
NFSv4 D. Noveck, Ed.
Internet-Draft Dell
Updates: 3530bis (if approved) P. Shivam
Intended status: Standards Track C. Lever
Expires: July 8, 2015 B. Baker
 ORACLE
 January 4, 2015

NFSv4.0 migration: Specification Update
draft-ietf-nfsv4-rfc3530-migration-update-06

Abstract

 The migration feature of NFSv4 allows for responsibility for a single
 filesystem to move from one server to another, without disruption to
 clients. Recent implementation experience has shown problems in the
 existing specification for this feature in NFSv4.0. This document
 clarifies and corrects RFC3530bis (the NFSv4.0 specification) to
 address these problems.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 8, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Noveck, et al. Expires July 8, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft nfsv4-3530-migr-update January 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions . 3
3. Background . 3
4. Client Identity Definition 5
4.1. Differences from Replaced Sections 5
4.2. Client Identity Data Items 5
4.3. Server Release of Client ID 10
4.4. Client Id String Approaches 10
4.5. Non-Uniform Client Id String Approach 12
4.6. Uniform Client Id String Approach 13
4.7. Mixing Client Id String Approaches 15

 4.8. Trunking Determination when Using Uniform Client Id
 Strings . 16

4.9. Client Id String Construction Details 22
5. Locking and Multi-Server Namespace 23
5.1. Changes from Replaced Sections 23
5.2. Lock State and Filesystem Transitions 24
5.3. Migration and State 24
5.3.1. Migration and Clientid's 26
5.3.2. Migration and State Owner Information 27

5.4. Replication and State 31
5.5. Notification of Migrated Lease 31
5.6. Migration and the Lease_time Attribute 34

6. Server Implementation Considerations 34
 6.1. Relation of Locking State Transfer to Other Aspects of
 Filesystem Motion . 34

6.2. Preventing Locking State Modification During Transfer . . 36
7. Additional Changes . 39
7.1. Summary of Additional Changes from Previous Documents . . 39
7.2. NFS4ERR_CLID_INUSE definition 40
7.3. NFS4ERR_DELAY return from RELEASE_LOCKOWNER 40
7.4. Operation 35: SETCLIENTID - Negotiate Client ID 41

 7.5. Security Considerations for Inter-server Information
 Transfer . 45

7.6. Security Considerations Revision 45
8. Security Considerations 46
9. IANA Considerations . 46
10. References . 46
10.1. Normative References 46
10.2. Informative References 46

Appendix A. Acknowledgements 46

Noveck, et al. Expires July 8, 2015 [Page 2]

Internet-Draft nfsv4-3530-migr-update January 2015

Appendix B. RFC Editor Notes 47
 Authors' Addresses . 47

1. Introduction

 This document is a standards track document which corrects the
 existing definitive specification of the NFSv4.0 protocol, in
 [RFC3530bis]. Given this fact, one should take the current document
 into account when learning about NFSv4.0, particularly if one is
 concerned with issues that relate to:

 o Filesystem migration, particularly when it involves transparent
 state migration.

 o The construction and interpretation of the nfs_clientid4 structure
 and particularly the requirements on the id string within it,
 referred to below as a "client id string".

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Background

 Implementation experience with transparent state migration has
 exposed a number of problems with the then-existing specifications of
 this feature, in [RFC3530bis] and predecessors. The symptoms were:

 o After migration of a filesystem, a reboot of the associated client
 was not appropriately dealt with, in that the state associated
 with the rebooting client was not promptly freed.

 o Situations can arise whereby a given server has multiple leases
 with the same nfs_client_id4 (id and verifier), when the protocol
 clearly assumes there can be only one.

 o Excessive client implementation complexity since clients have to
 deal with situations in which a single client can wind up with its
 locking state with a given server divided among multiple leases
 each with its own clientid4.

 An analysis of these symptoms leads to the conclusion that existing
 specifications have erred. They assume that locking state, including
 both state ids and clientid4's, should be transferred as part of
 transparent state migration. The troubling symptoms arise from the

https://datatracker.ietf.org/doc/html/rfc2119

Noveck, et al. Expires July 8, 2015 [Page 3]

Internet-Draft nfsv4-3530-migr-update January 2015

 failure to describe how migrating state is to be integrated with
 existing client definition structures on the destination server.

 Specification of requirements for the server to appropriately merge
 stateids associated with a common client boot instance encounters a
 difficult problem. The issue is that the common client practice with
 regard to the presentation of unique strings specifying client
 identity makes it essentially impossible for the client to determine
 whether or not two stateids, originally generated on different
 servers are referable to the same client. This practice is allowed
 and endorsed, although not "RECOMMENDED", by the existing NFSv4.0
 specification, [RFC3530bis]).

 To further complicate matters, upon prototyping of clients
 implementing an alternative approach, it has been found that there
 exist servers which do not work well with these new clients. It
 appears that current circumstances, in which a particular client
 implementation pattern had been adopted universally, has resulted in
 servers not being able to interoperate against alternate client
 implementation patterns. As a result, we have a situation which
 requires careful attention to compatibility issues to untangle.

 This document updates the existing NFSv4.0 specification
 [RFC3530bis]) as follows:

 o It makes clear that NFSv4.0 supports multiple approaches to the
 construction of client id strings, including that formerly
 endorsed by existing NFSV4.0 specifications, and currently widely
 deployed.

 o It addresses the potential compatibility issues that might arise
 for clients adopting a previously non-favored client id
 construction approach including the existence of servers which
 have problems with the new approach.

 o It gives some guidance regarding the factors that might govern
 clients' choice of a client id construction approach and
 RECOMMENDS that clients construct client id strings in manner that
 supports lease merger if they intend to support transparent state
 migration.

 o It specifies how state is to be transparently migrated, including
 defining how state that arrives at a new server as part of
 migration is to be merged into existing leases for clients
 connected to the target server.

 o It makes further clarifications and corrections to address cases
 where the specification text does not take proper account of the

Noveck, et al. Expires July 8, 2015 [Page 4]

Internet-Draft nfsv4-3530-migr-update January 2015

 issues raised by state migration or where it has been found that
 the existing text is insufficiently clear.

 For a more complete explanation of the choices made in addressing
 these issues, see [info-migr]).

4. Client Identity Definition

 This chapter is a replacement for sections 9.1.1 and 9.1.2 in
 [RFC3530bis]). The replaced sections are named "client ID" and
 "Server Release of Clientid."

 It supersedes the replaced sections.

4.1. Differences from Replaced Sections

 Because of the need for greater attention to and careful description
 of this area, this chapter is much larger than the sections it
 replaces. The principal changes/additions made by this chapter are:

 o It corrects inconsistencies regarding the possible role or non-
 role of client IP address in construction of client id strings.

 o It clearly addresses the need to save client id strings or any
 changeable values that are used in their construction.

 o It provides a more complete description of circumstances leading
 to clientid4 invalidity and the appropriate recovery actions.

 o It presents, as valid alternatives, two approaches to client id
 string construction (named "uniform" and "non-uniform") and gives
 some implementation guidance to help implementers choose one or
 the other of these.

 o It adds a discussion of issues involved for clients in interacting
 with servers whose behavior is not consistent with use of uniform
 client id strings

 o It adds a description of how server behavior might be used by the
 client to determine server address trunking patterns.

4.2. Client Identity Data Items

 The NFSv4 protocol contains a number of protocol entities to identify
 clients and client-based entities, for locking-related purposes:

Noveck, et al. Expires July 8, 2015 [Page 5]

Internet-Draft nfsv4-3530-migr-update January 2015

 o The nfs_client_id4 structure which uniquely identifies a specific
 client boot instance. That identification is presented to the
 server by doing a SETCLIENTID operation.

 o The clientid4 which is returned by the server upon completion of a
 successful SETCLIENTID operation. This id is used by the client
 to identify itself when doing subsequent locking-related
 operations. A clientid4 is associated with a particular lease
 whereby a client instance holds state on a server instance and may
 become invalid due to client reboot, server reboot, or other
 circumstances.

 o Opaque arrays which are used together with the clientid4 to
 designate within-client entities (e.g. processes) as the owners of
 opens (open-owners) and owners of byte-range locks (lock-owners).

 The basis of the client identification infrastructure is encapsulated
 in the following data structure:

 struct nfs_client_id4 {
 verifier4 verifier;
 opaque id<NFS4_OPAQUE_LIMIT>;
 };

 The nfs_client_id4 structure uniquely defines a client boot instance
 as follows:

 o The id field is a variable-length string which uniquely identifies
 a specific client. Although, we describe it as a string and it is
 often referred to as a "client string," it should be understood
 that the protocol defines this as opaque data. In particular,
 those receiving such an id should not assume that it will be in
 the UTF-8 encoding. Servers MUST NOT reject an nfs_client_id4
 simply because the id string does not follow the rules of UTF-8
 encoding.

 The string MAY be different for each server network address that
 the client accesses, rather than common to all server network
 addresses.

 o The verifier is a client incarnation identifier that is used by
 the server to detect client reboots. Only if the verifier is
 different from that which the server has previously recorded in
 connection with the client (as identified by the id field) does
 the server cancel the client's leased state, once it receives
 confirmation of the new nfs_clientd4 via SETCLIENTID_CONFIRM.

Noveck, et al. Expires July 8, 2015 [Page 6]

Internet-Draft nfsv4-3530-migr-update January 2015

 As a security measure, the server MUST NOT cancel a client's
 leased state if the principal that established the state for a
 given id string is not the same as the principal issuing the
 SETCLIENTID.

 There are several considerations for how the client generates the id
 string:

 o The string should be unique so that multiple clients do not
 present the same string. The consequences of two clients
 presenting the same string range from one client getting an error
 to one client having its leased state abruptly and unexpectedly
 canceled.

 o The string should be selected so that subsequent incarnations
 (e.g., reboots) of the same client cause the client to present the
 same string. The implementer is cautioned against an approach
 that requires the string to be recorded in a local file because
 this precludes the use of the implementation in an environment
 where there is no local disk and all file access is from an NFSv4
 server.

 o The string MAY be different for each server network address that
 the client accesses, rather than common to all server network
 addresses.

 The considerations that might influence a client to use different
 strings for different network server addresses are explained in

Section 4.4.

 o The algorithm for generating the string should not assume that the
 client's network address is forever fixed. Changes might occur
 between client incarnations and even while the client is still
 running in its current incarnation.

 Having the client id string change simply because of a network
 address change would mean that successive SETCLIENTID operations
 for the same client would appear as from different clients,
 interfering with the use of the nfs_client_id4 verifier to cancel
 state associated with previous boot instances of the same client.

 The difficulty is more severe if the client address is the only
 client-based information in the client id string. In such a case,
 there is a real risk that, after the client gives up the network
 address, another client, using a similar algorithm for generating
 the id string, will generate a conflicting id string.

Noveck, et al. Expires July 8, 2015 [Page 7]

Internet-Draft nfsv4-3530-migr-update January 2015

 Once a SETCLIENTID and SETCLIENTID_CONFIRM sequence has successfully
 completed, the client uses the shorthand client identifier, of type
 clientid4, instead of the longer and less compact nfs_client_id4
 structure. This shorthand client identifier (a client ID) is
 assigned by the server and should be chosen so that it will not
 conflict with a client ID previously assigned by same server. This
 applies across server restarts or reboots.

 Note that the SETCLIENTID and SETCLIENTID_CONFIRM operations have a
 secondary purpose of establishing the information the server needs to
 make callbacks to the client for the purpose of supporting
 delegations. The client is able to change this information via
 SETCLIENTID and SETCLIENTID_CONFIRM within the same incarnation of
 the client without causing removal of the client's leased state.

 Distinct servers MAY assign clientid4's independently, and will
 generally do so. Therefore, a client has to be prepared to deal with
 multiple instances of the same clientid4 value received on distinct
 IP addresses, denoting separate entities. When trunking of server IP
 addresses is not a consideration, a client should keep track of (IP-
 address, clientid4) pairs, so that each pair is distinct. For a
 discussion of how to address the issue in the face of possible
 trunking of server IP addresses, see Section 4.4.

 Owners of opens and owners of byte-range locks are separate entities
 and remain separate even if the same opaque arrays are used to
 designate owners of each. The protocol distinguishes between open-
 owners (represented by open_owner4 structures) and lock-owners
 (represented by lock_owner4 structures).

 Both sorts of owners consist of a clientid4 and an opaque owner
 string. For each client, the set of distinct owner values used with
 that client constitutes the set of owners of that type, for the given
 client.

 Each open is associated with a specific open-owner while each byte-
 range lock is associated with a lock-owner and an open-owner, the
 latter being the open-owner associated with the open file under which
 the LOCK operation was done.

 When a clientid4 is presented to a server and that clientid4 is not
 valid, the server will reject the request with the an error that
 depends on the reason for clientid4 invalidity. The error
 NFS4ERR_ADMIN_REVOKED is returned when the invalidation is the result
 of administrative action, When the clientid4 is unrecognizable, the
 error NFS4ERR_STALE_CLIENTID or NFS4ERR_EXPIRED may be returned. An
 unrecognizable clientid4 can occur for a number of reasons:

Noveck, et al. Expires July 8, 2015 [Page 8]

Internet-Draft nfsv4-3530-migr-update January 2015

 o A server reboot causing loss of the server's knowledge of the
 client. (Always returns NFS4ERR_STALE_CLIENTID)

 o Client error sending an incorrect clientid4 or a valid clientid4
 to the wrong server. (May return either error).

 o Loss of lease state due to lease expiration. (Always returns
 NFS4ERR_EXPIRED)

 o Client or server error causing the server to believe that the
 client has rebooted (i.e. receiving a SETCLIENTID with an
 nfs_client_id4 which has a matching id string and a non-matching
 boot verifier). (May return either error).

 o Migration of all state under the associated lease causes its non-
 existence to be recognized on the source server. (Always returns
 NFS4ERR_STALE_CLIENTID)

 o Merger of state under the associated lease with another lease
 under a different clientid causes the clientid4 serving as the
 source of the merge to cease being recognized on its server.
 (Always returns NFS4ERR_STALE_CLIENTID)

 In the event of a server reboot, loss of lease state due to lease
 expiration, or administrative revocation of a clientid4, the client
 must obtain a new clientid4 by use of the SETCLIENTID operation and
 then proceed to any other necessary recovery for the server reboot
 case (See the section entitled "Server Failure and Recovery"). In
 cases of server or client error resulting in this error, use of
 SETCLIENTID to establish a new lease is desirable as well.

 In the last two cases, different recovery procedures are required.
 See Section 5.3 for details. Note that in cases in which there is
 any uncertainty about which sort of handling is applicable, the
 distinguishing characteristic is that in reboot-like cases, the
 clientid4 and all associated stateids cease to exist while in
 migration-related cases, the clientid4 ceases to exist while the
 stateids are still valid.

 The client must also employ the SETCLIENTID operation when it
 receives a NFS4ERR_STALE_STATEID error using a stateid derived from
 its current clientid4, since this indicates a situation, such as
 server reboot which has invalidated the existing clientid4 and
 associated stateids (see the section entitled "lock-owner" for
 details).

 See the detailed descriptions of SETCLIENTID and SETCLIENTID_CONFIRM
 for a complete specification of these operations.

Noveck, et al. Expires July 8, 2015 [Page 9]

Internet-Draft nfsv4-3530-migr-update January 2015

4.3. Server Release of Client ID

 If the server determines that the client holds no associated state
 for its clientid4, the server may choose to release that clientid4.
 The server may make this choice for an inactive client so that
 resources are not consumed by those intermittently active clients.
 If the client contacts the server after this release, the server must
 ensure the client receives the appropriate error so that it will use
 the SETCLIENTID/SETCLIENTID_CONFIRM sequence to establish a new
 identity. It should be clear that the server must be very hesitant
 to release a client ID since the resulting work on the client to
 recover from such an event will be the same burden as if the server
 had failed and restarted. Typically a server would not release a
 client ID unless there had been no activity from that client for many
 minutes.

 Note that if the id string in a SETCLIENTID request is properly
 constructed, and if the client takes care to use the same principal
 for each successive use of SETCLIENTID, then, barring an active
 denial of service attack, NFS4ERR_CLID_INUSE should never be
 returned.

 However, client bugs, server bugs, or perhaps a deliberate change of
 the principal owner of the id string (such as may occur in the case
 in which a client changes security flavors, and under the new flavor,
 there is no mapping to the previous owner) will in rare cases result
 in NFS4ERR_CLID_INUSE.

 In that event, when the server gets a SETCLIENTID specifying a client
 id string for which the server has a clientid4 that currently has no
 state, or for which it has state, but where the lease has expired,
 the server MUST allow the SETCLIENTID, rather than returning
 NFS4ERR_CLID_INUSE. The server MUST then confirm the new client ID
 if followed by the appropriate SETCLIENTID_CONFIRM.

4.4. Client Id String Approaches

 One particular aspect of the construction of the nfs_client_id4
 string has proved recurrently troublesome. The client has a choice
 of:

 o Presenting the same id string to multiple server addresses. This
 is referred to as the "uniform client id string approach" and is
 discussed in Section 4.6.

 o Presenting different id strings to multiple server addresses.
 This is referred to as the "non-uniform client id string approach"
 and is discussed in Section 4.5.

Noveck, et al. Expires July 8, 2015 [Page 10]

Internet-Draft nfsv4-3530-migr-update January 2015

 Note that implementation considerations, including compatibility with
 existing servers, may make it desirable for a client to use both
 approaches, based on configuration information, such as mount
 options. This issue will be discussed in Section 4.7.

 Construction of the client id string has arisen as a difficult issue
 because of the way in which the NFS protocols have evolved.

 o NFSv3 as a stateless protocol had no need to identify the state
 shared by a particular client-server pair. (See [RFC1813]). Thus
 there was no occasion to consider the question of whether a set of
 requests come from the same client, or whether two server IP
 addresses are connected to the same server. As the environment
 was one in which the user supplied the target server IP address as
 part of incorporating the remote filesystem in the client's file
 name space, there was no occasion to take note of server trunking.
 Within a stateless protocol, the situation was symmetrical. The
 client has no server identity information and the server has no
 client identity information.

 o NFSv4.1 is a stateful protocol with full support for client and
 server identity determination (See [RFC5661]). This enables the
 server to be aware when two requests come from the same client
 (they are on sessions sharing a clientid4) and the client to be
 aware when two server IP addresses are connected to the same
 server (they return the same server name in responding to an
 EXCHANGE_ID).

 NFSv4.0 is unfortunately halfway between these two. The two client
 id string approaches have arisen in attempts to deal with the
 changing requirements of the protocol as implementation has proceeded
 and features that were not very substantial in early implementations
 of NFSv4.0, became more substantial as implementation proceeded.

 o In the absence of any implementation of the fs_locations-related
 features (replication, referral, and migration), the situation is
 very similar to that of NFSv3, with the addition of state but with
 no concern to provide accurate client and server identity
 determination. This is the situation that gave rise to the non-
 uniform client id string approach.

 o In the presence of replication and referrals, the client may have
 occasion to take advantage of knowledge of server trunking
 information. Even more important, transparent state migration, by
 transferring state among servers, causes difficulties for the non-
 uniform client id string approach, in that the two different
 client id strings sent to different IP addresses may wind up on
 the same IP address, adding confusion.

https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc5661

Noveck, et al. Expires July 8, 2015 [Page 11]

Internet-Draft nfsv4-3530-migr-update January 2015

 o A further consideration is that client implementations typically
 provide NFSv4.1 by augmenting their existing NFSv4.0
 implementation, not by providing two separate implementations.
 Thus the more NFSv4.0 and NFSv4.1 can work alike, the less complex
 are clients. This is a key reason why those implementing NFSv4.0
 clients might prefer using the uniform client string model, even
 if they have chosen not to provide fs_locations-related features
 in their NFSv4.0 client.

 Both approaches have to deal with the asymmetry in client and server
 identity information between client and server. Each seeks to make
 the client's and the server's views match. In the process, each
 encounters some combination of inelegant protocol features and/or
 implementation difficulties. The choice of which to use is up to the
 client implementer and the sections below try to give some useful
 guidance.

4.5. Non-Uniform Client Id String Approach

 The non-uniform client id string approach is an attempt to handle
 these matters in NFSv4.0 client implementations in as NFSv3-like a
 way as possible.

 For a client using the non-uniform approach, all internal recording
 of clientid4 values is to include, whether explicitly or implicitly,
 the server IP address so that one always has an (IP-address,
 clientid4) pair. Two such pairs from different servers are always
 distinct even when the clientid4 values are the same, as they may
 occasionally be. In this approach, such equality is always treated
 as simple happenstance.

 Making the client id string different on different server IP
 addresses results in a situation in which a server has no way of
 tying together information from the same client, when the client
 accesses multiple server IP addresses. As a result, it will treat a
 single client as multiple clients with separate leases for each
 server network address. Since there is no way in the protocol for
 the client to determine if two network addresses are connected to the
 same server, the resulting lack of knowledge is symmetrical and can
 result in simpler client implementations in which there is a single
 clientid/lease per server network addresses.

 Support for migration, particularly with transparent state migration,
 is more complex in the case of non-uniform client id strings. For
 example, migration of a lease can result in multiple leases for the
 same client accessing the same server addresses, vitiating many of
 the advantages of this approach. Therefore, client implementations
 that support migration with transparent state migration SHOULD NOT

Noveck, et al. Expires July 8, 2015 [Page 12]

Internet-Draft nfsv4-3530-migr-update January 2015

 use the non-uniform client id string approach, except where it is
 necessary for compatibility with existing server implementations (For
 details of arranging use of multiple client id string approaches, see

Section 4.7).

4.6. Uniform Client Id String Approach

 When the client id string is kept uniform, the server has the basis
 to have a single clientid4/lease for each distinct client. The
 problem that has to be addressed is the lack of explicit server
 identity information, which was made available in NFSv4.1.

 When the same client id string is given to multiple IP addresses, the
 client can determine whether two IP addresses correspond to a single
 server, based on the server's behavior. This is the inverse of the
 strategy adopted for the non-uniform approach in which different
 server IP addresses are told about different clients, simply to
 prevent a server from manifesting behavior that is inconsistent with
 there being a single server for each IP address, in line with the
 traditions of NFS. So, to compare:

 o In the non-uniform approach, servers are told about different
 clients because, if the server were to use accurate information as
 to client identity, two IP addresses on the same server would
 behave as if they were talking to the same client, which might
 prove disconcerting to a client not expecting such behavior.

 o In the uniform approach, the servers are told about there being a
 single client, which is, after all, the truth. Then, when the
 server uses this information, two IP addresses on the same server
 will behave as if they are talking to the same client, and this
 difference in behavior allows the client to infer the server IP
 address trunking configuration, even though NFSv4.0 does not
 explicitly provide this information.

 The approach given in the section below shows one example of how
 this might be done.

 The uniform client id string approach makes it necessary to exercise
 more care in the definition of the nfs_client_id4 boot verifier:

 o In [RFC3530bis], the client is told to change the boot verifier
 when reboot occurs, but there is no explicit statement as to the
 converse, so that any requirement to keep the verifier constant
 unless rebooting is only present by implication.

 o Many existing clients change the boot verifier every time they
 destroy and recreate the data structure that tracks an <IP-

Noveck, et al. Expires July 8, 2015 [Page 13]

Internet-Draft nfsv4-3530-migr-update January 2015

 address, clientid4> pair. This might happen if the last mount of
 a particular server is removed, and then a fresh mount is created.
 Also, note that this might result in each <IP-address, clientid4>
 pair having its own boot verifier that is independent of the
 others.

 o Within the uniform client id string approach, an nfs_client_id4
 designates a globally known client instance, so that the boot
 verifier should change if and only if a new client instance is
 created, typically as a result of a reboot.

 Clients using the uniform client id string approach are therefore
 well advised to use a verifier established only once for each
 reboot, typically the reboot time.

 The following are advantages for the implementation of using the
 uniform client id string approach:

 o Clients can take advantage of server trunking (and clustering with
 single-server-equivalent semantics) to increase bandwidth or
 reliability.

 o There are advantages in state management so that, for example, we
 never have a delegation under one clientid revoked because of a
 reference to the same file from the same client under a different
 clientid.

 o The uniform client id string approach allows the server to do any
 necessary automatic lease merger in connection with transparent
 state migration, without requiring any client involvement. This
 consideration is of sufficient weight to cause us to RECOMMEND use
 of the uniform client id string approach for clients supporting
 transparent state migration.

 The following implementation considerations might cause issues for
 client implementations.

 o This approach is considerably different from the non-uniform
 approach, which most client implementations have been following.
 Until substantial implementation experience is obtained with this
 approach, reluctance to embrace something so new is to be
 expected.

 o Mapping between server network addresses and leases is more
 complicated in that it is no longer a one-to-one mapping.

 How to balance these considerations depends on implementation goals.

Noveck, et al. Expires July 8, 2015 [Page 14]

Internet-Draft nfsv4-3530-migr-update January 2015

4.7. Mixing Client Id String Approaches

 As noted above, a client which needs to use the uniform client id
 string approach (e.g. to support migration), may also need to support
 existing servers with implementations that do not work properly in
 this case.

 Some examples of such server issues include:

 o Some existing NFSv4.0 server implementations of IP address
 failover depend on clients' use of a non-uniform client id string
 approach. In particular, when a server supports both its own IP
 address and one failed over from a partner server, it may have
 separate sets of state applicable to the two IP addresses, owned
 by different servers but residing on a single one.

 In this situation, some servers have relied on clients' use of the
 non-uniform client id string approach, as suggested but not
 mandated by [RFC3530bis], to keep these sets of state separate,
 and will have problems in handling clients using the uniform
 client id string approach, in that such clients will see changes
 in trunking relationships whenever server failover and giveback
 occur.

 o Some existing servers incorrectly return NFS4ERR_CLID_INUSE simply
 because there already exists a clientid for the same client,
 established using a different IP address. This causes difficulty
 for a multi-homed client using the uniform client id string
 approach.

 Although this behavior is not correct, such servers still exist
 and the spec should give clients guidance about dealing with the
 situation, as well as making the correct behavior clear.

 In order to support use of these sorts of servers, the client can use
 different client id string approaches for different mounts, as long
 as:

 o The uniform client id string approach is used when accessing
 servers that may return NFS4ERR_MOVED and the client wishes to
 enable transparent state migration."

 o The non-uniform client id string approach is used when accessing
 servers whose implementations make them incompatible with the
 uniform client id string approach

 One effective way for clients to handle this is to support the
 uniform client id string approach as the default, but allow a mount

Noveck, et al. Expires July 8, 2015 [Page 15]

Internet-Draft nfsv4-3530-migr-update January 2015

 option to specify use of the non-uniform client id string approach
 for particular mount points, as long as such mount points are not
 used when migration is to be supported.

 In the case in which the same server has multiple mounts, and both
 approaches are specified for the same server, the client could have
 multiple clientid's corresponding to the same server, one for each
 approach and would then have to keep these separate.

4.8. Trunking Determination when Using Uniform Client Id Strings

 This section provides an example of how trunking determination could
 be done by a client following the uniform client id string approach
 (whether this is used for all mounts or not). Clients need not
 follow this procedure but implementers should make sure that the
 issues dealt with by this procedure are all properly addressed.

 We need to clarify the various possible purposes of trunking
 determination and the corresponding requirements as to server
 behavior. The following points should be noted:

 o The primary purpose of the trunking determination algorithm is to
 make sure that, if the server treats client requests on two IP
 addresses as part of the same client, the client will not be
 blind-sided and encounter disconcerting server behavior, as
 mentioned in Section 4.6. Such behavior could occur if the client
 were unaware that all of its client requests for the two IP
 addresses were being handled as part of a single client talking to
 a single server.

 o A second purpose is to be able to use knowledge of trunking
 relationships for better performance, etc.

 o If a server were to give out distinct clientid's in response to
 receiving the same nfs_client_id4 on different network addresses,
 and acted as if these were separate clients, the primary purpose
 of trunking determination would be met, as long as the server did
 not treat them as part of the same client. In this case, the
 server would be acting, with regard to that client, as if it were
 two distinct servers. This would interfere with the secondary
 purpose of trunking determination but there is nothing the client
 can do about that.

 o Suppose a server were to give such a client two different
 clientid's but act as if they were one. That is the only way that
 the server could behave in a way that would defeat the primary
 purpose of the trunking determination algorithm.

Noveck, et al. Expires July 8, 2015 [Page 16]

Internet-Draft nfsv4-3530-migr-update January 2015

 Servers MUST NOT do that.

 For a client using the uniform approach, clientid4 values are treated
 as important information in determining server trunking patterns.
 For two different IP addresses to return the same clientid4 value is
 a necessary, though not a sufficient condition for them to be
 considered as connected to the same server. As a result, when two
 different IP addresses return the same clientid4, the client needs to
 determine, using the procedure given below or otherwise, whether the
 IP addresses are connected to the same server. For such clients, all
 internal recording of clientid4 values needs to include, whether
 explicitly or implicitly, identification of the server from which the
 clientid4 was received so that one always has a (server, clientid4)
 pair. Two such pairs from different servers are always considered
 distinct even when the clientid4 values are the same, as they may
 occasionally be.

 In order to make this approach work, the client must have accessible,
 for each nfs_client_id4 used by the uniform approach (only one in
 general) a list of all server IP addresses, together with the
 associated clientid4 values, SETCLIENTID principals and
 authentication flavors. As a part of the associated data structures,
 there should be the ability to mark a server IP structure as having
 the same server as another and to mark an IP address as currently
 unresolved. One way to do this is to a allow each such entry to
 point to another with the pointer value being one of:

 o A pointer to another entry for an IP address associated with the
 same server, where that IP address is the first one referenced to
 access that server.

 o A pointer to the current entry if there is no earlier IP address
 associated with the same server, i.e. where the current IP address
 is the first one referenced to access that server. We'll refer to
 such an IP address as the lead IP address for a given server.

 o The value NULL if the address's server identity is currently
 unresolved.

 In order to keep the above information current, in the interests of
 the most effective trunking determination, RENEWs should be
 periodically done on each server. However, even if this is not done,
 the primary purpose of the trunking determination algorithm, to
 prevent confusion due to trunking hidden from the client, will be
 achieved.

 Given this apparatus, when a SETCLIENTID is done and a clientid4
 returned, the data structure can be searched for a matching clientid4

Noveck, et al. Expires July 8, 2015 [Page 17]

Internet-Draft nfsv4-3530-migr-update January 2015

 and if such is found, further processing can be done to determine
 whether the clientid4 match is accidental, or the result of trunking.

 In this algorithm, when SETCLIENTID is done it will use the common
 nfs_client_id4 and specify the current target IP address as part of
 the callback parameters. We call the clientid4 and SETCLIENTID
 verifier returned by this operation XC and XV.

 Note that when the client has done previous SETCLIENTID's, to any IP
 addresses, with more than one principal or authentication flavor, we
 have the possibility of receiving NFS4ERR_CLID_INUSE, since we do not
 yet know which of our connections with existing IP addresses might be
 trunked with our current one. In the event that the SETCLIENTID
 fails with NFS4ERR_CLID_INUSE, one must try all other combinations of
 principals and authentication flavors currently in use and eventually
 one will be correct and not return NFS4ERR_CLID_INUSE.

 Note that at this point, no SETCLIENTID_CONFIRM has yet been done.
 This is because our SETCLIENTID has either established a new
 clientid4 on a previously unknown server or changed the callback
 parameters on a clientid4 associated with some already known server.
 Given that we don't want to confirm something that we are not sure we
 want to happen, what is to be done next depends on information about
 existing clientid4's.

 o If no matching clientid4 is found, the IP address X and clientid4
 XC are added to the list and considered as having no existing
 known IP addresses trunked with it. The IP address is marked as a
 lead IP address for a new server. A SETCLIENTID_CONFIRM is done
 using XC and XV.

 o If a matching clientid4 is found which is marked unresolved,
 processing on the new IP address is suspended. In order to
 simplify processing, there can only be one unresolved IP address
 for any given clientid4.

 o If one or more matching clientid4's is found, none of which is
 marked unresolved, the new IP address X is entered and marked
 unresolved. A SETCLIENTID_CONFIRM is done to X using XC and XV.

 After applying the steps below to each of the lead IP addresses
 with a matching clientid4, the address will have been resolved: It
 may have been determined to be part of an already known server as
 a new IP address to be added to an existing set of IP addresses
 for that server. Otherwise, it will be recognized as a new
 server. At the point at which this determination is made, the
 unresolved indication is cleared and any suspended SETCLIENTID
 processing is restarted

Noveck, et al. Expires July 8, 2015 [Page 18]

Internet-Draft nfsv4-3530-migr-update January 2015

 For each lead IP address IPn with a clientid4 matching XC, the
 following steps are done. Because the RPC to do a SETCLIENTID could
 take considerable time, it is desirable for the client to perform
 these operations in parallel. Note that because the clientid4 is a
 64-bit value, the number of such IP addresses that would need to be
 tested is expected to be quite small, even when the client is
 interacting with many NFSv4.0 servers. Thus, while parallel
 processing is desirable, it is not necessary.

 o If the principal for IPn does not match that for X, the IP address
 is skipped, since it is impossible for IPn and X to be trunked in
 these circumstances. If the principal does match but the
 authentication flavor does not, the authentication flavor already
 used should be used for address X as well. This will avoid any
 possibility that NFS4ERR_CLID_INUSE will be returned for the
 SETCLIENTID and SETCLIENTID_CONFIRM to be done below, as long as
 the server(s) at IP addresses IPn and X are correctly implemented.

 o A SETCLIENTID is done to update the callback parameters to reflect
 the possibility that X will be marked as associated with the
 server whose lead IP address is IPn. The specific callback
 parameters chosen, in terms of cb_client4 and callback_ident, are
 up to the client and should reflect its preferences as to callback
 handling for the common clientid, in the event that X and IPn are
 trunked together. When we do a SETCLIENTID on IP address IPn, we
 get back a setclientid_confirm value (in the form of a verifier4),
 which we call SCn.

 Note that the NFSv4.0 specification requires the server to make
 sure that such verifiers are very unlikely to be regenerated.
 Given that it is already highly unlikely that the clientid XC is
 duplicated by distinct servers, the probability that SCn is
 duplicated as well has to be considered vanishingly small. Note
 also that the callback update procedure can be repeated multiple
 times to reduce the probability of spurious matches further.

 o We save the setclientid_confirm value SCn for later use in
 confirming the SETCLIENTID done to IPn.

 Once the SCn values are gathered up by the procedure above, they are
 each tested by being used as the verifier for a SETCLIENTID_CONFIRM
 operation directed to the original IP address X, whose trunking
 relationships are to be determined. These RPC operations may be done
 in parallel.

 There are a number of things that should be noted at this point.

Noveck, et al. Expires July 8, 2015 [Page 19]

Internet-Draft nfsv4-3530-migr-update January 2015

 o That the SETCLIENTID operations done on the various IPn addresses
 in the procedure above will never be confirmed by
 SETCLIENTID_CONFIRM operations directed to the various IPn
 addresses. If these callback updates are to be confirmed, they
 will be confirmed by SETCLIENTID_CONFIRM operations directed at
 the original IP address X, which can only happen if SCn was
 generated by an IPn which was trunked with X, allowing the
 SETCLIENTID to be successfully confirmed, and allowing us to infer
 the existence of that trunking relationship.

 o That the number of successful SETCLIENTID_CONFIRM operations done
 should never be more than one. If both SCn and SCm are accepted
 by X, then it indicates that both IPn and IPm are trunked with X,
 but that is only possible if IPn and IPm are trunked together.
 Since these two addresses were earlier recognized as not trunked
 together, this should be impossible, if the servers in question
 are implemented correctly.

 Further processing depends on the success or failure of the various
 SETCLIENTD_CONFIRM operations done in the step above.

 o If the setclientid_confirm value generated by a particular IPn is
 accepted on X then X and IPn are recognized as connected to the
 same server and the entry for X is marked as associated with IPn.

 o If none of the confirm operations are accepted, then X is
 recognized as a distinct server. Its callback parameters will
 remain as the ones established by the original SETCLIENTID.

 In either of the cases, the entry is considered resolved and
 processing can be restarted for IP addresses whose clientid4 matched
 XC but whose resolution had been deferred.

 The procedure described above must be performed so as to exclude the
 possibility that multiple SETCLIENTID's, done to different server IP
 addresses and returning the same clientid4 might "race" in such a
 fashion that there is no explicit determination of whether they
 correspond to the same server. The following possibilities for
 serialization are all valid and implementers may choose among them
 based on a tradeoff between performance and complexity. They are
 listed in order of increasing parallelism:

 o An NFSv4.0 client might serialize all instances of SETCLIENTID/
 SETCLIENTID_CONFIRM processing, either directly or by serializing
 mount operations involving use of NFSv4.0. While doing so will
 prevent the races mentioned above, this degree of serialization
 can cause performance issues when there is a high volume of mount
 operations.

Noveck, et al. Expires July 8, 2015 [Page 20]

Internet-Draft nfsv4-3530-migr-update January 2015

 o One might instead serialize the period of processing that begins
 when the clientid4 received from the server is processed and ends
 when all trunking determination for that server is completed.
 This prevents the races mentioned above, without adding to delay
 except when trunking determination is common.

 o One might avoid much of the serialization implied above, by
 allowing trunking determination for distinct clientid4 values to
 happen in parallel, with serialization of trunking determination
 happening independently for each distinct clientid4 value.

 The procedure above has made no explicit mention of the possibility
 that server reboot can occur at any time. To address this
 possibility the client should make sure the following steps are
 taken:

 o When a SETCLIENTID_CONFIRM is rejected by a given IPn, the client
 should be aware of the possibility that the rejection is due to XC
 (rather than XV) being invalid. This situation can be addressed
 by doing a RENEW specifying XC directed to the IP address X. If
 that operation succeeds, then the rejection is to be acted on
 normally since either XV is invalid on IPn or XC has become
 invalid on IPn while it is valid on X, showing that IPn and X are
 not trunked. If, on the other hand, XC is not valid on X, then
 the trunking detection process should be restarted once a new
 clientid is established on X.

 o In the event of a reboot detected on any server lead IP, the set
 of IP addresses associated with the server should not change and
 state should be re-established for the lease as a whole, using all
 available connected server IP addresses. It is prudent to verify
 connectivity by doing a RENEW using the new clientid4 on each such
 server address before using it, however.

 Another situation not discussed explicitly above is the possibility
 that a SETCLIENTID done to one of the IPn addresses might take so
 long that it is necessary to time out the operation, to prevent
 unacceptably delaying the MOUNT operation. One simple possibility is
 to simply fail the MOUNT at this point. Because the average number
 of IP addresses that might have to be tested is quite small, this
 will not greatly increase the probability of MOUNT failure. Other
 possible approaches are:

 o If the IPn has sufficient state in existence, the existing
 stateids and sequence values might be validated by being used on
 IP address X. In the event of success, X and IPn should be
 considered trunked together.

Noveck, et al. Expires July 8, 2015 [Page 21]

Internet-Draft nfsv4-3530-migr-update January 2015

 What constitutes "sufficient" state in this context is an
 implementation decision which is affected by the implementer's
 willingness to fail the MOUNT in an uncertain case, and the
 strength of the state verification procedure implemented.

 o If IPn has no locking state in existence, X could be recorded as a
 lead IP address on a provisional basis, subject to trunking being
 tested again, once IPn starts becoming responsive. To avoid
 confusion between IPn and X, and the need to merge distinct state
 corpora for X and IPn at a later point, this retest of trunking
 should occur after RENEWs on IPn are responded to and before
 establishing any new state for either IPn as a separate server or
 for IPn considered as a server address trunked with X.

 o The client locking-related code could be made more tolerant of
 what would otherwise be considered anomalous results due to an
 unrecognized trunking relationship. The client could use the
 appearance of behavior explainable by a previously unknown
 trunking relationship as the cue to consider the addresses as
 trunked.

 This choice has a lot of complexity associated with it, and it is
 likely that few implementations will use it. When the set of
 locking state on IPn is small (e.g. a single stateid) but not
 empty, most client implementations are likely to either fail the
 MOUNT or implement a more stringent verification procedure using
 the existing stateid on IPn as a basis to generate further state
 as raw material for the trunking verification process.

4.9. Client Id String Construction Details

 This section gives more detailed guidance on client id construction.
 Note that among the items suggested for inclusion, there are many
 that may conceivably change. In order for the client id string to
 remain valid in such circumstances, the client should either:

 o Use a saved copy of such value, rather than the changeable value
 itself.

 o Save the constructed client id string, rather than constructing it
 anew at SETCLIENTID time, based on unchangeable parameters and
 saved copies of changeable data items.

 A file is not always a valid choice to store such information, given
 the existence of diskless clients. In such situations, whatever
 facilities exist for a client to store configuration information such
 as boot arguments should be used.

Noveck, et al. Expires July 8, 2015 [Page 22]

Internet-Draft nfsv4-3530-migr-update January 2015

 Given the considerations listed in Section 4.2, an example of a well
 generated id string is one that includes:

 o The client's network address, or more safely, an address that has
 previously been used in that capacity.

 o For a user level NFSv4.0 client, it should contain additional
 information to distinguish the client from other user level
 clients running on the same host, such as a universally unique
 identifier (UUID).

 o Additional information that tends to be unique, such as one or
 more of:

 * The client machine's serial number (for privacy reasons, it is
 best to perform some one way function on the serial number).

 * A MAC address. Note that this can cause difficulties when
 there are configuration changes or when a client has multiple
 network adapters.

 * The timestamp of when the NFSv4 software was first installed on
 the client (though this is subject to the previously mentioned
 caution about using information that is stored in a file,
 because the file might only be accessible over NFSv4).

 * A true random number, generally established once and saved.

5. Locking and Multi-Server Namespace

 This chapter is a replacement for section 7.7.6, "Lock State and File
 System transitions", in [RFC3530bis]).

 It supersedes the replaced sections.

5.1. Changes from Replaced Sections

 These changes can be briefly summarized as follows:

 o Adding text to address the case of stateid conflict on migration.

 o Specifying that when leases are moved, as a result of filesystem
 migration, they are to be merged with leases on the destination
 server that are connected to the same client.

 o Adding text that deals with the case of a clientid4 being changed
 on state transfer as a result of conflict with an existing
 clientid4.

Noveck, et al. Expires July 8, 2015 [Page 23]

Internet-Draft nfsv4-3530-migr-update January 2015

 o Adding a section describing how information associated with
 openowners and lockowners is to be managed with regard to
 migration.

 o The description of handling of the NFS4ERR_LEASE_MOVED has been
 rewritten for greater clarity.

5.2. Lock State and Filesystem Transitions

 When responsibility for handling a given filesystem is transferred to
 a new server (migration) or the client chooses to use an alternate
 server (e.g., in response to server unresponsiveness) in the context
 of filesystem replication, the appropriate handling of state shared
 between the client and server (i.e., locks, leases, stateids, and
 client IDs) is as described below. The handling differs between
 migration and replication.

 If a server replica or a server immigrating a filesystem agrees to,
 or is expected to, accept opaque values from the client that
 originated from another server, then it is a wise implementation
 practice for the servers to encode the "opaque" values in network
 byte order. When doing so, servers acting as replicas or immigrating
 filesystems will be able to parse values like stateids, directory
 cookies, filehandles, etc. even if their native byte order is
 different from that of other servers cooperating in the replication
 and migration of the filesystem.

5.3. Migration and State

 In the case of migration, the servers involved in the migration of a
 filesystem SHOULD transfer all server state associated with the
 migrating filesystem from source to the destination server. This
 must be done in a way that is transparent to the client. This state
 transfer will ease the client's transition when a filesystem
 migration occurs. If the servers are successful in transferring all
 state, the client will continue to use stateids assigned by the
 original server. Therefore the new server must recognize these
 stateids as valid and treat them as representing the same locks as
 they did on the source server.

 In this context, the phrase "the same locks" means:

 o That they are associated with the same file

 o That they represent the same types of locks, whether opens,
 delegations, advisory byte-range locks, or mandatory byte-range
 locks.

Noveck, et al. Expires July 8, 2015 [Page 24]

Internet-Draft nfsv4-3530-migr-update January 2015

 o That they have the same lock particulars, including such things as
 access modes, deny modes, and byte ranges.

 o That they are associated with the same owner string(s).

 If transferring stateids from server to server would result in a
 conflict for an existing stateid for the destination server with the
 existing client, transparent state migration MUST NOT happen for that
 client. Servers participating in using transparent state migration
 should co-ordinate their stateid assignment policies to make this
 situation unlikely or impossible. The means by which this might be
 done, like all of the inter-server interactions for migration, are
 not specified by the NFS version 4.0 protocol.

 A client may determine the disposition of migrated state by using a
 stateid associated with the migrated state on the new server.

 o If the stateid is not valid and an error NFS4ERR_BAD_STATEID is
 received, either transparent state migration has not occurred or
 the state was purged due to boot verifier mismatch.

 o If the stateid is valid, transparent state migration has occurred.

 Since responsibility for an entire filesystem is transferred with a
 migration event, there is no possibility that conflicts will arise on
 the destination server as a result of the transfer of locks.

 The servers may choose not to transfer the state information upon
 migration. However, this choice is discouraged, except where
 specific issues such as stateid conflicts make it necessary. When a
 server implements migration and it does not transfer state
 information, it SHOULD provide a filesystem-specific grace period, to
 allow clients to reclaim locks associated with files in the migrated
 filesystem. If it did not do so, clients would have to re-obtain
 locks, with no assurance that a conflicting lock was not granted
 after the filesystem was migrated and before the lock was re-
 obtained.

 In the case of migration without state transfer, when the client
 presents state information from the original server (e.g. in a RENEW
 op or a READ op of zero length), the client must be prepared to
 receive either NFS4ERR_STALE_CLIENTID or NFS4ERR_BAD_STATEID from the
 new server. The client should then recover its state information as
 it normally would in response to a server failure. The new server
 must take care to allow for the recovery of state information as it
 would in the event of server restart.

Noveck, et al. Expires July 8, 2015 [Page 25]

Internet-Draft nfsv4-3530-migr-update January 2015

 In those situations in which state has not been transferred, as shown
 by a return of NFS4ERR_BAD_STATEID, the client may attempt to reclaim
 locks in order to take advantage of cases in which the destination
 server has set up a file-system-specific grace period in support of
 the migration.

5.3.1. Migration and Clientid's

 Handling of clientid values is similar to that for stateids.
 However, there are some differences that derive from the fact that a
 clientid is an object which spans multiple filesystems while a
 stateid is inherently limited to a single filesystem.

 The clientid4 and nfs_client_id4 information (id string and boot
 verifier) will be transferred with the rest of the state information
 and the destination server should use that information to determine
 appropriate clientid4 handling. Although the destination server may
 make state stored under an existing lease available under the
 clientid4 used on the source server, the client should not assume
 that this is always so. In particular,

 o If there is an existing lease with an nfs_client_id4 that matches
 a migrated lease (same id string and boot verifier), the server
 SHOULD merge the two, making the union of the sets of stateids
 available under the clientid4 for the existing lease. As part of
 the lease merger, the expiration time of the lease will reflect
 renewal done within either of the ancestor leases (and so will
 reflect the latest of the renewals).

 o If there is an existing lease with an nfs_client_id4 that
 partially matches a migrated lease (same id string and a different
 boot verifier), the server MUST eliminate one of the two, possibly
 invalidating one of the ancestor clientid4's. Since boot
 verifiers are not ordered, the later lease renewal time will
 prevail.

 o If the destination server already has the transferred clientid4 in
 use for another purpose, it is free to substitute a different
 clientid4 and associate that with the transferred nfs_client_id4.

 When leases are not merged, the transfer of state should result in
 creation of a confirmed client record with empty callback information
 but matching the {v, x, c} with v and x derived from the transferred
 client information and c chosen by the destination server.

 In such cases, the client SHOULD re-establish new callback
 information with the new server as soon as possible, according to
 sequences described in sections "Operation 35: SETCLIENTID -

Noveck, et al. Expires July 8, 2015 [Page 26]

Internet-Draft nfsv4-3530-migr-update January 2015

 Negotiate Client ID" and "Operation 36: SETCLIENTID_CONFIRM - Confirm
 Client ID". This ensures that server operations are not delayed due
 to an inability to recall delegations. The client can determine the
 new clientid (the value c) from the response to SETCLIENTID.

 The client can use its own information about leases with the
 destination server to see if lease merger should have happened. When
 there is any ambiguity, the client MAY use the above procedure to set
 the proper callback information and find out, as part of the process,
 the correct value of its clientid with respect to the server in
 question.

5.3.2. Migration and State Owner Information

 In addition to stateids, the locks they represent, and clientid
 information, servers also need to transfer information related to the
 current status of openowners and lockowners.

 This information includes:

 o The sequence number of the last operation associated with the
 particular owner.

 o Information regarding the results of the last operation,
 sufficient to allow reissued operations to be correctly responded
 to.

 When clients are implemented to isolate each openowner and lockowner
 to a particular filesystem, the server SHOULD transfer this
 information together with the lock state. The owner ceases to exist
 on the source server and is reconstituted on the destination server.

 Note that when servers take this approach for all owners whose state
 is limited to the particular filesystem being migrated, doing so will
 not cause difficulties for clients not adhering to an approach in
 which owners are isolated to particular filesystems. As long as the
 client recognizes the loss of transferred state, the protocol allows
 the owner in question to disappear and the client may have to deal
 with an owner confirmation request that would not have occurred in
 the absence of the migration.

 When migration occurs and the source server discovers an owner whose
 state includes the migrated filesystem but other filesystems as well,
 it cannot transfer the associated owner state. Instead, the existing
 owner state stays in place but propagation of owner state is done as
 specified below

Noveck, et al. Expires July 8, 2015 [Page 27]

Internet-Draft nfsv4-3530-migr-update January 2015

 o When the current seqid for an owner represents an operation
 associated with the filesystem being migrated, owner status SHOULD
 be propagated to the destination filesystem.

 o When the current seqid for an owner does not represent an
 operation associated with the filesystem being migrated, owner
 status MAY be propagated to the destination filesystem.

 o When the owner in question has never been used for an operation
 involving the migrated filesystem, the owner information SHOULD
 NOT be propagated to the destination filesystem.

 Note that a server may obey all of the conditions above without the
 overhead of keeping track of set of filesystems that any particular
 owner has been associated with. Consider a situation in which the
 source server has decided to keep lock-related state associated with
 a filesystem fixed, preparatory to propagating it to the destination
 filesystem. If a client is free to create new locks associated with
 existing owners on other filesystems, the owner information may be
 propagated to the destination filesystem, even though, at the time
 the filesystem migration is recognized by the client to have
 occurred, the last operation associated with the owner may not be
 associated with the migrating filesystem.

 When source server propagates owner-related state associated with
 owners that span multiple filesystems, it will propagate the owner
 sequence value to the destination server, while retaining it on the
 source server, as long as there exists state associated with the
 owner. When owner information is propagated in this way, source and
 destination servers start with the same owner sequence value which is
 then updated independently, as the client makes owner-related
 requests to the servers. Note that each server will have some period
 in which the associated sequence value for an owner is identical to
 the one transferred as part of migration. At those times, when a
 server receives a request with a matching owner sequence value, it
 MUST NOT respond with the associated stored response if the
 associated filesystem is not, when the reissued request is received,
 part of the set of filesystems handled by that server.

 One sort of case may require more complex handling. When multiple
 filesystem are migrated, in sequence, to a specific destination
 server, an owner may be migrated to a destination server, on which it
 was already present, leading to the issue of how the resident owner
 information and that being newly migrated are to be reconciled.

 If filesystem migration encounters a situation where owner
 information needs to be merged, it MAY decline to transfer such

Noveck, et al. Expires July 8, 2015 [Page 28]

Internet-Draft nfsv4-3530-migr-update January 2015

 state, even if it chooses to handle other cases in which locks for a
 given owner are spread among multiple filesystems.

 As a way of understanding the situations which need to be addressed
 when owner information needs to be merged, consider the following
 scenario:

 o There is client C and two servers X and Y. There are two
 clientid's designating C, which we refer to as CX and CY.

 o Initially server X supports filesystems F1, F2, F3, and F4. These
 will be migrated, one-at-a-time, to server Y.

 o While these migrations are proceeding, the client makes locking
 requests for filesystem F1 through F4 on behalf of owner O (either
 a lockowner or an openowner), with each request going to X or Y
 depending on where the relevant filesystem is being supported at
 the time the request is made.

 o Once the first migration event occurs, client C will maintain two
 instances for owner O, one for each server.

 o It is always possible that C may make a request of server X
 relating to owner O, and before receiving a response, find the
 target filesystem has moved to Y, and need to re-issue the request
 to server Y.

 o At the same time, C may make a request of server Y relating to
 owner O, and this too may encounter a lost-response situation.

 As a result of such situations, the server needs to provide support
 for dealing with retransmission of owner-sequenced requests that
 diverges from the typical model in which there is support for
 retransmission of replies only for a request whose sequence value
 exactly matches the last one sent. Such support only needs to be
 provided for requests issued before the migration event whose status
 as the last by sequence is invalidated by the migration event.

 When servers do support such merger of owner information on the
 destination server, the following rules are to be adhered to:

 o When an owner sequence value is propagated to a destination server
 where it already exists, the resulting sequence value is to be the
 greater of the one present on the destination server and the one
 being propagated as part of migration.

 o In the event that an owner sequence value on a server represents a
 request applying to a filesystem currently present on the server,

Noveck, et al. Expires July 8, 2015 [Page 29]

Internet-Draft nfsv4-3530-migr-update January 2015

 it is not to be rendered invalid simply because that sequence
 value is changed as a result of owner information propagation as
 part of filesystem migration. Instead, it is retained until it
 can be deduced that the client in question has received the reply.

 As a result of the operation of these rules, there are three ways in
 which we can have more reply data than what is typically present,
 i.e. data for a single request per owner whose sequence is the last
 one received, where the next sequence to be used is one beyond that.

 o When the owner sequence value for a migrating filesystem is
 greater than the corresponding value on the destination server,
 the last request for the owner in effect at the destination server
 needs to be retained, even though it is no longer one less the
 next sequence to be received.

 o When the owner sequence value for a migrating filesystem is less
 than the corresponding value on the destination server the last
 request for the owner in effect on the migrating filesystem needs
 to be retained, even though it is no longer one less the next
 sequence to be received.

 o When the owner sequence value for a migrating filesystem is equal
 to the corresponding value on the destination server, one has two
 different "last" requests which both must be retained. The next
 sequence value to be used is one beyond the sequence value shared
 by these two requests.

 Here are some guidelines as to when servers can drop such additional
 reply data which is created as part of owner information migration.

 o The server SHOULD NOT drop this information simply because it
 receives a new sequence value for the owner in question, since
 that request may have been issued before the client was aware of
 the migration event.

 o The server SHOULD drop this information if it receives a new
 sequence value for the owner in question and the request relates
 to the same filesystem.

 o The server SHOULD drop the part of this information that relates
 to non-migrated filesystems, if it receives a new sequence value
 for the owner in question and the request relates to a non-
 migrated filesystem.

 o The server MAY drop this information when it receives a new
 sequence value for the owner in question a considerable period of

Noveck, et al. Expires July 8, 2015 [Page 30]

Internet-Draft nfsv4-3530-migr-update January 2015

 time (more than one or two lease periods) after the migration
 occurs.

5.4. Replication and State

 Since client switch-over in the case of replication is not under
 server control, the handling of state is different. In this case,
 leases, stateids and client IDs do not have validity across a
 transition from one server to another. The client must re-establish
 its locks on the new server. This can be compared to the re-
 establishment of locks by means of reclaim-type requests after a
 server reboot. The difference is that the server has no provision to
 distinguish requests reclaiming locks from those obtaining new locks
 or to defer the latter. Thus, a client re-establishing a lock on the
 new server (by means of a LOCK or OPEN request), may have the
 requests denied due to a conflicting lock. Since replication is
 intended for read-only use of filesystems, such denial of locks
 should not pose large difficulties in practice. When an attempt to
 re-establish a lock on a new server is denied, the client should
 treat the situation as if its original lock had been revoked.

5.5. Notification of Migrated Lease

 A filesystem can be migrated to another server while a client that
 has state related to that filesystem is not actively submitting
 requests to it. In this case, the migration is reported to the
 client during lease renewal. Lease renewal can occur either
 explicitly via a RENEW operation, or implicitly when the client
 performs a lease-renewing operation on another filesystem on that
 server.

 In order for the client to schedule renewal of leases that may have
 been relocated to the new server, the client must find out about
 lease relocation before those leases expire. Similarly, when
 migration occurs but there has not been transparent state migration,
 the client needs to find out about the change soon enough to be able
 to reclaim the lock within the destination server's grace period. To
 accomplish this, all operations which implicitly renew leases for a
 client (such as OPEN, CLOSE, READ, WRITE, RENEW, LOCK, and others),
 will return the error NFS4ERR_LEASE_MOVED if responsibility for any
 of the leases to be renewed has been transferred to a new server.
 Note that when the transfer of responsibility leaves remaining state
 for that lease on the source server, the lease is renewed just as it
 would have been in the NFS4ERR_OK case, despite returning the error.
 The transfer of responsibility happens when the server receives a
 GETATTR(fs_locations) from the client for each filesystem for which a
 lease has been moved to a new server. Normally it does this after
 receiving an NFS4ERR_MOVED for an access to the filesystem but the

Noveck, et al. Expires July 8, 2015 [Page 31]

Internet-Draft nfsv4-3530-migr-update January 2015

 server is not required to verify that this happens in order to
 terminate the return of NFS4ERR_LEASE_MOVED. By convention, the
 compounds containing GETATTR(fs_locations) SHOULD include an appended
 RENEW operation to permit the server to identify the client getting
 the information.

 Note that the NFS4ERR_LEASE_MOVED error is only required when
 responsibility for at least one stateid has been affected. In the
 case of a null lease, where the only associated state is a clientid,
 an NFS4ERR_LEASE_MOVED error SHOULD NOT be generated.

 Upon receiving the NFS4ERR_LEASE_MOVED error, a client that supports
 filesystem migration MUST perform the necessary GETATTR operation for
 each of the filesystems containing state that have been migrated and
 so give the server evidence that it is aware of the migration of the
 filesystem. Once the client has done this for all migrated
 filesystems on which the client holds state, the server MUST resume
 normal handling of stateful requests from that client.

 One way in which clients can do this efficiently in the presence of
 large numbers of filesystems is described below. This approach
 divides the process into two phases, one devoted to finding the
 migrated filesystems and the second devoted to doing the necessary
 GETATTRs.

 The client can find the migrated filesystems by building and issuing
 one or more COMPOUND requests, each consisting of a set of PUTFH/
 GETFH pairs, each pair using an fh in one of the filesystems in
 question. All such COMPOUND requests can be done in parallel. The
 successful completion of such a request indicates that none of the
 filesystems interrogated have been migrated while termination with
 NFS4ERR_MOVED indicates that the filesystem getting the error has
 migrated while those interrogated before it in the same COMPOUND have
 not. Those whose interrogation follows the error remain in an
 uncertain state and can be interrogated by restarting the requests
 from after the point at which NFS4ERR_MOVED was returned or by
 issuing a new set of COMPOUND requests for the filesystems which
 remain in an uncertain state.

 Once the migrated filesystems have been found, all that is needed is
 for the client to give evidence to the server that it is aware of the
 migrated status of filesystems found by this process, by
 interrogating the fs_locations attribute for an fh within each of the
 migrated filesystems. The client can do this by building and issuing
 one or more COMPOUND requests, each of which consists of a set of
 PUTFH operations, each followed by a GETATTR of the fs_locations
 attribute. A RENEW is necessary to enable the operations to be
 associated with the lease returning NFS4ERR_LEASE_MOVED. Once the

Noveck, et al. Expires July 8, 2015 [Page 32]

Internet-Draft nfsv4-3530-migr-update January 2015

 client has done this for all migrated filesystems on which the client
 holds state, the server will resume normal handling of stateful
 requests from that client.

 In order to support legacy clients that do not handle the
 NFS4ERR_LEASE_MOVED error correctly, the server SHOULD time out after
 a wait of at least two lease periods, at which time it will resume
 normal handling of stateful requests from all clients. If a client
 attempts to access the migrated files, the server MUST reply
 NFS4ERR_MOVED. In this situation, it is likely that the client would
 find its lease expired although a server may use "courtesy" locks to
 mitigate the issue.

 When the client receives an NFS4ERR_MOVED error, the client can
 follow the normal process to obtain the destination server
 information (through the fs_locations attribute) and perform renewal
 of those leases on the new server. If the server has not had state
 transferred to it transparently, the client will receive either
 NFS4ERR_STALE_CLIENTID or NFS4ERR_STALE_STATEID from the new server,
 as described above. The client can then recover state information as
 it does in the event of server failure.

 Aside from recovering from a migration, there are other reasons a
 client may wish to retrieve fs_locations information from a server.
 When a server becomes unresponsive, for example, a client may use
 cached fs_locations data to discover an alternate server hosting the
 same filesystem data. A client may periodically request fs_locations
 data from a server in order to keep its cache of fs_locations data
 fresh.

 Since a GETATTR(fs_locations) operation would be used for refreshing
 cached fs_locations data, a server could mistake such a request as
 indicating recognition of an NFS4ERR_LEASE_MOVED condition.
 Therefore a compound which is not intended to signal that a client
 has recognized a migrated lease SHOULD be prefixed with a guard
 operation which fails with NFS4ERR_MOVED if the file handle being
 queried is no longer present on the server. The guard can be as
 simple as a GETFH operation.

 Though unlikely, it is possible that the target of such a compound
 could be migrated in the time after the guard operation is executed
 on the server but before the GETATTR(fs_locations) operation is
 encountered. When a client issues a GETATTR(fs_locations) operation
 as part of a compound not intended to signal recognition of a
 migrated lease, it SHOULD be prepared to process fs_locations data in
 the reply that shows the current location of the filesystem is gone.

Noveck, et al. Expires July 8, 2015 [Page 33]

Internet-Draft nfsv4-3530-migr-update January 2015

5.6. Migration and the Lease_time Attribute

 In order that the client may appropriately manage its leases in the
 case of migration, the destination server must establish proper
 values for the lease_time attribute.

 When state is transferred transparently, that state should include
 the correct value of the lease_time attribute. The lease_time
 attribute on the destination server must never be less than that on
 the source since this would result in premature expiration of leases
 granted by the source server. Upon migration in which state is
 transferred transparently, the client is under no obligation to re-
 fetch the lease_time attribute and may continue to use the value
 previously fetched (on the source server).

 In the case in which lease merger occurs as part of state transfer,
 the lease_time attribute of the destination lease remains in effect.
 The client can simply renew that lease with its existing lease_time
 attribute. State in the source lease is renewed at the time of
 transfer so that it cannot expire, as long as the destination lease
 is appropriately renewed.

 If state has not been transferred transparently (i.e., the client
 needs to reclaim or re-obtain its locks), the client should fetch the
 value of lease_time on the new (i.e., destination) server, and use it
 for subsequent locking requests. However the server must respect a
 grace period at least as long as the lease_time on the source server,
 in order to ensure that clients have ample time to reclaim their
 locks before potentially conflicting non-reclaimed locks are granted.
 The means by which the new server obtains the value of lease_time on
 the old server is left to the server implementations. It is not
 specified by the NFS version 4.0 protocol.

6. Server Implementation Considerations

 This chapter provides suggestions to help server implementers deal
 with issues involved in the transparent transfer of filesystem-
 related data between servers. Servers are not obliged to follow
 these suggestions, but should be sure that their approach to the
 issues handle all the potential problems addressed below.

6.1. Relation of Locking State Transfer to Other Aspects of Filesystem
 Motion

 In many cases, state transfer will be part of a larger function
 wherein the contents of a filesystem are transferred from server to
 server. Although specifics will vary with the implementation, the
 relation between the transfer of persistent file data and metadata

Noveck, et al. Expires July 8, 2015 [Page 34]

Internet-Draft nfsv4-3530-migr-update January 2015

 and the transfer of state will typically be described by one of the
 cases below.

 o In some implementations, access to the on-disk contents of a
 filesystem can be transferred from server to server by making the
 storage devices on which the filesystem resides physically
 accessible from multiple servers, and transferring the right and
 responsibility for handling that filesystem from server to server.

 In such implementations, the transfer of locking state happens on
 its own, as described in Section 6.2. The transfer of physical
 access to the filesystem happens after the locking state is
 transferred and before any subsequent access to the filesystem.
 In cases where such transfer is not instantaneous, there will be a
 period in which all operations on the filesystem are held off,
 either by having the operations themselves return NFS4ERR_DELAY,
 or, where this is not allowed, by using the techniques described
 below in Section 6.2.

 o In other implementations, filesystem data and metadata must be
 copied from the server where it has existed to the destination
 server. Because of the typical amounts of data involved, it is
 generally not practical to hold off access to the filesystem while
 this transfer is going on. Normal access to the filesystem,
 including modifying operations, will generally happen while the
 transfer is going on.

 Eventually the filesystem copying process will complete. At this
 point, there will be two valid copies of the filesystem, one on
 each of the source and destination servers. Servers may maintain
 that state of affairs by making sure that each modification to
 filesystem data is done on both the source and destination
 servers.

 Although the transfer of locking state can begin before the above
 state of affairs is reached, servers will often wait until it is
 arrived at to begin transfer of locking state. Once the transfer
 of locking state is completed, as described in the section below,
 clients may be notified of the migration event and access the
 destination filesystem on the destination server.

 o Another case in which filesystem data and metadata must be copied
 from server to server involves a variant of the pattern above. In
 cases in which a single filesystem moves between or among a small
 set of servers, it will transition to a server on which a previous
 instantiation of that same filesystem existed before. In such
 cases, it is often more efficient to update the previous
 filesystem instance to reflect changes made while the active

Noveck, et al. Expires July 8, 2015 [Page 35]

Internet-Draft nfsv4-3530-migr-update January 2015

 filesystem was residing elsewhere, rather than copying the
 filesystem data anew.

 In such cases, the copying of filesystem data and metadata is
 replaced by a process which validates each visible filesystem
 object, copying new objects and updating those that have changed
 since the filesystem was last present on the destination server.
 Although this process is generally shorter than a complete copy,
 it is generally long enough that it is not practical to hold off
 access to the filesystem while this update is going on.

 Eventually the filesystem updating process will complete. At this
 point, there will be two valid copies of the filesystem, one on
 each of the source and destination servers. Servers may maintain
 that state of affairs just as is done in the previous case.
 Similarly, the transfer of locking state, once it is complete,
 allows the clients to be notified of the migration event and
 access the destination filesystem on the destination server.

6.2. Preventing Locking State Modification During Transfer

 When transferring locking state from the source to a destination
 server, there will be occasions when the source server will need to
 prevent operations that modify the state being transferred. For
 example, if the locking state at time T is sent to the destination
 server, any state change that occurs on the source server after that
 time but before the filesystem transfer is made effective will mean
 that the state on the destination server will differ from that on the
 source server, which matches what the client would expect to see.

 In general, a server can prevent some set of server-maintained data
 from changing by returning NFS4ERR_DELAY on operations which attempt
 to change that data. In the case of locking state for NFSv4.0, there
 are two specific issues that might interfere:

 o Returning NFS4ERR_DELAY will not prevent state from changing in
 that owner-based sequence values will still change, even though
 NFS4ERR_DELAY is returned. For example OPEN and LOCK will change
 state (in the form of owner seqid values) even when they return
 NFS4ERR_DELAY.

 o Some operations which modify locking state are not allowed to
 return NFS4ERR_DELAY.

 Note that the first problem and many instances of the second can be
 addressed by returning NFS4ERR_DELAY on the operations that establish
 a filehandle within the target as one of the filehandles associated
 with the request, i.e. as either the current or saved filehandle.

Noveck, et al. Expires July 8, 2015 [Page 36]

Internet-Draft nfsv4-3530-migr-update January 2015

 This would require returning NFS4ERR_DELAY under the following
 circumstances:

 o On a PUTFH that specifies a filehandle within the target
 filesystem.

 o On a LOOKUP or LOOKUPP that crosses into the target filesystem.

 Note that if the server establishes and maintains a situation in
 which no request has, as either the current or saved filehandle, a
 filehandle within the target filesystem, no special handling of
 SAVEFH or RESTOREFH is required. Thus the fact that these operations
 cannot return NFS4ERR_DELAY is not a problem since neither will
 establish a filehandle in the target filesystem as the current
 filehandle.

 If the server is to establish the situation described above, it may
 have to take special note of long-running requests which started
 before state migration. Part of any solution to this issue will
 involve distinguishing two separate points in time at which handling
 for the target filesystem will change. Let us distinguish;

 o A time T after which the previously mentioned operations will
 return NFS4ERR_DELAY.

 o A later time T' at which the server can consider filesystem
 locking state fixed, making it possible for it to be sent to the
 destination server.

 For a server to decide on T', it must ensure that requests started
 before T, cannot change target filesystem locking state, given that
 all those started after T are dealt with by returning NFS4ERR_DELAY
 upon setting filehandles within the target filesystem. Among the
 ways of doing this are:

 o Keeping track of the earliest request started which is still in
 execution (for example, by keeping a list of active requests
 ordered by request start time). The server can then define T' to
 be the first time at which the earliest-started active request
 started after time T.

 o Keeping track of the count of requests, started before time T
 which have a filehandle within the target filesystem as either the
 current or saved filehandle. The server can then define T' to be
 the first time after T at which the count is zero.

 The set of operations that change locking state include two that
 cannot be dealt with by the above approach, because they are not

Noveck, et al. Expires July 8, 2015 [Page 37]

Internet-Draft nfsv4-3530-migr-update January 2015

 filesystem-specific and do not use a current filehandle as an
 implicit parameter.

 o RENEW can be dealt with by applying the renewal to state for non-
 transitioning filesystems. The effect of renewal for the
 transitioning filesystem can be ignored, as long as the servers
 make sure that the lease on the destination server has an
 expiration time that is no earlier than the latest renewal done on
 the source server. This can be easily accomplished by making the
 lease expiration on the destination server equal to the time the
 state transfer was completed plus the lease period.

 o RELEASE_LOCKOWNER can be handled by propagating the fact of the
 lockowner deletion (e.g. by using an RPC) to the destination
 server. Such a propagation RPC can be done as part of the
 operation or the existence of the deletion can be recorded locally
 and propagation of owner deletions to the destination server done
 as a batch later. In either case, the actual deletions on the
 destination server have to be delayed until all of the other state
 information has been transferred.

 Alternatively, RELEASE_LOCKOWNER can be dealt with by returning
 NFS4ERR_DELAY. In order to avoid compatibility issues for clients
 not prepared to accept NFS4ERR_DELAY in response to
 RELEASE_LOCKOWNER, care must be exercised. (See Section 7.3 for
 details.)

 The approach outlined above, wherein NFS$ERR_DELAY is returned based
 primarily on the use of current and saved filehandles in the
 filesystem, prevents all reference to the transitioning filesystem,
 rather than limiting the delayed operations to those that change
 locking state on the transitioning filesystem. Because of this,
 servers may choose to limit the time during which this broad approach
 is used by adopting a layered approach to the issue.

 o During the preparatory phase, operations that change, create, or
 destroy locks or modify the valid set of stateids will return
 NFS4ERR_DELAY. During this phase, owner-associated seqids may
 change, and the identity of the filesystem associated with the
 last request for a given owner may change as well. Also,
 RELEASE_LOCKOWNER operations may be processed without returning
 NFS4ERR_DELAY as long as the fact of the lockowner deletion is
 recorded locally for later transmission.

 o During the restrictive phase, operations that change locking state
 for the filesystem in transition are prevented by returning
 NFS4ERR_DELAY on any attempt to make a filehandle within that
 filesystem either the current or saved filehandle for a request.

Noveck, et al. Expires July 8, 2015 [Page 38]

Internet-Draft nfsv4-3530-migr-update January 2015

 RELEASE_LOCKOWNER operations may return NFS4ERR_DELAY, but if they
 are processed, the lockowner deletion needs to be communicated
 immediately to the destination server.

 A possible sequence would be the following.

 o The server enters the preparatory phase for the transitioning
 filesystem.

 o At this point locking state, including stateids, locks, owner
 strings are transferred to the destination server. The seqids
 associated with owners are either not transferred, or transferred
 on a provisional basis, subject to later change.

 o After the above has been transferred, the server may enter the
 restrictive phase for the filesystem.

 o At this point, the updated seqid values may be sent to the
 destination server.

 Reporting regarding pending owner deletions (as a result of
 RELEASE_LOCKOWNER operations) can be communicated at the same
 time.

 o Once it is known that all of this information has been transferred
 to the destination server, and there are no pending
 RELEASE_LOCKOWNER notifications outstanding, the source server may
 treat the filesystem transition as having occurred and return
 NFS4ERR_MOVED when an attempt is made to access it.

7. Additional Changes

 This chapter contains a number of items which relate to the changes
 in the chapters above, but which, for one reason or another, exist in
 different portions of the specification to be updated.

7.1. Summary of Additional Changes from Previous Documents

 We summarize here all the remaining changes, not included in the two
 main chapters.

 o New definition of the CLID_INUSE error.

 o A revised description of SETCLIENTID, which brings the description
 into sync with the rest of the spec regarding CLID_INUSE.

 o A revision to the Security Considerations section, indicating why
 integrity protection is needed for the SETCLIENTID operation.

Noveck, et al. Expires July 8, 2015 [Page 39]

Internet-Draft nfsv4-3530-migr-update January 2015

 o A revision of the error definitions chapter to allow
 RELEASE_LOCKOWNER to return NFS4ERR_DELAY, with appropriate
 constraints to assure interoperability with clients not expecting
 this error to be returned.

7.2. NFS4ERR_CLID_INUSE definition

 The definition of this error is now as follows

 The SETCLIENTID operation has found that the id string within the
 specified nfs_client_id4 was previously presented with a different
 principal and that client instance currently holds an active
 lease. A server MAY return this error if the same principal is
 used but a change in authentication flavor gives good reason to
 reject the new SETCLIENTID operation as not bona fide.

7.3. NFS4ERR_DELAY return from RELEASE_LOCKOWNER

 The existing error tables should be considered modified to allow
 NFS4ERR_DELAY to be returned by RELEASE_LOCKOWNER. However, the
 scope of this addition is limited and is not to be considered as
 making this error return generally acceptable.

 It needs to be made clear that servers may not return this error to
 clients not prepared to support filesystem migration. Such clients
 may be following the error specifications in [RFC3530bis] and so
 might not expect NFS4ERR_DELAY to be returned on RELEASE_LOCKOWNER.

 The following constraint applies to this additional error return, as
 if it were a note appearing together with the newly allowed error
 code:

 In order to make server state fixed for a filesystem being
 migrated, a server MAY return NFS4ERR_DELAY in response to a
 RELEASE_LOCKOWNER that will affect locking state being propagated
 to a destination server. The source server MUST NOT do so unless
 it is likely that it will later return NFS4ERR_MOVED for the
 filesystem in question.

 In the context of lockowner release, the set of filesystems such
 that server state being made fixed can result in NFS4ERR_DELAY
 must include the filesystem on which the operation associated with
 the current lockowner seqid was performed.

 In addition, this set may include other filesystems on which an
 operation associated with an earlier seqid for the current
 lockowner seqid was performed, since servers will have to deal

Noveck, et al. Expires July 8, 2015 [Page 40]

Internet-Draft nfsv4-3530-migr-update January 2015

 with the issue of an owner being used in succession for multiple
 filesystems.

 Thus, a client that is prepared to receive NFS4ERR_MOVED after
 creating state associated with a given filesystem, it also needs
 to be prepared to receive NFS4ERR_DELAY in response to
 RELEASE_LOCKOWNER, if it has used that owner in connection with a
 file on that filesystem.

7.4. Operation 35: SETCLIENTID - Negotiate Client ID

7.4.1. SYNOPSIS

 client, callback, callback_ident -> clientid, setclientid_confirm

7.4.2. ARGUMENT

 struct SETCLIENTID4args {
 nfs_client_id4 client;
 cb_client4 callback;
 uint32_t callback_ident;
 };

7.4.3. RESULT

 struct SETCLIENTID4resok {
 clientid4 clientid;
 verifier4 setclientid_confirm;
 };

 union SETCLIENTID4res switch (nfsstat4 status) {
 case NFS4_OK:
 SETCLIENTID4resok resok4;
 case NFS4ERR_CLID_INUSE:
 clientaddr4 client_using;
 default:
 void;
 };

7.4.4. DESCRIPTION

 The client uses the SETCLIENTID operation to notify the server of its
 intention to use a particular client identifier, callback, and
 callback_ident for subsequent requests that entail creating lock,
 share reservation, and delegation state on the server. Upon
 successful completion the server will return a shorthand client ID
 which, if confirmed via a separate step, will be used in subsequent
 file locking and file open requests. Confirmation of the client ID

Noveck, et al. Expires July 8, 2015 [Page 41]

Internet-Draft nfsv4-3530-migr-update January 2015

 must be done via the SETCLIENTID_CONFIRM operation to return the
 client ID and setclientid_confirm values, as verifiers, to the
 server. The reason why two verifiers are necessary is that it is
 possible to use SETCLIENTID and SETCLIENTID_CONFIRM to modify the
 callback and callback_ident information but not the shorthand client
 ID. In that event, the setclientid_confirm value is effectively the
 only verifier.

 The callback information provided in this operation will be used if
 the client is provided an open delegation at a future point.
 Therefore, the client must correctly reflect the program and port
 numbers for the callback program at the time SETCLIENTID is used.

 The callback_ident value is used by the server on the callback. The
 client can leverage the callback_ident to eliminate the need for more
 than one callback RPC program number, while still being able to
 determine which server is initiating the callback.

7.4.5. IMPLEMENTATION

 To understand how to implement SETCLIENTID, make the following
 notations. Let:

 x be the value of the client.id subfield of the SETCLIENTID4args
 structure.

 v be the value of the client.verifier subfield of the
 SETCLIENTID4args structure.

 c be the value of the client ID field returned in the
 SETCLIENTID4resok structure.

 k represent the value combination of the fields callback and
 callback_ident fields of the SETCLIENTID4args structure.

 s be the setclientid_confirm value returned in the SETCLIENTID4resok
 structure.

 { v, x, c, k, s } be a quintuple for a client record. A client
 record is confirmed if there has been a SETCLIENTID_CONFIRM
 operation to confirm it. Otherwise it is unconfirmed. An
 unconfirmed record is established by a SETCLIENTID call.

7.4.5.1. IMPLEMENTATION (Preparatory Phase)

 Since SETCLIENTID is a non-idempotent operation, let us assume that
 the server is implementing the duplicate request cache (DRC).

Noveck, et al. Expires July 8, 2015 [Page 42]

Internet-Draft nfsv4-3530-migr-update January 2015

 When the server gets a SETCLIENTID { v, x, k } request, it first does
 a number of preliminary checks as listed below before proceeding to
 the main part of SETCLIENTID processing.

 o It first looks up the request in the DRC. If there is a hit, it
 returns the result cached in the DRC. The server does NOT remove
 client state (locks, shares, delegations) nor does it modify any
 recorded callback and callback_ident information for client { x }.

 o Otherwise (i.e. in the case of any DRC miss), the server takes the
 client id string x, and searches for confirmed client records for
 x that the server may have recorded from previous SETCLIENTID
 calls. If there are no such, or if all such records have a
 recorded principal which matches that of the current request's
 principal, then

 o If there is a confirmed client record with a matching client id
 string and a non-matching principal, the server checks the current
 state of the associated lease. If there is no associated state
 for the lease, or the lease has expired, the server proceeds to
 the main part of SETCLIENTID

 o Otherwise, the server is being asked to do a SETCLIENTID for a
 client by a non-matching principal while there is active state and
 the server rejects the SETCLIENTID request returning an
 NFS4ERR_CLID_INUSE error, since use of a single client with
 multiple principals is not allowed. Note that even though the
 previously used clientaddr is returned with this error, the use of
 the same id string with multiple clientaddr's is not prohibited,
 while its use with multiple principals is prohibited.

7.4.5.2. IMPLEMENTATION (Main Phase)

 If the SETCLIENTID has not been dealt with by DRC processing, and has
 not been rejected with an NFS4ERR_CLID_INUSE error, then the main
 part of SETCLIENTID processing proceeds, as described below.

 o The server checks if it has recorded a confirmed record for { v,
 x, c, l, s }, where l may or may not equal k. If so, and since
 the id verifier v of the request matches that which is confirmed
 and recorded, the server treats this as a probable callback
 information update and records an unconfirmed { v, x, c, k, t }
 and leaves the confirmed { v, x, c, l, s } in place, such that t
 != s. It does not matter if k equals l or not. Any pre-existing
 unconfirmed { v, x, c, *, * } is removed.

 The server returns { c, t }. It is indeed returning the old
 clientid4 value c, because the client apparently only wants to

Noveck, et al. Expires July 8, 2015 [Page 43]

Internet-Draft nfsv4-3530-migr-update January 2015

 update callback value k to value l. It's possible this request is
 one from the Byzantine router that has stale callback information,
 but this is not a problem. The callback information update is
 only confirmed if followed up by a SETCLIENTID_CONFIRM { c, t }.

 The server awaits confirmation of k via SETCLIENTID_CONFIRM { c, t
 }.

 The server does NOT remove client (lock/share/delegation) state
 for x.

 o The server has previously recorded a confirmed { u, x, c, l, s }
 record such that v != u, l may or may not equal k, and has not
 recorded any unconfirmed { *, x, *, *, * } record for x. The
 server records an unconfirmed { v, x, d, k, t } (d != c, t != s).

 The server returns { d, t }.

 The server awaits confirmation of { d, k } via SETCLIENTID_CONFIRM
 { d, t }.

 The server does NOT remove client (lock/share/delegation) state
 for x.

 o The server has previously recorded a confirmed { u, x, c, l, s }
 record such that v != u, l may or may not equal k, and recorded an
 unconfirmed { w, x, d, m, t } record such that c != d, t != s, m
 may or may not equal k, m may or may not equal l, and k may or may
 not equal l. Whether w == v or w != v makes no difference. The
 server simply removes the unconfirmed { w, x, d, m, t } record and
 replaces it with an unconfirmed { v, x, e, k, r } record, such
 that e != d, e != c, r != t, r != s.

 The server returns { e, r }.

 The server awaits confirmation of { e, k } via SETCLIENTID_CONFIRM
 { e, r }.

 The server does NOT remove client (lock/share/delegation) state
 for x.

 o The server has no confirmed { *, x, *, *, * } for x. It may or
 may not have recorded an unconfirmed { u, x, c, l, s }, where l
 may or may not equal k, and u may or may not equal v. Any
 unconfirmed record { u, x, c, l, * }, regardless whether u == v or
 l == k, is replaced with an unconfirmed record { v, x, d, k, t }
 where d != c, t != s.

Noveck, et al. Expires July 8, 2015 [Page 44]

Internet-Draft nfsv4-3530-migr-update January 2015

 The server returns { d, t }.

 The server awaits confirmation of { d, k } via SETCLIENTID_CONFIRM
 { d, t }. The server does NOT remove client (lock/share/
 delegation) state for x.

 The server generates the clientid and setclientid_confirm values and
 must take care to ensure that these values are extremely unlikely to
 ever be regenerated.

7.5. Security Considerations for Inter-server Information Transfer

 Although the means by which the source and destination server
 communicate is not specified by NFSv4.0, the following security-
 related requirements for inter-server communication should be noted.

 o Communication between source and destination servers needs to be
 carried out in a secure manner, either on a private network, or
 using a security mechanism that ensures privacy.

 o Effective implementation of the filesystem migration function
 requires that a trust relationship exist between source and
 destination servers.

 o The source server may communicate to the destination sever
 security-related information to be used to make more rigorous the
 validation of client's identity. For example, the destination
 server might reject a SETCLIENTID done with a different principal
 or with a different IP address than was done previously by the
 client on the source server. However, the destination server MUST
 NOT use this information to allow any operation to be performed by
 the client that would not be allowed otherwise.

7.6. Security Considerations Revision

 The last paragraph of the "Security Considerations" section should be
 revised to read as follows:

 Because the operations SETCLIENTID/SETCLIENTID_CONFIRM are
 responsible for the release of client state, it is imperative that
 the principal used for these operations is checked against and
 match the previous use of these operations. In addition, use of
 integrity protection is desirable on the SETCLIENTID operation, to
 prevent an attack whereby a change in the boot verifier forces an
 undesired loss of client state. See the section "Client Identity
 Definition" for further discussion.

Noveck, et al. Expires July 8, 2015 [Page 45]

Internet-Draft nfsv4-3530-migr-update January 2015

8. Security Considerations

 Is to be modified as specified in Section 7.6.

 In addition, the material in Section 7.5 should be noted.

9. IANA Considerations

 This document does not require actions by IANA.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3530bis]
 Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", December 2014,
 <http://www.ietf.org/id/

draft-ietf-nfsv4-rfc3530bis-35.txt>.

 Work in progress.

10.2. Informative References

 [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
 Version 3 Protocol Specification", RFC 1813, June 1995.

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol", RFC

5661, January 2010.

 [info-migr]
 Noveck, D., Ed., Shivam, P., Lever, C., and B. Baker,
 "NFSv4 migration: Implementation experience and spec
 issues to resolve", september 2014,
 <http://www.ietf.org/id/

draft-ietf-nfsv4-migration-issues-06.txt>.

 Work in progress.

Appendix A. Acknowledgements

 The editor and authors of this document gratefully acknowledge the
 contributions of Trond Myklebust of Primary Data and Robert Thurlow

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ietf.org/id/draft-ietf-nfsv4-rfc3530bis-35.txt
http://www.ietf.org/id/draft-ietf-nfsv4-rfc3530bis-35.txt
https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
http://www.ietf.org/id/draft-ietf-nfsv4-migration-issues-06.txt
http://www.ietf.org/id/draft-ietf-nfsv4-migration-issues-06.txt

Noveck, et al. Expires July 8, 2015 [Page 46]

Internet-Draft nfsv4-3530-migr-update January 2015

 of Oracle. We also thank Tom Haynes of Primary Data and Spencer
 Shepler of Microsoft for their guidance and suggestions.

 Special thanks go to members of the Oracle Solaris NFS team,
 especially Rick Mesta and James Wahlig, for their work implementing
 an NFSv4.0 migration prototype and identifying many of the issues
 addressed here.

Appendix B. RFC Editor Notes

 [RFC Editor: please remove this section prior to publishing this
 document as an RFC]

 [RFC Editor: prior to publishing this document as an RFC, please
 replace all occurrences of RFC3530bis with RFCxxxx where xxxx is the
 RFC number assigned to that dpcument.]

 [RFC Editor: prior to publishing this document as an RFC, please
 change the specfication of the document that this document updates
 from "3530bis" to xxxx where xxxx is the RFC number assigned to
 RFC3530bis.

Authors' Addresses

 David Noveck (editor)
 Dell
 300 Innovative Way
 Nashua, NH 03062
 US

 Phone: +1 781 572 8038
 Email: dave_noveck@dell.com

 Piyush Shivam
 Oracle Corporation
 5300 Riata Park Ct.
 Austin, TX 78727
 US

 Phone: +1 512 401 1019
 Email: piyush.shivam@oracle.com

Noveck, et al. Expires July 8, 2015 [Page 47]

Internet-Draft nfsv4-3530-migr-update January 2015

 Charles Lever
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 US

 Phone: +1 734 274 2396
 Email: chuck.lever@oracle.com

 Bill Baker
 Oracle Corporation
 5300 Riata Park Ct.
 Austin, TX 78727
 US

 Phone: +1 512 401 1081
 Email: bill.baker@oracle.com

Noveck, et al. Expires July 8, 2015 [Page 48]

