
INTERNET-DRAFT David Noveck
Expires: January 2006 Network Appliance, Inc.
 Rodney C. Burnett
 IBM, Inc.

 July 2005

Implementation Guide for Referrals in NFSv4
draft-ietf-nfsv4-referrals-00.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents
 that any applicable patent or other IPR claims of which he
 or she is aware have been or will be disclosed, and any of
 which he or she becomes aware will be disclosed, in
 accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt The list of

 Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2005). All Rights Reserved.

Noveck, Burnett Expires January 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

Abstract

RFC3530 describes a migration feature using the NFS4ERR_MOVED error
 code and the fs_locations attribute. The description focuses on
 the case of migration (i.e. relocation) of a file system already
 known to the client. The simpler limiting case in a which a file
 system not previously known to the client was located elsewhere,
 which we here call a referral, was not clearly described. Because
 of this and also because of some inconsistencies and ambiguities in
 the text of RFC3530, there has been confusion about how the client
 and server should interact in performing a referral. This document
 provides a guide to the implementation of referrals, and in so
 doing, addresses the relevant problems in RFC3530.

Table Of Contents

1. Introduction . 2
1.1. Referrals as a Limiting Case of Migrations 3
1.2. Pure Referrals . 3
2. Issues as to When NFS4ERR_MOVED May/Should be Returned . . 4
2.1. PUTFH Returning NFS4ERR_MOVED 5
2.2. GETFH Returning NFS4ERR_MOVED 6
2.3. GETATTR Returning NFS4ERR_MOVED 6
2.4. Ops Not Allowed to Return NFS4ERR_MOVED 7
3. Attribute Issues . 7
3.1. Number of fs_locations 7
3.2. General Issues of Incomplete Attribute Sets 8
3.3. Attributes Needed for Root of an Absent Fs 11
3.4. Attributes Valid for Root of an Absent Fs 13
3.5. Attributes Not Valid for Root of an Absent Fs 14
4. Referral Examples . 15
4.1. Referral Example (LOOKUP) 15
4.2. Referral Example (READDIR) 20
5. Additional Client-side Considerations 22

 Acknowledgements . 23
 Normative References 23
 Authors' Addresses . 23
 Full Copyright Statement 23

1. Introduction

RFC3530 describes a migration feature using the NFS4ERR_MOVED error
 code and the fs_locations attribute. The description focuses on
 the case of migration of a file system already known to the client,
 while the alternate case in a which a file system not previously
 known to the client was located elsewhere, which we here call a
 referral, was not clearly described.

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530

Noveck, Burnett Expires January 2006 [Page 2]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 Analysis of how this case would be dealt with has shown that the
 protocol in RFC3530 is capable of dealing properly with this sub-
 case. However, there are difficulties for implementers in
 determining how precisely this is to be done, because the text of

RFC3530 does not address this case. In addition, there are a
 number of ambiguities and inconsistencies in the text, that
 increase the difficulties for implementers and that raise the
 probability that clients and servers may not properly interact.

 This document is an attempt to deal with these spec issues and to
 provide a clear guide to follow in developing inter-operable
 referral implementations.

 This document may deal with some aspects of issues related to the
 migration case where the data actually relocated from one server to
 another while under client access. For example, clarification of
 apparent contradictions in the spec may relate to both referrals
 and the general migration case. However, the focus of this
 document is on the case of referrals and other aspects of migration
 will only be dealt with as necessary to accomplish that main
 purpose.

1.1. Referrals as a Limiting Case of Migrations

 If a server implements file system migration, individual clients,
 not being synchronized with the migration event, will encounter
 different situations from the client point of view. That is, even
 though some clients will have received filehandles within the
 migrated filesystem, others may at that time be first referencing
 the root of the migrated filesystem and need to be redirected to
 the new fs location, just as those clients that have already
 accessed the filesystem (when it was present) need to be
 redirected.

 Thus referrals are a limiting sub-case of migration and when a
 migration event occurs some clients will see an ordinary migration
 in the case in which access (by that client) to the filesystem
 being moved has already occurred, while others will see a referral
 when they first attempt to access the absent filesystem.

1.2. Pure Referrals

 Given that clients supporting migration need to be prepared for a
 migration event, a server can establish a situation, which we refer
 to as a pure referral, in which all clients see a referral. Since
 no client can enter the absent filesystem, the presumptive
 migration of the absent filesystem, assumes a purely conventional
 character, in that for each client it appears to have happened

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530

Noveck, Burnett Expires January 2006 [Page 3]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 before all access by that client. This allows the server to
 establish a situation in which referral to an absent filesystem may
 occur for filesystems that were never present on the server.

 This functionality may be used to allow construction of multi-
 server namespaces and may serve as a building block for the
 construction of wider global namespaces.

2. Issues as to When NFS4ERR_MOVED May/Should be Returned

RFC3530 contains the following statement in section 6.2: "The
 NFS4ERR_MOVED error is returned for all operations except PUTFH and
 GETATTR.", which is contradicted by the error lists in the detailed
 operation descriptions. PUTFH and GETATTR, while the statement
 above suggests otherwise, have NFS4ERR_MOVED listed as error
 codes, whereas there are six other ops (PUTROOTFH, PUTPUBFH, RENEW,
 SETCLIENTID, SETCLIENTID_CONFIRM, RELEASE_OWNER) which are not
 allowed to return NFS4ERR_MOVED despite the "all operations except"
 clause given above.

 The individual ops will be discussed below but in order to
 understand how these contradictions arose and how they are to be
 dealt with, it is important to be clear on what point the current
 filesystem (i.e. the filesystem associated with the current
 filehandle) is to be tested for absence in deciding whether to
 return NFS4ERR_MOVED. For operations which change the current
 filehandle, (i.e. PUTFH, PUTROOTFH, PUTPUBFH, RESTOREFH, LOOKUP,
 LOOKUPP), this distinction is critical. The spec is, however, not
 very clear on this issue so we need to consider the alternatives.

 Let's first consider a check on the current filehandle after the
 operation. In part, that seems dubious because it returns an error
 for an operation where the circumstances that give rise to the
 error (i.e. changing the filehandle) depend on the successful
 execution of the operation giving rise to the error. However, the
 main reason such an interpretation is insupportable is that it
 would make some situations, wherein fs_locations is needed,
 impossible to deal with. For example, LOOKUP followed by
 GETATTR(fs_locations) would not be possible if the LOOKUP returned
 NFS4ERR_MOVED when the current filehandle at the start of the
 LOOKUP was in a present filesystem while the current filehandle at
 the end of the LOOKUP was at the root of an absent filesystem. An
 NFS4ERR_MOVED returned by LOOKUP would not allow execution of the
 GETATTR, any exception for GETATTR of fs_locations notwithstanding.

 On the other hand, making the check at the start of each operation
 (except some GETATTR's) allows fs_locations to be determined
 whenever necessary and is the best way to resolve the issue.

https://datatracker.ietf.org/doc/html/rfc3530

Noveck, Burnett Expires January 2006 [Page 4]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 Except where RFC3530 has made this impossible by not listing
 NFS4ERR_MOVED as an error code for certain ops, each op should
 check at the beginning of the operation for a current filehandle
 within an absent fs. If so, NFS4ERR_MOVED is returned. A partial
 exception is GETATTR for which the return of NFS4ERR_MOVED (or not)
 is dependent on the set of attributes requested. This is discussed
 further below.

2.1. PUTFH Returning NFS4ERR_MOVED

 As noted above, section 6.2 indicates that PUTFH will not return
 NFS4ERR_MOVED while the detailed description for PUTFH (section

14.2.20), lists NFS4ERR_MOVED as a valid return. How are we to
 resolve the contradiction?

 It would seem that the exception for PUTFH in section 6.2, is
 unnecessary and derives from a confusion about the logic of
 NFS4ERR_MOVED. Clearly the sequence of PUTFH(fh within absent
 filesystem) followed by GETATTR(fs_locations) must be allowed but
 it requires no specific exception for PUTFH to do so, since only
 GETATTR, and not PUTFH, has a filehandle within an absent
 filesystem as the current handle at the start of the operation.
 Thus no exception for PUTFH is required, as is recognized by

section 14.2.20.

 PUTFH will never return NFS4ERR_MOVED because the filehandle it is
 establishing belongs to an absent filesystem. This is because the
 current filehandle/filesystem is checked for absence at the start
 of each op and the new filehandle for PUTFH has not been
 established at the start of the PUTFH. This allows the sequence
 PUTFH-GETATTR(fs_locations) to proceed without any specific
 exception for PUTFH or any analysis of the op stream that
 encompasses multiple ops (e.g. looking ahead to the GETATTR).

 NFS4ERR_MOVED can happen as a result of a PUTFH, but only in rather
 odd circumstances such as the following:

 o PUTFH (fh within absent filesystem)

 o PUTFH (fh within present filesystem)

 In this case, NFS4ERR_MOVED would be returned on the second PUTFH
 since the current filehandle at the start of that op is within an
 absent filesystem. It may seem odd that the PUTFH which is
 establishing a current filehandle within a present filesystem
 should get an error while the one that established a current
 filehandle within an absent filesystem does not but this behavior
 is a consequence of a uniform set of rules for NFS4ERR_MOVED, the

https://datatracker.ietf.org/doc/html/rfc3530

Noveck, Burnett Expires January 2006 [Page 5]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 basis of which is that the current filehandle is tested at the
 start of an operation.

2.2. GETFH Returning NFS4ERR_MOVED

 While RFC 3530 does not make any exception for GETFH when the
 current filehandle is within an absent filesystem, the fact that
 GETFH is such a passive, purely interrogative operation, may lead
 readers to wrongly suppose that an NFSERR_MOVED error will not
 arise in this situation.

 In fact, GETFH will result in NFS4ERR_MOVED being returned if the
 current file handle is for an absent filesystem. This is
 particularly helpful in dealing with pure referral situations since
 a filehandle that a client does not ever see can pose no
 difficulties. For example, it is irrelevant whether the target
 filesystem has persistent or volatile filehandles. An inherently
 unobserved filehandle poses no expiration difficulties regardless
 of whether the target filesystem (on the target server) has
 persistent or volatile filehandles. Servers should never return
 filehandles within absent filesystems for pure referral cases.

2.3. GETATTR Returning NFS4ERR_MOVED

 As noted above, Section 6.2 indicates that NFS4ERR_MOVED is not
 returned for a GETATTR operation, but NFS4ERR_MOVED is listed as an
 error that can be returned by GETATTR (in section 14.2.7). Since
 the purpose of the exception for GETATTR is to allow fs_locations
 to be fetched, the best resolution of this contradiction is for
 NFS4ERR_MOVED to be returned by GETATTR's that ask for some
 unavailable attribute and that do not interrogate the fs_locations
 attribute. This maintains the exception which allows GETATTR to be
 used to get fs_locations information by establishing the rule that
 GETATTR's which interrogate fs_locations (with or without
 additional attributes) will not return NFS4ERR_MOVED. Neither will
 GETATTR's that only request attributes that are available. These
 considerations are further discussed in section 3.

 Sometimes clients need a quickly checked indication of whether a
 filesystem is absent or not. In most cases, because fs_locations
 is not requested, this indication will be the NFS4ERR_MOVED being
 returned by the GETATTR. When fs_locations is requested, a
 convenient way to provide this indication is to request the
 filehandle attribute. Since this attribute will not be provided
 for referrals (see section 3.4.2), examining the mask of returned
 attributes for the presence of the filehandle attribute is quick
 way to determine whether the directory in question is part of an
 absent filesystem.

https://datatracker.ietf.org/doc/html/rfc3530

Noveck, Burnett Expires January 2006 [Page 6]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

2.4. Ops Not Allowed to Return NFS4ERR_MOVED

 As noted above, despite the fact that section 6.2 suggests
 otherwise, a number of ops, all of which do not require a current
 filehandle, are not listed as returning NFS4ERR_MOVED. These ops
 are PUTROOTFH, PUTPUBFH, RENEW, SETCLIENTID, and RELEASE_LOCKOWNER.
 Note also that DELEGPURGE, another op which does not require a
 current filehandle, is listed as able to return NFS4ERR_MOVED.

 Although this contradiction could be resolved by changing the op
 description to match 6.2, it does not seem that there is any strong
 reason to do so. The protocol will function adequately, if these
 are treated as exceptions, and NFS4ERR_MOVED is returned by the
 next op allowed to do so, as long as the current filehandle at the
 start of that op is one within an absent fs. Note that PUTROOTFH
 and PUTPUBFH could cause a pending absent fs indication not to
 result in an error code, since they change the current filehandle
 to be within a new, presumably present, filesystem. However, in
 this case the client would not have issued any operations prior to
 the PUTROOTFH or PUTPUBFH that actually operated on the absent fs.

3. Attribute Issues

RFC3530 anticipates that clients will request additional attributes
 beyond fs_locations (see section 6.2 of that document) and allows
 the server to return fs_locations only. The return of other
 attributes, implicit in the statement "server may return
 fs_locations only" is not clearly dealt with. While some of these,
 such as fsid, are important for all forms of migration, this
 omission is most critical in the case of referrals. There are a
 number of attributes besides fs_locations that need to be provided
 at the root of an absent filesystem for server and client to
 properly collaborate to perform a referral.

 There are also a large number of other attributes which the server
 should not provide for absent filesystem since providing them is
 the province of the referral's target server. Providing possibly
 conflicting values on the server that is the source of the referral
 can only contribute to confusion.

3.1. Number of fs_locations

 It should be noted that with referrals, it is valid for an
 fs_locations response to describe multiple locations if the target
 of the referral is a replicated filesystem. This allows the client
 to find one of the replicas when one or more of the supplied
 locations are unavailable. Once the client establishes contact with

https://datatracker.ietf.org/doc/html/rfc3530

Noveck, Burnett Expires January 2006 [Page 7]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 a target server, it will then obtain fs_locations as appropriate
 from the server where the referral target data resides.

 Although it is valid for fs_locations to specify more than one
 location in the case of referral, it must specify at least one.
 This is in contrast to the case in which fs_locations is fetched
 for a filesystem which is present in order to determine replica
 locations in the case of failure. In that case, it is valid for a
 server to return an empty fs_locations attribute, since the client
 already has a valid location for the server and is only requesting
 additional locations and when there aren't any, an empty
 fs_locations gives him exactly the information being sought. When
 handling the returned attribute, the client should consider the
 replying server as the implied last entry in the list when it is
 not present in the returned fs_locations.

 In the referral case, the client is getting NFS4ERR_MOVED and has
 no current valid location for the filesystem and thus at least one
 location is required. In other cases, although a server may
 include his own location for the filesystem in the fs_locations
 attribute, he is not required to do so.

 When the server validly returns an fs_locations which has a null
 array of locations, it may choose to return an empty (zero
 component) fs_root since the only purpose of fs_root is to aid in
 the interpretation of the associated locations in the fs_locations
 attribute.

3.2. General Issues of Incomplete Attribute Sets

 Migration or referral events naturally create situations in which
 all of the attributes normally supported on a server are not
 obtainable. RFC3530 is in places ambivalent and/or apparently
 self-contradictory on such issues.

 The first problem concerns the statement in the third paragraph of
section 6.2: "If the client requests more attributes than just

 fs_locations, the server may return fs_locations only. This is to
 be expected since the server has migrated the filesystem and may
 not have a method of obtaining additional attribute data."

 While the above seems quite reasonable, it is seemingly
 contradicted by the following text from section 14.2.7 in the
 second paragraph of the DESCRIPTION for GETATTR: "The server must
 return a value for each attribute that the client requests if the
 attribute is supported by the server. If the server does not
 support an attribute or cannot approximate a useful value then it
 must not return the attribute value and must not set the attribute

https://datatracker.ietf.org/doc/html/rfc3530

Noveck, Burnett Expires January 2006 [Page 8]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 bit in the result bitmap. The server must return an error if it
 supports an attribute but cannot obtain its value. In that case no
 attribute values will be returned."

 The above is a helpful restriction in that it allows clients to
 simplify their attribute interpretation code. It allows them to
 assume that all of the attributes they request are present, often
 making it possible to get successive attributes at fixed offsets
 within the data stream. However, it seems to contradict what is
 said in section 6.2, where it is clearly anticipated, at least when
 fs_locations is requested, that fewer (often many fewer) attributes
 will be available than are requested. It could be argued that you
 could harmonize these two by being creative with the interpretation
 of the phrase "if the attribute is supported by the server". One
 could argue that many attributes are not supported by the server
 for an absent fs even though the text talking about attributes
 "supported by a server" seems to indicate that this is not allowed
 to be different for different fs's (which is troublesome in itself
 as one server might have some filesystems that do support ACLs and
 some that don't support then, for example).

 Note however that the following paragraph in the description says,
 "All servers must support the mandatory attributes as specified in
 the section 'File Attributes'". That's reasonable enough in
 general, but for an absent fs it is not reasonable and so section

14.2.7 and section 6.2 are contradictory.

 The text in section 14.2.7 would create great obstacles in the
 implementation of migration given section 6.2. In order to get the
 additional attributes mentioned, the client would have to guess at
 the set to be provided and, if that guess were not valid, get an
 error, presumably NFS4ERR_MOVED, returned. For the purposes of
 this document, we will treat the specific statement regarding
 fs_locations in section 6.2 as controlling. The contradictory text
 in section 14.2.7 will be treated as an overgeneralization to which
 an exception, for the case of migration and referrals, must be
 understood.

 When fs_locations is requested, then a subset of the requested
 attributes may be provided by the server without generating the
 error NFS4ERR_MOVED. The subset returned must always include
 fs_locations. In addition, if all of the attributes requested can
 be provided, then NFS4ERR_MOVED will also not be returned but in
 this case, a subset of the requested attributes may not be
 provided. The following sections give guidance on the attributes
 the server should provide for filehandles within an absent
 filesystem.

Noveck, Burnett Expires January 2006 [Page 9]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 A related issue concerns attributes in a READDIR. There has been
 discussion, not yet fully resolved, on the working group list about
 whether all the attributes specified in the attribute mask for
 READDIR must be provided for all readdir entries when those
 attributes are supported by the associated filesystems. It can be
 argued that that would be implied if one combined the words of

section 14.2.7 with text that (even though somewhat more loosely)
 implies that the attributes in READDIR are to be provided via
 GETATTR. It has also been argued that the role of READDIR with
 attributes as a replacement for v3 READDIRPLUS makes it more
 appropriate to treat the attribute mask parameters as a hint with
 the server allowed to omit any attributes requested (possibly with
 some exceptions) whenever inconvenient. In the discussion, there
 have also been occasional suggestions that an attribute's status
 (as mandatory or recommended) should have role in deciding whether
 servers are obliged to provide them when requested for READDIR.

 Regardless of how this debate is to be resolved in the general
 case, it is clear in the case of an absent filesystem, if there is
 a general obligation to provide all requested attributes, that an
 exception must be made for directory entries that represent the
 root of an absent fs (a referral). For these entries, the full set
 of requested attributes may simply not be available, as they
 likewise would not be available for GETATTR.

 Further, we will assume in our examples, that for the few
 attributes necessary to perform the referral (see below for
 details), the server will always provide these when requested as it
 should be easy for the server to do.

 So in this document, we will assume that regardless of the general
 resolution of this issue, in the case of an absent filesystem some
 flexibility must be provided, even if it is determined that making
 the attribute mask for READDIR a hint in general is not justified.

 So we will assume that for READDIR:

 o When fs_locations is among the attributes requested, the
 server may provide a subset of the other requested attributes
 together with fs_locations for roots of absent fs's, without
 causing any error for the READDIR as a whole. If rdattr_error
 is also requested and there are attributes which are not
 available, then rdattr_error will receive the value
 NFS4ERR_MOVED.

 o When fs_locations is not requested, but all of the attributes
 requested can be provided, then they will be provided and no

Noveck, Burnett Expires January 2006 [Page 10]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 NFS4ERR_MOVED will be generated. An example would be READDIR's
 that request mounted_on_fileid either with or without fsid.

 o When fs_locations is not requested, but rdattr_error is and
 some attributes requested are not available because of the
 absence of the filesystem, the server will return
 NFS4ERR_MOVED for the rdattr_error attribute and, in addition,
 the requested attributes that are valid for the root of an
 absent filesystem.

 o When neither fs_locations nor rdattr_error is requested and
 there is a directory within an absent fs within the directory
 being read, if some unavailable attributes are requested, no
 data will be returned and the READDIR will get an
 NFS4ERR_MOVED error. (The examples will suppose this but
 clients will not depend on this behavior and clients should
 work with a more liberal interpretation if this is decided on.

3.3. Attributes Needed for Root of an Absent Fs

 The following options need to be provided for referrals. While it
 is true that some of these are not mandatory in NFSv4, and the spec
 treats providing others as optional in the case of an absent
 filesystem, they do need to be provided to do a referral as
 envisioned herein.

3.3.1. fsid

 The fsid attribute allows clients to recognize when fs boundaries
 have been crossed. This applies also when one crosses into an
 absent filesystem and servers should provide this information when
 fs_locations is being requested for a filehandle within an absent
 filesystem, most typically at the root of that absent filesystem.

 To avoid misunderstanding, it should be noted that the fsid
 provided in this case is solely so that the fs boundaries can be
 properly noted and that the fsid returned will not necessarily be
 valid after resolution of the referral or migration event. The
 logic of fsid handling for NFSv4 is that fsid's are only unique
 within a per-server context. This would seem to be a strong
 indication that they need not be persistent when file systems are
 moved from server to server, although RFC 3530 does not
 specifically address the matter.

 A key reason for always providing an fsid can be seen by
 considering client behavior. When a client gets the error
 NFS4ERR_MOVED, it has a number of key steps to get through. It
 must determine if it has previously accessed the filesystem on the

https://datatracker.ietf.org/doc/html/rfc3530

Noveck, Burnett Expires January 2006 [Page 11]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 server that the moved error involves. If so, then it represents a
 data migration event in the strict sense, rather than a referral.
 The client must recover state and properly use rootpath data from
 the old and new server to graft the new server's namespace into the
 client's local space. If a client gets an NFS4ERR_MOVED error and
 it cannot get an fsid, then it must use fs_locations, fs_root, and
 rootpath data to locally determine if it has been accessing the
 filesystem or if the error applies to an fh in a different.
 (absent) filesystem. If it uses fs_root and there have been
 renames along the path to the fh, then the client will not be able
 to distinguish a migration from a referral. The best solution here
 is for the client to always get an fsid. All a server has to do is
 generate an fsid value that cannot represent actual exported data
 at the server. We want to have a model where referrals can still
 function even if renames or other events change the path to the
 referral point. Always providing fsid's improves the usefulness of
 the NFS namespace since referral and migration events can continue
 to be handled in the face of namespace management. This also helps
 to reduce client complexity.

3.3.2. mounted_on_fileid

 The mounted_on_fileid attribute is of particular importance to many
 clients, in that they need this information to form a proper
 response to a readdir() call. When a readdir() call is done within
 UNIX, the d_ino field of each of the entries needs to have a unique
 value normally derived from the NFSv4 fileid attribute. It is in
 the case in which a file system boundary is crossed that using the
 fileid attribute for this purpose, particularly when crossing into
 an absent fs, will pose problems. Note first that the fileid
 attribute, since it is within a new fs and thus a new fileid space,
 need not be unique within the directory. Also, since the fs, at
 its new location, may arrange things differently, the fileid
 decided on at the directing server may be overridden at the target
 server, making it of little value.

 Neither of these problems arise in the case of mounted_on_fileid
 since that fileid is in the context of the mounted-on fs and unique
 within it. Servers need to support and always return valid data
 for mounted-on-fileid, even for the case of an absent filesystem.
 The returned data represents a fileid for the entry in the
 directory that represents the absent fs. It's not the fileid of the
 root of the absent fs itself. Per the attribute handling rules
 presented in section 3.1, the server may return mounted-on-fileid
 as a subset of the requested attributes. The presence of
 fs_locations and rdattr_error attributes in a READDIR request
 determines if and how the server sets rdattr_error in the partial
 return case.

Noveck, Burnett Expires January 2006 [Page 12]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 Clients are strongly encouraged to always include mounted-on-fileid
 and rdattr_error in READDIR requests. This increases the potential
 that the client will receive information needed to satisfy the
 request and avoid further READDIR requests with a more restricted
 set of attributes. As a result, client performance is improved and
 network traffic is reduced.

3.3.3. rdattr_error attribute

 This attribute needs to be provided for READDIR's or else a READDIR
 of a directory that contains the root of absent fs's cannot be done
 effectively. In order to avoid NFS4ERR_MOVED on the directory as a
 whole, providing this error via the rdattr_error attribute allows
 attributes for the entry in question, which can be provided to the
 client, as well allowing the READDIR to provide information about
 other entries within the directory.

3.4. Attributes Valid for Root of an Absent Fs

 Beyond the essential attributes discussed above, there are several
 other attributes that a server could decide to return for an absent
 fs. These should pose little potential for inconsistencies or
 client side problems. They are mentioned below, but clients should
 not expect servers to return them.

3.4.1. type attribute

 For the root of absent fs, providing the value NF4DIR poses no
 difficulties as the target will provide the same value at the root
 of the target filesystem.

 Such a value isn't really needed as clients can assume that when
 there is a change of fsid value, the root of new filesystem will be
 a directory, as it must be.

3.4.2. change attribute

 When a server implements pure referrals for a large number of
 filesystems, it may be convenient for clients to cache the
 destination fs_locations and interrogate the change attribute to
 see if there has been any change in the locations attribute to
 require a refetch. Therefore, if the server does return a value
 for the change attribute when fetched for an absent filesystem, the
 server must update the change attribute when the target of the
 referral, i.e. the fs_locations value, changes.

Noveck, Burnett Expires January 2006 [Page 13]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 If the server does provide this information, the client must
 understand that there is no necessary continuity between the change
 values on referring server and on the target, as there may not be
 in the general migration case. Clients are best advised to refetch
 such values on the target server and assume that it is possible
 that a change to the object may have occurred before the fetch of
 the change attribute on the target, and that this fact means that
 data and attribute caches on he client are best flushed.

3.5. Attributes Not Valid for Root of an Absent Fs

 Attributes not listed in the sections above should not be provided
 in the case of the root of an absent filesystem (the referral
 case). The general principle is that such information is
 appropriately provided at the destination specified by the
 fs_locations attribute and that specifying a value at the point of
 referral will either be incorrect or superfluous.

 We present a few examples of this principle below for particular
 attributes but the same sort of logic applies to all of the other
 attributes, to some degree or other.

3.5.1. supp_attr attribute

 Since the referring server has no basis to determine what
 attributes are supported on the target, it is best not to provide
 this attribute on the referring server.

 It could be argued a value limited to attributes actually provided
 by the referring server could be provided, with the clear
 understanding that the value on the target will be different.
 However, there is very little value in doing that since there is
 only a single accessible object on the referring server for each
 fs, and the supported attributes are simply those that the server
 returns together with fs_locations when requested.

3.5.2. filehandle attribute

 Just as a filehandle for the absent fs cannot be provided to the
 client via GETFH, it should similarly not be provided as the
 filehandle attribute and for the same reasons.

 A filehandle provided for an absent filesystem poses the difficulty
 of possible expiration or remapping. This is an issue when
 migration happens after the file system has been accessed, but in
 the pure referral case, this issue can and should be avoided by
 never allowing the client to see such a filehandle at all.

Noveck, Burnett Expires January 2006 [Page 14]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

3.5.3. fh_expire_type attribute

 In the pure referral case, the issue of filehandle expiration type
 is rendered moot by the lack of visibility of filehandles within
 the absent filesystem. Providing a value for this attribute would
 limit the value on the target server to no purpose.

 By not providing a value, the referring server allows the target
 server flexibility to choose the value without fear of confusing
 the client.

 Note that the same logic applies to such attributes as
 link_support, symlink_support, case_insensitive, case_preserving,
 chown_restricted, and homogeneous. The referring server should
 support any choice of such values on the target and the client
 should have no interest in guesses on the part of the server.

3.5.4. fileid attribute

 Specifying a value for the root of the absent filesystem would
 serve no purpose as the value at the target would have to be
 definitive and any value at the referring server might conflict
 with a value at the target server.

4. Referral Examples

 The details of how referrals proceed are implicit in the
 specification of migration in RFC 3530. However, because the
 details of handling of this case are so different from those in the
 cases discussed therein, examples tailored to the referral
 situation are needed to clarify matters and allow correct and
 consistent implementations.

 The examples given in the sections below are somewhat artificial in
 that an actual client will not typically do a multi-component
 lookup, but will have cached information regarding the upper levels
 of the name hierarchy. However, these example are chosen to make
 the required behavior clear and easy to put within the scope of a
 small number of requests, without getting unduly into details of
 how specific clients might choose to cache things.

4.1. Referral Example (LOOKUP)

 Let us suppose that the following COMPOUND is issued in an
 environment in which /src/linux/2.7/latest is absent from the
 target server. This may be for a number of reasons. It may be the
 case that the file system has moved, or, it may be the case that

https://datatracker.ietf.org/doc/html/rfc3530

Noveck, Burnett Expires January 2006 [Page 15]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 the target server is functioning mainly, or solely, to refer
 clients to the servers on which various file systems are located.

 o PUTROOTFH

 o LOOKUP "src"

 o LOOKUP "linux"

 o LOOKUP "2.7"

 o LOOKUP "latest"

 o GETFH

 o GETATTR fsid,fileid,size,ctime

 Under the given circumstances, the following will be the result.

 o PUTROOTFH --> NFS_OK

 Current fh is root of pseudo-fs.

 o LOOKUP "src" --> NFS_OK

 Current fh is for /src and is within pseudo-fs.

 o LOOKUP "linux" --> NFS_OK

 Current fh is for /src/linux and is within pseudo-fs.

 o LOOKUP "2.7" --> NFS_OK

 Current fh is for /src/linux/2.7 and is within pseudo-fs.

 o LOOKUP "latest" --> NFS_OK

 Current fh is for /src/linux/2.7/latest and is within a new,
 absent fs, but ...

 The client will never see the value of that fh.

 o GETFH --> NFS4ERR_MOVED

 Fails because current fh is in an absent fs at the start of
 the operation and the spec makes no exception for GETFH.

Noveck, Burnett Expires January 2006 [Page 16]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 o GETATTR fsid,fileid,size,ctime

 Not executed because the failure of the GETFH stops processing
 of the COMPOUND.

 Given the failure of the GETFH, the client has the job of
 determining the root of the absent file system and where to find
 that file system, i.e. the server and path relative to that
 server's root fh. Note here that in this example, the client did
 not obtain filehandles and attribute information (e.g. fsid) for
 the intermediate directories, so that he would not be sure where
 the absent file system starts. It could be the case, for example,
 that /src/linux/2.7 is the root of the moved filesystem and that
 the reason that the lookup of "latest" succeeded is that the
 filesystem was not absent on that op but was moved between the last
 LOOKUP and the GETFH (since COMPOUND is not atomic). Even if we
 had the fsid's for all of the intermediate directories, we could
 have no way of knowing that /src/linux/2.7/latest was the root of a
 new fs, since we don't yet have its fsid.

 In order to get the necessary information, let us re-issue the
 chain of lookup's with GETFH's and GETATTR's to at least get the
 fsid's so we can be sure where the appropriate fs boundaries are.
 The client could choose to get fs_locations at the same time but in
 most cases the client will have a good guess as to where fs
 boundaries are (because of where NFS4ERR_MOVED was gotten and where
 not) making fetching of fs_location info unnecessary.

 o PUTROOTFH --> NFS_OK

 Current fh is root of pseudo-fs.

 o GETATTR(fsid) --> NFS_OK

 Just for completeness. Normally, clients will know the fsid
 of the pseudo-fs as soon as they establish communication with
 a server.

 o LOOKUP "src" --> NFS_OK

 o GETATTR(fsid) --> NFS_OK

 Get current fsid to see where fs boundaries are. The fsid
 will be that for the pseudo-fs in this example, so no
 boundary.

 o GETFH --> NFS_OK

Noveck, Burnett Expires January 2006 [Page 17]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 Current fh is for /src and is within pseudo-fs.

 o LOOKUP "linux" --> NFS_OK

 Current fh is for /src/linux and is within pseudo-fs.

 o GETATTR(fsid) --> NFS_OK

 Get current fsid to see where fs boundaries are. The fsid
 will be that for the pseudo-fs in this example, so no
 boundary.

 o GETFH --> NFS_OK

 Current fh is for /src/linux and is within pseudo-fs.

 o LOOKUP "2.7" --> NFS_OK

 Current fh is for /src/linux/2.7 and is within pseudo-fs.

 o GETATTR(fsid) --> NFS_OK

 Get current fsid to see where fs boundaries are. The fsid
 will be that for the pseudo-fs in this example, so no
 boundary.

 o GETFH --> NFS_OK

 Current fh is for /src/linux/2.7 and is within pseudo-fs.

 o LOOKUP "latest" --> NFS_OK

 Current fh is for /src/linux/2.7/latest and is within a new,
 absent fs, but ...

 The client will never see the value of that fh

 o GETATTR(fsid, fs_locations) --> NFS_OK

 We are getting the fsid to know where the fs boundaries are.
 While RFC 3530 does not oblige the server to give us anything
 but fs_locations, we are assuming that the server is following
 the recommendations herein and providing it. Note that the
 fsid we are given will not necessarily be preserved at the new
 location. That fsid might be different and in fact the fsid
 we have for this fs might a valid fsid of a different fs on
 that new server.

https://datatracker.ietf.org/doc/html/rfc3530

Noveck, Burnett Expires January 2006 [Page 18]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 In this particular case, we are pretty sure anyway that what
 has moved is /src/linux/2.7/latest rather than /src/linux/2.7
 since we have the fsid of the latter and it is that of the
 pseudo-fs, which presumably cannot move. However, in other
 examples, we might not have this kind of information to rely
 on (e.g. /src/linux/2.7 might be a non-pseudo filesystem
 separate from /src/linux/2.7/latest), so we need to have
 another reliable source information on the boundary of the fs
 which is moved. If, for example, the filesystem "/src/linux"
 had moved we would have a case of migration rather than
 referral and once the boundaries of the migrated filesystem
 was clear we could fetch fs_locations.

 We are fetching fs_location because the fact that we got an
 NFS4ERR_MOVED at this point means that it most likely that
 this is a referral and we need the destination. Even if it is
 the case that "/src/linux/2.7" is a filesystem which has
 migrated, we will still need the location information for that
 file system.

 o GETFH --> NFS4ERR_MOVED

 Fails because current fh is in an absent fs at the start of
 the operation and the spec makes no exception for GETFH. Note
 that this has the happy consequence that we don't have to
 worry about the volatility or lack thereof of the fh. If the
 root of the fs on the new location is a persistent fh, then we
 can assume that this fh, which we never saw is a persistent
 fh, which, if we could see it, would exactly match the new fh.
 At least, there is no evidence to disprove that. On the other
 hand, if we find a volatile root at the new location, then the
 filehandle which we never saw must have been volatile or at
 least nobody can prove otherwise.

 Given the above, the client knows where the root of the absent file
 system is, by noting where the change of fsid occurred. The
 fs_locations attribute also gives the client the actual location of
 the absent file system, so that the referral can proceed. The
 server gives the client the bare minimum of information about the
 absent file system so that there will be very little scope for
 problems of conflict between information sent by the referring
 server and information of the file system's home. No filehandles
 and very few attributes are present on the referring server and the
 client can treat those it receives as basically transient
 information with the function of enabling the referral.

Noveck, Burnett Expires January 2006 [Page 19]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

4.2. Referral Example (READDIR)

 Another context in which a client may encounter referrals is when
 it does a READDIR on directory in which some of the sub-directories
 are the roots of absent file systems.

 Suppose such a directory is read as follows:

 o PUTROOTFH

 o LOOKUP "src"

 o LOOKUP "linux"

 o LOOKUP "2.7"

 o READDIR (fsid, size, ctime, mounted_on_fileid)

 In this case, because rdattr_error is not requested, fs_locations
 is not requested, and some of attributes cannot be provided the
 result will be an NFS4ERR_MOVED error on the READDIR, with the
 detailed results as follows:

 o PUTROOTFH --> NFS_OK

 Current fh is root of pseudo-fs.

 o LOOKUP "src" --> NFS_OK

 Current fh is for /src and is within pseudo-fs.

 o LOOKUP "linux" --> NFS_OK

 Current fh is for /src/linux and is within pseudo-fs.

 o LOOKUP "2.7" --> NFS_OK

 Current fh is for /src/linux/2.7 and is within pseudo-fs.

 o READDIR (fsid, size, ctime, mounted_on_fileid) -->
 NFS4ERR_MOVED

 Note that the same error would have been returned if
 /src/linux/2.7 had migrated, when in fact it is because the
 directory contains the root of an absent fs.

 So now suppose that we reissue with rdattr_error:

Noveck, Burnett Expires January 2006 [Page 20]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 o PUTROOTFH

 o LOOKUP "src"

 o LOOKUP "linux"

 o LOOKUP "2.7"

 o READDIR (rdattr_error, fsid, size, ctime, mounted_on_fileid)

 The results will be:

 o PUTROOTFH --> NFS_OK

 Current fh is root of pseudo-fs.

 o LOOKUP "src" --> NFS_OK

 Current fh is for /src and is within pseudo-fs.

 o LOOKUP "linux" --> NFS_OK

 Current fh is for /src/linux and is within pseudo-fs.

 o LOOKUP "2.7" --> NFS_OK

 Current fh is for /src/linux/2.7 and is within pseudo-fs.

 o READDIR (rdattr_error, fsid, size, ctime, mounted_on_fileid)
 --> NFS_OK

 The attributes for "latest" will only contain rdattr_error
 with the value will be NFS4ERR_MOVED, together with an fsid
 value and an a value for mounted_on_fileid.

 So suppose we do another READDIR to get fs_locations info, although
 we could have used a GETATTR directly, as in the previous section.

 o PUTROOTFH

 o LOOKUP "src"

 o LOOKUP "linux"

 o LOOKUP "2.7"

 o READDIR (rdattr_error, fs_locations, mounted_on_fileid, fsid,
 size, ctime)

Noveck, Burnett Expires January 2006 [Page 21]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 The results would be:

 o PUTROOTFH --> NFS_OK

 Current fh is root of pseudo-fs.

 o LOOKUP "src" --> NFS_OK

 Current fh is for /src and is within pseudo-fs.

 o LOOKUP "linux" --> NFS_OK

 Current fh is for /src/linux and is within pseudo-fs.

 o LOOKUP "2.7" --> NFS_OK

 Current fh is for /src/linux/2.7 and is within pseudo-fs.

 o READDIR (rdattr_error, fs_locations, mounted_on_fileid, fsid,
 size, ctime) --> NFS_OK

 The attributes for "latest" will only contain

 + rdattr_error (value: NFS4ERR_MOVED)

 + fs_locations (value: target:/path/on/target)

 + mounted_on_fileid (value: unique fileid within referring
 fs)

 + fsid (value: unique value within referring server)

 The attribute entry for "latest" will not contain size or
 ctime.

5. Additional Client-side Considerations

 When clients make use of servers that implement referrals and
 migration, care should be taken so that a user who mounts a given
 filesystem that includes a referral or a relocated filesystem
 continue to see a coherent picture of that user-side filesystem
 despite the fact that it contains a number of server-side
 filesystems which may be on different servers.

 One important issue is upward navigation from the root of a server-
 side filesystem to its parent (specified as ".." in UNIX). The
 client needs to determine when it hits an fsid root going up the
 filetree. When at such a point, and needs to ascend to the parent,

Noveck, Burnett Expires January 2006 [Page 22]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

 it must do so locally instead of sending a LOOKUPP call to the
 server. The LOOKUPP would normally return the ancestor of the
 target filesystem on the target server, which may not be part of
 the space that the client mounted.

 Another issue concerns refresh of referral locations. When
 referrals are used extensively, they may change as server
 configurations change. It is expected that clients will cache
 information related to traversing referrals so that future client
 side requests are resolved locally without server communication.
 This is usually rooted in client-side name lookup caching. Clients
 should periodically purge this data for referral points in order to
 detect changes in location information. When the change attribute
 changes for directories that hold referral entries or for the
 referral entries themselves, clients should consider any associated
 cached referral information to be out of date.

6. Acknowledgements

 The authors wish to thank Neil Brown and Ted Anderson for their
 helpful comments on various drafts of the material presented here.

7. Normative References

 [RFC3530]
 S. Shepler, et. al., "NFS Version 4 Protocol", Standards Track
 RFC

Authors' Addresses

 David Noveck
 Network Appliance, Inc.
 375 Totten Pond Road
 Waltham, MA 02451 USA

 Phone: +1 781 768 5347
 EMail: dnoveck@netapp.com

 Rodney C. Burnett
 IBM, Inc.
 13001 Trailwood Rd
 Austin, TX 78727 USA

 Phone: +1 512 838 8498
 EMail: cburnett@us.ibm.com

Noveck, Burnett Expires January 2006 [Page 23]

Internet-Draft Implementation Guide for Referrals in NFSv4 July 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005). This document is
 subject to the rights, licenses and restrictions contained in BCP

78, and except as set forth therein, the authors retain all their
 rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
 ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
 PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Noveck, Burnett Expires January 2006 [Page 24]

