
Network Working Group Spencer Shepler
Internet Draft October 1998
Document: draft-ietf-nfsv4-requirements-02.txt

 NFS Version 4 Requirements

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
 Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
 Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

 With the creation of the NFS version 4 working group, a set of
 requirements for the next version of NFS must be codified to create a
 reasonable context for the new protocol discussions and aide in the
 upcoming decisions. This Internet Draft has the purpose of
 presenting the requirements for NFS version 4 and will be used as the
 leading document for NFSv4 working group.

Expires: March 1999 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-requirements-02.txt

NFSv4 NFSv4 Requirements October 1998

Table of Contents

1. NFS Version 4 Requirements 3
2. Ease of implementation or complexity of protocol 3
2.1. Extensibility / layering 3
2.2. Managed Extensions or Minor Versioning 3
3. Reliable and Available 4
4. Scalable Performance . 4
4.1. Throughput and Latency on the Network 5
4.2. Server Work Load or Scalability 5
4.3. Client Caching . 5
4.4. Disconnected Client Operation 6
5. Interoperability . 6
5.1. Platform Specific Behavior 6
5.2. Additional or Extended Attributes 6
5.3. Access Control Lists 7
6. RPC Mechanism and Security 8
6.1. Remote Procedure Call Mechanism 8
6.2. User identification 8
6.3. Security . 9
6.3.1. Authentication . 9
6.3.2. Data Integrity . 10
6.3.3. Data Privacy . 10
6.3.4. Security Mechanisms 10
6.3.5. Security Negotiation 10
7. Internet Accessibility 10
7.1. Congestion Control and Transport Selection 11
7.2. Firewalls and Proxy Servers 11
7.3. Multiple RPCs and Latency 11
8. File locking / recovery 12
9. Internationalization 13
10. Bibliography . 14
11. Author's Address . 16

Expires: March 1999 [Page 2]

NFSv4 NFSv4 Requirements October 1998

1. NFS Version 4 Requirements

 As stated in the charter the first deliverable for the NFS version 4
 working group is this requirements document. This document is to
 cover the "limitations and deficiencies of NFS version 3". Therefore
 the intent of the following sections is to identify the various
 feature points of NFS as a distributed file system and discuss its
 current functionality and compare to other distributed file systems
 and offer reasonable requirements for each of these areas.

2. Ease of implementation or complexity of protocol

 One of the strengths of NFS has been the ability to implement a
 client or server with relative ease. The eventual size of a basic
 implementation is relatively small. The main reason for keeping NFS
 as simple as possible is that a simple protocol design can be
 described in a simple specification that promotes straightforward,
 interoperable implementations. All protocols can run into problems
 when deployed on real networks, but simple protocols yield problems
 that are easier to diagnose and correct.

2.1. Extensibility / layering

 With NFS' relative simplicity, the addition or layering of
 functionality has been easy to accomplish. The addition of features
 like the client automount or autofs, client side disk caching and
 high availability servers are examples. This type of extensibility
 is desirable in an environment where problem solutions do not require
 protocol revision. This extensibility can also be helpful in the
 future where unforeseen problems or opportunities can be solved by
 layering functionality on an existing set of tools or protocol.

2.2. Managed Extensions or Minor Versioning

 For those cases where the NFS protocol is deficient or where a minor
 modification is the best solution for a problem, a minor version or a
 managed extension could be helpful. There have been instances with
 NFS version 2 and 3 where small straightforward functional additions
 would have increased the overall value of the protocol immensely.
 However, the perceived size and burden of using a change of RPC
 version number for the introduction of new functionality led to no or
 slow change. It is possible that a new NFS protocol could allow for
 the rare instance where protocol extension within the RPC version

Expires: March 1999 [Page 3]

NFSv4 NFSv4 Requirements October 1998

 number is the most prudent course and an RPC revision would be
 unnecessary or impractical.

 The areas of an NFS protocol which are most obviously volatile are
 new orthogonal procedures, new well-defined file or directory
 attributes and potentially new file types. It is possible and highly
 desirable that these types of additions can be done without changing
 the overall design model of NFS without significant effort or delay.
 This is particularly true in adding new procedures.

 A strong consideration should be given to a NFS protocol mechanism
 for the introduction of this type of new functionality. This is
 obviously in contrast to using the standard RPC version mechanism to
 provide minor changes. The process of using RPC version numbers to
 introduce new functionality brings with it a lot of history which may
 not technically prevent its use. However, the historical issues
 involved will need to be addressed as part of the NFS protocol work
 to increase the chance of current and future success of the protocol.

3. Reliable and Available

 Current NFS protocol design has lead to quick recovery from server
 and client failure. This approach to the design has lent itself well
 to layered technologies like high availability and clustered servers.
 Providing a protocol design approach that lends itself to these types
 of reliability and availability features is very desirable.

 For the next version of NFS, consideration should be given to client
 side availability schemes such as client switching between or fail-
 over to available server replicas. If possible, the protocol should
 allow for or ease the building of such layered solutions.

4. Scalable Performance

 In designing and developing an NFS protocol from a performance
 viewpoint there are several different points to consider. Each can
 play a significant role in perceived and real performance from the
 user's perspective. The three main areas of interest are: throughput
 and latency on the network, server work load or scalability and
 client side caching.

Expires: March 1999 [Page 4]

NFSv4 NFSv4 Requirements October 1998

4.1. Throughput and Latency on the Network

 NFS currently has characteristics that provide good throughput for
 the reading and writing of file data. However, the number of RPCs
 required to accomplish some tasks combined with high latency network
 environments leads to sluggish response. The protocol should
 continue to provide good raw read and write throughput while
 addressing the issue of network latency. This issue is discussed
 further in the section on Internet Accessibility.

4.2. Server Work Load or Scalability

 Current NFS operations are relatively lightweight in that the
 processing work for most of the operations is not CPU intensive.
 This allows for potential support of a large number of clients. This
 attribute can also be helpful in building efficient and scalable SMP
 or cluster based servers. While this type of protocol design
 (lightweight operations) is desirable, it needs to be balanced
 against the previous issue of having the client generate a large
 number of RPCs to accomplish a straight forward task.

4.3. Client Caching

 In an attempt to speed response time and to reduce network and server
 load, NFS clients have always cached directory and file data.
 However, this has usually been done as memory cache and in relatively
 recent history, local disk caching has been added.

 Having the client cache directory and file data is very desirable.
 Other distributed file systems have shown that aggressive client side
 caching can be very visible to the end user in response time gains.
 Client caching is increasingly important for Internet environments
 where throughput can be limited and response time can grow
 significantly.

 The NFS protocol should allow for aggressive caching while balancing
 the needs for simplicity and Internet accessibility (i.e. firewalls).
 If possible, the caching ability should be layered on the protocol
 instead of embedding specific client caching functions in the
 protocol itself.

Expires: March 1999 [Page 5]

NFSv4 NFSv4 Requirements October 1998

4.4. Disconnected Client Operation

 An extension of client caching is the idea or functionality of
 disconnected operation at the client. With the ability to cache
 directory and file data aggressively, a client could then provide
 service to the end user while disconnected from the server or
 network.

 While very desirable, disconnected operation has the opportunity to
 inflict itself upon the NFS protocol in an undesirable way as
 compared to traditional client caching. Given the complexities of
 disconnected client operation and subsequent resolution of client
 data modification through various playback or data selection
 mechanisms, disconnected operation should not be a requirement for
 the NFS effort. Even so, the NFS protocol should consider the
 potential layering of disconnected operation solutions on top of the
 NFS protocol (as with other server and client solutions). The
 experiences with Coda, disconnected AFS and others should be helpful
 in this area.

5. Interoperability

 The NFS protocols are available for many different operating
 environments. Even though this shows the protocol's ability to
 provide distributed file system service for more than a single
 operating system, the design of NFS is certainly Unix centric. The
 next NFS protocol needs to be more inclusively of platform or file
 system features beyond those of traditional Unix.

5.1. Platform Specific Behavior

 Because of its Unix centric design, some of the protocol requirements
 have been difficult to implement in some environments. For example,
 persistent file handles (unique identifiers of file system objects),
 Unix uid/gid mappings, directory modification time, accurate file
 sizes, file/directory locking semantics (SHAREs, PC-style locking).

5.2. Additional or Extended Attributes

 NFS Versions 2 and 3 do not provide for file or directory attributes
 beyond those that are found in the traditional Unix environment; for
 example the user identifier/owner of the file, a permission or access
 bitmap, time stamps for modification of the file or directory and

Expires: March 1999 [Page 6]

NFSv4 NFSv4 Requirements October 1998

 file size to name a few. While the current set of attributes has
 usually been sufficient, the file system's ability to manage
 additional information associated with a file or directory can be
 useful.

 There are many possibilities for additional attributes in the next
 version of NFS. Some of these include: object creation timestamp,
 user identifier of file's creator, timestamp of last backup or
 archival bit, version number, file content type (MIME type),
 existence of data management involvement (i.e. DMAPI).

 This list is representative of the possibilities and are meant to
 show the need for an additional attribute set. Enumerating the
 'correct' set of attributes is difficult and is one of the reasons
 for looking towards minor versioning as a way to provide needed
 extensibility. Another way to provide some extensibility is in
 providing support for a generalized named attribute mechanism. This
 mechanism would allow a client to name, store and retrieve arbitrary
 data and have it associated as an attribute of a file or directory.
 This type of extended attribute mechanism brings with it a large set
 of issues that will need to be addressed in the protocol
 specification while keeping the overall goal of simplicity in mind.

 There are operating environments that provide named or extended
 attribute mechanisms. Digital Unix provides for the storage of
 extended attributes with some generalized format. HPFS and NTFS also
 provide for named data associated with traditional files. SGI's
 local file system, XFS, also provides for this type of name/value
 extended attributes. However, there does not seem to be a clear
 direction that can be taken from these or other environments.

5.3. Access Control Lists

 Access Control Lists (ACL) can be viewed as one specific type of
 extended attribute. This attribute is a designation of user access
 to a file or directory. Many vendors have created ancillary
 protocols to NFS to extend the server's ACL mechanism across the
 network. Generally this has been done for homogeneous operating
 environments. Even though the server still interprets the ACL and has
 final control over access to a file system object, the client is able
 to manipulate the ACL via these additional protocols.

 Other distributed file systems have also provided ACL support. DFS,
 AFS and CIFS to name a few. Based on current capabilities, it seems
 to be a requirement that NFS provide this capability as well but the
 major issue is one of compatibility. It may be problematic to create
 a workable ACL mechanism that will encompass a reasonable set of

Expires: March 1999 [Page 7]

NFSv4 NFSv4 Requirements October 1998

 functionality for all operating environments.

 The three major reasons behind providing ACL support are existing
 distributed file system support, file servers not providing native
 environment for user management of ACLs and perception of ACL support
 as part of security requirement. Even with the complicated nature of
 ACL support it is still worthwhile to work towards a solution that
 can at least provide basic functionality for the user.

6. RPC Mechanism and Security

 NFS relies on the underlying security mechanisms provided by the
 ONCRPC protocol. Until the introduction of the ONCRPC RPCSEC_GSS
 security flavor, NFS security was generally limited to none
 (AUTH_SYS) or DES (AUTH_DH). The AUTH_DH security flavor was not
 successful in providing readily available security for NFS because of
 a lack of implementation and deployment. Also the 192 bit public
 keys modulos used for the AUTH_DH security flavor quickly became too
 small for reasonable security.

6.1. Remote Procedure Call Mechanism

 The ONCRPC protocol provides the basic NFS foundation for the
 following reasons:

 o Open protocol definition managed by IETF

 o Transport independent (i.e. UDP and TCP supported)

 o Simple data representation and procedure encoding models

 o Various security mechanisms available through use of RPCSEC_GSS

6.2. User identification

 NFS has been limited to the use of the Unix centric user
 identification mechanism of numeric user id based on the available
 file system attributes and the use of the ONCRPC. However, for NFS
 to move beyond the limits of large work groups, user identification
 should be string based and the definition of the user identifier
 should allow for integration into an external naming service or
 services.

Expires: March 1999 [Page 8]

NFSv4 NFSv4 Requirements October 1998

 Internet scaling should also be considered for this as well. The
 identification mechanism should take into account multiple naming
 domains and other extremes that can be presented by use outside of
 the work group.

 If NFS is to move among various naming and security services, it may
 be necessary to stay with a string based identification. This would
 allow for servers and clients to translate between the external
 string representation to a local or internal numeric (or other
 identifier) which matches internal implementation needs.

 DFS uses a string based naming scheme but translates the name to a
 UUID (16 byte identifier) that is used for internal protocol
 representations. The DCE/DFS string name is a combination of cell
 (administrative domain) and user name. As mentioned, NFS clients and
 servers map a Unix user name to a 32 bit user identifier that is then
 used for ONCRPC and NFS protocol fields requiring the user
 identifier.

6.3. Security

 As a result of a lack of implementation and deployment and relatively
 weak protection, authentication has been a major issue for ONCRPC and
 hence NFS. With the introduction of the RPCSEC_GSS security flavor,
 ONCRPC can provide for reasonable authentication along with integrity
 and privacy, if desired. The RPCSEC_GSS framework will allow the use
 of both public and private key mechanisms. Therefore, NFS as a user
 of ONCRPC should state its specific requirements for each of these
 areas.

 In comparison, AFS and DFS provide strong authentication mechanisms.
 CIFS does provide authentication at initial server contact but does
 not continue this authentication during subsequent interaction.

6.3.1. Authentication

 Strong authentication is a requirement for NFS and the logical
 solution for this is in the use of ONCRPC and RPCSEC_GSS. This
 solution will allow for both private and public key mechanisms to be
 employed if required. This flexibility will allow for security
 usability in varying environments.

Expires: March 1999 [Page 9]

NFSv4 NFSv4 Requirements October 1998

6.3.2. Data Integrity

 Since file and directory data is the essence of distributed file
 service, the NFS protocol should provide to the users of the file
 service a reasonable level of data integrity. The RPCSEC_GSS
 mechanism provides a framework for data integrity and the security
 mechanisms chosen for NFS should be implemented to provide data
 integrity.

6.3.3. Data Privacy

 Data privacy, while desirable, is not as important in all
 environments as authentication and integrity. Data privacy should be
 an available option within NFS but not a requirement.

6.3.4. Security Mechanisms

 With the use of the RPCSEC_GSS framework, both public and private
 mechanisms can and should be provided by NFS. The choice from both
 public and private key mechanisms will allow for the appropriate
 choice being made by the user based on factors within their
 environment.

 Potential choices for the private key mechanism would be Kerberos V5
 and for the public key choice, SPKM [RFC2025] is available.

6.3.5. Security Negotiation

 With both private and public key mechanisms available to the end
 user, the NFS server and client will need a method to negotiate
 appropriate usage based on availability and policy. This negotiation
 should account for authentication, integrity, and privacy so that
 administrators and users can employ the appropriate security policies
 for their environments.

7. Internet Accessibility

 Being a product of an IETF working group, the NFS protocol should not
 only be built upon IETF technologies where possible but should also

https://datatracker.ietf.org/doc/html/rfc2025

Expires: March 1999 [Page 10]

NFSv4 NFSv4 Requirements October 1998

 work well within the broader Internet environment.

7.1. Congestion Control and Transport Selection

 As with any network protocol, congestion control is a major issue and
 the transport mechanisms that are chosen for NFS should take this
 into account. Traditionally implementations of NFS have been
 deployed using both UDP and TCP. With the use of UDP, most
 implementations provide a rudimentary attempt of congestion control
 with simple back-off algorithms and round trip timers. While this
 may be sufficient in today's NFS deployments, as an Internet protocol
 NFS will need to ensure sufficient congestion control or management.

 With congestion control in mind, NFS must use TCP as a transport (via
 ONCRPC). The UDP transport provides its own advantages in certain
 circumstances. In today's NFS implementations, UDP has been shown to
 produce greater throughput as compared to similarly configured
 systems that use TCP. If UDP is to be supplied as an NFS transport
 mechanism, then the issues of congestion control must be dealt with.

7.2. Firewalls and Proxy Servers

 NFS's protocol design should allow its use via Internet firewalls.
 The protocol should also allow for the use of file system proxy/cache
 servers. Proxy servers can be very useful for scalability and other
 reasons. The NFS protocol needs to address the need of proxy servers
 in a way that will deal with the issues of security, access control,
 and content control. It is possible that these issues can be
 addressed by documenting the related issues of proxy server usage.
 However, it is likely that the NFS protocol will need to support
 proxy servers directly through the NFS protocol. In any case, the
 NFS proxy server should be considered during protocol development.

7.3. Multiple RPCs and Latency

 As an application at the NFS client performs simple file system
 operations, multiple NFS operations or RPCs may be executed to
 accomplish the work for the application. While the NFS version 3
 protocol addressed some of this by returning file and directory
 attributes for most procedures hence reducing follow up GETATTR
 requests, there is still room for improvement. Reducing the number
 of RPCs can lead to a reduction of processing overhead on the server
 (transport and security processing) along with reducing the time

Expires: March 1999 [Page 11]

NFSv4 NFSv4 Requirements October 1998

 spent at the client waiting for the server's individual responses.
 This issue is more prominent in environments with larger degrees of
 latency.

 The CIFS file access protocol supports 'batched requests' that allow
 multiple requests to be batched and therefore reducing the number of
 round trip messages between client and server.

 This same approach can be used by NFS to allow the grouping of
 multiple procedure calls together in a traditional RPC request. Not
 only would this allow for the reduction in protocol imposed latency
 but would reduce transport and security processing overhead and could
 allow a client to complete more complex tasks by combining
 procedures.

8. File locking / recovery

 NFS has provided Unix file locking and DOS SHARE capability with the
 use of an ancillary protocol (Network Lock Manager / NLM). The NLM
 protocol provides for file locking and recovery of those locks in the
 event of client or server failure. NLM requires that the server make
 call backs to the client for certain scenarios and therefore is not
 necessarily well suited for Internet firewall traversal.

 Desirable features of file locking support are:

 o Integration with the NFS protocol.

 o Interoperability between operating environments. The protocol
 should make a reasonable effort to support the locking semantics
 of both PC and Unix clients and servers.

 o Scalable solutions - thousands of clients. The server should
 not be required to maintain client lock state across reboots.

 o Internet capable (firewall traversal, latency sensitive). The
 server should not be required to initiate TCP connections to
 clients.

 o Timely recovery in the event of client/server or network
 failure. Server recovery should be rapid. The protocol should
 allow clients to detect the loss of a lock.

 CIFS supports file locking and DOS SHARE support.

Expires: March 1999 [Page 12]

NFSv4 NFSv4 Requirements October 1998

9. Internationalization

 The current NFS protocols are limited in their support of anything
 more than 7-bit ASCII strings. It is imperative that NFS support a
 range of character sets. This can be provided by requiring support
 for Unicode with a UTF-8 wire encoding. Therefore, all strings
 defined as part of the NFS protocol will need to be defined as UTF-8
 and the appropriate XDR encoding used.

Expires: March 1999 [Page 13]

NFSv4 NFSv4 Requirements October 1998

10. Bibliography

 [RFC1094]
 Sun Microsystems, Inc., "NFS: Network File System Protocol
 Specification", RFC1094, March 1989.

ftp://ftp.isi.edu/in-notes/rfc1094.txt

 [RFC1813]
 Callaghan, B., Pawlowski, B., Staubach, P., "NFS Version 3 Protocol
 Specification", RFC1813, Sun Microsystems, Inc., June 1995.

ftp://ftp.isi.edu/in-notes/rfc1813.txt

 [RFC1831]
 Srinivasan, R., "RPC: Remote Procedure Call Protocol Specification
 Version 2", RFC1831, Sun Microsystems, Inc., August 1995.

ftp://ftp.isi.edu/in-notes/rfc1831.txt

 [RFC1832]
 Srinivasan, R., "XDR: External Data Representation Standard",

RFC1832, Sun Microsystems, Inc., August 1995.

ftp://ftp.isi.edu/in-notes/rfc1832.txt

 [RFC1833]
 Srinivasan, R., "Binding Protocols for ONC RPC Version 2", RFC1833,
 Sun Microsystems, Inc., August 1995.

ftp://ftp.isi.edu/in-notes/rfc1833.txt

 [RFC2025]
 Adams, C., "The Simple Public-Key GSS-API Mechanism (SPKM)", RFC2025,
 Bell-Northern Research, October 1996.

ftp://ftp.isi.edu/in-notes/rfc2025.txt

 [RFC2078]
 Linn, J., "Generic Security Service Application Program Interface,
 Version 2", RFC2078, OpenVision Technologies, January 1997.

https://datatracker.ietf.org/doc/html/rfc1094
ftp://ftp.isi.edu/in-notes/rfc1094.txt
https://datatracker.ietf.org/doc/html/rfc1813
ftp://ftp.isi.edu/in-notes/rfc1813.txt
https://datatracker.ietf.org/doc/html/rfc1831
ftp://ftp.isi.edu/in-notes/rfc1831.txt
https://datatracker.ietf.org/doc/html/rfc1832
ftp://ftp.isi.edu/in-notes/rfc1832.txt
https://datatracker.ietf.org/doc/html/rfc1833
ftp://ftp.isi.edu/in-notes/rfc1833.txt
https://datatracker.ietf.org/doc/html/rfc2025
ftp://ftp.isi.edu/in-notes/rfc2025.txt
https://datatracker.ietf.org/doc/html/rfc2078

Expires: March 1999 [Page 14]

NFSv4 NFSv4 Requirements October 1998

ftp://ftp.isi.edu/in-notes/rfc2078.txt

 [RFC2203]
 Eisler, M., Chiu, A., Ling, L., "RPCSEC_GSS Protocol Specification"

RFC2203, Sun Microsystems, Inc., August 1995.

ftp://ftp.isi.edu/in-notes/rfc2203.txt

 [Sandberg]
 Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, B. Lyon, "Design
 and Implementation of the Sun Network Filesystem," USENIX Conference
 Proceedings, USENIX Association, Berkeley, CA, Summer 1985. The
 basic paper describing the SunOS implementation of the NFS version 2
 protocol, and discusses the goals, protocol specification and trade-
 offs.

 [X/OpenNFS]
 X/Open Company, Ltd., X/Open CAE Specification: Protocols for X/Open
 Internetworking: XNFS, X/Open Company, Ltd., Apex Plaza, Forbury
 Road, Reading Berkshire, RG1 1AX, United Kingdom, 1991. This is an
 indispensable reference for NFS version 2 protocol and accompanying
 protocols, including the Lock Manager and the Portmapper.

 [X/OpenPCNFS]
 X/Open Company, Ltd., X/Open CAE Specification: Protocols for X/Open
 Internetworking: (PC)NFS, Developer's Specification, X/Open Company,
 Ltd., Apex Plaza, Forbury Road, Reading Berkshire, RG1 1AX, United
 Kingdom, 1991. This is an indispensable reference for NFS version 2
 protocol and accompanying protocols, including the Lock Manager and
 the Portmapper.

ftp://ftp.isi.edu/in-notes/rfc2078.txt
https://datatracker.ietf.org/doc/html/rfc2203
ftp://ftp.isi.edu/in-notes/rfc2203.txt

Expires: March 1999 [Page 15]

NFSv4 NFSv4 Requirements October 1998

11. Author's Address

 Address comments related to this memorandum to:

 spencer.shepler@eng.sun.com -or- nfsv4-wg@sunroof.eng.sun.com

 Spencer Shepler
 Sun Microsystems, Inc.
 7808 Moonflower Drive
 Austin, Texas 78750

 Phone: (512) 349-9376
 E-mail: spencer.shepler@eng.sun.com

Expires: March 1999 [Page 16]

