUTTYPE. If layouts are supported but no layout
 matches the client provided layout identification, the server should
 return NFS4ERR_BADLAYOUT. If an invalid iomode is specified, or an
 iomode of LAYOUTIOMODE_ANY is specified, the server should return
 NFS4ERR_BADIOMODE.

 If the layout for the file is unavailable due to transient
 conditions, e.g. file sharing prohibits layouts, the server must
 return NFS4ERR_LAYOUTTRYLATER.

 If the layout request is rejected due to an overlapping layout
 recall, the server must return NFS4ERR_RECALLCONFLICT. See

Section 3.5.3 for details.

Goodson, et al. Expires April 10, 2006 [Page 47]

Internet-Draft NFSv4 pNFS Extensions October 2005

 If the layout conflicts with a mandatory byte range lock held on the
 file, and if the storage devices have no method of enforcing
 mandatory locks, other than through the restriction of layouts, the
 metadata server should return NFS4ERR_LOCKED.

 On success, the current filehandle retains its value.

 IMPLEMENTATION

 Typically, LAYOUTGET will be called as part of a compound RPC after
 an OPEN operation and results in the client having location
 information for the file; a client may also hold a layout across
 multiple OPENs. The client specifies a layout type that limits what
 kind of layout the server will return. This prevents servers from
 issuing layouts that are unusable by the client.

 ERRORS

 NFS4ERR_BADLAYOUT
 NFS4ERR_BADIOMODE
 NFS4ERR_FHEXPIRED
 NFS4ERR_INVAL
 NFS4ERR_LAYOUTUNAVAILABLE
 NFS4ERR_LAYOUTTRYLATER
 NFS4ERR_LOCKED
 NFS4ERR_NOFILEHANDLE
 NFS4ERR_NOTSUPP
 NFS4ERR_RECALLCONFLICT
 NFS4ERR_STALE
 NFS4ERR_STALE_CLIENTID
 NFS4ERR_TOOSMALL
 NFS4ERR_UNKNOWN_LAYOUTTYPE

9.2 LAYOUTCOMMIT - Commit writes made using a layout

Goodson, et al. Expires April 10, 2006 [Page 48]

Internet-Draft NFSv4 pNFS Extensions October 2005

 SYNOPSIS

 (cfh), clientid, offset, length, last_write_offset,
 time_modify, time_access, layoutupdate -> newsize

 ARGUMENT

 union newtime4 switch (bool timechanged) {
 case TRUE:
 nfstime4 time;
 case FALSE:
 void;
 };

 union newsize4 switch (bool sizechanged) {
 case TRUE:
 length4 size;
 case FALSE:
 void;
 };

 struct LAYOUTCOMMIT4args {
 /* CURRENT_FH: file */
 clientid4 clientid;
 offset4 offset;
 length4 length;
 length4 last_write_offset;
 newtime4 time_modify;
 newtime4 time_access;
 pnfs_layoutupdate4 layoutupdate;
 };

 RESULT

 struct LAYOUTCOMMIT4resok {
 newsize4 newsize;
 };

 union LAYOUTCOMMIT4res switch (nfsstat4 status) {
 case NFS4_OK:
 LAYOUTCOMMIT4resok resok4;
 default:
 void;
 };

 DESCRIPTION

Goodson, et al. Expires April 10, 2006 [Page 49]

Internet-Draft NFSv4 pNFS Extensions October 2005

 Commits changes in the layout segment represented by the current
 filehandle, clientid, and byte range. Since layouts are sub-
 dividable, a smaller portion of a layout, retrieved via LAYOUTGET,
 may be committed. The region being committed is specified through
 the byte range (length and offset). Note: the "layoutupdate"
 structure does not include the length and offset, as they are already
 specified in the arguments.

 The LAYOUTCOMMIT operation indicates that the client has completed
 writes using a layout obtained by a previous LAYOUTGET. The client
 may have only written a subset of the data range it previously
 requested. LAYOUTCOMMIT allows it to commit or discard provisionally
 allocated space and to update the server with a new end of file. The
 layout referenced by LAYOUTCOMMIT is still valid after the operation
 completes and can be continued to be referenced by the clientid,
 filehandle, byte range, and layout type.

 The "last_write_offset" field specifies the offset of the last byte
 written by the client previous to the LAYOUTCOMMIT. Note: this value
 is never equal to the file's size (at most it is one byte less than
 the file's size). The metadata server may use this information to
 determine whether the file's size needs to be updated. If the
 metadata server updates the file's size as the result of the
 LAYOUTCOMMIT operation, it must return the new size as part of the
 results.

 The "time_modify" and "time_access" fields allow the client to
 suggest times it would like the metadata server to set. The metadata
 server may use these time values or it may use the time of the
 LAYOUTCOMMIT operation to set these time values. If the metadata
 server uses the client provided times, it should sanity check the
 values (e.g., to ensure time does not flow backwards). If the client
 wants to force the metadata server to set an exact time, the client
 should use a SETATTR operation in a compound right after
 LAYOUTCOMMIT. See Section 3.4 for more details. If the new client
 desires the resultant mtime or atime, it should issue a GETATTR
 following the LAYOUTCOMMIT; e.g., later in the same compound.

 The "layoutupdate" argument to LAYOUTCOMMIT provides a mechanism for
 a client to provide layout specific updates to the metadata server.
 For example, the layout update can describe what regions of the
 original layout have been used and what regions can be deallocated.
 There is no NFSv4 file layout specific layoutupdate structure.

 The layout information is more verbose for block devices than for
 objects and files because the latter hide the details of block
 allocation behind their storage protocols. At the minimum, the
 client needs to communicate changes to the end of file location back

Goodson, et al. Expires April 10, 2006 [Page 50]

Internet-Draft NFSv4 pNFS Extensions October 2005

 to the server, and, if desired, its view of the file modify and
 access time. For block/volume layouts, it needs to specify precisely
 which blocks have been used.

 If the layout identified in the arguments does not exist, the error
 NFS4ERR_BADLAYOUT is returned. The layout being committed may also
 be rejected if it does not correspond to an existing layout with an
 iomode of RW.

 On success, the current filehandle retains its value.

 ERRORS

 NFS4ERR_BADLAYOUT
 NFS4ERR_BADIOMODE
 NFS4ERR_FHEXPIRED
 NFS4ERR_INVAL
 NFS4ERR_NOFILEHANDLE
 NFS4ERR_STALE
 NFS4ERR_STALE_CLIENTID
 NFS4ERR_UNKNOWN_LAYOUTTYPE

9.3 LAYOUTRETURN - Release Layout Information

 SYNOPSIS

 (cfh), clientid, offset, length, iomode, layout_type -> -

 ARGUMENT

 struct LAYOUTRETURN4args {
 /* CURRENT_FH: file */
 clientid4 clientid;
 offset4 offset;
 length4 length;
 pnfs_layoutiomode4 iomode;
 pnfs_layouttype4 layout_type;
 };

 RESULT

 struct LAYOUTRETURN4res {
 nfsstat4 status;
 };

 DESCRIPTION

Goodson, et al. Expires April 10, 2006 [Page 51]

Internet-Draft NFSv4 pNFS Extensions October 2005

 Returns the layout segment represented by the current filehandle,
 clientid, byte range, iomode, and layout type. After this call, the
 client MUST NOT use the layout and the associated storage protocol to
 access the file data. The layout being returned may be a subdivision
 of a layout previously fetched through LAYOUTGET. As well, it may be
 a subset or superset of a layout specified by CB_LAYOUTRECALL.
 However, if it is a subset, the recall is not complete until the full
 byte range has been returned. It is also permissible, and no error
 should result, for a client to return a byte range covering a layout
 it does not hold. If the length is all 1s, the layout covers the
 range from offset to EOF. An iomode of ANY specifies that all
 layouts that match the other arguments to LAYOUTRETURN (i.e.,
 clientid, byte range, and type) are being returned.

 Layouts may be returned when recalled or voluntarily (i.e., before
 the server has recalled them). In either case the client must
 properly propagate state changed under the context of the layout to
 storage or to the server before returning the layout.

 If a client fails to return a layout in a timely manner, then the
 metadata server should use its control protocol with the storage
 devices to fence the client from accessing the data referenced by the
 layout. See Section 3.5 for more details.

 If the layout identified in the arguments does not exist, the error
 NFS4ERR_BADLAYOUT is returned. If a layout exists, but the iomode
 does not match, NFS4ERR_BADIOMODE is returned.

 On success, the current filehandle retains its value.

 [OPEN ISSUE: Should LAYOUTRETURN be modified to handle FSID
 callbacks?]

 ERRORS

 NFS4ERR_BADLAYOUT
 NFS4ERR_BADIOMODE
 NFS4ERR_FHEXPIRED
 NFS4ERR_INVAL
 NFS4ERR_NOFILEHANDLE
 NFS4ERR_STALE
 NFS4ERR_STALE_CLIENTID
 NFS4ERR_UNKNOWN_LAYOUTTYPE

Goodson, et al. Expires April 10, 2006 [Page 52]

Internet-Draft NFSv4 pNFS Extensions October 2005

9.4 GETDEVICEINFO - Get Device Information

 SYNOPSIS

 (cfh), device_id, layout_type, maxcount -> device_addr

 ARGUMENT

 struct GETDEVICEINFO4args {
 /* CURRENT_FH: file */
 pnfs_deviceid4 device_id;
 pnfs_layouttype4 layout_type;
 count4 maxcount;
 };

 RESULT

 struct GETDEVICEINFO4resok {
 pnfs_deviceaddr4 device_addr;
 };

 union GETDEVICEINFO4res switch (nfsstat4 status) {
 case NFS4_OK:
 GETDEVICEINFO4resok resok4;
 default:
 void;
 };

 DESCRIPTION

 Returns device type and device address information for a specified
 device. The returned device_addr includes a type that indicates how
 to interpret the addressing information for that device. The current
 filehandle (cfh) is used to identify the file system; device IDs are
 unique per file system (FSID) and are qualified by the layout type.

 See Section 3.1.4 for more details on device ID assignment.

 If the size of the device address exceeds maxcount bytes, the
 metadata server will return the error NFS4ERR_TOOSMALL. If an
 invalid device ID is given, the metadata server will respond with
 NFS4ERR_INVAL.

 ERRORS

 NFS4ERR_FHEXPIRED
 NFS4ERR_INVAL
 NFS4ERR_TOOSMALL

Goodson, et al. Expires April 10, 2006 [Page 53]

Internet-Draft NFSv4 pNFS Extensions October 2005

 NFS4ERR_UNKNOWN_LAYOUTTYPE

9.5 GETDEVICELIST - Get List of Devices

 SYNOPSIS

 (cfh), layout_type, maxcount, cookie, cookieverf ->
 cookie, cookieverf, device_addrs<>

 ARGUMENT

 struct GETDEVICELIST4args {
 /* CURRENT_FH: file */
 pnfs_layouttype4 layout_type;
 count4 maxcount;
 nfs_cookie4 cookie;
 verifier4 cookieverf;
 };

 RESULT

 struct GETDEVICELIST4resok {
 nfs_cookie4 cookie;
 verifier4 cookieverf;
 pnfs_devlist_item4 device_addrs<>;
 };

 union GETDEVICELIST4res switch (nfsstat4 status) {
 case NFS4_OK:
 GETDEVICELIST4resok resok4;
 default:
 void;
 };

 DESCRIPTION

 In some applications, especially SAN environments, it is convenient
 to find out about all the devices associated with a file system.
 This lets a client determine if it has access to these devices, e.g.,
 at mount time.

 This operation returns an array of items (pnfs_devlist_item4) that
 establish the association between the short pnfs_deviceid4 and the
 addressing information for that device, for a particular layout type.
 This operation may not be able to fetch all device information at
 once, thus it uses a cookie based approach, similar to READDIR, to
 fetch additional device information (see [2], section 14.2.24). As

Goodson, et al. Expires April 10, 2006 [Page 54]

Internet-Draft NFSv4 pNFS Extensions October 2005

 in GETDEVICEINFO, the current filehandle (cfh) is used to identify
 the file system.

 As in GETDEVICEINFO, maxcount specifies the maximum number of bytes
 to return. If the metadata server is unable to return a single
 device address, it will return the error NFS4ERR_TOOSMALL. If an
 invalid device ID is given, the metadata server will respond with
 NFS4ERR_INVAL.

 ERRORS

 NFS4ERR_BAD_COOKIE
 NFS4ERR_FHEXPIRED
 NFS4ERR_INVAL
 NFS4ERR_TOOSMALL
 NFS4ERR_UNKNOWN_LAYOUTTYPE

10. Callback Operations

Goodson, et al. Expires April 10, 2006 [Page 55]

Internet-Draft NFSv4 pNFS Extensions October 2005

10.1 CB_LAYOUTRECALL

 SYNOPSIS

 layout_type, iomode, layoutrecall -> -

 ARGUMENT

 enum layoutrecall_type4 {
 RECALL_FILE = 1,
 RECALL_FSID = 2
 };

 struct layoutrecall_file4 {
 nfs_fh4 fh;
 offset4 offset;
 length4 length;
 };

 union layoutrecall4 switch(layoutrecall_type4 recalltype) {
 case RECALL_FILE:
 layoutrecall_file4 layout;
 case RECALL_FSID:
 fsid4 fsid;
 };

 struct CB_LAYOUTRECALLargs {
 pnfs_layouttype4 layout_type;
 pnfs_layoutiomode4 iomode;
 layoutrecall4 layoutrecall;
 };

 RESULT

 struct CB_LAYOUTRECALLres {
 nfsstat4 status;
 };

 DESCRIPTION

 The CB_LAYOUTRECALL operation is used to begin the process of
 recalling a layout, a portion thereof, or all layouts pertaining to a
 particular file system (FSID). If RECALL_FILE is specified, the
 offset and length fields specify the portion of the layout to be
 returned. The iomode specifies the set of layouts to be returned.
 An iomode of ANY specifies that all matching layouts, regardless of
 iomode, must be returned; otherwise, only layouts that exactly match
 the iomode must be returned.

Goodson, et al. Expires April 10, 2006 [Page 56]

Internet-Draft NFSv4 pNFS Extensions October 2005

 If RECALL_FSID is specified, the fsid specifies the file system for
 which any outstanding layouts must be returned. Layouts are returned
 through the LAYOUTRETURN operation.

 If the client does not hold any layout segment either matching or
 overlapping with the requested layout, it returns
 NFS4ERR_NOMATCHING_LAYOUT. If a length of all 1s is specified then
 the layout corresponding to the byte range from "offset" to the end-
 of-file MUST be returned.

 IMPLEMENTATION

 The client should reply to the callback immediately. Replying does
 not complete the recall except when an error is returned. The recall
 is not complete until the layout(s) are returned using a
 LAYOUTRETURN.

 The client should complete any in-flight I/O operations using the
 recalled layout(s) before returning it/them via LAYOUTRETURN. If the
 client has buffered dirty data, it may chose to write it directly to
 storage before calling LAYOUTRETURN, or to write it later using
 normal NFSv4 WRITE operations to the metadata server.

 If dirty data is flushed while the layout is held, the client must
 still issue LAYOUTCOMMIT operations at the appropriate time,
 especially before issuing the LAYOUTRETURN. If a large amount of
 dirty data is outstanding, the client may issue LAYOUTRETURNs for
 portions of the layout being recalled; this allows the server to
 monitor the client's progress and adherence to the callback.
 However, the last LAYOUTRETURN in a sequence of returns, SHOULD
 specify the full range being recalled (see Section 3.5.2 for
 details).

 ERRORS

 NFS4ERR_NOMATCHING_LAYOUT

Goodson, et al. Expires April 10, 2006 [Page 57]

Internet-Draft NFSv4 pNFS Extensions October 2005

10.2 CB_SIZECHANGED

 SYNOPSIS

 fh, size -> -

 ARGUMENT

 struct CB_SIZECHANGEDargs {
 nfs_fh4 fh;
 length4 size;
 };

 RESULT

 struct CB_SIZECHANGEDres {
 nfsstat4 status;
 };

 DESCRIPTION

 The CB_SIZECHANGED operation is used to notify the client that the
 size pertaining to the filehandle associated with "fh", has changed.
 The new size is specified. Upon reception of this notification
 callback, the client should update its internal size for the file.
 If the layout being held for the file is of the NFSv4 file layout
 type, then the size field within that layout should be updated (see

Section 5.5). For other layout types see Section 3.4.2 for more
 details.

 If the handle specified is not one for which the client holds a
 layout, an NFS4ERR_BADHANDLE error is returned.

 ERRORS

 NFS4ERR_BADHANDLE

11. Layouts and Aggregation

 This section describes several aggregation schemes in a semi-formal
 way to provide context for layout formats. These definitions will be
 formalized in other protocols. However, the set of understood types
 is part of this protocol in order to provide for basic
 interoperability.

 The layout descriptions include (deviceID, objectID) tuples that
 identify some storage object on some storage device. The addressing

Goodson, et al. Expires April 10, 2006 [Page 58]

Internet-Draft NFSv4 pNFS Extensions October 2005

 formation associated with the deviceID is obtained with
 GETDEVICEINFO. The interpretation of the objectID depends on the
 storage protocol. The objectID could be a filehandle for an NFSv4
 storage device. It could be a OSD object ID for an object server.
 The layout for a block device generally includes additional block map
 information to enumerate blocks or extents that are part of the
 layout.

11.1 Simple Map

 The data is located on a single storage device. In this case the
 file server can act as the front end for several storage devices and
 distribute files among them. Each file is limited in its size and
 performance characteristics by a single storage device. The simple
 map consists of (deviceID, objectID).

11.2 Block Extent Map

 The data is located on a LUN in the SAN. The layout consists of an
 array of (deviceID, blockID, offset, length) tuples. Each entry
 describes a block extent.

11.3 Striped Map (RAID 0)

 The data is striped across storage devices. The parameters of the
 stripe include the number of storage devices (N) and the size of each
 stripe unit (U). A full stripe of data is N * U bytes. The stripe
 map consists of an ordered list of (deviceID, objectID) tuples and
 the parameter value for U. The first stripe unit (the first U bytes)
 are stored on the first (deviceID, objectID), the second stripe unit
 on the second (deviceID, objectID) and so forth until the first
 complete stripe. The data layout then wraps around so that byte
 (N*U) of the file is stored on the first (deviceID, objectID) in the
 list, but starting at offset U within that object. The striped
 layout allows a client to read or write to the component objects in
 parallel to achieve high bandwidth.

 The striped map for a block device would be slightly different. The
 map is an ordered list of (deviceID, blockID, blocksize), where the
 deviceID is rotated among a set of devices to achieve striping.

11.4 Replicated Map

 The file data is replicated on N storage devices. The map consists
 of N (deviceID, objectID) tuples. When data is written using this
 map, it should be written to N objects in parallel. When data is
 read, any component object can be used.

Goodson, et al. Expires April 10, 2006 [Page 59]

Internet-Draft NFSv4 pNFS Extensions October 2005

 This map type is controversial because it highlights the issues with
 error recovery. Those issues get interesting with any scheme that
 employs redundancy. The handling of errors (e.g., only a subset of
 replicas get updated) is outside the scope of this protocol
 extension. Instead, it is a function of the storage protocol and the
 metadata control protocol.

11.5 Concatenated Map

 The map consists of an ordered set of N (deviceID, objectID, size)
 tuples. Each successive tuple describes the next segment of the
 file.

11.6 Nested Map

 The nested map is used to compose more complex maps out of simpler
 ones. The map format is an ordered set of M sub-maps, each submap
 applies to a byte range within the file and has its own type such as
 the ones introduced above. Any level of nesting is allowed in order
 to build up complex aggregation schemes.

12. References

12.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", March 1997.

 [2] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame,
 C., Eisler, M., and D. Noveck, "Network File System (NFS)
 version 4 Protocol", RFC 3530, April 2003.

 [3] Gibson, G., "pNFS Problem Statement", July 2004, <ftp://
www.ietf.org/internet-drafts/
draft-gibson-pnfs-problem-statement-01.txt>.

12.2 Informative References

 [4] Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M., and E.
 Zeidner, "Internet Small Computer Systems Interface (iSCSI)",

RFC 3720, April 2004.

 [5] Snively, R., "Fibre Channel Protocol for SCSI, 2nd Version
 (FCP-2)", ANSI/INCITS 350-2003, Oct 2003.

 [6] Weber, R., "Object-Based Storage Device Commands (OSD)", ANSI/
 INCITS 400-2004, July 2004,
 <http://www.t10.org/ftp/t10/drafts/osd/osd-r10.pdf>.

https://datatracker.ietf.org/doc/html/rfc3530
ftp://www.ietf.org/internet-drafts/draft-gibson-pnfs-problem-statement-01.txt
ftp://www.ietf.org/internet-drafts/draft-gibson-pnfs-problem-statement-01.txt
ftp://www.ietf.org/internet-drafts/draft-gibson-pnfs-problem-statement-01.txt
https://datatracker.ietf.org/doc/html/rfc3720
http://www.t10.org/ftp/t10/drafts/osd/osd-r10.pdf

Goodson, et al. Expires April 10, 2006 [Page 60]

Internet-Draft NFSv4 pNFS Extensions October 2005

 [7] Black, D., "pNFS Block/Volume Layout", July 2005, <ftp://
www.ietf.org/internet-drafts/draft-black-pnfs-block-01.txt>.

 [8] Zelenka, J., Welch, B., and B. Halevy, "Object-based pNFS
 Operations", July 2005, <ftp://www.ietf.org/internet-drafts/

draft-zelenka-pnfs-obj-01.txt>.

Authors' Addresses

 Garth Goodson
 Network Appliance
 495 E. Java Dr
 Sunnyvale, CA 94089
 USA

 Phone: +1-408-822-6847
 Email: goodson@netapp.com

 Brent Welch
 Panasas, Inc.
 6520 Kaiser Drive
 Fremont, CA 95444
 USA

 Phone: +1-650-608-7770
 Email: welch@panasas.com
 URI: http://www.panasas.com/

 Benny Halevy
 Panasas, Inc.
 1501 Reedsdale St., #400
 Pittsburgh, PA 15233
 USA

 Phone: +1-412-323-3500
 Email: bhalevy@panasas.com
 URI: http://www.panasas.com/

ftp://www.ietf.org/internet-drafts/draft-black-pnfs-block-01.txt
ftp://www.ietf.org/internet-drafts/draft-black-pnfs-block-01.txt
ftp://www.ietf.org/internet-drafts/draft-zelenka-pnfs-obj-01.txt
ftp://www.ietf.org/internet-drafts/draft-zelenka-pnfs-obj-01.txt
http://www.panasas.com/
http://www.panasas.com/

Goodson, et al. Expires April 10, 2006 [Page 61]

Internet-Draft NFSv4 pNFS Extensions October 2005

 David L. Black
 EMC Corporation
 176 South Street
 Hopkinton, MA 01748
 USA

 Phone: +1-508-293-7953
 Email: black_david@emc.com

 Andy Adamson
 CITI University of Michigan
 519 W. William
 Ann Arbor, MI 48103-4943
 USA

 Phone: +1-734-764-9465
 Email: andros@umich.edu

Appendix A. Acknowledgments

 Many members of the pNFS informal working group have helped
 considerably. The authors would like to thank Gary Grider, Peter
 Corbett, Dave Noveck, and Peter Honeyman. This work is inspired by
 the NASD and OSD work done by Garth Gibson. Gary Grider of the
 national labs (LANL) has been a champion of high-performance parallel
 I/O.

Goodson, et al. Expires April 10, 2006 [Page 62]

Internet-Draft NFSv4 pNFS Extensions October 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Goodson, et al. Expires April 10, 2006 [Page 63]

