
Network Working Group Robert Thurlow
Internet Draft October 2002
Document: draft-ietf-nfsv4-repl-mig-proto-00.txt

 A Server-to-Server Replication/Migration Protocol

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Discussion and suggestions for improvement are requested. This
 document will expire in April, 2003. Distribution of this draft is
 unlimited.

Abstract

 NFS Version 4 [RFC3010] provided support for client/server
 interactions to support replication and migration, but left
 unspecified how replication and migration would be done. This
 document is an initial draft of a protocol which could be used to
 transfer filesystem data and metadata for use with replication and
 migration services for NFS Version 4.

Expires: April 2003 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-repl-mig-proto-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3010

Title A Replication/Migration Protocol October 2002

Table of Contents

1. Introduction . 3
1.1. Shortcomings . 3
1.2. Rationale . 3
1.3. Basic structure . 4
2. Common data types . 4
2.1. Security tokens . 4
2.2. Session, message, file and checkpoint IDs 4
2.3. Offset, length and cookies 5
2.4. General status . 5
2.5. From NFS Version 4 [RFC3010] 5
3. Transfer protocol phases 6
4. Initiation/restart phase 7
4.1. Initiation/restart phase messages 7
4.2. Initiation/restart phase overview 7
4.3. Capabilities negotiation 7
4.4. OPEN_SESSION_NEW message 7
4.5. OPEN_SESSION_RESUME message 8
4.6. OPEN_SESSION_CONFIRM message 9
4.7. OPEN_SESSION_DENY message 9
5. Data transfer phase . 9
5.1. Data transfer phase messages 9
5.2. Data transfer phase overview 10
5.3. SEND_OBJECT_METADATA message 11
5.4. SEND_FILE_DATA message 12
5.5. SEND_LOCK_STATE message 12
5.6. SEND_SHARE_STATE message 12
5.7. SEND_REMOVE message 13
5.8. SEND_RENAME message 13
5.9. SEND_DIRECTORY_CONTENTS message 14
5.10. SEND_CHECKPOINT message 14
5.11. CLOSE_OBJECT message 14
5.12. CONFIRM_MESSAGE message 15
6. Termination phase . 15
6.1. Termination phase messages 15
6.2. Termination phase overview 15
6.3. ABORT_SESSION message 15
6.4. CLOSE_SESSION message 16
7. XDR protocol definition file 17
8. IANA Considerations 24
9. Security Considerations 24
10. Normative References 25
11. Informative References 25
12. Author's Address . 26

https://datatracker.ietf.org/doc/html/rfc3010

Expires: April 2003 [Page 2]

Title A Replication/Migration Protocol October 2002

1. Introduction

 This document introduces a "strawman" protocol to perform the data
 transfer involved with replication and migration, as the problem was
 described in [DESIGN]; familiarity with that document is assumed. It
 is not yet proven by implementation experience, but is presented for
 collective work and discussion.

 Though data replication and transfer are needed in many areas, this
 document will focus primarily on solving the problem of providing
 replication and migration support between NFS Version 4 servers. It
 is assumed that the reader has familiarity with NFS Version 4
 [RFC3010].

1.1. Shortcomings

 This draft has the following known shortcomings:

 o it does not deal with [RSYNC]-like behaviour, which can compare
 source and destination files

 o it does not define how security will be implemented

 o it introduces a capabilities negotiation feature which is very
 incomplete

1.2. Rationale

 The protocol presented below is currently a very simple bulk-data
 transfer protocol with minimal traffic in the reverse direction. It
 is believed that optimal performance is best achieved by a well-
 implemented source server sending the smallest set of change
 information to the destination. The advantages in this protocol over
 data formats such as tar/pax/cpio (as defined by IEEE 1003.1 or
 ISO/IEC 9945-1) are:

 o Access Control Lists (ACLs) and named attributes can be
 transferred

 o The richer NFSv4 metadata set can be transferred

 o Restarting of transfers can be achieved.

https://datatracker.ietf.org/doc/html/rfc3010

Expires: April 2003 [Page 3]

Title A Replication/Migration Protocol October 2002

1.3. Basic structure

 This replication/migration protocol is optimized for bulk data
 transfer with a minimum of overhead. The ideal case is where the
 source server can stream filesystem data (or just the changes made)
 to the destination, without negotiations which can cause stalls. An
 alternate mode which supports servers comparing files to determine
 differences may be added at a later time, but is not present in this
 draft. As discussed in [DESIGN], this protocol draft will not use
 RPC [RFC1831] but will use XDR [RFC1832] formatted messages over TCP
 to maximize efficiency. The use of XDR is also subject to change.

2. Common data types

2.1. Security tokens

 Security tokens are defined for each protocol message so that it will
 be possible to implement security with GSS-API tokens. Currently, we
 do not define this completely enough to permit a secure
 implementation.

 enum RMsec_mode {
 RM_NULLSEC = 0,
 RM_PERMESSAGE = 1
 };

 struct RMsecpayload {
 uint32_t length;
 opaque contents<>;
 };

 union RMsec_token switch (RMsec_mode mode) {
 case RM_PERMESSAGE:
 RMsecpayload payload;
 case RM_NULLSEC:
 void;
 default:
 void;
 };

2.2. Session, message, file and checkpoint IDs

 These IDs are common to many messages. All are simple 64-bit
 quantities except for RMcheckpoint, which is adds a time so that the
 earliest checkpoint can be chosen; the id field is chosen such that
 the source server can easily use it to restart an aborted session.
 RMsession_id is chosen at the pleasure of the source server.

https://datatracker.ietf.org/doc/html/rfc1831
https://datatracker.ietf.org/doc/html/rfc1832

Expires: April 2003 [Page 4]

Title A Replication/Migration Protocol October 2002

 RMmessage_id is a monotonically increasing message count chosen by
 the source server. RMfile_id is intended to be identical to the
 NFSv4 fileid attribute.

 typedef uint64_t RMsession_id;

 typedef uint64_t RMmessage_id;

 typedef uint64_t RMfile_id;

 struct RMcheckpoint {
 nfstime4 time;
 uint64_t id;
 };

2.3. Offset, length and cookies

 These variables are chosen for compatibility with NFSv4.

 typedef uint64_t RMoffset;
 typedef uint64_t RMlength;
 typedef uint64_t RMcookie;

2.4. General status

 Status messages in OPEN_SESSION_DENY and ABORT_SESSION shall return a
 value from this set.

 enum RMstatus {
 RM_OK = 0,
 RMERR_PERM = 1,
 RMERR_IO = 5,
 RMERR_EXISTS = 17
 };

2.5. From NFS Version 4 [RFC3010]

 The following definitions are imported from NFS Version 4.

 typedef uint32_t bitmap4<>;
 typedef opaque utf8string<>;

 struct nfstime4 {
 int64_t seconds;
 uint32_t nseconds;
 };

https://datatracker.ietf.org/doc/html/rfc3010

Expires: April 2003 [Page 5]

Title A Replication/Migration Protocol October 2002

 enum nfs_ftype4 {
 NF4REG = 1, /* Regular File */
 NF4DIR = 2, /* Directory */
 NF4BLK = 3, /* Special File - block device */
 NF4CHR = 4, /* Special File - character device */
 NF4LNK = 5, /* Symbolic Link */
 NF4SOCK = 6, /* Special File - socket */
 NF4FIFO = 7, /* Special File - fifo */
 NF4ATTRDIR = 8, /* Attribute Directory */
 NF4NAMEDATTR = 9 /* Named Attribute */
 };

 struct nfsace4 {
 acetype4 type;
 aceflag4 flag;
 acemask4 access_mask;
 utf8string who;
 };
 typedef nfsace4 fattr4_acl<>;
 typedef nfs_acl fattr4_acl;
 struct fattr4 {
 bitmap4 attrmask;
 attrlist4 attr_vals;
 };
 typedef nfs_attr fattr4;

 const OPEN4_SHARE_ACCESS_READ = 0x00000001;
 const OPEN4_SHARE_ACCESS_WRITE = 0x00000002;
 const OPEN4_SHARE_ACCESS_BOTH = 0x00000003;
 const OPEN4_SHARE_DENY_NONE = 0x00000000;
 const OPEN4_SHARE_DENY_READ = 0x00000001;
 const OPEN4_SHARE_DENY_WRITE = 0x00000002;
 const OPEN4_SHARE_DENY_BOTH = 0x00000003;

3. Transfer protocol phases

 The servers using the protocol can be in the following phases:

 o Initiation Phase: authentication, negotiation, filesystem info

 o Restart Phase [initiate when restarting]: add restart info to
 the above

 o Data Transfer Phase: send attributes and data for each file

 o Termination Phase: final handshake

 For simplicity, the protocol merges initiation and restart phases.

Expires: April 2003 [Page 6]

Title A Replication/Migration Protocol October 2002

4. Initiation/restart phase

4.1. Initiation/restart phase messages

 The following messages are used to set up and authenticate a new
 transfer session:

 o OPEN_SESSION_NEW - create new transfer session

 o OPEN_SESSION_RESUME - resume previous transfer session at
 checkpoint

 o OPEN_SESSION_CONFIRM - accept transfer session

 o OPEN_SESSION_DENY - decline transfer session

4.2. Initiation/restart phase overview

 The source server initiates a session by sending OPEN_SESSION_NEW
 (for a new transfer) or OPEN_SESSION_RESUME (to resume an old
 transfer). The destination server responds with either
 OPEN_SESSION_CONFIRM to permit a session or OPEN_SESSION_DENY to
 refuse a session.

4.3. Capabilities negotiation

 The OPEN_SESSION_NEW and OPEN_SESSION_RESUME messages express
 capabilities of the source server and provide an indication of
 properties of the data to be transferred. The destination server is
 responsible for reacting to these capabilities. If the desired
 capabilities are an issue, it can respond with OPEN_SESSION_DENY to
 refuse a session or it can respond with OPEN_SESSION_CONFIRM with
 unsupportable capability bits cleared to bid down. If the lowered
 capabilities are not acceptable to the source server, the session
 should be terminated with ABORT_SESSION.

4.4. OPEN_SESSION_NEW message

 SYNOPSIS

 enum RMcomp_type {
 RM_NULLCOMP = 0,
 RM_COMPRESS = 1,
 RM_ZIP = 2
 };

Expires: April 2003 [Page 7]

Title A Replication/Migration Protocol October 2002

 typedef uint64_t RMcapability;
 const RM_UTF8NAMES = 0x00000001;
 const RM_FHPRESERVE = 0x00000002;

 struct OPEN_SESSION_NEW {
 RMsec_token sec_token;
 RMsession_id session_id;
 utf8string src_path;
 utf8string dest_path;
 uint64_t fs_size;
 uint64_t tr_size;
 uint64_t tr_objs;
 RMcomp_type comp_list<>;
 RMcapability capabilities;
 };

 OPEN_SESSION_NEW is a proposal to create a transfer session to send
 the full or incremental contents of one filesystem. The session_id
 is a unique number assigned by the source server to the transfer
 session. src_path is the full path name to the filesystem on the
 source server, and dest_path is the full path name to the filesystem
 on the destination. fs_size and tr_size are the approximate total
 size of the filesystem data and the amount to be sent during this
 transfer session. tr_objs is the approximate number of objects to be
 sent or updated in this transfer session. comp_list is a list of
 compression types the source server can use to compress data.
 capabilities is the bitmask used to negotiate as described in Section

4.3.

4.5. OPEN_SESSION_RESUME message

 SYNOPSIS

 struct OPEN_SESSION_RESUME {
 RMsec_token sec_token;
 RMsession_id session_id;
 RMcheckpoint check_id;
 uint64_t rem_size;
 uint64_t rem_objs;
 RMcomp_type comp_list<>;
 RMcapability capabilities;
 };

 OPEN_SESSION_RESUME is a proposal to resume a transfer session which
 was not previously completed. It sends a checkpoint ID which is for
 the last message it believes it successfully sent. If the
 destination has a checkpoint with an earlier timestamp, it will reply
 with that checkpoint ID as an alternate starting point. The

Expires: April 2003 [Page 8]

Title A Replication/Migration Protocol October 2002

 approximate remaining number of bytes to transfer and objects to
 update are passed in rem_size and rem_objs. Other parameters are as
 defined in OPEN_SESSION_NEW.

4.6. OPEN_SESSION_CONFIRM message

 SYNOPSIS

 struct OPEN_SESSION_CONFIRM {
 RMsec_token sec_token;
 RMsession_id session_id;
 RMcheckpoint check_id;
 RMcomp_type comp_alg;
 RMcapability capabilities;
 };

 OPEN_SESSION_CONFIRM is used by the destination server to agree to
 open a transfer session and agree with or bid down the capabilities
 proposed by the source server, and to choose a compression algorithm.
 Once the session has been confirmed, data transfer messages will be
 sent until a CLOSE_SESSION or ABORT_SESSION message is sent.

4.7. OPEN_SESSION_DENY message

 SYNOPSIS

 struct OPEN_SESSION_DENY {
 RMsec_token sec_token;
 RMsession_id session_id;
 RMstatus status;
 };

 OPEN_SESSION_DENY is used by the destination server to reject an
 OPEN_SESSION_NEW or OPEN_SESSION_RESUME proposal for any reason. The
 reason will be expressed by the status code.

5. Data transfer phase

5.1. Data transfer phase messages

 The following messages are used to transfer filesystem data during a
 transfer session:

Expires: April 2003 [Page 9]

Title A Replication/Migration Protocol October 2002

 o SEND_OBJECT_METADATA - send metadata about object

 o SEND_FILE_DATA - send file data

 o SEND_LOCK_STATE - send file lock state

 o SEND_SHARE_STATE - send share modes state

 o SEND_REMOVE - send an object removal transaction

 o SEND_RENAME - send an object rename transaction

 o SEND_DIRECTORY_CONTENTS - send names of objects in a directory

 o SEND_CHECKPOINT - send checkpoint info

 o CLOSE_OBJECT - signal completion of object

 o CONFIRM_MESSAGE - confirm any data transfer message

5.2. Data transfer phase overview

 The source server begins processing filesystem objects in some fixed
 order which will permit checkpointing and restarting in case of some
 problem or operator abort. SEND_OBJECT_METADATA is sent first, then
 SEND_FILE_DATA messages will be sent for non-directory objects. If
 outstanding lock state for an onject exists on the source server, it
 will be sent via SEND_LOCK_STATE messages; SEND_SHARE_STATE does the
 equivalent for share modes state.

 Ideally, the source server will track all filesystem changes, and
 will be able to reflect remove and rename changes via SEND_REMOVE and
 SEND_RENAME messages. If the source server cannot capture all create
 and remove operations on a directory reliably,
 SEND_DIRECTORY_CONTENTS will permit the destination server to list
 its directory entries so that the destination can compute what items
 should be removed.

 Named attributes are handled with SEND_OBJECT_METADATA messages with
 IS_NAMED_ATTR set to true, and apply to the previous non-named-
 attribute which was handled. CLOSE_OBJECT is used to indicate that
 all data and named attributes of an object have been transferred. At
 any time, the source server may set a checkpoint with
 SEND_CHECKPOINT. All messages are confirmed by the destination
 server with CONFIRM_MESSAGE.

Expires: April 2003 [Page 10]

Title A Replication/Migration Protocol October 2002

5.3. SEND_OBJECT_METADATA message

 SYNOPSIS

 enum RMattrtype {
 RM_NFS_ATTR = 0,
 RM_CIFS_ATTR = 1
 };

 union RMattrs switch (RMattrtype type) {
 case RM_NFS_ATTR:
 nfs_attr attr;
 case RM_CIFS_ATTR:
 void;
 default:
 void;
 };

 struct SEND_OBJECT_METADATA {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 utf8string obj_name;
 nfs_ftype4 obj_type;
 RMattrs attrs;
 nfs_acl obj_acl;
 bool is_named_attr;
 };

 SEND_OBJECT_METADATA announces that we are about to transfer
 information about a particular filesystem object. If an object does
 not exist on the destination, it will be created with the given
 obj_name, obj_type, attributes, ACL and file_id (if supported). If
 the object exists and is is the correct type, its attributes and ACL
 will be updated. If an object of the same name but a different type
 exists, it will be removed and recreated with this information. If a
 SEND_OBJECT_METADATA has not followed a CLOSE_OBJECT, it may have the
 is_named_attr flag set, in which case the object is a named attribute
 of the most recent object identified by a SEND_OBJECT_METADATA.

Expires: April 2003 [Page 11]

Title A Replication/Migration Protocol October 2002

5.4. SEND_FILE_DATA message

 SYNOPSIS

 struct SEND_FILE_DATA {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 RMoffset offset;
 RMlength length;
 bool is_hole;
 opaque data<>;
 };

 SEND_FILE_DATA sends a block of data for a regular file, or, if the
 is_hole flag is set, an indication that a block of data has been
 zeroed. The range is identified by the offset, length pair as
 starting at seek position 'offset' and extending through
 'offset+length-1', inclusive.

5.5. SEND_LOCK_STATE message

 SYNOPSIS

 struct RMlock_desc {
 RMowner owner;
 RMoffset offset;
 RMlength length;
 };

 struct SEND_LOCK_STATE {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 RMlock_desc lock_desc<>;
 };

 SEND_LOCK_STATE transfers ownership and range information about
 outstanding byte-range locks to the destination server.

5.6. SEND_SHARE_STATE message

 SYNOPSIS

 typedef uint32_t RMaccess;
 typedef uint32_t RMdeny;

Expires: April 2003 [Page 12]

Title A Replication/Migration Protocol October 2002

 struct RMshare_desc {
 RMowner owner;
 RMaccess mode;
 RMdeny mode;
 };

 struct SEND_SHARE_STATE {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 RMshare_desc share_desc<>;
 };

 SEND_SHARE_STATE transfers ownership and mode information about
 outstanding share reservations to the destination server.

5.7. SEND_REMOVE message

 SYNOPSIS

 struct SEND_REMOVE {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 utf8string name;
 };

 SEND_REMOVE documents a remove event on the object identified; upon
 receipt, the destination server will remove the object as well.

5.8. SEND_RENAME message

 SYNOPSIS

 struct SEND_RENAME {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 utf8string old_name;
 utf8string new_name;
 };

 SEND_RENAME documents a rename event on the object identified by
 old_name; upon receipt, the destination server will rename the object
 as well.

Expires: April 2003 [Page 13]

Title A Replication/Migration Protocol October 2002

5.9. SEND_DIRECTORY_CONTENTS message

 SYNOPSIS

 struct SEND_DIRECTORY_CONTENTS {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 RMcookie cookie;
 bool eof;
 utf8string names<>;
 };

 SEND_DIRECTORY_CONTENTS is used to account for removals and renames
 when source servers cannot record the events such that they may be
 sent with SEND_REMOVE and SEND_RENAME. The contents are listed in no
 predictable order so that the destination can what entries it has
 which are no longer found on the source. Each
 SEND_DIRECTORY_CONTENTS includes an opaque directory cookie to
 represent starting location of the block on the server, and the eof
 flag is set on the last block. Any item existing on the destination
 that is not listed in a SEND_DIRECTORY_CONTENTS message will be
 removed.

5.10. SEND_CHECKPOINT message

 SYNOPSIS

 struct SEND_CHECKPOINT {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMcheckpoint check_id;
 };

 SEND_CHECKPOINT is used periodically by the source server to indicate
 a point from which a restart can be done. The destination server
 will track the last checkpoint it has received and be prepared to
 examine it upon restart.

5.11. CLOSE_OBJECT message

 SYNOPSIS

 struct CLOSE_OBJECT {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 };

Expires: April 2003 [Page 14]

Title A Replication/Migration Protocol October 2002

 CLOSE_OBJECT is used to announce that all data and metadata changes
 for a particular object have been completed.

5.12. CONFIRM_MESSAGE message

 SYNOPSIS

 struct CONFIRM_MESSAGE {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 };

 CONFIRM_MESSAGE is used by the destination server to acknowledge
 every data transfer message.

6. Termination phase

6.1. Termination phase messages

 The following messages are used to terminate a transfer session:

 o ABORT_SESSION - end transfer session before natural end

 o CLOSE_SESSION - complete transfer session normally

6.2. Termination phase overview

 ABORT_SESSION may be used at any time by either server to terminate a
 session prematurely; a checkpoint ID is recommended to permit restart
 if possible. CLOSE_SESSION is the normal termination message, and
 must be issued by the source server first and then issued by the
 destination server as a confirmation.

6.3. ABORT_SESSION message

 SYNOPSIS

 struct ABORT_SESSION {
 RMsec_token sec_token;
 RMsession_id session_id;
 RMcheckpoint check_id;
 RMstatus status;
 };

 ABORT_SESSION terminates a data transfer session immediately. If may
 be used by either the source or destination server, and records the

Expires: April 2003 [Page 15]

Title A Replication/Migration Protocol October 2002

 last checkpoint known and a status code to explain the termination.

6.4. CLOSE_SESSION message

 SYNOPSIS

 struct CLOSE_SESSION {
 RMsec_token sec_token;
 RMsession_id session_id;
 };

 CLOSE_SESSION terminates a data transfer session normally; it is used
 first by the source and is then used by the destination server to
 confirm it.

Expires: April 2003 [Page 16]

Title A Replication/Migration Protocol October 2002

7. XDR protocol definition file

 /*
 * Copyright (C) The Internet Society (1998,1999,2000,2001,2002).
 * All Rights Reserved.
 */

 /*
 * repl-mig.x
 */

 %#pragma ident "@(#)repl-mig.x 1.1"

 /*
 * Derived types for clarity
 */
 typedef int int32_t;
 typedef unsigned int uint32_t;
 typedef hyper int64_t;
 typedef unsigned hyper uint64_t;

 /*
 * From RFC3010
 */
 typedef uint32_t bitmap4<>;
 typedef opaque utf8string<>;
 struct nfstime4 {
 int64_t seconds;
 uint32_t nseconds;
 };
 enum nfs_ftype4 {
 NF4REG = 1, /* Regular File */
 NF4DIR = 2, /* Directory */
 NF4BLK = 3, /* Special File - block device */
 NF4CHR = 4, /* Special File - character device */
 NF4LNK = 5, /* Symbolic Link */
 NF4SOCK = 6, /* Special File - socket */
 NF4FIFO = 7, /* Special File - fifo */
 NF4ATTRDIR = 8, /* Attribute Directory */
 NF4NAMEDATTR = 9 /* Named Attribute */
 };
 struct nfsace4 {
 acetype4 type;
 aceflag4 flag;
 acemask4 access_mask;
 utf8string who;
 };

https://datatracker.ietf.org/doc/html/rfc3010

Expires: April 2003 [Page 17]

Title A Replication/Migration Protocol October 2002

 typedef nfsace4 fattr4_acl<>;
 typedef nfs_acl fattr4_acl;
 struct fattr4 {
 bitmap4 attrmask;
 attrlist4 attr_vals;
 };
 typedef nfs_attr fattr4;
 const OPEN4_SHARE_ACCESS_READ = 0x00000001;
 const OPEN4_SHARE_ACCESS_WRITE = 0x00000002;
 const OPEN4_SHARE_ACCESS_BOTH = 0x00000003;
 const OPEN4_SHARE_DENY_NONE = 0x00000000;
 const OPEN4_SHARE_DENY_READ = 0x00000001;
 const OPEN4_SHARE_DENY_WRITE = 0x00000002;
 const OPEN4_SHARE_DENY_BOTH = 0x00000003;

 /*
 * For security tokens
 */
 enum RMsec_mode {
 RM_NULLSEC = 0,
 RM_PERMESSAGE = 1
 };

 struct RMsecpayload {
 uint32_t length;
 opaque contents<>;
 };

 union RMsec_token switch (RMsec_mode mode) {
 case RM_PERMESSAGE:
 RMsecpayload payload;
 case RM_NULLSEC:
 void;
 default:
 void;
 };

 /*
 * For session, message, file and checkpoint IDs
 */
 typedef uint64_t RMsession_id;

 typedef uint64_t RMmessage_id;

 typedef uint64_t RMfile_id;

 struct RMcheckpoint {
 nfstime4 time;

Expires: April 2003 [Page 18]

Title A Replication/Migration Protocol October 2002

 uint64_t id;
 };

 /*
 * For compression algorithm negotiation
 */
 enum RMcomp_type {
 RM_NULLCOMP = 0,
 RM_COMPRESS = 1,
 RM_ZIP = 2
 };

 /*
 * For capabilities negotiation
 */
 typedef uint64_t RMcapability;
 const RM_UTF8NAMES = 0x00000001;
 const RM_FHPRESERVE = 0x00000002;

 /*
 * For general status
 */
 enum RMstatus {
 RM_OK = 0,
 RMERR_PERM = 1,
 RMERR_IO = 5,
 RMERR_EXISTS = 17
 };

 /*
 * For generalized attributes
 */
 enum RMattrtype {
 RM_NFS_ATTR = 0,
 RM_CIFS_ATTR = 1
 };

 union RMattrs switch (RMattrtype type) {
 case RM_NFS_ATTR:
 nfs_attr attr;
 case RM_CIFS_ATTR:
 void;
 default:
 void;
 };

 /*
 * Offset, length and cookies

Expires: April 2003 [Page 19]

Title A Replication/Migration Protocol October 2002

 */
 typedef uint64_t RMoffset;
 typedef uint64_t RMlength;
 typedef uint64_t RMcookie;

 /*
 * Lock and share definitions
 */
 struct RMlock_desc {
 RMowner owner;
 RMoffset offset;
 RMlength length;
 };

 typedef uint32_t RMaccess;
 typedef uint32_t RMdeny;

 struct RMshare_desc {
 RMowner owner;
 RMaccess mode;
 RMdeny mode;
 };

 /*
 * Protocol messages
 */
 struct OPEN_SESSION_NEW {
 RMsec_token sec_token;
 RMsession_id session_id;
 utf8string src_path;
 utf8string dest_path;
 uint64_t fs_size;
 uint64_t tr_size;
 uint64_t tr_objs;
 RMcomp_type comp_list<>;
 RMcapability capabilities;
 };

 struct OPEN_SESSION_RESUME {
 RMsec_token sec_token;
 RMsession_id session_id;
 RMcheckpoint check_id;
 uint64_t rem_size;
 uint64_t rem_objs;
 RMcomp_type comp_list<>;
 RMcapability capabilities;
 };

Expires: April 2003 [Page 20]

Title A Replication/Migration Protocol October 2002

 struct OPEN_SESSION_CONFIRM {
 RMsec_token sec_token;
 RMsession_id session_id;
 RMcheckpoint check_id;
 RMcomp_type comp_alg;
 RMcapability capabilities;
 };

 struct OPEN_SESSION_DENY {
 RMsec_token sec_token;
 RMsession_id session_id;
 RMstatus status;
 };

 struct SEND_OBJECT_METADATA {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 utf8string obj_name;
 nfs_ftype4 obj_type;
 RMattrs attrs;
 nfs_acl obj_acl;
 bool is_named_attr;
 };

 struct SEND_FILE_DATA {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 RMoffset offset;
 RMlength length;
 bool is_hole;
 opaque data<>;
 };

 struct SEND_LOCK_STATE {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 RMlock_desc lock_desc<>;
 };

 struct SEND_SHARE_STATE {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 RMshare_desc share_desc<>;
 };

Expires: April 2003 [Page 21]

Title A Replication/Migration Protocol October 2002

 struct SEND_REMOVE {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 utf8string name;
 };

 struct SEND_RENAME {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 utf8string old_name;
 utf8string new_name;
 };

 struct SEND_DIRECTORY_CONTENTS {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 RMcookie cookie;
 bool eof;
 utf8string names<>;
 };

 struct SEND_CHECKPOINT {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMcheckpoint check_id;
 };

 struct CLOSE_OBJECT {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 RMfile_id file_id;
 };

 struct CONFIRM_MESSAGE {
 RMsec_token sec_token;
 RMmessage_id msg_id;
 };

 struct ABORT_SESSION {
 RMsec_token sec_token;
 RMsession_id session_id;
 RMcheckpoint check_id;
 RMstatus status;
 };

Expires: April 2003 [Page 22]

Title A Replication/Migration Protocol October 2002

 struct CLOSE_SESSION {
 RMsec_token sec_token;
 RMsession_id session_id;
 };

Expires: April 2003 [Page 23]

Title A Replication/Migration Protocol October 2002

8. IANA Considerations

 The replication/migration protocol will define a well-known port at
 which destination servers will listen for connection requests. The
 author will apply to IANA for a port number for this purpose.

9. Security Considerations

 NFS Version 4 is the primary impetus behind a replication/migration
 protocol, so this protocol should mandate a strong security scheme in
 a manner comparable with NFS Version 4. At the time of this draft,
 it is unclear whether this protocol should make use of a strong
 host-based security mechanism such as SSH and IPSec or strong per-
 message security based on GSS-API [RFC2078] tokens and mechanisms
 including Kerberos Version 5 used as described in [RFC1964] and
 LIPKEY as described in [RFC2847]. Pending further work in this area,
 this protocol draft defines a per-message security payload which may
 be NULL to permit prototyping, without specifying the messages for
 security negotiations and mechanism negotiation needed to use per-
 message security.

https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2847

Expires: April 2003 [Page 24]

Title A Replication/Migration Protocol October 2002

10. Normative References

 [RFC1832]
 R. Srinivasan, "XDR: External Data Representation Standard", RFC1832,
 August 1995.

 [RFC3010]
 S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
 Eisler, D. Noveck, "NFS version 4 Protocol", RFC3010, December 2000.

11. Informative References

 [RFC1831]
 R. Srinivasan, "RPC: Remote Procedure Call Protocol Specification
 Version 2", RFC1831, August 1995.

 [RDIST]
 MagniComp, Inc., "The RDist Home Page",

http://www.magnicomp.com/rdist.

 [RSYNC]
 The Samba Team, "The rsync web pages", http://samba.anu.edu.au/rsync.

 [DESIGN]
 R. Thurlow, "Server-to-Server Replication/Migration Protocol Design
 Principles" (work in progress), http://www.ietf.org/internet-

drafts/draft-thurlow-nfsv4-repl-mig-design-00.txt, June 2002.

https://datatracker.ietf.org/doc/html/rfc1832
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc1831
http://www.magnicomp.com/rdist
http://samba.anu.edu.au/rsync
http://www.ietf.org/internet-drafts/draft-thurlow-nfsv4-repl-mig-design-00.txt
http://www.ietf.org/internet-drafts/draft-thurlow-nfsv4-repl-mig-design-00.txt

Expires: April 2003 [Page 25]

Title A Replication/Migration Protocol October 2002

12. Author's Address

 Address comments related to this memorandum to:

 nfsv4-wg@sunroof.eng.sun.com

 Robert Thurlow
 Sun Microsystems, Inc.
 500 Eldorado Boulevard, UBRM05-171
 Broomfield, CO 80021

 Phone: 877-718-3419
 E-mail: robert.thurlow@sun.com

Expires: April 2003 [Page 26]

