
Workgroup: Network File System Version 4

Internet-Draft: draft-ietf-nfsv4-rpc-tls-08

Updates: 5531 (if approved)

Published: 19 June 2020

Intended Status: Standards Track

Expires: 21 December 2020

Authors: T. Myklebust

Hammerspace

C. Lever, Ed.

Oracle

Towards Remote Procedure Call Encryption By Default

Abstract

This document describes a mechanism that, through the use of

opportunistic Transport Layer Security (TLS), enables encryption of

in-transit Remote Procedure Call (RPC) transactions while

interoperating with ONC RPC implementations that do not support this

mechanism. This document updates RFC 5531.

Discussion of this draft takes place on the NFSv4 working group

mailing list (nfsv4@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/nfsv4/. Working Group information

can be found at https://datatracker.ietf.org/wg/nfsv4/about/.

This note is to be removed before publishing as an RFC.

The source for this draft is maintained in GitHub. Suggested changes

should be submitted as pull requests at https://github.com/

chucklever/i-d-rpc-tls. Instructions are on that page as well.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 December 2020.

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc5531
https://mailarchive.ietf.org/arch/browse/nfsv4/
https://mailarchive.ietf.org/arch/browse/nfsv4/
https://datatracker.ietf.org/wg/nfsv4/about/
https://github.com/chucklever/i-d-rpc-tls
https://github.com/chucklever/i-d-rpc-tls
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Requirements Language

3. Terminology

4. RPC-Over-TLS in Operation

4.1. Discovering Server-side TLS Support

4.2. Authentication

4.2.1. Using TLS with RPCSEC GSS

5. TLS Requirements

5.1. Base Transport Considerations

5.1.1. Protected Operation on TCP

5.1.2. Protected Operation on UDP

5.1.3. Protected Operation on Other Transports

5.2. TLS Peer Authentication

5.2.1. X.509 Certificates Using PKIX trust

5.2.2. X.509 Certificates Using Fingerprints

5.2.3. Pre-Shared Keys

5.2.4. Token Binding

6. Implementation Status

6.1. DESY NFS server

6.2. Hammerspace NFS server

6.3. Linux NFS server and client

6.4. FreeBSD NFS server and client

7. Security Considerations

7.1. Limitations of an Opportunistic Approach

7.1.1. STRIPTLS Attacks

7.1.2. Privacy Leakage Before Session Establishment

7.2. TLS Identity Management on Clients

7.3. Security Considerations for AUTH_SYS on TLS

7.4. Best Security Policy Practices

8. IANA Considerations

8.1. RPC Authentication Flavor

8.2. ALPN Identifier for SUNRPC

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Known Weaknesses of the AUTH_SYS Authentication Flavor

Acknowledgments

Authors' Addresses

1. Introduction

In 2014 the IETF published a document entitled "Pervasive Monitoring

Is an Attack" [RFC7258], which recognized that unauthorized

observation of network traffic had become widespread and was a

subversive threat to all who make use of the Internet at large. It

strongly recommended that newly defined Internet protocols should

make a genuine effort to mitigate monitoring attacks. Typically this

mitigation is done by encrypting data in transit.

The Remote Procedure Call version 2 protocol has been a Proposed

Standard for three decades (see [RFC5531] and its antecedents). Over

twenty years ago, Eisler et al. first introduced RPCSEC GSS as an

in-transit encryption mechanism for RPC [RFC2203]. However,

experience has shown that RPCSEC GSS with in-transit encryption can

be challenging to use in practice:

Parts of each RPC header remain in clear-text, constituting a

significant security exposure.

Offloading the GSS privacy service is not practical in large

multi-user deployments since each message is encrypted using a

key based on the issuing RPC user.

However strong GSS-provided confidentiality is, it cannot provide

any security if the challenges of using it result in choosing not to

deploy it at all.

Moreover, the use of AUTH_SYS remains common despite the adverse

effects that acceptance of UIDs and GIDs from unauthenticated

clients brings with it. Continued use is in part because:

Per-client deployment and administrative costs are not scalable.

Administrators must provide keying material for each RPC client,

including transient clients.

Host identity management and user identity management must be

enforced in the same security realm. In certain environments,

different authorities might be responsible for provisioning

client systems versus provisioning new users.

The alternative described in the current document is to employ a

transport layer security mechanism that can protect the

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

Encryption By Default:

Encryption Offload:

Securing AUTH_SYS:

Decoupled User and Host Identities:

confidentiality of each RPC connection transparently to RPC and

upper-layer protocols. The Transport Layer Security protocol

[RFC8446] (TLS) is a well-established Internet building block that

protects many standard Internet protocols such as the Hypertext

Transport Protocol (HTTP) [RFC2818].

Encrypting at the RPC transport layer accords several significant

benefits:

Transport encryption can be enabled without

additional administrative tasks such as identifying client

systems to a trust authority, generating additional keying

material, or provisioning a secure network tunnel.

Hardware support for the GSS privacy service

has not appeared in the marketplace. However, the use of a well-

established transport encryption mechanism that is employed by

other ubiquitous network protocols makes it more likely that

encryption offload for RPC is practicable.

Most critically, transport encryption can

significantly reduce several security issues inherent in the

current widespread use of AUTH_SYS (i.e., acceptance of UIDs and

GIDs generated by an unauthenticated client).

TLS can be used to authenticate

peer hosts while other security mechanisms can handle user

authentication.

The current document specifies the implementation of RPC on an

encrypted transport in a manner that is transparent to upper-layer

protocols based on RPC. The imposition of encryption at the

transport layer protects any upper-layer protocol that employs RPC,

without alteration of that protocol.

Further, Section 7 of the current document defines policies in line

with [RFC7435] which enable RPC-over-TLS to be deployed

opportunistically in environments that contain RPC implementations

that do not support TLS. However, specifications for RPC-based

upper-layer protocols should choose to require even stricter

policies that guarantee encryption and host authentication is used

for all RPC transactions. Enforcing the use of RPC-over-TLS is of

particular importance for existing upper-layer protocols whose

security infrastructure is weak.

The protocol specification in the current document assumes that

support for RPC, TLS, PKI, GSS-API, and DNSSEC is already available

in an RPC implementation where TLS support is to be added.

¶

¶

¶

¶

¶

¶

¶

¶

¶

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Terminology

This document adopts the terminology introduced in Section 3 of

[RFC6973] and assumes a working knowledge of the Remote Procedure

Call (RPC) version 2 protocol [RFC5531] and the Transport Layer

Security (TLS) version 1.3 protocol [RFC8446].

Note also that the NFS community long ago adopted the use of the

term "privacy" from documents such as [RFC2203]. In the current

document, the authors use the term "privacy" only when referring

specifically to the historic GSS privacy service defined in

[RFC2203]. Otherwise, the authors use the term "confidentiality",

following the practices of contemporary security communities.

We adhere to the convention that a "client" is a network host that

actively initiates an association, and a "server" is a network host

that passively accepts an association request.

RPC documentation historically refers to the authentication of a

connecting host as "machine authentication" or "host

authentication". TLS documentation refers to the same as "peer

authentication". In the current document there is little distinction

between these terms.

The term "user authentication" in the current document refers

specifically to the RPC caller's credential, provided in the "cred"

and "verf" fields in each RPC Call.

4. RPC-Over-TLS in Operation

4.1. Discovering Server-side TLS Support

The mechanism described in the current document interoperates fully

with RPC implementations that do not support RPC-over-TLS. Policy

settings on the RPC-over-TLS-enabled peer determine whether RPC

operation continues without the use of TLS or RPC operation is not

permitted.

To achieve this interoperability, we introduce a new RPC

authentication flavor called AUTH_TLS. The AUTH_TLS authentication

flavor signals that the client wants to initiate TLS negotiation if

the server supports it. Except for the modifications described in

¶

¶

¶

¶

¶

¶

¶

this section, the RPC protocol is unaware of security encapsulation

at the transport layer. The value of AUTH_TLS is defined in Section

8.1.

An RPC client begins its communication with an RPC server by

selecting a transport and destination port. The choice of transport

and port is typically based on the RPC program that is to be used.

The RPC client might query the RPC server's rpcbind service to make

this selection. In all cases, an RPC server MUST listen on the same

ports for (D)TLS-protected RPC programs as the ports used when

(D)TLS is not available.

To protect RPC traffic to a TCP port, the RPC client opens a TCP

connection to that port and sends a NULL RPC procedure with an

auth_flavor of AUTH_TLS on that connection. To protect RPC traffic

to a UDP port, the RPC client sends a UDP datagram to that port

containing a NULL RPC procedure with an auth_flavor of AUTH_TLS. The

mechanism described in the current document does not support RPC

transports other than TCP and UDP.

The length of the opaque data constituting the credential sent in

the RPC Call message MUST be zero. The verifier accompanying the

credential MUST be an AUTH_NONE verifier of length zero.

The flavor value of the verifier in the RPC Reply message received

from the server MUST be AUTH_NONE. The length of the verifier's body

field is eight. The bytes of the verifier's body field encode the

ASCII characters "STARTTLS" as a fixed-length opaque.

If the RPC server replies with a reply_stat of MSG_ACCEPTED and an

AUTH_NONE verifier containing the "STARTTLS" token, the client

SHOULD proceed with TLS session establishment, even if the Reply's

accept_stat is not SUCCESS. If the AUTH_TLS probe was done via TCP,

the RPC client MUST send the "ClientHello" message on the same

connection. If the AUTH_TLS probe was done via UDP, the RPC client

MUST send the "ClientHello" message to the same UDP destination

port.

Conversely, if the Reply's reply_stat is not MSG_ACCEPTED, if its

verifier flavor is not AUTH_NONE, or if its verifier does not

contain the "STARTTLS" token, the RPC client MUST NOT send a

"ClientHello" message. RPC operation can continue, however it will

be without any confidentiality, integrity or authentication

protection from (D)TLS.

If, after a successful RPC AUTH_TLS probe, the subsequent (D)TLS

handshake should fail for any reason, the RPC client reports this

failure to the upper-layer application the same way it reports an

AUTH_ERROR rejection from the RPC server.

¶

¶

¶

¶

¶

¶

¶

¶

Server-only Host Authentication

Mutual Host Authentication

If an RPC client uses the AUTH_TLS authentication flavor on any

procedure other than the NULL procedure, or an RPC client sends an

RPC AUTH_TLS probe within an existing (D)TLS session, the RPC server

MUST reject that RPC Call by setting the reply_stat field to

MSG_DENIED, the reject_stat field to AUTH_ERROR, and the auth_stat

field to AUTH_BADCRED.

Once the TLS session handshake is complete, the RPC client and

server have established a secure channel for communicating. A

successful AUTH_TLS probe on one particular port/transport tuple

never implies RPC-over-TLS is available on that same server using a

different port/transport tuple.

4.2. Authentication

Both RPC and TLS have peer and user authentication, with some

overlap in capability between RPC and TLS. The goal of

interoperability with implementations that do not support TLS

requires limiting the combinations that are allowed and precisely

specifying the role that each layer plays.

Each RPC server that supports RPC-over-TLS MUST possess a unique

global identity (e.g., a certificate that is signed by a well-known

trust anchor). Such an RPC server MUST request a TLS peer identity

from each client upon first contact. There are two different modes

of client deployment:

In this type of deployment, the client can authenticate the

server host using the presented server peer TLS identity, but the

server cannot authenticate the client. In this situation, RPC-

over-TLS clients are anonymous. They present no globally unique

identifier to the server peer.

In this type of deployment, the client possesses an identity

(e.g. a certificate) that is backed by a trusted entity. As part

of the TLS handshake, both peers authenticate using the presented

TLS identities. If authentication of either peer fails, or if

authorization based on those identities blocks access to the

server, the peers MUST reject the association.

In either of these modes, RPC user authentication is not affected by

the use of transport layer security. When a client presents a TLS

peer identity to an RPC server, the protocol extension described in

the current document provides no way for the server to know whether

that identity represents one RPC user on that client, or is shared

amongst many RPC users. Therefore, a server implementation must not

utilize the remote TLS peer identity for RPC user authentication.

¶

¶

¶

¶

¶

¶

¶

4.2.1. Using TLS with RPCSEC GSS

To use GSS, an RPC server has to possess a GSS service principal. On

a TLS session, GSS mutual (peer) authentication occurs as usual, but

only after a TLS session has been established for communication.

Authentication of GSS users is unchanged by the use of TLS.

RPCSEC GSS can also perform per-request integrity or confidentiality

protection. When operating over a TLS session, these GSS services

become redundant. An RPC implementation capable of concurrently

using TLS and RPCSEC GSS can use GSS channel binding, as defined in

[RFC5056], to determine when an underlying transport provides a

sufficient degree of confidentiality. Channel bindings for the TLS

channel type are defined in [RFC5929].

5. TLS Requirements

When peers negotiate a TLS session that is to transport RPC, the

following restrictions apply:

Implementations MUST NOT negotiate TLS versions prior to v1.3

(for TLS [RFC8446] or DTLS [I-D.ietf-tls-dtls13] respectively).

Support for mandatory-to-implement ciphersuites for the

negotiated TLS version is REQUIRED.

Implementations MUST support certificate-based mutual

authentication. Support for TLS-PSK mutual authentication

[RFC4279] is OPTIONAL. See Section 4.2 for further details.

Negotiation of a ciphersuite providing confidentiality as well as

integrity protection is REQUIRED. Support for and negotiation of

compression is OPTIONAL.

Client implementations MUST include the

"application_layer_protocol_negotiation(16)" extension [RFC7301] in

their "ClientHello" message and MUST include the protocol identifier

defined in Section 8.2 in that message's ProtocolNameList value.

Similary, in response to the "ClientHello" message, server

implementations MUST include the

"application_layer_protocol_negotiation(16)" extension [RFC7301] in

their "ServerHello" message and MUST include only the protocol

identifier defined in Section 8.2 in that message's ProtocolNameList

value.

If the server responds incorrectly (for instance, if the

"ServerHello" message does not conform to the above requirements),

the client MUST NOT establish a TLS session for use with RPC on this

connection. See [RFC7301] for further details about how to form

these messages properly.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

5.1. Base Transport Considerations

There is traditionally a strong association between an RPC program

and a destination port number. The use of TLS or DTLS does not

change that association. Thus it is frequently -- though not always

-- the case that a single TLS session carries traffic for only one

RPC program.

5.1.1. Protected Operation on TCP

The use of the Transport Layer Security (TLS) protocol [RFC8446]

protects RPC on TCP connections. Typically, once an RPC client

completes the TCP handshake, it uses the mechanism described in

Section 4.1 to discover RPC-over-TLS support for that connection. If

spurious traffic appears on a TCP connection between the initial

clear-text AUTH_TLS probe and the TLS session handshake, receivers

MUST discard that data without response and then SHOULD drop the

connection.

The protocol convention specified in the current document assumes

there can be no more than one concurrent TLS session per TCP

connection. This is true of current generations of TLS, but might be

different in a future version of TLS.

Once a TLS session is established on a TCP connection, no further

clear-text communication can occur on that connection until the

session is terminated. The use of TLS does not alter RPC record

framing used on TCP transports.

Furthermore, if an RPC server responds with PROG_UNAVAIL to an RPC

Call within an established TLS session, that does not imply that RPC

server will subsequently reject the same RPC program on a different

TCP connection.

Reverse-direction operation occurs only on connected transports such

as TCP (see Section 2 of [RFC8166]). To protect reverse-direction

RPC operations, the RPC server does not establish a separate TLS

session on the TCP connection, but instead uses the existing TLS

session on that connection to protect these operations.

When operation is complete, an RPC peer terminates a TLS session by

sending a TLS Closure Alert and may then close the TCP connection.

5.1.2. Protected Operation on UDP

RFC Editor: In the following section, please replace TBD with the

connection_id extension number that is to be assigned in [I-D.ietf-

tls-dtls-connection-id]. And, please remove this Editor's Note

before this document is published.

¶

¶

¶

¶

¶

¶

¶

¶

RPC over UDP is protected using the Datagram Transport Layer

Security (DTLS) protocol [I-D.ietf-tls-dtls13].

Using DTLS does not introduce reliable or in-order semantics to RPC

on UDP. Each RPC message MUST fit in a single DTLS record. DTLS

encapsulation has overhead, which reduces the effective Path MTU

(PMTU) and thus the maximum RPC payload size. The use of DTLS record

replay protection is REQUIRED when transporting RPC traffic.

As soon as a client initializes a UDP socket for use with an RPC

server, it uses the mechanism described in Section 4.1 to discover

DTLS support for an RPC program on a particular port. It then

negotiates a DTLS session.

Multi-homed RPC clients and servers may send protected RPC messages

via network interfaces that were not involved in the handshake that

established the DTLS session. Therefore, when protecting RPC

traffic, each DTLS handshake MUST include the "connection_id(TBD)"

extension described in Section 9 of [I-D.ietf-tls-dtls13], and RPC-

on-DTLS peer endpoints MUST provide a ConnectionID with a non-zero

length. Endpoints implementing RPC programs that expect a

significant number of concurrent clients should employ ConnectionIDs

of at least 4 bytes in length.

Sending a TLS Closure Alert terminates a DTLS session. Subsequent

RPC messages exchanged between the RPC client and server are no

longer protected until a new DTLS session is established.

5.1.3. Protected Operation on Other Transports

Transports that provide intrinsic TLS-level security (e.g., QUIC)

need to be addressed separately from the current document. In such

cases, the use of TLS is not opportunistic as it can be for TCP or

UDP.

RPC-over-RDMA can make use of transport layer security below the

RDMA transport layer [RFC8166]. The exact mechanism is not within

the scope of the current document. Because there might not be other

provisions to exchange client and server certificates,

authentication material exchange needs to be provided by facilities

within a future version of the RPC-over-RDMA transport protocol.

5.2. TLS Peer Authentication

TLS can perform peer authentication using any of the following

mechanisms:

¶

¶

¶

¶

¶

¶

¶

¶

5.2.1. X.509 Certificates Using PKIX trust

Implementations are REQUIRED to support this mechanism. In this

mode, the tuple (serial number of the presented certificate; Issuer)

uniquely identifies the RPC peer.

X.509 certificates are specified in [X.509] and extended in

[RFC5280].

Implementations MUST allow the configuration of a list of trusted

Certification Authorities for authorizing incoming connections.

Certificate validation MUST include the verification rules as per

[RFC5280].

Implementations SHOULD indicate their trusted Certification

Authorities (CAs).

Peer validation always includes a check on whether the locally

configured expected DNS name or IP address of the server that is

contacted matches its presented certificate. DNS names and IP

addresses can be contained in the Common Name (CN) or

subjectAltName entries. For verification, only one of these

entries is to be considered. The following precedence applies:

for DNS name validation, subjectAltName:DNS has precedence over

CN; for IP address validation, subjectAltName:iPAddress has

precedence over CN. Implementors of this specification are

advised to read Section 6 of [RFC6125] for more details on DNS

name validation.

For services accessed by their network identifiers (netids) and

universal network addresses (uaddr), the iPAddress subjectAltName

SHOULD be present in the certificate and must exactly match the

address represented by the universal network address.

Implementations MAY allow the configuration of a set of

additional properties of the certificate to check for a peer's

authorization to communicate (e.g., a set of allowed values in

subjectAltName:URI or a set of allowed X.509v3 Certificate

Policies).

When the configured trust base changes (e.g., removal of a CA

from the list of trusted CAs; issuance of a new CRL for a given

CA), implementations MAY renegotiate the TLS session to reassess

the connecting peer's continued authorization.

Authenticating a connecting entity does not mean the RPC server

necessarily wants to communicate with that client. For example, if

the Issuer is not in a trusted set of Issuers, the RPC server may

decline to perform RPC transactions with this client.

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Implementations that want to support a wide variety of trust models

should expose as many details of the presented certificate to the

administrator as possible so that the administrator can implement

the trust model. As a suggestion, at least the following parameters

of the X.509 client certificate SHOULD be exposed:

Originating IP address

Certificate Fingerprint

Issuer

Subject

all X.509v3 Extended Key Usage

all X.509v3 Subject Alternative Name

all X.509v3 Certificate Policies

5.2.2. X.509 Certificates Using Fingerprints

This mechanism is OPTIONAL to implement. In this mode, the

fingerprint of a certificate uniquely identifies the RPC peer.

A "fingerprint" is typically defined as a cryptographic digest of

the Distinguished Encoding Rules (DER) form [X.690] of an X.509v3

certificate [X.509]. Implementations SHOULD allow the configuration

of a list of trusted certificates that is indexed by fingerprint.

5.2.3. Pre-Shared Keys

This mechanism is OPTIONAL to implement. In this mode, the RPC peer

is uniquely identified by keying material that has been shared out-

of-band or by a previous TLS-protected connection (see Section 2.2

of [RFC8446]). At least the following parameters of the TLS

connection SHOULD be exposed:

Originating IP address

TLS Identifier

5.2.4. Token Binding

This mechanism is OPTIONAL to implement. In this mode, a token

uniquely identifies the RPC peer.

Versions of TLS after TLS 1.2 contain a token binding mechanism that

is more secure than using certificates. This mechanism is detailed

in [RFC8471].

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

* ¶

* ¶

¶

¶

Organization:

URL:

Maturity:

Coverage:

Licensing:

Implementation experience:

Organization:

URL:

Maturity:

Coverage:

Licensing:

6. Implementation Status

This section is to be removed before publishing as an RFC.

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs.

Please note that the listing of any individual implementation here

does not imply endorsement by the IETF. Furthermore, no effort has

been spent to verify the information presented here that was

supplied by IETF contributors. This is not intended as, and must not

be construed to be, a catalog of available implementations or their

features. Readers are advised to note that other implementations may

exist.

6.1. DESY NFS server

DESY

https://desy.de

Implementation will be based on mature versions of the

current document.

The bulk of this specification is implemented including

DTLS.

LGPL

The implementer has read and commented

on the current document.

6.2. Hammerspace NFS server

Hammerspace

https://hammerspace.com

Prototype software based on early versions of the current

document.

The bulk of this specification is implemented. The use of

DTLS functionality is not implemented.

Proprietary

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://desy.de
https://hammerspace.com

Implementation experience:

Organization:

URL:

Maturity:

Coverage:

Licensing:

Implementation experience:

Organization:

URL:

Maturity:

Coverage:

Licensing:

Implementation experience:

No comments from implementors.

6.3. Linux NFS server and client

The Linux Foundation

https://www.kernel.org

Prototype software based on early versions of the current

document.

The bulk of this specification has yet to be implemented.

The use of DTLS functionality is not planned.

GPLv2

No comments from the implementor.

6.4. FreeBSD NFS server and client

The FreeBSD Project

https://www.freebsd.org

Prototype software based on early versions of the current

document.

The bulk of this specification is implemented. The use of

DTLS functionality is not planned.

BSD

Implementers have read and commented on

the current document.

7. Security Considerations

One purpose of the mechanism described in the current document is to

protect RPC-based applications against threats to the

confidentiality of RPC transactions and RPC user identities. A

taxonomy of these threats appears in Section 5 of [RFC6973]. Also,

Section 6 of [RFC7525] contains a detailed discussion of

technologies used in conjunction with TLS. Implementers should

familiarize themselves with these materials.

7.1. Limitations of an Opportunistic Approach

The purpose of using an explicitly opportunistic approach is to

enable interoperation with implementations that do not support RPC-

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.kernel.org
https://www.freebsd.org

over-TLS. A range of options is allowed by this approach, from "no

peer authentication or encryption" to "server-only authentication

with encryption" to "mutual authentication with encryption". The

actual security level may indeed be selected based on policy and

without user intervention.

In environments where interoperability is a priority, the security

benefits of TLS are partially or entirely waived. Implementations of

the mechanism described in the current document must take care to

accurately represent to all RPC consumers the level of security that

is actually in effect, and are REQUIRED to provide an audit log of

RPC-over-TLS security mode selection.

In all other cases, the adoption, implementation, and deployment of

RPC-based upper-layer protocols that enforce the use of TLS

authentication and encryption (when similar RPCSEC GSS services are

not in use) is strongly encouraged.

7.1.1. STRIPTLS Attacks

A classic form of attack on network protocols that initiate an

association in plain-text to discover support for TLS is a man-in-

the-middle that alters the plain-text handshake to make it appear as

though TLS support is not available on one or both peers. Clients

implementers can choose from the following to mitigate STRIPTLS

attacks:

A TLSA record [RFC6698] can alert clients that TLS is expected to

work, and provide a binding of hostname to X.509 identity. If TLS

cannot be negotiated or authentication fails, the client

disconnects and reports the problem.

Client security policy can require that a TLS session is

established on every connection. If an attacker spoofs the

handshake, the client disconnects and reports the problem. If

TLSA records are not available, this approach is strongly

encouraged.

7.1.2. Privacy Leakage Before Session Establishment

As mentioned earlier, communication between an RPC client and server

appears in the clear on the network prior to the establishment of a

TLS session. This clear-text information usually includes transport

connection handshake exchanges, the RPC NULL procedure probing

support for TLS, and the initial parts of TLS session establishment.

Appendix C of [RFC8446] discusses precautions that can mitigate

exposure during the exchange of connnection handshake information

and TLS certificate material that might enable attackers to track

the RPC client.

¶

¶

¶

¶

*

¶

*

¶

¶

Any RPC traffic that appears on the network before a TLS session has

been established is vulnerable to monitoring or undetected

modification. A secure client implementation limits or prevents any

RPC exchanges that are not protected.

The exception to this edict is the initial RPC NULL procedure that

acts as a STARTTLS message, which cannot be protected. This RPC NULL

procedure contains no arguments or results, and the AUTH_TLS

authentication flavor it uses does not contain user information.

7.2. TLS Identity Management on Clients

The goal of the RPC-over-TLS protocol extension is to hide the

content of RPC requests while they are in transit. The RPC-over-TLS

protocol by itself cannot protect against exposure of a user's RPC

requests to other users on the same client.

Moreover, client implementations are free to transmit RPC requests

for more than one RPC user using the same TLS session. Depending on

the details of the client RPC implementation, this means that the

client's TLS identity material is potentially visible to every RPC

user that shares a TLS session. Privileged users may also be able to

access this TLS identity.

As a result, client implementations need to carefully segregate TLS

identity material so that local access to it is restricted to only

the local users that are authorized to perform operations on the

remote RPC server.

7.3. Security Considerations for AUTH_SYS on TLS

Using a TLS-protected transport when the AUTH_SYS authentication

flavor is in use addresses several longstanding weaknesses in

AUTH_SYS (as detailed in Appendix A). TLS augments AUTH_SYS by

providing both integrity protection and confidentiality that

AUTH_SYS lacks. TLS protects data payloads, RPC headers, and user

identities against monitoring and alteration while in transit.

TLS guards against in-transit insertion and deletion of RPC

messages, thus ensuring the integrity of the message stream between

RPC client and server. DTLS does not provide full message stream

protection, but it does enable receivers to reject non-participant

messages. In particular, transport layer encryption plus peer

authentication protects receiving XDR decoders from deserializing

untrusted data, a common coding vulnerability.

The use of TLS enables strong authentication of the communicating

RPC peers, providing a degree of non-repudiation. When AUTH_SYS is

used with TLS, but the RPC client is unauthenticated, the RPC server

still acts on RPC requests for which there is no trustworthy

¶

¶

¶

¶

¶

¶

¶

Identifier String:

Flavor Name:

authentication. In-transit traffic is protected, but the RPC client

itself can still misrepresent user identity without server

detection. TLS without authentication is an improvement from

AUTH_SYS without encryption, but it leaves a critical security

exposure.

In light of the above, it is RECOMMENDED that when AUTH_SYS is used,

every RPC client should present host authentication material to RPC

servers to prove that the client is a known one. The server can then

determine whether the UIDs and GIDs in AUTH_SYS requests from that

client can be accepted.

The use of TLS does not enable RPC clients to detect compromise that

leads to the impersonation of RPC users. Also, there continues to be

a requirement that the mapping of 32-bit user and group ID values to

user identities is the same on both the RPC client and server.

7.4. Best Security Policy Practices

RPC-over-TLS implementations and deployments are strongly encouraged

to adhere to the following policies to achieve the strongest

possible security with RPC-over-TLS.

When using AUTH_NULL or AUTH_SYS, both peers are required to have

DNS TLSA records and certificate material, and a policy that

requires mutual peer authentication and rejection of a connection

when host authentication fails.

RCPSEC_GSS provides integrity and privacy services which are

redundant when TLS is in use. These services should be disabled

in that case.

8. IANA Considerations

RFC Editor: In the following subsections, please replace RFC-TBD

with the RFC number assigned to this document. And, please remove

this Editor's Note before this document is published.

8.1. RPC Authentication Flavor

Following Appendix B of [RFC5531], the authors request a single new

entry in the RPC Authentication Flavor Numbers registry. The purpose

of the new authentication flavor is to signal the use of TLS with

RPC. This new flavor is not a pseudo-flavor.

The fields in the new entry are assigned as follows:

AUTH_TLS

TLS

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

Value:

Description:

Reference:

Protocol:

Identification Sequence:

Reference:

[I-D.ietf-tls-dtls-connection-id]

[I-D.ietf-tls-dtls13]

[RFC2119]

[RFC4279]

[RFC5056]

7

Indicates support for RPC-over-TLS.

RFC-TBD

8.2. ALPN Identifier for SUNRPC

Following Section 6 of [RFC7301], the authors request the allocation

of the following value in the "Application-Layer Protocol

Negotiation (ALPN) Protocol IDs" registry. The "sunrpc" string

identifies SunRPC when used over TLS.

SunRPC

0x73 0x75 0x6e 0x72 0x70 0x63 ("sunrpc")

RFC-TBD

9. References

9.1. Normative References

Rescorla, E., Tschofenig, H., and T. Fossati, "Connection

Identifiers for DTLS 1.2", Work in Progress, Internet-

Draft, draft-ietf-tls-dtls-connection-id-07, 21 October

2019, <https://tools.ietf.org/html/draft-ietf-tls-dtls-

connection-id-07>.

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

ietf-tls-dtls13-38, 29 May 2020, <https://tools.ietf.org/

html/draft-ietf-tls-dtls13-38>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key

Ciphersuites for Transport Layer Security (TLS)", RFC

4279, DOI 10.17487/RFC4279, December 2005, <https://

www.rfc-editor.org/info/rfc4279>.

Williams, N., "On the Use of Channel Bindings to Secure

Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,

<https://www.rfc-editor.org/info/rfc5056>.

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-tls-dtls-connection-id-07
https://tools.ietf.org/html/draft-ietf-tls-dtls-connection-id-07
https://tools.ietf.org/html/draft-ietf-tls-dtls13-38
https://tools.ietf.org/html/draft-ietf-tls-dtls13-38
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4279
https://www.rfc-editor.org/info/rfc4279
https://www.rfc-editor.org/info/rfc5056

[RFC5280]

[RFC5531]

[RFC5929]

[RFC6125]

[RFC7258]

[RFC7301]

[RFC7942]

[RFC8174]

[RFC8446]

[X.509]

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Thurlow, R., "RPC: Remote Procedure Call Protocol

Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,

May 2009, <https://www.rfc-editor.org/info/rfc5531>.

Altman, J., Williams, N., and L. Zhu, "Channel Bindings

for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,

<https://www.rfc-editor.org/info/rfc5929>.

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport Layer

Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

2011, <https://www.rfc-editor.org/info/rfc6125>.

Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is

an Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May

2014, <https://www.rfc-editor.org/info/rfc7258>.

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

International Telephone and Telegraph Consultative

Committee, "ITU-T X.509 - Information technology - The

Directory: Public-key and attribute certificate

frameworks.", ISO/IEC 9594-8, CCITT Recommendation X.509,

October 2019.

https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5531
https://www.rfc-editor.org/info/rfc5929
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446

[X.690]

[RFC2203]

[RFC2818]

[RFC6698]

[RFC6973]

[RFC7435]

[RFC7525]

[RFC8166]

[RFC8471]

International Telephone and Telegraph Consultative

Committee, "ITU-T X.690 - Information technology - ASN.1

encoding rules: Specification of Basic Encoding Rules

(BER), Canonical Encoding Rules (CER) and Distinguished

Encoding Rules (DER)", ISO/IEC 8825-1, CCITT

Recommendation X.690, August 2015.

9.2. Informative References

Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol

Specification", RFC 2203, DOI 10.17487/RFC2203, September

1997, <https://www.rfc-editor.org/info/rfc2203>.

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/info/

rfc2818>.

Hoffman, P. and J. Schlyter, "The DNS-Based

Authentication of Named Entities (DANE) Transport Layer

Security (TLS) Protocol: TLSA", RFC 6698, DOI 10.17487/

RFC6698, August 2012, <https://www.rfc-editor.org/info/

rfc6698>.

Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,

Morris, J., Hansen, M., and R. Smith, "Privacy

Considerations for Internet Protocols", RFC 6973, DOI

10.17487/RFC6973, July 2013, <https://www.rfc-editor.org/

info/rfc6973>.

Dukhovni, V., "Opportunistic Security: Some Protection

Most of the Time", RFC 7435, DOI 10.17487/RFC7435,

December 2014, <https://www.rfc-editor.org/info/rfc7435>.

Sheffer, Y., Holz, R., and P. Saint-Andre,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May

2015, <https://www.rfc-editor.org/info/rfc7525>.

Lever, C., Ed., Simpson, W., and T. Talpey, "Remote

Direct Memory Access Transport for Remote Procedure Call

Version 1", RFC 8166, DOI 10.17487/RFC8166, June 2017,

<https://www.rfc-editor.org/info/rfc8166>.

Popov, A., Ed., Nystroem, M., Balfanz, D., and J. Hodges,

"The Token Binding Protocol Version 1.0", RFC 8471, DOI

10.17487/RFC8471, October 2018, <https://www.rfc-

editor.org/info/rfc8471>.

https://www.rfc-editor.org/info/rfc2203
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc6698
https://www.rfc-editor.org/info/rfc6698
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc7435
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc8166
https://www.rfc-editor.org/info/rfc8471
https://www.rfc-editor.org/info/rfc8471

Appendix A. Known Weaknesses of the AUTH_SYS Authentication Flavor

The ONC RPC protocol, as specified in [RFC5531], provides several

modes of security, traditionally referred to as "authentication

flavors". Some of these flavors provide much more than an

authentication service. We refer to these as authentication flavors,

security flavors, or simply, flavors. One of the earliest and most

basic flavors is AUTH_SYS, also known as AUTH_UNIX. Appendix A of

[RFC5531] specifies AUTH_SYS.

AUTH_SYS assumes that the RPC client and server both use POSIX-style

user and group identifiers (each user and group can be distinctly

represented as a 32-bit unsigned integer). It also assumes that the

client and server both use the same mapping of user and group to an

integer. One user ID, one primary group ID, and up to 16

supplemental group IDs are associated with each RPC request. The

combination of these identifies the entity on the client that is

making the request.

A string identifies peers (hosts) in each RPC request. [RFC5531]

does not specify any requirements for this string other than that is

no longer than 255 octets. It does not have to be the same from

request to request. Also, it does not have to match the DNS hostname

of the sending host. For these reasons, even though most

implementations fill in their hostname in this field, receivers

typically ignore its content.

Appendix A of [RFC5531] contains a brief explanation of security

considerations:

It should be noted that use of this flavor of authentication does

not guarantee any security for the users or providers of a service,

in itself. The authentication provided by this scheme can be

considered legitimate only when applications using this scheme and

the network can be secured externally, and privileged transport

addresses are used for the communicating end-points (an example of

this is the use of privileged TCP/UDP ports in UNIX systems -- note

that not all systems enforce privileged transport address

mechanisms).

It should be clear, therefore, that AUTH_SYS by itself (i.e.,

without strong client authentication) offers little to no

communication security:

It does not protect the confidentiality or integrity of RPC

requests, users, or payloads, relying instead on "external"

security.

It does not provide authentication of RPC peer machines, other

than inclusion of an unprotected domain name.

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

The use of 32-bit unsigned integers as user and group

identifiers is problematic because these data types are not

cryptographically signed or otherwise verified by any

authority.

Because the user and group ID fields are not integrity-

protected, AUTH_SYS does not provide non-repudiation.

Acknowledgments

Special mention goes to Charles Fisher, author of "Encrypting NFSv4

with Stunnel TLS" . His article inspired the mechanism described in

the current document.

Many thanks to Tigran Mkrtchyan and Rick Macklem for their work on

prototype implementations and feedback on the current document.

Thanks to Derrell Piper for numerous suggestions that improved both

this simple mechanism and the current document's security-related

discussion.

Many thanks to Transport Area Director Magnus Westerlund for his

sharp questions and careful reading of the final revisions of the

current document. The text of Section 5.1.2 is mostly his

contribution.

The authors are additionally grateful to Bill Baker, David Black,

Alan DeKok, Lars Eggert, Benjamin Kaduk, Olga Kornievskaia, Greg

Marsden, Alex McDonald, Justin Mazzola Paluska, Tom Talpey, and

Martin Thomson for their input and support of this work.

Finally, special thanks to NFSV4 Working Group Chair and document

shepherd David Noveck, NFSV4 Working Group Chairs Spencer Shepler

and Brian Pawlowski, and NFSV4 Working Group Secretary Thomas Haynes

for their guidance and oversight.

Authors' Addresses

Trond Myklebust

Hammerspace Inc

4300 El Camino Real Ste 105

Los Altos, CA 94022

United States of America

Email: trond.myklebust@hammerspace.com

Charles Lever (editor)

Oracle Corporation

United States of America

3.

¶

4.

¶

¶

¶

¶

¶

¶

¶

https://www.linuxjournal.com/content/encrypting-nfsv4-stunnel-tls
https://www.linuxjournal.com/content/encrypting-nfsv4-stunnel-tls
mailto:trond.myklebust@hammerspace.com

Email: chuck.lever@oracle.com

mailto:chuck.lever@oracle.com

	Towards Remote Procedure Call Encryption By Default
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. Terminology
	4. RPC-Over-TLS in Operation
	4.1. Discovering Server-side TLS Support
	4.2. Authentication
	4.2.1. Using TLS with RPCSEC GSS

	5. TLS Requirements
	5.1. Base Transport Considerations
	5.1.1. Protected Operation on TCP
	5.1.2. Protected Operation on UDP
	5.1.3. Protected Operation on Other Transports

	5.2. TLS Peer Authentication
	5.2.1. X.509 Certificates Using PKIX trust
	5.2.2. X.509 Certificates Using Fingerprints
	5.2.3. Pre-Shared Keys
	5.2.4. Token Binding

	6. Implementation Status
	6.1. DESY NFS server
	6.2. Hammerspace NFS server
	6.3. Linux NFS server and client
	6.4. FreeBSD NFS server and client

	7. Security Considerations
	7.1. Limitations of an Opportunistic Approach
	7.1.1. STRIPTLS Attacks
	7.1.2. Privacy Leakage Before Session Establishment

	7.2. TLS Identity Management on Clients
	7.3. Security Considerations for AUTH_SYS on TLS
	7.4. Best Security Policy Practices

	8. IANA Considerations
	8.1. RPC Authentication Flavor
	8.2. ALPN Identifier for SUNRPC

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Known Weaknesses of the AUTH_SYS Authentication Flavor
	Acknowledgments
	Authors' Addresses

