
Network Working Group Robert Thurlow
Internet Draft December 2002
Document: draft-ietf-nfsv4-repl-mig-design-00.txt

 Server-to-Server Replication/Migration Protocol Design Principles

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Discussion and suggestions for improvement are requested. This
 document will expire in June, 2003. Distribution of this draft is
 unlimited.

Abstract

 NFS Version 4 [RFC3010] provided support for client/server
 interactions to support replication and migration, but left
 unspecified how replication and migration would be done. This
 document discusses the nature of a protocol to be used to transfer
 filesystem data and metadata for use with replication and migration
 services for NFS Version 4.

Expires: June 2003 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-repl-mig-design-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3010

Title Replication/Migration Design Principles December 2002

Table of Contents

1. Introduction . 3
1.1. Definitions of terms 3
1.1.1. Replication . 3
1.1.2. Migration . 3
1.2. Current practice . 4
1.3. The problem . 4
1.3.1. NFS clients today 4
1.3.2. NFS Version 4 . 5
1.4. The need for a transfer protocol 5
2. Requirements . 5
2.1. Interoperability . 5
2.2. Transparency . 5
2.3. Security . 6
2.4. Efficiency . 6
2.5. Scalability . 6
3. Non-requirements . 6
4. Design considerations 7
4.1. Basic structure . 7
4.2. Administrative Control 7
4.3. Basic environment . 7
4.4. Handling file changes 7
4.5. Replication model . 8
5. Security considerations 8
6. Implementation considerations 8
6.1. Filehandle preservation 8
6.2. Data transfer phases 9
6.3. Operation on filesystem subsets 9
7. Difficult issues . 10
7.1. Transparency violations 10
7.2. Directory access . 10
8. Bibliography . 11
9. Author's Address . 12

Expires: June 2003 [Page 2]

Title Replication/Migration Design Principles December 2002

1. Introduction

 Though used in different circumstances, replication of data and
 migration of data share a common problem: how to accurately transfer
 data (which may be in use by applications) from one location to
 another with reasonable bandwidth usage and in reasonable time.
 Years ago, this was done by taking storage offline (or at least
 preventing write access), making a tape copy of the data files, and
 walking it to the new machine, after warning the twenty or so people
 who cared about it. Networks reduced wear on sneakers, but many of
 the data formats we use for filesystem copies tend to be little
 improved - they are either lowest-common-denominator standards like
 "tar" and "cpio" or internal dump formats which are non-standard.
 Today, with distributed filesystems like NFS Version 4, richer
 metadata including Access Control Lists (ACLs) and extended
 attributes, and potential users all over the enterprise and the
 Internet, we need something better - a standard, complete and
 extensible protocol to transfer filesystems. Functionality like this
 has been available in AFS and DCE/DFS for many years, though the
 protocols have not been published.

 Though data replication and transfer are needed in many areas, this
 document will focus primarily on solving the problem of providing
 replication and migration support between NFS Version 4 servers. It
 is assumed that the reader has familiarity with NFS Version 4
 [RFC3010].

1.1. Definitions of terms

1.1.1. Replication

 Filesystem replication is the creation of a functionally identical
 copy of a filesystem, usually to enhance availability or provide for
 redundancy or disaster recovery. For example, a company may set up
 replicas of a customer database accessed by employees in different
 geographies. The data sets are often read-only, and initial creation
 of a replica is not as interesting a problem as maintaining the
 replica efficiently over time via incremental updates, which will
 likely be set up to push automatically.

1.1.2. Migration

 Filesystem migration is the moving of a filesystem to another server
 for load balancing purposes or because a user or server has moved.
 For example, a user may have moved from one building to another, or
 across the country, and want his home directory to follow him, or it
 may just be time to decommission an old server and move data to a new

https://datatracker.ietf.org/doc/html/rfc3010

Expires: June 2003 [Page 3]

Title Replication/Migration Design Principles December 2002

 one. Only one data transfer is done, and it is important for this to
 be done efficiently and with the lowest possible impact on users.

1.2. Current practice

 System administrators typically have several options available to
 them to replicate or migrate files, but none of them cover the
 problem space:

 o The pax, cpio and tar tape archivers as defined by IEEE 1003.1
 or ISO/IEC 9945-1 are often used without tape over a network for
 data transfer; these support only generic Unix-specific metadata
 and do not support ACLs or extended attributes

 o The rdist (http://www.magnicomp.com/rdist) and rsync
 (http://samba.anu.edu.au/rsync) applications focus on
 propagating changes to replicas, but are documented only by
 source code, are not available on all platforms, and do not
 support more than generic Unix-specific metadata

 o "cp -r" or its equivalent over NFS Version 4 could work in cases
 where capabilities of servers were the same, but if the
 destination did not support ACLs or extended attributes, would
 it do what the user wanted?

 o Most server filesystems have a "dump" format of some kind, which
 can preserve all data and metadata as long as there are no
 architectural differences in the servers

 o Most server vendors have products which can keep replicas in
 sync by monitoring changes at the block level below the server
 filesystem, which are again inherently tied to one architecture

 o Most of the above tools are not set up to properly deal with
 exotic metadata which may be present on filesystems like MacOS's
 HFS or Windows' NTFS, which can result in loss of data even when
 transferring to the same platform

1.3. The problem

1.3.1. NFS clients today

 Replication and migration events both cause problems for NFS clients,
 which may have applications operating on data when the event occurs.
 Past versions of NFS did not provide any support in protocol for the
 client, and typical clients did not even attempt to find another

http://www.magnicomp.com/rdist
http://samba.anu.edu.au/rsync

Expires: June 2003 [Page 4]

Title Replication/Migration Design Principles December 2002

 replica which might provide service.

1.3.2. NFS Version 4

 NFS Version 4 [RFC3010] introduced some extra error codes and
 attributes to improve this situation. For replication, the new
 "fs_locations" attribute could be retrived by the client to determine
 if multiple locations were available, so that when a server became
 unavailable, the client could fail over to a new location without
 hoping updated information was available in its name service. For
 migration and in the case of a decommissioned replica, the
 NFS4ERR_MOVED error would inform a client that it should consult
 "fs_locations" and make contact with a new server responsible for the
 data. In both cases, a client is required to establish a
 relationship with a new server, which may involve state recovery and
 using saved pathname information to discover new filehandles.

1.4. The need for a transfer protocol

 To support NFS Version 4, a method is needed to transfer functionally
 complete filesystem data from one server to another. The
 shortcomings listed previously in the common tools in use demonstrate
 that there is value in a standard protocol to transfer filesystem
 data.

2. Requirements

 The requirements for a replication and migration protocol are to be
 addressed in a separate document, but are approximately these:

2.1. Interoperability

 The replication/migration protocol must first and foremost be one
 which can potentially be implemented on any server. Several vendors
 already have a replication mechanism in their product lines which
 takes advantage of known properties of their servers to replicate at
 the block level, but this is inherently tied to one system.

2.2. Transparency

 When a client has been using a file which has been migrated, it
 should be able to detect this and recover the file state on the new
 server without applications needing to take action. Similarly, when
 a client has availability problems with a particular replica, it
 should be able to adapt to the use of the new replica without
 application involvement. This implies that, as far as possible, the
 replication/migration protocol must copy all filesystem data, as much

https://datatracker.ietf.org/doc/html/rfc3010

Expires: June 2003 [Page 5]

Title Replication/Migration Design Principles December 2002

 metadata as possible, and all non-recoverable transient state such as
 outstanding lock and delegation state, completely and correctly. It
 is acceptable that the client must recover some state as occurs in
 the event of a server reboot.

2.3. Security

 NFS Version 4 supported strong mandatory-to-implement security
 mechanisms to protect the integrity and privacy of file data and
 metadata. The replication/migration protocol must specify
 mandatory-to-implement security to protect data in transit, and
 provide a security payload and an encryption mechanism to ensure
 strong security for each message. It is expected that the security
 mechanisms will correlate well with NFS Version 4 [RFC3010].

2.4. Efficiency

 The replication/migration protocol must get the job of data movement
 done as efficiently as possible in terms of both bandwidth and time.
 Components of this are:

 o the protocol will conserve bandwidth by streaming data in large
 blocks with limited header overhead

 o the protocol will transfer changed regions in files rather than
 complete files whenever possible

 o the protocol will permit restart in the event of a server
 failure or lost connection

2.5. Scalability

 The replication/migration protocol must be able to handle both huge
 files and huge filesystems, while maintaining low enough overhead to
 work well with small filesystems as well.

3. Non-requirements

 There have been discussions about the things a good replication
 protocol could do which are not considered part of the scope of this
 work at this time. Some of these things could be specified by future
 RFCs, so we do not wish to preclude them from being done later on.
 These non-requirements include:

 o being an "rdist" or "rsync" replacement

 o being a tool to permit unprivileged users to copy file trees

https://datatracker.ietf.org/doc/html/rfc3010

Expires: June 2003 [Page 6]

Title Replication/Migration Design Principles December 2002

 o being used for replication of other types of data

4. Design considerations

4.1. Basic structure

 For best performance, a replication/migration protocol should be able
 to move large amounts of data without frequent small packets in the
 direction of data movement. Use of RPC [RFC1831] and XDR [RFC1832]
 will be subject to analysis of their overhead for this purpose.
 However they are formatted, groups of messages would probably
 include:

 o Initialization and negotiation messages

 o Filesystem information messages

 o Data transfer messages

 o Finalization messages

4.2. Administrative Control

 The replication and migration protocol should include nothing
 specifying how an administrative user contacts a server to initiate
 replication or migration. A separate document should define a
 mechanism suitable for this purpose.

4.3. Basic environment

 The replication/migration protocol should be available to a
 privileged context on a well-known TCP port on an NFSv4 server, able
 to authenticate and act on control messages from administration
 clients and general messages from other servers.

4.4. Handling file changes

 For replication, it should be possible to handle large files changed
 in small ways without transferring the entire file. The protocol
 needs to be able to express changes to byte ranges within a file;
 ideally, the server will be able to extract such changes from some
 kind of change log or from internal filesystem data. However, this
 may not be practical. The existence of "rdist" shows that a
 bidirectional protocol can determine differences in files at a
 reasonable bandwidth cost, and it would be good for the
 replication/migration protocol to be able to operate in this mode.

https://datatracker.ietf.org/doc/html/rfc1831
https://datatracker.ietf.org/doc/html/rfc1832

Expires: June 2003 [Page 7]

Title Replication/Migration Design Principles December 2002

4.5. Replication model

 Replication is usually set up as a series of read-only replicas, with
 the master copy of the filesystem generally unaccessible to the
 client or accessible through a different mount point. It is possible
 to envision a case where, along with several read-only replicas, a
 single writer is available and "marked" as such in the fs_locations
 attribute. The client would have to ensure that all reads and writes
 were directed to the writable copy from the time a particular file on
 the filesystem was first written to the time the client ceased caring
 about the file. This is considered beyond our current scope at this
 time.

5. Security considerations

 NFS Version 4 is the primary impetus behind a replication/migration
 protocol, so this protocol should mandate a strong security scheme
 and security negotiation in a manner compatible with NFS Version 4.
 Since NFS Version 4 specifies RPCSEC_GSS [RFC2203], which in turn
 builds on GSS-API [RFC2078], it makes sense for a
 replication/migration protocol to specify RPCSEC_GSS if it is based
 on RPC, and GSS-API if it is not based on RPC. Kerberos Version 5
 will be used as described in [RFC1964] to provide one security
 framework. The LIPKEY GSS-API mechanism described in [RFC2847] will
 be used to provide for the use of user password and server public
 key. An initial message exchange will permit security negotiation.
 The replication/migration protocol will also specify a NULL security
 mechanism to optimize its performance when used with strong host-
 based security mechanism such as SSH and IPSec.

6. Implementation considerations

6.1. Filehandle preservation

 Filahandles are the basic shorthand used by clients to perform most
 operations on files. The are opaque to the client, but are usually
 derived from:

 o the fsid of the filesystem

 o the fileid or "inode number" of the directory shared by the
 server

 o the fileid or "inode number" of the file

 o the "generation number", an internal field to support inode
 reuse.

https://datatracker.ietf.org/doc/html/rfc2203
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2847

Expires: June 2003 [Page 8]

Title Replication/Migration Design Principles December 2002

 It is, in some circumstances, desireable to preserve persistant
 filehandles across a replication or migration event. The most likely
 circumstance for this is when both servers are of the same
 architecture, and when the destination server can assign values to
 these fields as data is accepted. To support this case, the
 filehandle should be available as an attribute which can be passed to
 the new server. Some operating environments will not have interfaces
 to support access to this data or a way to recreate it anew, so this
 should be negotiated so that this data is not sent unnecessarily.

 Even if a server implementation can transfer and accept persistent
 filehandles, it must ensure that the client is not falsely promised
 that this will happen. [RFC3010] specifies that a server may migrate
 a filesystem with persistent filehandles as long as the new server
 also uses persistent filehandles and the same filehandles will
 correspond to the same files after migration. In the general case,
 the decision to migrate a filesystem, perhaps to a heterogeneous
 server with different filehandles, will be made after clients have
 accessed filesystems and learned of the value of the "fh_expire_type"
 attribute. Thus it seems necessary that servers return an
 "fh_expire_type" of at least FH4_VOL_MIGRATION so that clients will
 always store partial pathnames for later use. It is possible for
 clients to attempt to use pre-event filehandles with the new server
 in the hope that persistent filehandles would have been transferred
 intact, but there is no way for the server to promise this unless it
 will never transfer to a server of a different implementation.

6.2. Data transfer phases

 For both replication and migration, transfer most generally happens
 in two phases: first, the bulk of the data is copied to the target
 while access to the source filesystem continues, and second, changes
 made since the start of the first phase are transferred while write
 access to the source filesystem is curtailed. This reduces the
 window during which clients will see restrictions, at the cost of
 needing a method to lock out writes to files in the file tree. For
 replication, it would be possible to bypass locking by the use of
 multiple point-in-time copies ("snapshots"), since the delta
 represented by each snapshot could be used to update the replicas.

6.3. Operation on filesystem subsets

 When NFSv4 clients discover that they must react to a replication or
 migration event, [RFC3010] states that they will recover at the
 granularity of an entire filesystem, i.e. a set of files sharing the
 same "fsid" attribute. It is possible that this protocol could be
 useful for splitting up of large filesystems to permit them to be
 replicated and migrated separately. This can most easily be done if

https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3010

Expires: June 2003 [Page 9]

Title Replication/Migration Design Principles December 2002

 the server can arrange to return distinct "fsid"s for subdirectories
 of what it manages as a single filesystem.

7. Difficult issues

7.1. Transparency violations

 When being used between servers that are sufficiently different, it
 may be impossible for the new server to support some metadata
 enumerated in the data stream, or it may be that metadata critical to
 the new server are not supported on the old. When this happens, the
 client may notice and react badly to the loss of transparency.
 Sources of this kind of problem include:

 o Filename encoding differences

 o Attributes supported on one server and not the other

 o A failure of atomicity during transfer

 o Incomplete or no transfer of locking, delegation and other state

7.2. Directory access

 When a directory is read, a series of RPCs is used to get the entries
 in small parts. The sequence of RPCs is tied together by a "cookie"
 returned by the server in each reply and used by the client in the
 next request. The sequence can be interrupted by a replication or
 migration event, which can lead to NFS4ERR_BAD_COOKIE on the new
 server, even if the servers are the same architecture, due to
 different orders of creation of the directory entries and compaction.

Expires: June 2003 [Page 10]

Title Replication/Migration Design Principles December 2002

8. Bibliography

 [RFC1831]
 R. Srinivasan, "RPC: Remote Procedure Call Protocol Specification
 Version 2", RFC1831, August 1995.

 [RFC1832]
 R. Srinivasan, "XDR: External Data Representation Standard", RFC1832,
 August 1995.

 [RFC3010]
 S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
 Eisler, D. Noveck, "NFS version 4 Protocol", RFC3010, December 2000.

 [RDIST]
 MagniComp, Inc., "The RDist Home Page",

http://www.magnicomp.com/rdist.

 [RSYNC]
 The Samba Team, "The rsync web pages", http://samba.anu.edu.au/rsync.

https://datatracker.ietf.org/doc/html/rfc1831
https://datatracker.ietf.org/doc/html/rfc1832
https://datatracker.ietf.org/doc/html/rfc3010
http://www.magnicomp.com/rdist
http://samba.anu.edu.au/rsync

Expires: June 2003 [Page 11]

Title Replication/Migration Design Principles December 2002

9. Author's Address

 Address comments related to this memorandum to:

 nfsv4-wg@sunroof.eng.sun.com

 Robert Thurlow
 Sun Microsystems, Inc.
 500 Eldorado Boulevard, UBRM05-171
 Broomfield, CO 80021

 Phone: 877-718-3419
 E-mail: robert.thurlow@sun.com

Expires: June 2003 [Page 12]

