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Abstract

     Extensions are proposed to NFS version 4 which enable it to support
     long-lived sessions, endpoint management, and operation atop a
     variety of RPC transports, including TCP and RDMA.  These
     extensions enable support for reliably implemented client response
     caching by NFSv4 servers, enhanced security, multipathing and
     trunking of transport connections.  These extensions provide
     identical benefits over both TCP and RDMA connection types.
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1.  Introduction

     This draft proposes extensions to NFS version 4 [RFC3530] enabling
     it to support sessions and endpoint management, and to support
     operation atop RDMA-capable RPC over transports such as iWARP.
     [RDMAP, DDP] These extensions enable support for exactly-once
     semantics by NFSv4 servers, multipathing and trunking of transport
     connections, and enhanced security.  The ability to operate over
     RDMA enables greatly enhanced performance.  Operation over existing
     TCP is enhanced as well.

     While discussed here with respect to IETF-chartered transports, the
     proposed protocol is intended to function over other standards,
     such as Infiniband. [IB]

     The following are the major aspects of this proposal:

     o    Changes are proposed within the framework of NFSv4 minor
          versioning.  RPC, XDR, and the NFSv4 procedures and operations
          are preserved.  The proposed extension functions equally well
          over existing transports and RDMA, and interoperates
          transparently with existing implementations, both at the local
          programmatic interface and over the wire.

     o    An explicit session is introduced to NFSv4, and new operations
          are added to support it.  The session allows for enhanced
          trunking, failover and recovery, and authentication
          efficiency, along with necessary support for RDMA.  The
          session is implemented as operations within NFSv4 COMPOUND and
          does not impact layering or interoperability with existing
          NFSv4 implementations.  The NFSv4 callback channel is
          dynamically associated and is connected by the client and not
          the server, enhancing security and operation through

https://datatracker.ietf.org/doc/html/rfc3530


Talpey et al.             Expires December 2005                 [Page 3]



Internet-Draft          NFSv4 Session Extensions               July 2005

          firewalls.  In fact, the callback channel will be enabled to
          share the same connection as the operations channel.

     o    An enhanced RPC layer enables NFSv4 operation atop RDMA.  The
          session assists RDMA-mode connection, and additional
          facilities are provided for managing RDMA resources at both
          NFSv4 server and client.  Existing NFSv4 operations continue
          to function as before, though certain size limits are
          negotiated.  A companion draft to this document, "RDMA
          Transport for ONC RPC" [RPCRDMA] is to be referenced for
          details of RPC RDMA support.

     o    Support for exactly-once semantics ("EOS") is enabled by the
          new session facilities, by providing to the server a way to
          bound the size of the duplicate request cache for a single
          client, and to manage its persistent storage.

                                Block Diagram

          +-----------------+-------------------------------------+
          |     NFSv4       |     NFSv4 + session extensions      |
          +-----------------+------+----------------+-------------+
          |      Operations        |   Session      |             |
          +------------------------+----------------+             |
          |                RPC/XDR                  |             |
          +-------------------------------+---------+             |
          |       Stream Transport        |    RDMA Transport     |
          +-------------------------------+-----------------------+

1.1.  Motivation

     NFS version 4 [RFC3530] has been granted "Proposed Standard"
     status.  The NFSv4 protocol was developed along several design
     points, important among them: effective operation over wide-area
     networks, including the Internet itself;  strong security
     integrated into the protocol;  extensive cross-platform
     interoperability including integrated locking semantics compatible
     with multiple operating systems; and protocol extensibility.

     The NFS version 4 protocol, however, does not provide support for
     certain important transport aspects.  For example, the protocol
     does not address response caching, which is required to provide
     correctness for retried client requests across a network partition,
     nor does it provide an interoperable way to support trunking and
     multipathing of connections.  This leads to inefficiencies,
     especially where trunking and multipathing are concerned, and
     presents additional difficulties in supporting RDMA fabrics, in
     which endpoints may require dedicated or specialized resources.

https://datatracker.ietf.org/doc/html/rfc3530
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     Sessions can be employed to unify NFS-level constructs such as the
     clientid, with transport-level constructs such as transport
     endpoints.  Each transport endpoint draws on resources via its
     membership in a session.  Resource management can be more strictly
     maintained, leading to greater server efficiency in implementing
     the protocol.  The enhanced operation over a session affords an
     opportunity to the server to implement a highly reliable duplicate
     request cache, and thereby export exactly-once semantics.

     NFSv4 advances the state of high-performance local sharing, by
     virtue of its integrated security, locking, and delegation, and its
     excellent coverage of the sharing semantics of multiple operating
     systems.  It is precisely this environment where exactly-once
     semantics become a fundamental requirement.

     Additionally, efforts to standardize a set of protocols for Remote
     Direct Memory Access, RDMA, over the Internet Protocol Suite have
     made significant progress.  RDMA is a general solution to the
     problem of CPU overhead incurred due to data copies, primarily at
     the receiver.  Substantial research has addressed this and has
     borne out the efficacy of the approach.  An overview of this is the
     RDDP Problem Statement document, [RDDPPS].

     Numerous upper layer protocols achieve extremely high bandwidth and
     low overhead through the use of RDMA.  Products from a wide variety
     of vendors employ RDMA to advantage, and prototypes have
     demonstrated the effectiveness of many more.  Here, we are
     concerned specifically with NFS and NFS-style upper layer
     protocols;  examples from Network Appliance [DAFS, DCK+03], Fujitsu
     Prime Software Technologies [FJNFS, FJDAFS] and Harvard University
     [KM02] are all relevant.

     By layering a session binding for NFS version 4 directly atop a
     standard RDMA transport, a greatly enhanced level of performance
     and transparency can be supported on a wide variety of operating
     system platforms.  These combined capabilities alter the landscape
     between local filesystems and network attached storage, enable a
     new level of performance, and lead new classes of application to
     take advantage of NFS.

1.2.  Problem Statement

     Two issues drive the current proposal: correctness, and
     performance.  Both are instances of "raising the bar" for NFS,
     whereby the desire to use NFS in new classes applications can be
     accommodated by providing the basic features to make such use
     feasible.  Such applications include tightly coupled sharing
     environments such as cluster computing, high performance computing
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     (HPC) and information processing such as databases.  These trends
     are explored in depth in [NFSPS].

     The first issue, correctness, exemplified among the attributes of
     local filesystems, is support for exactly-once semantics.  Such
     semantics have not been reliably available with NFS.  Server-based
     duplicate request caches [CJ89] help, but do not reliably provide
     strict correctness.  For the type of application which is expected
     to make extensive use of the high-performance RDMA-enabled
     environment, the reliable provision of such semantics is a
     fundamental requirement.

     Introduction of a session to NFSv4 will address these issues.  With
     higher performance and enhanced semantics comes the problem of
     enabling advanced endpoint management, for example high-speed
     trunking, multipathing and failover.  These characteristics enable
     availability and performance.  RFC3530 presents some issues in
     permitting a single clientid to access a server over multiple
     connections.

     A second issue encountered in common by NFS implementations is the
     CPU overhead required to implement the protocol.  Primary among the
     sources of this overhead is the movement of data from NFS protocol
     messages to its eventual destination in user buffers or aligned
     kernel buffers.  The data copies consume system bus bandwidth and
     CPU time, reducing the available system capacity for applications.
     [RDDPPS] Achieving zero-copy with NFS has to date required
     sophisticated, "header cracking" hardware and/or extensive
     platform-specific virtual memory mapping tricks.

     Combined in this way, NFSv4, RDMA and the emerging high-speed
     network fabrics will enable delivery of performance which matches
     that of the fastest local filesystems, preserving the key existing
     local filesystem semantics, while enhancing them by providing
     network filesystem sharing semantics.

     RDMA implementations generally have other interesting properties,
     such as hardware assisted protocol access, and support for user
     space access to I/O.  RDMA is compelling here for another reason;
     hardware offloaded networking support in itself does not avoid data
     copies, without resorting to implementing part of the NFS protocol
     in the NIC.  Support of RDMA by NFS enables the highest performance
     at the architecture level rather than by implementation; this
     enables ubiquitous and interoperable solutions.

     By providing file access performance equivalent to that of local
     file systems, NFSv4 over RDMA will enable applications running on a
     set of client machines to interact through an NFSv4 file system,

https://datatracker.ietf.org/doc/html/rfc3530
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     just as applications running on a single machine might interact
     through a local file system.

     This raises the issue of whether additional protocol enhancements
     to enable such interaction would be desirable and what such
     enhancements would be.  This is a complicated issue which the
     working group needs to address and will not be further discussed in
     this document.

1.3.  NFSv4 Session Extension Characteristics

     This draft will present a solution based upon minor versioning of
     NFSv4.  It will introduce a session to collect transport endpoints
     and resources such as reply caching, which in turn enables
     enhancements such as trunking, failover and recovery.  It will
     describe use of RDMA by employing support within an underlying RPC
     layer [RPCRDMA].  Most importantly, it will focus on making the
     best possible use of an RDMA transport.

     These extensions are proposed as elements of a new minor revision
     of NFS version 4.  In this draft, NFS version 4 will be referred to
     generically as "NFSv4", when describing properties common to all
     minor versions.  When referring specifically to properties of the
     original, minor version 0 protocol, "NFSv4.0" will be used, and
     changes proposed here for minor version 1 will be referred to as
     "NFSv4.1".

     This draft proposes only changes which are strictly upward-
     compatible with existing RPC and NFS Application Programming
     Interfaces (APIs).

2.  Transport Issues

     The Transport Issues section of the document explores the details
     of utilizing the various supported transports.

2.1.  Session Model

     The first and most evident issue in supporting diverse transports
     is how to provide for their differences.  This draft proposes
     introducing an explicit session.

     A session introduces minimal protocol requirements, and provides
     for a highly useful and convenient way to manage numerous endpoint-
     related issues.  The session is a local construct; it represents a
     named, higher-layer object to which connections can refer, and
     encapsulates properties important to each associated client.
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     A session is a dynamically created, long-lived server object
     created by a client, used over time from one or more transport
     connections.  Its function is to maintain the server's state
     relative to the connection(s) belonging to a client instance.  This
     state is entirely independent of the connection itself.  The
     session in effect becomes the object representing an active client
     on a connection or set of connections.

     Clients may create multiple sessions for a single clientid, and may
     wish to do so for optimization of transport resources, buffers, or
     server behavior.  A session could be created by the client to
     represent a single mount point, for separate read and write
     "channels", or for any number of other client-selected parameters.

     The session enables several things immediately.  Clients may
     disconnect and reconnect (voluntarily or not) without loss of
     context at the server.  (Of course, locks, delegations and related
     associations require special handling, and generally expire in the
     extended absence of an open connection.)  Clients may connect
     multiple transport endpoints to this common state.  The endpoints
     may have all the same attributes, for instance when trunked on
     multiple physical network links for bandwidth aggregation or path
     failover.  Or, the endpoints can have specific, special purpose
     attributes such as callback channels.

     The NFSv4 specification does not provide for any form of flow
     control;  instead it relies on the windowing provided by TCP to
     throttle requests.  This unfortunately does not work with RDMA,
     which in general provides no operation flow control and will
     terminate a connection in error when limits are exceeded.  Limits
     are therefore exchanged when a session is created; These limits
     then provide maxima within which each session's connections must
     operate, they are managed within these limits as described in
     [RPCRDMA].  The limits may also be modified dynamically at the
     server's choosing by manipulating certain parameters present in
     each NFSv4.1 request.

     The presence of a maximum request limit on the session bounds the
     requirements of the duplicate request cache.  This can be used to
     advantage by a server, which can accurately determine any storage
     needs and enable it to maintain duplicate request cache persistence
     and to provide reliable exactly-once semantics.

     Finally, given adequate connection-oriented transport security
     semantics, authentication and authorization may be cached on a per-
     session basis, enabling greater efficiency in the issuing and
     processing of requests on both client and server.  A proposal for
     transparent, server-driven implementation of this in NFSv4 has been
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     made. [CCM] The existence of the session greatly facilitates the
     implementation of this approach.  This is discussed in detail in
     the Authentication Efficiencies section later in this draft.

2.1.1.  Connection State

     In RFC3530, the combination of a connected transport endpoint and a
     clientid forms the basis of connection state.  While has been made
     to be workable with certain limitations, there are difficulties in
     correct and robust implementation.  The NFSv4.0 protocol must
     provide a server-initiated connection for the callback channel, and
     must carefully specify the persistence of client state at the
     server in the face of transport interruptions.  The server has only
     the client's transport address binding (the IP 4-tuple) to identify
     the client RPC transaction stream and to use as a lookup tag on the
     duplicate request cache.  (A useful overview of this is in [RW96].)
     If the server listens on multiple adddresses, and the client
     connects to more than one, it must employ different clientid's on
     each, negating its ability to aggregate bandwidth and redundancy.
     In effect, each transport connection is used as the server's
     representation of client state.  But, transport connections are
     potentially fragile and transitory.

     In this proposal, a session identifier is assigned by the server
     upon initial session negotiation on each connection.  This
     identifier is used to associate additional connections, to
     renegotiate after a reconnect, to provide an abstraction for the
     various session properties, and to address the duplicate request
     cache.  No transport-specific information is used in the duplicate
     request cache implementation of an NFSv4.1 server, nor in fact the
     RPC XID itself.  The session identifier is unique within the
     server's scope and may be subject to certain server policies such
     as being bounded in time.

     It is envisioned that the primary transport model will be
     connection oriented.  Connection orientation brings with it certain
     potential optimizations, such as caching of per-connection
     properties, which are easily leveraged through the generality of
     the session.  However, it is possible that in future, other
     transport models could be accommodated below the session
     abstraction.

2.1.2.  NFSv4 Channels, Sessions and Connections

     There are at least two types of NFSv4 channels: the "operations"
     channel used for ordinary requests from client to server, and the
     "back" channel, used for callback requests from server to client.

https://datatracker.ietf.org/doc/html/rfc3530
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     As mentioned above, different NFSv4 operations on these channels
     can lead to different resource needs.  For example, server callback
     operations (CB_RECALL) are specific, small messages which flow from
     server to client at arbitrary times, while data transfers such as
     read and write have very different sizes and asymmetric behaviors.
     It is sometimes impractical for the RDMA peers (NFSv4 client and
     NFSv4 server) to post buffers for these various operations on a
     single connection.  Commingling of requests with responses at the
     client receive queue is particularly troublesome, due both to the
     need to manage both solicited and unsolicited completions, and to
     provision buffers for both purposes.  Due to the lack of any
     ordering of callback requests versus response arrivals, without any
     other mechanisms, the client would be forced to allocate all
     buffers sized to the worst case.

     The callback requests are likely to be handled by a different task
     context from that handling the responses.  Significant
     demultiplexing and thread management may be required if both are
     received on the same queue.  However, if callbacks are relatively
     rare (perhaps due to client access patterns), many of these
     difficulties can be minimized.

     Also, the client may wish to perform trunking of operations channel
     requests for performance reasons, or multipathing for availability.
     This proposal permits both, as well as many other session and
     connection possibilities, by permitting each operation to carry
     session membership information and to share session (and clientid)
     state in order to draw upon the appropriate resources.  For
     example, reads and writes may be assigned to specific, optimized
     connections, or sorted and separated by any or all of size,
     idempotency, etc.

     To address the problems described above, this proposal allows
     multiple sessions to share a clientid, as well as for multiple
     connections to share a session.

     Single Connection model:

                         NFSv4.1 Session
                            /      \
             Operations_Channel   [Back_Channel]
                             \    /
                          Connection
                               |
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     Multi-connection trunked model (2 operations channels shown):

                         NFSv4.1 Session
                            /      \
             Operations_Channels  [Back_Channel]
                 |          |               |
             Connection Connection     [Connection]
                 |          |               |

     Multi-connection split-use model (2 mounts shown):

                                  NFSv4.1 Session
                                /                 \
                         (/home)        (/usr/local - readonly)
                         /      \                    |
          Operations_Channel  [Back_Channel]         |
                  |                 |          Operations_Channel
              Connection       [Connection]          |
                  |                 |            Connection
                                                     |

     In this way, implementation as well as resource management may be
     optimized.  Each session will have its own response caching and
     buffering, and each connection or channel will have its own
     transport resources, as appropriate.  Clients which do not require
     certain behaviors may optimize such resources away completely, by
     using specific sessions and not even creating the additional
     channels and connections.

2.1.3.  Reconnection, Trunking and Failover

     Reconnection after failure references stored state on the server
     associated with lease recovery during the grace period.  The
     session provides a convenient handle for storing and managing
     information regarding the client's previous state on a per-
     connection basis, e.g. to be used upon reconnection.  Reconnection
     to a previously existing session, and its stored resources, are
     covered in the "Connection Models" section below.

     One important aspect of reconnection is that of RPC library
     support.  Traditionally, an Upper Layer RPC-based Protocol such as
     NFS leaves all transport knowledge to the RPC layer implementation
     below it.  This allows NFS to operate over a wide variety of
     transports and has proven to be a highly successful approach.  The
     session, however, introduces an abstraction which is, in a way,
     "between" RPC and NFSv4.1.  It is important that the session



Talpey et al.             Expires December 2005                [Page 11]



Internet-Draft          NFSv4 Session Extensions               July 2005

     abstraction not have ramifications within the RPC layer.

     One such issue arises within the reconnection logic of RPC.
     Previously, an explicit session binding operation, which
     established session context for each new connection, was explored.
     This however required that the session binding also be performed
     during reconnect, which in turn required an RPC request.  This
     additional request requires new RPC semantics, both in
     implementation and the fact that a new request is inserted into the
     RPC stream.  Also, the binding of a connection to a session
     required the upper layer to become "aware" of connections,
     something the RPC layer abstraction architecturally abstracts away.
     Therefore the session binding is not handled in connection scope
     but instead explicitly carried in each request.

     For Reliability Availability and Serviceability (RAS) issues such
     as bandwidth aggregation and multipathing, clients frequently seek
     to make multiple connections through multiple logical or physical
     channels.  The session is a convenient point to aggregate and
     manage these resources.

2.1.4.  Server Duplicate Request Cache

     Server duplicate request caches, while not a part of an NFS
     protocol, have become a standard, even required, part of any NFS
     implementation.  First described in [CJ89], the duplicate request
     cache was initially found to reduce work at the server by avoiding
     duplicate processing for retransmitted requests.  A second, and in
     the long run more important benefit, was improved correctness, as
     the cache avoided certain destructive non-idempotent requests from
     being reinvoked.

     However, such caches do not provide correctness guarantees;  they
     cannot be managed in a reliable, persistent fashion.  The reason is
     understandable - their storage requirement is unbounded due to the
     lack of any such bound in the NFS protocol, and they are dependent
     on transport addresses for request matching.

     As proposed in this draft, the presence of maximum request count
     limits and negotiated maximum sizes allows the size and duration of
     the cache to be bounded, and coupled with a long-lived session
     identifier, enables its persistent storage on a per-session basis.

     This provides a single unified mechanism which provides the
     following guarantees required in the NFSv4 specification, while
     extending them to all requests, rather than limiting them only to a
     subset of state-related requests:
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          "It is critical the server maintain the last response sent to
          the client to provide a more reliable cache of duplicate non-
          idempotent requests than that of the traditional cache
          described in [CJ89]..." [RFC3530]

     The maximum request count limit is the count of active operations,
     which bounds the number of entries in the cache.  Constraining the
     size of operations additionally serves to limit the required
     storage to the product of the current maximum request count and the
     maximum response size.  This storage requirement enables server-
     side efficiencies.

     Session negotiation allows the server to maintain other state.  An
     NFSv4.1 client invoking the session destroy operation will cause
     the server to denegotiate (close) the session, allowing the server
     to deallocate cache entries.  Clients can potentially specify that
     such caches not be kept for appropriate types of sessions (for
     example, read-only sessions).  This can enable more efficient
     server operation resulting in improved response times, and more
     efficient sizing of buffers and response caches.

     Similarly, it is important for the client to explicitly learn
     whether the server is able to implement reliable semantics.
     Knowledge of whether these semantics are in force is critical for a
     highly reliable client, one which must provide transactional
     integrity guarantees.  When clients request that the semantics be
     enabled for a given session, the session reply must inform the
     client if the mode is in fact enabled.  In this way the client can
     confidently proceed with operations without having to implement
     consistency facilities of its own.

2.2.  Session Initialization and Transfer Models

     Session initialization issues, and data transfer models relevant to
     both TCP and RDMA are discussed in this section.

2.2.1.  Session Negotiation

     The following parameters are exchanged between client and server at
     session creation time.  Their values allow the server to properly
     size resources allocated in order to service the client's requests,
     and to provide the server with a way to communicate limits to the
     client for proper and optimal operation.  They are exchanged prior
     to all session-related activity, over any transport type.
     Discussion of their use is found in their descriptions as well as
     throughout this section.

https://datatracker.ietf.org/doc/html/rfc3530
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     Maximum Requests
          The client's desired maximum number of concurrent requests is
          passed, in order to allow the server to size its reply cache
          storage.  The server may modify the client's requested limit
          downward (or upward) to match its local policy and/or
          resources.  Over RDMA-capable RPC transports, the per-request
          management of low-level transport message credits is handled
          within the RPC layer. [RPCRDMA]

     Maximum Request/Response Sizes
          The maximum request and response sizes are exchanged in order
          to permit allocation of appropriately sized buffers and
          request cache entries.  The size must allow for certain
          protocol minima, allowing the receipt of maximally sized
          operations (e.g. RENAME requests which contains two name
          strings).  Note the maximum request/response sizes cover the
          entire request/response message and not simply the data
          payload as traditional NFS maximum read or write size.  Also
          note the server implementation may not, in fact probably does
          not, require the reply cache entries to be sized as large as
          the maximum response.  The server may reduce the client's
          requested sizes.

     Inline Padding/Alignment
          The server can inform the client of any padding which can be
          used to deliver NFSv4 inline WRITE payloads into aligned
          buffers.  Such alignment can be used to avoid data copy
          operations at the server for both TCP and inline RDMA
          transfers.  For RDMA, the client informs the server in each
          operation when padding has been applied. [RPCRDMA]

     Transport Attributes
          A placeholder for transport-specific attributes is provided,
          with a format to be determined.  Possible examples of
          information to be passed in this parameter include transport
          security attributes to be used on the connection, RDMA-
          specific attributes, legacy "private data" as used on existing
          RDMA fabrics, transport Quality of Service attributes, etc.
          This information is to be passed to the peer's transport layer
          by local means which is currently outside the scope of this
          draft, however one attribute is provided in the RDMA case:

          RDMA Read Resources
               RDMA implementations must explicitly provision resources
               to support RDMA Read requests from connected peers.
               These values must be explicitly specified, to provide
               adequate resources for matching the peer's expected needs
               and the connection's delay-bandwidth parameters.  The
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               client provides its chosen value to the server in the
               initial session creation, the value must be provided in
               each client RDMA endpoint.  The values are asymmetric and
               should be set to zero at the server in order to conserve
               RDMA resources, since clients do not issue RDMA Read
               operations in this proposal.  The result is communicated
               in the session response, to permit matching of values
               across the connection.  The value may not be changed in
               the duration of the session, although a new value may be
               requested as part of a new session.

2.2.2.  RDMA Requirements

     A complete discussion of the operation of RPC-based protocols atop
     RDMA transports is in [RPCRDMA].  Where RDMA is considered, this
     proposal assumes the use of such a layering;  it addresses only the
     upper layer issues relevant to making best use of RPC/RDMA.

     A connection oriented (reliable sequenced) RDMA transport will be
     required.  There are several reasons for this.  First, this model
     most closely reflects the general NFSv4 requirement of long-lived
     and congestion-controlled transports.  Second, to operate correctly
     over either an unreliable or unsequenced RDMA transport, or both,
     would require significant complexity in the implementation and
     protocol not appropriate for a strict minor version.  For example,
     retransmission on connected endpoints is explicitly disallowed in
     the current NFSv4 draft;  it would again be required with these
     alternate transport characteristics.  Third, the proposal assumes a
     specific RDMA ordering semantic, which presents the same set of
     ordering and reliability issues to the RDMA layer over such
     transports.

     The RDMA implementation provides for making connections to other
     RDMA-capable peers.  In the case of the current proposals before
     the RDDP working group, these RDMA connections are preceded by a
     "streaming" phase, where ordinary TCP (or NFS) traffic might flow.
     However, this is not assumed here and sizes and other parameters
     are explicitly exchanged upon a session entering RDMA mode.

2.2.3.  RDMA Connection Resources

     On transport endpoints which support automatic RDMA mode, that is,
     endpoints which are created in the RDMA-enabled state, a single,
     preposted buffer must initially be provided by both peers, and the
     client session negotiation must be the first exchange.

     On transport endpoints supporting dynamic negotiation, a more
     sophisticated negotiation is possible, but is not discussed in the
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     current draft.

     RDMA imposes several requirements on upper layer consumers.
     Registration of memory and the need to post buffers of a specific
     size and number for receive operations are a primary consideration.

     Registration of memory can be a relatively high-overhead operation,
     since it requires pinning of buffers, assignment of attributes
     (e.g. readable/writable), and initialization of hardware
     translation.  Preregistration is desirable to reduce overhead.
     These registrations are specific to hardware interfaces and even to
     RDMA connection endpoints, therefore negotiation of their limits is
     desirable to manage resources effectively.

     Following the basic registration, these buffers must be posted by
     the RPC layer to handle receives.  These buffers remain in use by
     the RPC/NFSv4 implementation; the size and number of them must be
     known to the remote peer in order to avoid RDMA errors which would
     cause a fatal error on the RDMA connection.

     The session provides a natural way for the server to manage
     resource allocation to each client rather than to each transport
     connection itself.  This enables considerable flexibility in the
     administration of transport endpoints.

2.2.4.  TCP and RDMA Inline Transfer Model

     The basic transfer model for both TCP and RDMA is referred to as
     "inline".  For TCP, this is the only transfer model supported,
     since TCP carries both the RPC header and data together in the data
     stream.

     For RDMA, the RDMA Send transfer model is used for all NFS requests
     and replies, but data is optionally carried by RDMA Writes or RDMA
     Reads.  Use of Sends is required to ensure consistency of data and
     to deliver completion notifications.  The pure-Send method is
     typically used where the data payload is small, or where for
     whatever reason target memory for RDMA is not available.
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     Inline message exchange

            Client                                Server
               :                Request              :
          Send :   ------------------------------>   : untagged
               :                                     :  buffer
               :               Response              :
      untagged :   <------------------------------   : Send
       buffer  :                                     :

            Client                                Server
               :            Read request             :
          Send :   ------------------------------>   : untagged
               :                                     :  buffer
               :       Read response with data       :
      untagged :   <------------------------------   : Send
       buffer  :                                     :

            Client                                Server
               :       Write request with data       :
          Send :   ------------------------------>   : untagged
               :                                     :  buffer
               :            Write response           :
      untagged :   <------------------------------   : Send
       buffer  :                                     :

     Responses must be sent to the client on the same connection that
     the request was sent.  It is important that the server does not
     assume any specific client implementation, in particular whether
     connections within a session share any state at the client.  This
     is also important to preserve ordering of RDMA operations, and
     especially RMDA consistency.  Additionally, it ensures that the RPC
     RDMA layer makes no requirement of the RDMA provider to open its
     memory registration handles (Steering Tags) beyond the scope of a
     single RDMA connection.  This is an important security
     consideration.

     Two values must be known to each peer prior to issuing Sends: the
     maximum number of sends which may be posted, and their maximum
     size.  These values are referred to, respectively, as the message
     credits and the maximum message size.  While the message credits
     might vary dynamically over the duration of the session, the
     maximum message size does not.  The server must commit to
     preserving this number of duplicate request cache entires, and
     preparing a number of receive buffers equal to or greater than its
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     currently advertised credit value, each of the advertised size.
     These ensure that transport resources are allocated sufficient to
     receive the full advertised limits.

     Note that the server must post the maximum number of session
     requests to each client operations channel.  The client is not
     required to spread its requests in any particular fashion across
     connections within a session.  If the client wishes, it may create
     multiple sessions, each with a single or small number of operations
     channels to provide the server with this resource advantage.  Or,
     over RDMA the server may employ a "shared receive queue".  The
     server can in any case protect its resources by restricting the
     client's request credits.

     While tempting to consider, it is not possible to use the TCP
     window as an RDMA operation flow control mechanism.  First, to do
     so would violate layering, requiring both senders to be aware of
     the existing TCP outbound window at all times.  Second, since
     requests are of variable size, the TCP window can hold a widely
     variable number of them, and since it cannot be reduced without
     actually receiving data, the receiver cannot limit the sender.
     Third, any middlebox interposing on the connection would wreck any
     possible scheme. [MIDTAX] In this proposal, maximum request count
     limits are exchanged at the session level to allow correct
     provisioning of receive buffers by transports.

     When operating over TCP or other similar transport, request limits
     and sizes are still employed in NFSv4.1, but instead of being
     required for correctness, they provide the basis for efficient
     server implementation of the duplicate request cache.  The limits
     are chosen based upon the expected needs and capabilities of the
     client and server, and are in fact arbitrary.  Sizes may be
     specified by the client as zero (requesting the server's preferred
     or optimal value), and request limits may be chosen in proportion
     to the client's capabilities.  For example, a limit of 1000 allows
     1000 requests to be in progress, which may generally be far more
     than adequate to keep local networks and servers fully utilized.

     Both client and server have independent sizes and buffering, but
     over RDMA fabrics client credits are easily managed by posting a
     receive buffer prior to sending each request.  Each such buffer may
     not be completed with the corresponding reply, since responses from
     NFSv4 servers arrive in arbitrary order.  When an operations
     channel is also used for callbacks, the client must account for
     callback requests by posting additional buffers.  Note that
     implementation-specific facilities such as a shared receive queue
     may also allow optimization of these allocations.
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     When a session is created, the client requests a preferred buffer
     size, and the server provides its answer.  The server posts all
     buffers of at least this size.  The client must comply by not
     sending requests greater than this size.  It is recommended that
     server implementations do all they can to accommodate a useful
     range of possible client requests.  There is a provision in
     [RPCRDMA] to allow the sending of client requests which exceed the
     server's receive buffer size, but it requires the server to "pull"
     the client's request as a "read chunk" via RDMA Read.  This
     introduces at least one additional network roundtrip, plus other
     overhead such as registering memory for RDMA Read at the client and
     additional RDMA operations at the server, and is to be avoided.

     An issue therefore arises when considering the NFSv4 COMPOUND
     procedures.  Since an arbitrary number (total size) of operations
     can be specified in a single COMPOUND procedure, its size is
     effectively unbounded.  This cannot be supported by RDMA Sends, and
     therefore this size negotiation places a restriction on the
     construction and maximum size of both COMPOUND requests and
     responses.  If a COMPOUND results in a reply at the server that is
     larger than can be sent in an RDMA Send to the client, then the
     COMPOUND must terminate and the operation which causes the overflow
     will provide a TOOSMALL error status result.

2.2.5.  RDMA Direct Transfer Model

     Placement of data by explicitly tagged RDMA operations is referred
     to as "direct" transfer.  This method is typically used where the
     data payload is relatively large, that is, when RDMA setup has been
     performed prior to the operation, or when any overhead for setting
     up and performing the transfer is regained by avoiding the overhead
     of processing an ordinary receive.

     The client advertises RDMA buffers in this proposed model, and not
     the server.  This means the "XDR Decoding with Read Chunks"
     described in [RPCRDMA] is not employed by NFSv4.1 replies, and
     instead all results transferred via RDMA to the client employ "XDR
     Decoding with Write Chunks".  There are several reasons for this.

     First, it allows for a correct and secure mode of transfer.  The
     client may advertise specific memory buffers only during specific
     times, and may revoke access when it pleases.  The server is not
     required to expose copies of local file buffers for individual
     clients, or to lock or copy them for each client access.

     Second, client credits based on fixed-size request buffers are
     easily managed on the server, but for the server additional
     management of buffers for client RDMA Reads is not well-bounded.
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     For example, the client may not perform these RDMA Read operations
     in a timely fashion, therefore the server would have to protect
     itself against denial-of-service on these resources.

     Third, it reduces network traffic, since buffer exposure outside
     the scope and duration of a single request/response exchange
     necessitates additional memory management exchanges.

     There are costs associated with this decision.  Primary among them
     is the need for the server to employ RDMA Read for operations such
     as large WRITE.  The RDMA Read operation is a two-way exchange at
     the RDMA layer, which incurs additional overhead relative to RDMA
     Write.  Additionally, RDMA Read requires resources at the data
     source (the client in this proposal) to maintain state and to
     generate replies.  These costs are overcome through use of
     pipelining with credits, with sufficient RDMA Read resources
     negotiated at session initiation, and appropriate use of RDMA for
     writes by the client - for example only for transfers above a
     certain size.

     A description of which NFSv4 operation results are eligible for
     data transfer via RDMA Write is in [NFSDDP].  There are only two
     such operations: READ and READLINK.  When XDR encoding these
     requests on an RDMA transport, the NFSv4.1 client must insert the
     appropriate xdr_write_list entries to indicate to the server
     whether the results should be transferred via RDMA or inline with a
     Send.  As described in [NFSDDP], a zero-length write chunk is used
     to indicate an inline result.  In this way, it is unnecessary to
     create new operations for RDMA-mode versions of READ and READLINK.

     Another tool to avoid creation of new, RDMA-mode operations is the
     Reply Chunk [RPCRDMA], which is used by RPC in RDMA mode to return
     large replies via RDMA as if they were inline.  Reply chunks are
     used for operations such as READDIR, which returns large amounts of
     information, but in many small XDR segments.  Reply chunks are
     offered by the client and the server can use them in preference to
     inline.  Reply chunks are transparent to upper layers such as
     NFSv4.

     In any very rare cases where another NFSv4.1 operation requires
     larger buffers than were negotiated when the session was created
     (for example extraordinarily large RENAMEs), the underlying RPC
     layer may support the use of "Message as an RDMA Read Chunk" and
     "RDMA Write of Long Replies" as described in [RPCRDMA].  No
     additional support is required in the NFSv4.1 client for this.  The
     client should be certain that its requested buffer sizes are not so
     small as to make this a frequent occurrence, however.
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     All operations are initiated by a Send, and are completed with a
     Send.  This is exactly as in conventional NFSv4, but under RDMA has
     a significant purpose: RDMA operations are not complete, that is,
     guaranteed consistent, at the data sink until followed by a
     successful Send completion (i.e. a receive).  These events provide
     a natural opportunity for the initiator (client) to enable and
     later disable RDMA access to the memory which is the target of each
     operation, in order to provide for consistent and secure operation.
     The RDMAP Send with Invalidate operation may be worth employing in
     this respect, as it relieves the client of certain overhead in this
     case.

     A "onetime" boolean advisory to each RDMA region might become a
     hint to the server that the client will use the three-tuple for
     only one NFSv4 operation.  For a transport such as iWARP, the
     server can assist the client in invalidating the three-tuple by
     performing a Send with Solicited Event and Invalidate.  The server
     may ignore this hint, in which case the client must perform a local
     invalidate after receiving the indication from the server that the
     NFSv4 operation is complete.  This may be considered in a future
     version of this draft and [NFSDDP].

     In a trusted environment, it may be desirable for the client to
     persistently enable RDMA access by the server.  Such a model is
     desirable for the highest level of efficiency and lowest overhead.

     RDMA message exchanges

            Client                                Server
               :         Direct Read Request         :
          Send :   ------------------------------>   : untagged
               :                                     :  buffer
               :               Segment               :
       tagged  :   <------------------------------   :  RDMA Write
       buffer  :                  :                  :
               :              [Segment]              :
       tagged  :   <------------------------------   : [RDMA Write]
       buffer  :                                     :
               :         Direct Read Response        :
      untagged :   <------------------------------   :  Send (w/Inv.)
       buffer  :                                     :
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            Client                                Server
               :        Direct Write Request         :
          Send :   ------------------------------>   : untagged
               :                                     :  buffer
               :               Segment               :
       tagged  :   v------------------------------   :  RDMA Read
       buffer  :   +----------------------------->   :
               :                  :                  :
               :              [Segment]              :
       tagged  :   v------------------------------   : [RDMA Read]
       buffer  :   +----------------------------->   :
               :                                     :
               :        Direct Write Response        :
      untagged :   <------------------------------   :  Send (w/Inv.)
       buffer  :                                     :

2.3.  Connection Models

     There are three scenarios in which to discuss the connection model.
     Each will be discussed individually, after describing the common
     case encountered at initial connection establishment.

     After a successful connection, the first request proceeds, in the
     case of a new client association, to initial session creation, and
     then optionally to session callback channel binding, prior to
     regular operation.

     Commonly, each new client "mount" will be the action which drives
     creation of a new session. However there are any number of other
     approaches.  Clients may choose to share a single connection and
     session among all their mount points.  Or, clients may support
     trunking, where additional connections are created but all within a
     single session.  Alternatively, the client may choose to create
     multiple sessions, each tuned to the buffering and reliability
     needs of the mount point.  For example, a readonly mount can
     sharply reduce its write buffering and also makes no requirement
     for the server to support reliable duplicate request caching.

     Similarly, the client can choose among several strategies for
     clientid usage.  Sessions can share a single clientid, or create
     new clientids as the client deems appropriate.  For kernel-based
     clients which service multiple authenticated users, a single
     clientid shared across all mount points is generally the most
     appropriate and flexible approach.  For example, all the client's
     file operations may wish to share locking state and the local
     client kernel takes the responsibility for arbitrating access
     locally.  For clients choosing to support other authentication
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     models, perhaps example userspace implementations, a new clientid
     is indicated.  Through use of session create options, both models
     are supported at the client's choice.

     Since the session is explicitly created and destroyed by the
     client, and each client is uniquely identified, the server may be
     specifically instructed to discard unneeded presistent state.  For
     this reason, it is possible that a server will retain any previous
     state indefinitely, and place its destruction under administrative
     control.  Or, a server may choose to retain state for some
     configurable period, provided that the period meets other NFSv4
     requirements such as lease reclamation time, etc.  However, since
     discarding this state at the server may affect the correctness of
     the server as seen by the client across network partitioning, such
     discarding of state should be done only in a conservative manner.

     Each client request to the server carries a new SEQUENCE operation
     within each COMPOUND, which provides the session context.  This
     session context then governs the request control, duplicate request
     caching, and other persistent parameters managed by the server for
     a session.

2.3.1.  TCP Connection Model

     The following is a schematic diagram of the NFSv4.1 protocol
     exchanges leading up to normal operation on a TCP stream.

            Client                                Server
       TCPmode :   Create Clientid(nfs_client_id4)   : TCPmode
               :   ------------------------------>   :
               :                                     :
               :     Clientid reply(clientid, ...)   :
               :   <------------------------------   :
               :                                     :
               :   Create Session(clientid, size S,  :
               :      maxreq N, STREAM, ...)         :
               :   ------------------------------>   :
               :                                     :
               :   Session reply(sessionid, size S', :
               :      maxreq N')                     :
               :   <------------------------------   :
               :                                     :
               :          <normal operation>         :
               :   ------------------------------>   :
               :   <------------------------------   :
               :                  :                  :

     No net additional exchange is added to the initial negotiation by
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     this proposal.  In the NFSv4.1 exchange, the CREATECLIENTID
     replaces SETCLIENTID (eliding the callback "clientaddr4"
     addressing) and CREATESESSION subsumes the function of
     SETCLIENTID_CONFIRM, as described elsewhere in this document.
     Callback channel binding is optional, as in NFSv4.0.  Note that the
     STREAM transport type is shown above, but since the transport mode
     remains unchanged and transport attributes are not necessarily
     exchanged, DEFAULT could also be passed.

2.3.2.  Negotiated RDMA Connection Model

     One possible design which has been considered is to have a
     "negotiated" RDMA connection model, supported via use of a session
     bind operation as a required first step.  However due to issues
     mentioned earlier, this proved problematic.  This section remains
     as a reminder of that fact, and it is possible such a mode can be
     supported.

     It is not considered critical that this be supported for two
     reasons.  One, the session persistence provides a way for the
     server to remember important session parameters, such as sizes and
     maximum request counts.  These values can be used to restore the
     endpoint prior to making the first reply.  Two, there are currently
     no critical RDMA parameters to set in the endpoint at the server
     side of the connection.  RDMA Read resources, which are in general
     not settable after entering RDMA mode, are set only at the client -
     the originator of the connection.  Therefore as long as the RDMA
     provider supports an automatic RDMA connection mode, no further
     support is required from the NFSv4.1 protocol for reconnection.

     Note, the client must provide at least as many RDMA Read resources
     to its local queue for the benefit of the server when reconnecting,
     as it used when negotiating the session.  If this value is no
     longer appropriate, the client should resynchronize its session
     state, destroy the existing session, and start over with the more
     appropriate values.

2.3.3.  Automatic RDMA Connection Model

     The following is a schematic diagram of the NFSv4.1 protocol
     exchanges performed on an RDMA connection.



Talpey et al.             Expires December 2005                [Page 24]



Internet-Draft          NFSv4 Session Extensions               July 2005

            Client                                Server
      RDMAmode :                  :                  : RDMAmode
               :                  :                  :
      Prepost  :                  :                  : Prepost
      receive  :                  :                  : receive
               :                                     :
               :   Create Clientid(nfs_client_id4)   :
               :   ------------------------------>   :
               :                                     : Prepost
               :     Clientid reply(clientid, ...)   : receive
               :   <------------------------------   :
      Prepost  :                                     :
      receive  :   Create Session(clientid, size S,  :
               :      maxreq N, RDMA ...)            :
               :   ------------------------------>   :
               :                                     : Prepost <=N'
               :   Session reply(sessionid, size S', :     receives of
               :      maxreq N')                     :     size S'
               :   <------------------------------   :
               :                                     :
               :          <normal operation>         :
               :   ------------------------------>   :
               :   <------------------------------   :
               :                  :                  :

2.4.  Buffer Management, Transfer, Flow Control

     Inline operations in NFSv4.1 behave effectively the same as TCP
     sends.  Procedure results are passed in a single message, and its
     completion at the client signal the receiving process to inspect
     the message.

     RDMA operations are performed solely by the server in this
     proposal, as described in the previous "RDMA Direct Model" section.
     Since server RDMA operations do not result in a completion at the
     client, and due to ordering rules in RDMA transports, after all
     required RDMA operations are complete, a Send (Send with Solicited
     Event for iWARP) containing the procedure results is performed from
     server to client.  This Send operation will result in a completion
     which will signal the client to inspect the message.

     In the case of client read-type NFSv4 operations, the server will
     have issued RDMA Writes to transfer the resulting data into client-
     advertised buffers.  The subsequent Send operation performs two
     necessary functions: finalizing any active or pending DMA at the
     client, and signaling the client to inspect the message.
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     In the case of client write-type NFSv4 operations, the server will
     have issued RDMA Reads to fetch the data from the client-advertised
     buffers.  No data consistency issues arise at the client, but the
     completion of the transfer must be acknowledged, again by a Send
     from server to client.

     In either case, the client advertises buffers for direct (RDMA
     style) operations.  The client may desire certain advertisement
     limits, and may wish the server to perform remote invalidation on
     its behalf when the server has completed its RDMA.  This may be
     considered in a future version of this draft.

     In the absence of remote invalidation, the client may perform its
     own, local invalidation after the operation completes.  This
     invalidation should occur prior to any RPCSEC GSS integrity
     checking, since a validly remotely accessible buffer can possibly
     be modified by the peer.  However, after invalidation and the
     contents integrity checked, the contents are locally secure.

     Credit updates over RDMA transports are supported at the RPC layer
     as described in [RPCRDMA].  In each request, the client requests a
     desired number of credits to be made available to the connection on
     which it sends the request.  The client must not send more requests
     than the number which the server has previously advertised, or in
     the case of the first request, only one.  If the client exceeds its
     credit limit, the connection may close with a fatal RDMA error.

     The server then executes the request, and replies with an updated
     credit count accompanying its results.  Since replies are sequenced
     by their RDMA Send order, the most recent results always reflect
     the server's limit.  In this way the client will always know the
     maximum number of requests it may safely post.

     Because the client requests an arbitrary credit count in each
     request, it is relatively easy for the client to request more, or
     fewer, credits to match its expected need.  A client that
     discovered itself frequently queuing outgoing requests due to lack
     of server credits might increase its requested credits
     proportionately in response.  Or, a client might have a simple,
     configurable number.  The protocol also provides a per-operation
     "maxslot" exchange to assist in dynamic adjustment at the session
     level, described in a later section.

     Occasionally, a server may wish to reduce the total number of
     credits it offers a certain client on a connection.  This could be
     encountered if a client were found to be consuming its credits
     slowly, or not at all.  A client might notice this itself, and
     reduce its requested credits in advance, for instance requesting
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     only the count of operations it currently has queued, plus a few as
     a base for starting up again.  Such mechanisms can, however, be
     potentially complicated and are implementation-defined.  The
     protocol does not require them.

     Because of the way in which RDMA fabrics function, it is not
     possible for the server (or client back channel) to cancel
     outstanding receive operations.  Therefore, effectively only one
     credit can be withdrawn per receive completion.  The server (or
     client back channel) would simply not replenish a receive operation
     when replying.  The server can still reduce the available credit
     advertisement in its replies to the target value it desires, as a
     hint to the client that its credit target is lower and it should
     expect it to be reduced accordingly.  Of course, even if the server
     could cancel outstanding receives, it cannot do so, since the
     client may have already sent requests in expectation of the
     previous limit.

     This brings out an interesting scenario similar to the client
     reconnect discussed earlier in "Connection Models".  How does the
     server reduce the credits of an inactive client?

     One approach is for the server to simply close such a connection
     and require the client to reconnect at a new credit limit.  This is
     acceptable, if inefficient, when the connection setup time is short
     and where the server supports persistent session semantics.

     A better approach is to provide a back channel request to return
     the operations channel credits.  The server may request the client
     to return some number of credits, the client must comply by
     performing operations on the operations channel, provided of course
     that the request does not drop the client's credit count to zero
     (in which case the connection would deadlock).  If the client finds
     that it has no requests with which to consume the credits it was
     previously granted, it must send zero-length Send RDMA operations,
     or NULL NFSv4 operations in order to return the resources to the
     server.  If the client fails to comply in a timely fashion, the
     server can recover the resources by breaking the connection.

     While in principle, the back channel credits could be subject to a
     similar resource adjustment, in practice this is not an issue,
     since the back channel is used purely for control and is expected
     to be statically provisioned.

     It is important to note that in addition to maximum request counts,
     the sizes of buffers are negotiated per-session.  This permits the
     most efficient allocation of resources on both peers.  There is an
     important requirement on reconnection: the sizes posted by the
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     server at reconnect must be at least as large as previously used,
     to allow recovery.  Any replies that are replayed from the server's
     duplicate request cache must be able to be received into client
     buffers.  In the case where a client has received replies to all
     its retried requests (and therefore received all its expected
     responses), then the client may disconnect and reconnect with
     different buffers at will, since no cache replay will be required.

2.5.  Retry and Replay

     NFSv4.0 forbids retransmission on active connections over reliable
     transports;  this includes connected-mode RDMA.  This restriction
     must be maintained in NFSv4.1.

     If one peer were to retransmit a request (or reply), it would
     consume an additional credit on the other.  If the server
     retransmitted a reply, it would certainly result in an RDMA
     connection loss, since the client would typically only post a
     single receive buffer for each request.  If the client
     retransmitted a request, the additional credit consumed on the
     server might lead to RDMA connection failure unless the client
     accounted for it and decreased its available credit, leading to
     wasted resources.

     RDMA credits present a new issue to the duplicate request cache in
     NFSv4.1.  The request cache may be used when a connection within a
     session is lost, such as after the client reconnects.  Credit
     information is a dynamic property of the connection, and stale
     values must not be replayed from the cache.  This implies that the
     request cache contents must not be blindly used when replies are
     issued from it, and credit information appropriate to the channel
     must be refreshed by the RPC layer.

     Finally, RDMA fabrics do not guarantee that the memory handles
     (Steering Tags) within each rdma three-tuple are valid on a scope
     outside that of a single connection.  Therefore, handles used by
     the direct operations become invalid after connection loss.  The
     server must ensure that any RDMA operations which must be replayed
     from the request cache use the newly provided handle(s) from the
     most recent request.

2.6.  The Back Channel

     The NFSv4 callback operations present a significant resource
     problem for the RDMA enabled client.  Clearly, callbacks must be
     negotiated in the way credits are for the ordinary operations
     channel for requests flowing from client to server.  But, for
     callbacks to arrive on the same RDMA endpoint as operation replies
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     would require dedicating additional resources, and specialized
     demultiplexing and event handling.  Or, callbacks may not require
     RDMA sevice at all (they do not normally carry substantial data
     payloads).  It is highly desirable to streamline this critical path
     via a second communications channel.

     The session callback channel binding facility is designed for
     exactly such a situation, by dynamically associating a new
     connected endpoint with the session, and separately negotiating
     sizes and counts for active callback channel operations.  The
     binding operation is firewall-friendly since it does not require
     the server to initiate the connection.

     This same method serves as well for ordinary TCP connection mode.
     It is expected that all NFSv4.1 clients may make use of the session
     facility to streamline their design.

     The back channel functions exactly the same as the operations
     channel except that no RDMA operations are required to perform
     transfers, instead the sizes are required to be sufficiently large
     to carry all data inline, and of course the client and server
     reverse their roles with respect to which is in control of credit
     management.  The same rules apply for all transfers, with the
     server being required to flow control its callback requests.

     The back channel is optional.  If not bound on a given session, the
     server must not issue callback operations to the client.  This in
     turn implies that such a client must never put itself in the
     situation where the server will need to do so, lest the client lose
     its connection by force, or its operation be incorrect.  For the
     same reason, if a back channel is bound, the client is subject to
     revocation of its delegations if the back channel is lost.  Any
     connection loss should be corrected by the client as soon as
     possible.

     This can be convenient for the NFSv4.1 client; if the client
     expects to make no use of back channel facilities such as
     delegations, then there is no need to create it.  This may save
     significant resources and complexity at the client.

     For these reasons, if the client wishes to use the back channel,
     that channel must be bound first, before using the operations
     channel.  In this way, the server will not find itself in a
     position where it will send callbacks on the operations channel
     when the client is not prepared for them.

     There is one special case, that where the back channel is bound in
     fact to the operations channel's connection.  This configuration
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     would be used normally over a TCP stream connection to exactly
     implement the NFSv4.0 behavior, but over RDMA would require complex
     resource and event management at both sides of the connection.  The
     server is not required to accept such a bind request on an RDMA
     connection for this reason, though it is recommended.

2.7.  COMPOUND Sizing Issues

     Very large responses may pose duplicate request cache issues.
     Since servers will want to bound the storage required for such a
     cache, the unlimited size of response data in COMPOUND may be
     troublesome.  If COMPOUND is used in all its generality, then the
     inclusion of certain non-idempotent operations within a single
     COMPOUND request may render the entire request non-idempotent.
     (For example, a single COMPOUND request which read a file or
     symbolic link, then removed it, would be obliged to cache the data
     in order to allow identical replay).  Therefore, many requests
     might include operations that return any amount of data.

     It is not satisfactory for the server to reject COMPOUNDs at will
     with NFS4ERR_RESOURCE when they pose such difficulties for the
     server, as this results in serious interoperability problems.
     Instead, any such limits must be explicitly exposed as attributes
     of the session, ensuring that the server can explicitly support any
     duplicate request cache needs at all times.

2.8.  Data Alignment

     A negotiated data alignment enables certain scatter/gather
     optimizations.  A facility for this is supported by [RPCRDMA].
     Where NFS file data is the payload, specific optimizations become
     highly attractive.

     Header padding is requested by each peer at session initiation, and
     may be zero (no padding).  Padding leverages the useful property
     that RDMA receives preserve alignment of data, even when they are
     placed into anonymous (untagged) buffers.  If requested, client
     inline writes will insert appropriate pad bytes within the request
     header to align the data payload on the specified boundary.  The
     client is encouraged to be optimistic and simply pad all WRITEs
     within the RPC layer to the negotiated size, in the expectation
     that the server can use them efficiently.

     It is highly recommended that clients offer to pad headers to an
     appropriate size.  Most servers can make good use of such padding,
     which allows them to chain receive buffers in such a way that any
     data carried by client requests will be placed into appropriate
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     buffers at the server, ready for filesystem processing.  The
     receiver's RPC layer encounters no overhead from skipping over pad
     bytes, and the RDMA layer's high performance makes the insertion
     and transmission of padding on the sender a significant
     optimization.  In this way, the need for servers to perform RDMA
     Read to satisfy all but the largest client writes is obviated.  An
     added benefit is the reduction of message roundtrips on the network
     - a potentially good trade, where latency is present.

     The value to choose for padding is subject to a number of criteria.
     A primary source of variable-length data in the RPC header is the
     authentication information, the form of which is client-determined,
     possibly in response to server specification.  The contents of
     COMPOUNDs, sizes of strings such as those passed to RENAME, etc.
     all go into the determination of a maximal NFSv4 request size and
     therefore minimal buffer size.  The client must select its offered
     value carefully, so as not to overburden the server, and vice-
     versa.  The payoff of an appropriate padding value is higher
     performance.

                 Sender gather:
     |RPC Request|Pad bytes|Length| -> |User data...|
     \------+---------------------/       \
             \                             \
              \    Receiver scatter:        \-----------+- ...
         /-----+----------------\            \           \
         |RPC Request|Pad|Length|   ->  |FS buffer|->|FS buffer|->...

     In the above case, the server may recycle unused buffers to the
     next posted receive if unused by the actual received request, or
     may pass the now-complete buffers by reference for normal write
     processing.  For a server which can make use of it, this removes
     any need for data copies of incoming data, without resorting to
     complicated end-to-end buffer advertisement and management.  This
     includes most kernel-based and integrated server designs, among
     many others.  The client may perform similar optimizations, if
     desired.

     Padding is negotiated by the session creation operation, and
     subsequently used by the RPC RDMA layer, as described in [RPCRDMA].

3.  NFSv4 Integration

     The following section discusses the integration of the proposed
     RDMA extensions with NFSv4.0.
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3.1.  Minor Versioning

     Minor versioning is the existing facility to extend the NFSv4
     protocol, and this proposal takes that approach.

     Minor versioning of NFSv4 is relatively restrictive, and allows for
     tightly limited changes only.  In particular, it does not permit
     adding new "procedures" (it permits adding only new "operations").
     Interoperability concerns make it impossible to consider additional
     layering to be a minor revision.  This somewhat limits the changes
     that can be proposed when considering extensions.

     To support the duplicate request cache integrated with sessions and
     request control, it is desirable to tag each request with an
     identifier to be called a Slotid.  This identifier must be passed
     by NFSv4 when running atop any transport, including traditional
     TCP.  Therefore it is not desirable to add the Slotid to a new RPC
     transport, even though such a transport is indicated for support of
     RDMA.  This draft and [RPCRDMA] do not propose such an approach.

     Instead, this proposal conforms to the requirements of NFSv4 minor
     versioning, through the use of a new operation within NFSv4
     COMPOUND procedures as detailed below.

     If sessions are in use for a given clientid, this same clientid
     cannot be used for non-session NFSv4 operation, including NFSv4.0.
     Because the server will have allocated session-specific state to
     the active clientid, it would be an unnecessary burden on the
     server implementor to support and account for additional, non-
     session traffic, in addition to being of no benefit.  Therefore
     this proposal prohibits a single clientid from doing this.
     Nevertheless, employing a new clientid for such traffic is
     supported.

3.2.  Slot Identifiers and Server Duplicate Request Cache

     The presence of deterministic maximum request limits on a session
     enables in-progress requests to be assigned unique values with
     useful properties.

     The RPC layer provides a transaction ID (xid), which, while
     required to be unique, is not especially convenient for tracking
     requests.  The transaction ID is only meaningful to the issuer
     (client), it cannot be interpreted at the server except to test for
     equality with previously issued requests.  Because RPC operations
     may be completed by the server in any order, many transaction IDs
     may be outstanding at any time.  The client may therefore perform a
     computationally expensive lookup operation in the process of
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     demultiplexing each reply.

     In the proposal, there is a limit to the number of active requests.
     This immediately enables a convenient, computationally efficient
     index for each request which is designated as a Slot Identifier, or
     slotid.

     When the client issues a new request, it selects a slotid in the
     range 0..N-1, where N is the server's current "totalrequests" limit
     granted the client on the session over which the request is to be
     issued.  The slotid must be unused by any of the requests which the
     client has already active on the session.  "Unused" here means the
     client has no outstanding request for that slotid.  Because the
     slot id is always an integer in the range 0..N-1, client
     implementations can use the slotid from a server response to
     efficiently match responses with outstanding requests, such as, for
     example, by using the slotid to index into a outstanding request
     array.  This can be used to avoid expensive hashing and lookup
     functions in the performace-critical receive path.

     The sequenceid, which accompanies the slotid in each request, is
     important for a second, important check at the server: it must be
     able to be determined efficiently whether a request using a certain
     slotid is a retransmit or a new, never-before-seen request.  It is
     not feasible for the client to assert that it is retransmitting to
     implement this, because for any given request the client cannot
     know the server has seen it unless the server actually replies.  Of
     course, if the client has seen the server's reply, the client would
     not retransmit!

     The sequenceid must increase monotonically for each new transmit of
     a given slotid, and must remain unchanged for any retransmission.
     The server must in turn compare each newly received request's
     sequenceid with the last one previously received for that slotid,
     to see if the new request is:

     o    A new request, in which the sequenceid is greater than that
          previously seen in the slot (accounting for sequence
          wraparound).  The server proceeds to execute the new request.

     o    A retransmitted request, in which the sequenceid is equal to
          that last seen in the slot.  Note that this request may be
          either complete, or in progress.  The server performs replay
          processing in these cases.

     o    A misordered duplicate, in which the sequenceid is less than
          that previously seen in the slot.  The server must drop the
          incoming request, which may imply dropping the connection if
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          the transport is reliable, as dictated by section 3.1.1 of
          [RFC3530].

     This last condition is possible on any connection, not just
     unreliable, unordered transports.  Delayed behavior on abandoned
     TCP connections which are not yet closed at the server, or
     pathological client implementations can cause it, among other
     causes.  Therefore, the server may wish to harden itself against
     certain repeated occurrences of this, as it would for
     retransmissions in [RFC3530].

     It is recommended, though not necessary for protocol correctness,
     that the client simply increment the sequenceid by one for each new
     request on each slotid. This reduces the wraparound window to a
     minimum, and is useful for tracing and avoidance of possible
     implementation errors.

     The client may however, for implementation-specific reasons, choose
     a different algorithm. For example it might maintain a single
     sequence space for all slots in the session - e.g. employing the
     RPC XID itself.  The sequenceid, in any case, is never interpreted
     by the server for anything but to test by comparison with
     previously seen values.

     The server may thereby use the slotid, in conjunction with the
     sessionid and sequenceid, within the SEQUENCE portion of the
     request to maintain its duplicate request cache (DRC) for the
     session, as opposed to the traditional approach of ONC RPC
     applications that use the XID along with certain transport
     information [RW96].

     Unlike the XID, the slotid is always within a specific range;  this
     has two implications.  The first implication is that for a given
     session, the server need only cache the results of a limited number
     of COMPOUND requests.  The second implication derives from the
     first, which is unlike XID-indexed DRCs, the slotid DRC by its
     nature cannot be overflowed.  Through use of the sequenceid to
     identify retransmitted requests, it is notable that the server does
     not need to actually cache the request itself, reducing the storage
     requirements of the DRC further.  These new facilities makes it
     practical to maintain all the required entries for an effective
     DRC.

     The slotid and sequenceid therefore take over the traditional role
     of the port number in the server DRC implementation, and the
     session replaces the IP address.  This approach is considerably
     more portable and completely robust - it is not subject to the
     frequent reassignment of ports as clients reconnect over IP

https://datatracker.ietf.org/doc/html/rfc3530#section-3.1.1
https://datatracker.ietf.org/doc/html/rfc3530#section-3.1.1
https://datatracker.ietf.org/doc/html/rfc3530
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     networks.  In addition, the RPC XID is not used in the reply cache,
     enhancing robustness of the cache in the face of any rapid reuse of
     XIDs by the client.

     It is required to encode the slotid information into each request
     in a way that does not violate the minor versioning rules of the
     NFSv4.0 specification.  This is accomplished here by encoding it in
     a control operation within each NFSv4.1 COMPOUND and CB_COMPOUND
     procedure.  The operation easily piggybacks within existing
     messages.  The implementation section of this document describes
     the specific proposal.

     In general, the receipt of a new sequenced request arriving on any
     valid slot is an indication that the previous DRC contents of that
     slot may be discarded.  In order to further assist the server in
     slot management, the client is required to use the lowest available
     slot when issuing a new request.  In this way, the server may be
     able to retire additional entries.

     However, in the case where the server is actively adjusting its
     granted maximum request count to the client, it may not be able to
     use receipt of the slotid to retire cache entries.  The slotid used
     in an incoming request may not reflect the server's current idea of
     the client's session limit, because the request may have been sent
     from the client before the update was received.  Therefore, in the
     downward adjustment case, the server may have to retain a number of
     duplicate request cache entries at least as large as the old value,
     until operation sequencing rules allow it to infer that the client
     has seen its reply.

     The SEQUENCE (and CB_SEQUENCE) operation also carries a "maxslot"
     value which carries additional client slot usage information.  The
     client must always provide its highest-numbered outstanding slot
     value in the maxslot argument, and the server may reply with a new
     recognized value.  The client should in all cases provide the most
     conservative value possible, although it can be increased somewhat
     above the actual instantaneous usage to maintain some minimum or
     optimal level.  This provides a way for the client to yield unused
     request slots back to the server, which in turn can use the
     information to reallocate resources.  Obviously, maxslot can never
     be zero, or the session would deadlock.

     The server also provides a target maxslot value to the client,
     which is an indication to the client of the maxslot the server
     wishes the client to be using.  This permits the server to withdraw
     (or add) resources from a client that has been found to not be
     using them, in order to more fairly share resources among a varying
     level of demand from other clients.  The client must always comply
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     with the server's value updates, since they indicate newly
     established hard limits on the client's access to session
     resources.  However, because of request pipelining, the client may
     have active requests in flight reflecting prior values, therefore
     the server must not immediately require the client to comply.

     It is worthwhile to note that Sprite RPC [BW87] defined a "channel"
     which in some ways is similar to the slotid proposed here.  Sprite
     RPC used channels to implement parallel request processing and
     request/response cache retirement.

3.3.  COMPOUND and CB_COMPOUND

     Support for per-operation control can be piggybacked onto NFSv4
     COMPOUNDs with full transparency, by placing such facilities into
     their own, new operation, and placing this operation first in each
     COMPOUND under the new NFSv4 minor protocol revision.  The contents
     of the operation would then apply to the entire COMPOUND.

     Recall that the NFSv4 minor revision is contained within the
     COMPOUND header, encoded prior to the COMPOUNDed operations.  By
     simply requiring that the new operation always be contained in
     NFSv4 minor COMPOUNDs, the control protocol can piggyback perfectly
     with each request and response.

     In this way, the NFSv4 RDMA Extensions may stay in compliance with
     the minor versioning requirements specified in section 10 of
     [RFC3530].

     Referring to section 13.1 of the same document, the proposed
     session-enabled COMPOUND and CB_COMPOUND have the form:

     +-----+--------------+-----------+------------+-----------+----
     | tag | minorversion | numops    | control op | op + args | ...
     |     |   (== 1)     | (limited) |  + args    |           |
     +-----+--------------+-----------+------------+-----------+----

     and the reply's structure is:

     +------------+-----+--------+-------------------------------+--//
     |last status | tag | numres | status + control op + results |  //
     +------------+-----+--------+-------------------------------+--//
             //-----------------------+----
             // status + op + results | ...
             //-----------------------+----

     The single control operation within each NFSv4.1 COMPOUND defines
     the context and operational session parameters which govern that

https://datatracker.ietf.org/doc/html/rfc3530#section-10
https://datatracker.ietf.org/doc/html/rfc3530#section-10


Talpey et al.             Expires December 2005                [Page 36]



Internet-Draft          NFSv4 Session Extensions               July 2005

     COMPOUND request and reply.  Placing it first in the COMPOUND
     encoding is required in order to allow its processing before other
     operations in the COMPOUND.

3.4.  eXternal Data Representation Efficiency

     RDMA is a copy avoidance technology, and it is important to
     maintain this efficiency when decoding received messages.
     Traditional XDR implementations frequently use generated
     unmarshaling code to convert objects to local form, incurring a
     data copy in the process (in addition to subjecting the caller to
     recursive calls, etc).  Often, such conversions are carried out
     even when no size or byte order conversion is necessary.

     It is recommended that implementations pay close attention to the
     details of memory referencing in such code.  It is far more
     efficient to inspect data in place, using native facilities to deal
     with word size and byte order conversion into registers or local
     variables, rather than formally (and blindly) performing the
     operation via fetch, reallocate and store.

     Of particular concern is the result of the READDIR operation, in
     which such encoding abounds.

3.5.  Effect of Sessions on Existing Operations

     The use of a session replaces the use of the SETCLIENTID and
     SETCLIENTID_CONFIRM operations, and allows certain simplification
     of the RENEW and callback addressing mechanisms in the base
     protocol.

     The cb_program and cb_location which are obtained by the server in
     SETCLIENTID_CONFIRM must not be used by the server, because the
     NFSv4.1 client performs callback channel designation with
     BIND_BACKCHANNEL.  Therefore the SETCLIENTID and
     SETCLIENTID_CONFIRM operations becomes obsolete when sessions are
     in use, and a server should return an error to NFSv4.1 clients
     which might issue either operation.

     Another favorable result of the session is that the server is able
     to avoid requiring the client to perform OPEN_CONFIRM operations.
     The existence of a reliable and effective DRC means that the server
     will be able to determine whether an OPEN request carrying a
     previously known open_owner from a client is or is not a
     retransmission.  Because of this, the server no longer requires
     OPEN_CONFIRM to verify whether the client is retransmitting an open
     request.  This in turn eliminates the server's reason for
     requesting OPEN_CONFIRM - the server can simply replace any
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     previous information on this open_owner.  Client OPEN operations
     are therefore streamlined, reducing overhead and latency through
     avoiding the additional OPEN_CONFIRM exchange.

     Since the session carries the client liveness indication with it
     implicitly, any request on a session associated with a given client
     will renew that client's leases.  Therefore the RENEW operation is
     made unnecessary when a session is present, as any request
     (including a SEQUENCE operation with or without additional NFSv4
     operations) performs its function.  It is possible (though this
     proposal does not make any recommendation) that the RENEW operation
     could be made obsolete.

     An interesting issue arises however if an error occurs on such a
     SEQUENCE operation.  If the SEQUENCE operation fails, perhaps due
     to an invalid slotid or other non-renewal-based issue, the server
     may or may not have performed the RENEW.  In this case, the state
     of any renewal is undefined, and the client should make no
     assumption that it has been performed.  In practice, this should
     not occur but even if it did, it is expected the client would
     perform some sort of recovery which would result in a new,
     successful, SEQUENCE operation being run and the client assured
     that the renewal took place.

3.6.  Authentication Efficiencies

     NFSv4 requires the use of the RPCSEC_GSS ONC RPC security flavor
     [RFC2203] to provide authentication, integrity, and privacy via
     cryptography.  The server dictates to the client the use of
     RPCSEC_GSS, the service (authentication, integrity, or privacy),
     and the specific GSS-API security mechanism that each remote
     procedure call and result will use.

     If the connection's integrity is protected by an additional means
     than RPCSEC_GSS, such as via IPsec, then the use of RPCSEC_GSS's
     integrity service is nearly redundant (See the Security
     Considerations section for more explanation of why it is "nearly"
     and not completely redundant).  Likewise, if the connection's
     privacy is protected by additional means, then the use of both
     RPCSEC_GSS's integrity and privacy services is nearly redundant.

     Connection protection schemes, such as IPsec, are more likely to be
     implemented in hardware than upper layer protocols like RPCSEC_GSS.
     Hardware-based cryptography at the IPsec layer will be more
     efficient than software-based cryptography at the RPCSEC_GSS layer.

     When transport integrity can be obtained, it is possible for server
     and client to downgrade their per-operation authentication, after

https://datatracker.ietf.org/doc/html/rfc2203
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     an appropriate exchange.  This downgrade can in fact be as complete
     as to establish security mechanisms that have zero cryptographic
     overhead, effectively using the underlying integrity and privacy
     services provided by transport.

     Based on the above observations, a new GSS-API mechanism, called
     the Channel Conjunction Mechanism [CCM], is being defined.  The CCM
     works by creating a GSS-API security context using as input a
     cookie that the initiator and target have previously agreed to be a
     handle for GSS-API context created previously over another GSS-API
     mechanism.

     NFSv4.1 clients and servers should support CCM and they must use as
     the cookie the handle from a successful RPCSEC_GSS context creation
     over a non-CCM mechanism (such as Kerberos V5).  The value of the
     cookie will be equal to the handle field of the rpc_gss_init_res
     structure from the RPCSEC_GSS specification.

     The [CCM] Draft provides further discussion and examples.

4.  Security Considerations

     The NFSv4 minor version 1 retains all of existing NFSv4 security;
     all security considerations present in NFSv4.0 apply to it equally.

     Security considerations of any underlying RDMA transport are
     additionally important, all the more so due to the emerging nature
     of such transports.  Examining these issues is outside the scope of
     this draft.

     When protecting a connection with RPCSEC_GSS, all data in each
     request and response (whether transferred inline or via RDMA)
     continues to receive this protection over RDMA fabrics [RPCRDMA].
     However when performing data transfers via RDMA, RPCSEC_GSS
     protection of the data transfer portion works against the
     efficiency which RDMA is typically employed to achieve.  This is
     because such data is normally managed solely by the RDMA fabric,
     and intentionally is not touched by software.  Therefore when
     employing RPCSEC_GSS under CCM, and where integrity protection has
     been "downgraded", the cooperation of the RDMA transport provider
     is critical to maintain any integrity and privacy otherwise in
     place for the session.  The means by which the local RPCSEC_GSS
     implementation is integrated with the RDMA data protection
     facilities are outside the scope of this draft.

     It is logical to use the same GSS context on a session's callback
     channel as that used on its operations channel(s), particularly
     when the connection is shared by both.  The client must indicate to
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     the server:

     - what security flavor(s) to use in the call back.  A special
     callback flavor might be defined for this.

     - if the flavor is RPCSEC_GSS, then the client must have previously
     created an RPCSEC_GSS session with the server. The client offers to
     the server the the opaque handle<> value from the rpc_gss_init_res
     structure, the window size of RPCSEC_GSS sequence numbers, and an
     opaque gss_cb_handle.

     This exchange can be performed as part of session and clientid
     creation, and the issue warrants careful analysis before being
     specified.

     If the NFS client wishes to maintain full control over RPCSEC_GSS
     protection, it may still perform its transfer operations using
     either the inline or RDMA transfer model, or of course employ
     traditional TCP stream operation.  In the RDMA inline case, header
     padding is recommended to optimize behavior at the server.  At the
     client, close attention should be paid to the implementation of
     RPCSEC_GSS processing to minimize memory referencing and especially
     copying.  These are well-advised in any case!

     The proposed session callback channel binding improves security
     over that provided by NFSv4 for the callback channel.  The
     connection is client-initiated, and subject to the same firewall
     and routing checks as the operations channel.  The connection
     cannot be hijacked by an attacker who connects to the client port
     prior to the intended server.  The connection is set up by the
     client with its desired attributes, such as optionally securing
     with IPsec or similar.  The binding is fully authenticated before
     being activated.

4.1.  Authentication

     Proper authentication of the principal which issues any session and
     clientid in the proposed NFSv4.1 operations exactly follows the
     similar requirement on client identifiers in NFSv4.0.  It must not
     be possible for a client to impersonate another by guessing its
     session identifiers for NFSv4.1 operations, nor to bind a callback
     channel to an existing session.  To protect against this, NFSv4.0
     requires appropriate authentication and matching of the principal
     used.  This is discussed in Section 16, Security Considerations of
     [RFC3530].  The same requirement when using a session identifier
     applies to NFSv4.1 here.

https://datatracker.ietf.org/doc/html/rfc3530
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     Going beyond NFSv4.0, the presence of a session associated with any
     clientid may also be used to enhance NFSv4.1 security with respect
     to client impersonation.  In NFSv4.0, there are many operations
     which carry no clientid, including in particular those which employ
     a stateid argument.  A rogue client which wished to carry out a
     denial of service attack on another client could perform CLOSE,
     DELEGRETURN, etc operations with that client's current filehandle,
     sequenceid and stateid, after having obtained them from
     eavesdropping or other approach.  Locking and open downgrade
     operations could be similarly attacked.

     When an NFSv4.1 session is in place for any clientid,
     countermeasures are easily applied through use of authentication by
     the server.  Because the clientid and sessionid must be present in
     each request within a session, the server may verify that the
     clientid is in fact originating from a principal with the
     appropriate authenticated credentials, that the sessionid belongs
     to the clientid, and that the stateid is valid in these contexts.
     This is in general not possible with the affected operations in
     NFSv4.0 due to the fact that the clientid is not present in the
     requests.

     In the event that authentication information is not available in
     the incoming request, for example after a reconnection when the
     security was previously downgraded using CCM, the server must
     require the client re-establish the authentication in order that
     the server may validate the other client-provided context, prior to
     executing any operation.  The sessionid, present in the newly
     retransmitted request, combined with the retransmission detection
     enabled by the NFSv4.1 duplicate request cache, are a convenient
     and reliable context for the server to use for this contingency.

     The server should take care to protect itself against denial of
     service attacks in the creation of sessions and clientids.  Clients
     who connect and create sessions, only to disconnect and never use
     them may leave significant state behind.  (The same issue applies
     to NFSv4.0 with clients who may perform SETCLIENTID, then never
     perform SETCLIENTID_CONFIRM.)  Careful authentication coupled with
     resource checks is highly recommended.

5.  IANA Considerations

     As a proposal based on minor protocol revision, any new minor
     number might be registered and reserved with the agreed-upon
     specification.  Assigned operation numbers and any RPC constants
     might undergo the same process.
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     There are no issues stemming from RDMA use itself regarding port
     number assignments not already specified by [RFC3530].  Initial
     connection is via ordinary TCP stream services, operating on the
     same ports and under the same set of naming services.

     In the Automatic RDMA connection model described above, it is
     possible that a new well-known port, or a new transport type
     assignment (netid) as described in [RFC3530], may be desirable.

6.  NFSv4 Protocol Extensions

     This section specifies details of the extensions to NFSv4 proposed
     by this document.  Existing NFSv4 operations (under minor version
     0) continue to be fully supported, unmodified.

6.1.  Operation: CREATECLIENTID - Instantiate Clientid

     SYNOPSIS

     client -> clientid

     ARGUMENT

          struct CREATECLIENTID4args {
               nfs_client_id4  clientdesc;
          };

     RESULT

          struct CREATECLIENTID4resok {
               clientid4       clientid;
               verifier4       clientid_confirm;
          };

          union SETCLIENTID4res switch (nfsstat4 status) {
          case NFS4_OK:
                CREATECLIENTID4resok      resok4;
          case NFS4ERR_CLID_INUSE:
                void;
          default:
                void;
          };

     DESCRIPTION

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530
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     The client uses the CREATECLIENTID operation to register a
     particular client identifier with the server.  The clientid
     returned from this operation will be necessary for requests that
     create state on the server and will serve as a parent object to
     sessions created by the client.  In order to verify the clientid it
     must first be used as an argument to CREATESESSION.

     IMPLEMENTATION

     A server's client record is a 5-tuple:

     1. clientdesc.id:
          The long form client identifier, sent via the client.id
          subfield of the CREATECLIENTID4args structure

     2. clientdesc.verifier:
          A client-specific value used to indicate reboots, sent via the
          clientdesc.verifier subfield of the CREATECLIENTID4args
          structure

     3. principal:
          The RPCSEC_GSS principal sent via the RPC headers

     4. clientid:
          The shorthand client identifier, generated by the server and
          returned via the clientid field in the CREATECLIENTID4resok
          structure

     5. confirmed:
          A private field on the server indicating whether or not a
          client record has been confirmed.  A client record is
          confirmed if there has been a successful CREATESESSION
          operation to confirm it.  Otherwise it is unconfirmed.  An
          unconfirmed record is established by a CREATECLIENTID call.
          Any unconfirmed record that is not confirmed within a lease
          period may be removed.

     The following identifiers represent special values for the fields
     in the records.

     id_arg:
          The value of the clientdesc.id subfield of the
          CREATECLIENTID4args structure of the current request.

     verifier_arg:
          The value of the clientdesc.verifier subfield of the
          CREATECLIENTID4args structure of the current request.
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     old_verifier_arg:
          A value of the clientdesc.verifier field of a client record
          received in a previous request; this is distinct from
          verifier_arg.

     principal_arg:
          The value of the RPCSEC_GSS principal for the current request.

     old_principal_arg:
          A value of the RPCSEC_GSS principal received for a previous
          request.  This is distinct from principal_arg.

     clientid_ret:
          The value of the clientid field the server will return in the
          CREATECLIENTID4resok structure for the current request.

     old_clientid_ret:
          The value of the clientid field the server returned in the
          CREATECLIENTID4resok structure for a previous request.  This
          is distinct from clientid_ret.

     Since CREATECLIENTID is a non-idempotent operation, we must
     consider the possibility that replays may occur as a result of a
     client reboot, network partition, malfunctioning router, etc.
     Replays are identified by the value of the client field of
     CREATECLIENTID4args and the method for dealing with them is
     outlined in the scenarios below.

     The scenarios are described in terms of what client records whose
     clientdesc.id subfield have value equal to id_arg exist in the
     server's set of client records.  Any cases in which there is more
     than one record with identical values for id_arg represent a server
     implementation error.  Operation in the potential valid cases is
     summarized as follows.

     1) Common case
          If no client records with clientdesc.id matching id_arg exist,
          a new shorthand client identifier clientid_ret is generated,
          and the following unconfirmed record is added to the server's
          state.

          { id_arg, verifier_arg, principal_arg, clientid_ret, FALSE }

          Subsequently, the server returns clientid_ret.

     2) Router Replay
          If the server has the following confirmed record, then this
          request is likely the result of a replayed request due to a
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          faulty router or lost connection.

          { id_arg, verifier_arg, principal_arg, clientid_ret, TRUE }

          Since the record has been confirmed, the client must have
          received the server's reply from the initial CREATECLIENTID
          request.  Since this is simply a spurious request, there is no
          modification to the server's state, and the server makes no
          reply to the client.

     3) Client Collision
          If the server has the following confirmed record, then this
          request is likely the result of a chance collision between the
          values of the clientdesc.id subfield of CREATECLIENTID4args
          for two different clients.

          { id_arg, *, old_principal_arg, clientid_ret, TRUE }

          Since the value of the clientdesc.id subfield of each client
          record must be unique, there is no modification of the
          server's state, and NFS4ERR_CLID_INUSE is returned to indicate
          the client should retry with a different value for the
          clientdesc.id subfield of CREATECLIENTID4args.

          This scenario may also represent a malicious attempt to
          destroy a client's state on the server.  For security reasons,
          the server MUST NOT remove the client's state when there is a
          principal mismatch.

     4) Replay
          If the server has the following unconfirmed record then this
          request is likely the result of a client replay due to a
          network partition or some other connection failure.

          { id_arg, verifier_arg, principal_arg, clientid_ret, FALSE }

          Since the response to the CREATECLIENTID request that created
          this record may have been lost, it is not acceptable to drop
          this duplicate request.  However, rather than processing it
          normally, the existing record is left unchanged and
          clientid_ret, which was generated for the previous request, is
          returned.

     5) Change of Principal
          If the server has the following unconfirmed record then this
          request is likely the result of a client which has for
          whatever reasons changed principals (possibly to change
          security flavor) after calling CREATECLIENTID, but before
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          calling CREATESESSION.

          { id_arg, verifier_arg, old_principal_arg, clientid_ret, FALSE}

          Since the client has not changed, the principal field of the
          unconfirmed record is updated to principal_arg and
          clientid_ret is again returned.  There is a small possibility
          that this is merely a collision on the client field of
          CREATECLIENTID4args between unrelated clients, but since that
          is unlikely, and an unconfirmed record does not generally have
          any filesystem pertinent state, we can assume it is the same
          client without risking loss of any important state.

          After processing, the following record will exist on the
          server.

          { id_arg, verifier_arg, principal_arg, clientid_ret, FALSE}

     6) Client Reboot
          If the server has the following confirmed client record, then
          this request is likely from a previously confirmed client
          which has rebooted.

          { id_arg, old_verifier_arg, principal_arg, clientid_ret, TRUE }

          Since the previous incarnation of the same client will no
          longer be making requests, lock and share reservations should
          be released immediately rather than forcing the new
          incarnation to wait for the lease time on the previous
          incarnation to expire.  Furthermore, session state should be
          removed since if the client had maintained that information
          across reboot, this request would not have been issued.  If
          the server does not support the CLAIM_DELEGATE_PREV claim
          type, associated delegations should be purged as well;
          otherwise, delegations are retained and recovery proceeds
          according to RFC3530.  The client record is updated with the
          new verifier and its status is changed to unconfirmed.

          After processing, clientid_ret is returned to the client and
          the following record will exist on the server.

          { id_arg, verifier_arg, principal_arg, clientid_ret, FALSE }

     7) Reboot before confirmation
          If the server has the following unconfirmed record, then this
          request is likely from a client which rebooted before sending

https://datatracker.ietf.org/doc/html/rfc3530
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          a CREATESESSION request.

          { id_arg, old_verifier_arg, *, clientid_ret, FALSE }

          Since this is believed to be a request from a new incarnation
          of the original client, the server updates the value of
          clientdesc.verifier and returns the original clientid_ret.
          After processing, the following state exists on the server.

          { id_arg, verifier_arg, *, clientid_ret, FALSE }

     ERRORS

      NFS4ERR_BADXDR
      NFS4ERR_CLID_INUSE
      NFS4ERR_INVAL
      NFS4ERR_RESOURCE
      NFS4ERR_SERVERFAULT

6.2.  Operation: CREATESESSION - Create New Session and Confirm Clientid

     SYNOPSIS

     clientid, session_args -> sessionid, session_args

     ARGUMENT
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          struct CREATESESSION4args {
               clientid4       clientid;
               bool            persist;
               count4          maxrequestsize;
               count4          maxresponsesize;
               count4          maxrequests;
               count4          headerpadsize;
               switch (bool clientid_confirm) {
                case TRUE:
                    verifier4 setclientid_confirm;
                case FALSE:
                    void;
               }
               switch (channelmode4 mode) {
                case DEFAULT:
                    void;
                case STREAM:
                    streamchannelattrs4 streamchanattrs;
                case RDMA:
                    rdmachannelattrs4   rdmachanattrs;
               };
          };

     RESULT
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          typedef opaque sessionid4[16];

          struct CREATESESSION4resok {
               sessionid4      sessionid;
               bool            persist;
               count4          maxrequestsize;
               count4          maxresponsesize;
               count4          maxrequests;
               count4          headerpadsize;
               switch (channelmode4 mode) {
                case DEFAULT:
                    void;
                case STREAM:
                    streamchannelattrs4 streamchanattrs;
                case RDMA:
                    rdmachannelattrs4   rdmachanattrs;
               };
          };

          union CREATESESSION4res switch (nfsstat4 status) {
          case NFS4_OK:
           CREATESESSION4resok     resok4;
          default:
           void;
          };

     DESCRIPTION

     This operation is used by the client to create new session objects
     on the server.  Additionally the first session created with a new
     shorthand client identifier serves to confirm the creation of that
     client's state on the server.  The server returns the parameter
     values for the new session.

     IMPLEMENTATION

     To describe the implementation, the same notation for client
     records introduced in the description of CREATECLIENTID is used
     with the following addition.

     clientid_arg:
          The value of the clientid field of the CREATESESSION4args
          structure of the current request.

     Since CREATESESSION is a non-idempotent operation, we must consider
     the possibility that replays may occur as a result of a client
     reboot, network partition, malfunctioning router, etc.  Replays are
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     identified by the value of the clientid and sessionid fields of
     CREATESESSION4args and the method for dealing with them is outlined
     in the scenarios below.

     The processing of this operation is divided into two phases:
     clientid confirmation and session creation.  In case the state for
     the provided clientid has not been verified, it is confirmed before
     the session is created.  Otherwise the clientid confirmation phase
     is skipped and only the session creation phase occurs.  Note that
     since only confirmed clients may create sessions, the clientid
     confirmation stage does not depend upon sessionid_arg.

     CLIENTID CONFIRMATION

     The operational cases are described in terms of what client records
     whose clientid field have value equal to clientid_arg exist in the
     server's set of client records.  Any cases in which there is more
     than one record with identical values for clientid represent a
     server implementation error.  Operation in the potential valid
     cases is summarized as follows.

     1) Common Case
          If the server has the following unconfirmed record, then this
          is the expected confirmation of an unconfirmed record.

               { *, *, principal_arg, clientid_arg, FALSE }

          The confirmed field of the record is set to TRUE and
          processing of the operation continues normally.

     2) Stale Clientid
          If the server contains no records with clientid equal to
          clientid_arg, then most likely the client's state has been
          purged during a period of inactivity, possibly due to a loss
          of connectivity.  NFS4ERR_STALE_CLIENTID is returned, and no
          changes are made to any client records on the server.

     3) Principal Change or Collision
          If the server has the following record, then the client has
          changed principals after the previous CREATECLIENTID request,
          or there has been a chance collision between shortand client
          identifiers.

               { *, *, old_principal_arg, clientid_arg, * }

          Neither of these cases are permissible.  Processing stops and
          NFS4ERR_CLID_INUSE is returned to the client.  No changes are
          made to any client records on the server.
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     SESSION CREATION

     To determine whether this request is a replay, the server examines
     the sessionid argument provided by the client.  If the sessionid
     matches the identifier of a previously created session, then this
     request must be interpreted as a replay.  No new state is created
     and a reply with the parameters of the existing session is returned
     to the client.  If a session corresponding to the sessionid does
     not already exist, then the request is not a replay and is
     processed as follows.

     NOTE: It is the responsibility of the client to generate
     appropriate values for sessionid.  Since the ordering of messages
     sent on different transport connections is not guaranteed,
     immediately reusing the sessionid of a previously destroyed session
     may yield unpredictable results.  Client implementations should
     avoid recently used sessionids to ensure correct behavior.

     The server examines the persist, maxrequestsize, maxresponsesize,
     maxrequests and headerpadsize arguments.  For each argument, if the
     value is acceptable to the server, it is recommended that the
     server use the provided value to create the new session.  If it is
     not acceptable, the server may use a different value, but must
     return the value used to the client.  These parameters have the
     following interpretation.

     persist:
          True if the client desires server support for "reliable"
          semantics.  For sessions in which only idempotent operations
          will be used (e.g. a read-only session), clients should set
          this value to false.  If the server does not or cannot provide
          "reliable" semantics this value must be set to false on
          return.

     maxrequestsize:
          The maximum size of a COMPOUND request that will be sent by
          the client including RPC headers.

     maxresponsesize:
          The maximum size of a COMPOUND reply that the client will
          accept from the server including RPC headers.  The server must
          not increase the value of this parameter.  If a client sends a
          COMPOUND request for which the size of the reply would exceed
          this value, the server will return NFS4ERR_RESOURCE.

     maxrequests:
          The maximum number of concurrent COMPOUND requests that the
          client will issue on the session.  Subsequent COMPOUND
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          requests will each be assigned a slot identifier by the client
          on the range 0 to maxrequests - 1 inclusive.  A slot id cannot
          be reused until the previous request on that slot has
          completed.

     headerpadsize:
          The maximum amount of padding the client is willing to apply
          to ensure that write payloads are aligned on some boundary at
          the server.  The server should reply with its preferred value,
          or zero if padding is not in use.  The server may decrease
          this value but must not increase it.

     The server creates the session by recording the parameter values
     used and if the persist parameter is true and has been accepted by
     the server, allocating space for the duplicate request cache (DRC).

     If the session state is created successfully, the server associates
     it with the session identifier provided by the client.  This
     identifier must be unique among the client's active sessions but
     there is no need for it to be globally unique.  Finally, the server
     returns the negotiated values used to create the session to the
     client.

     ERRORS

      NFS4ERR_BADXDR
      NFS4ERR_CLID_INUSE
      NFS4ERR_RESOURCE
      NFS4ERR_SERVERFAULT
      NFS4ERR_STALE_CLIENTID
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6.3.  Operation: BIND_BACKCHANNEL - Create a callback channel binding

     SYNOPSIS

          Establish a callback channel on the connection.

     ARGUMENTS

          struct BIND_BACKCHANNEL4args {
               clientid4 clientid;
               uint32_t  callback_program;
               uint32_t  callback_ident;
               count4         maxrequestsize;
               count4         maxresponsesize;
               count4         maxrequests;
               switch (channelmode4 mode) {
                case DEFAULT:
                    void;
                case STREAM:
                    streamchannelattrs4 streamchanattrs;
                case RDMA:
                    rdmachannelattrs4   rdmachanattrs;
               };
          };
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     RESULTS

          struct BIND_BACKCHANNEL4resok {
               count4         maxrequestsize;
               count4         maxresponsesize;
               count4         maxrequests;
               switch (channelmode4 mode) {
                case DEFAULT:
                    void;
                case STREAM:
                    streamchannelattrs4 streamchanattrs;
                case RDMA:
                    rdmachannelattrs4   rdmachanattrs;
               };
          };

          union BIND_BACKCHANNEL4res switch (nfsstat4 status) {
           case NFS4_OK:
               BIND_BACKCHANNEL4resok   resok4;
           default:
               void;
          };

     DESCRIPTION

     The BIND_BACKCHANNEL operation serves to establish the current
     connection as a designated callback channel for the specified
     session.  Normally, only one callback channel is bound, however if
     more than one are established, they are used at the server's
     prerogative, no affinity or preference is specified by the client.

     The arguments and results of the BIND_BACKCHANNEL call are a subset
     of the session parameters, and used identically to those values on
     the callback channel only.  However, not all session operation
     channel parameters are relevant to the callback channel, for
     example header padding (since writes of bulk data are not performed
     in callbacks).

     ERRORS

      ...
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6.4.  Operation: DESTROYSESSION - Destroy existing session

     SYNOPSIS

          void -> status

     ARGUMENT

          struct DESTROYSESSION4args {
               sessionid4     sessionid; };

     RESULT

          struct SESSION_DESTROYres {
               nfsstat status;
           };

     DESCRIPTION

     The SESSION_DESTROY operation closes the session and discards any
     active state such as locks, leases, and server duplicate request
     cache entries.  Any remaining connections bound to the session are
     immediately unbound and may additionally be closed by the server.

     This operation must be the final, or only operation in any request.
     Because the operation results in destruction of the session, any
     duplicate request caching for this request, as well as previously
     completed requests, will be lost.  For this reason, it is advisable
     to not place this operation in a request with other state-modifying
     operations.  In addition, a SEQUENCE operation is not required in
     the request.

     Note that because the operation will never be replayed by the
     server, a client that retransmits the request may receive an error
     in response, even though the session may have been successfully
     destroyed.

      ...

     ERRORS

           <tbd>
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6.5.  Operation: SEQUENCE - Supply per-procedure sequencing and control

     SYNOPSIS

          control -> control

     ARGUMENT

          typedef uint32_t sequenceid4;
          typedef uint32_t slotid4;

          struct SEQUENCE4args {
               clientid4 clientid;
               sessionid4     sessionid;
               sequenceid4    sequenceid;
               slotid4        slotid;
               slotid4        maxslot;
          };

     RESULT

          struct SEQUENCE4resok {
               clientid4 clientid;
               sessionid4     sessionid;
               sequenceid4    sequenceid;
               slotid4        slotid;
               slotid4        maxslot;
               slotid4        target_maxslot;
          };

          union SEQUENCE4res switch (nfsstat4 status) {
           case NFS4_OK:
               SEQUENCE4resok resok4;
           default:
               void;
          };

     DESCRIPTION

     The SEQUENCE operation is used to manage operational accounting for
     the session on which the operation is sent.  The contents include
     the client and session to which this request belongs, slotid and
     sequenceid, used by the server to implement session request control
     and the duplicate reply cache semantics, and exchanged slot counts
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     which are used to adjust these values.  This operation must appear
     once as the first operation in each COMPOUND sent after the channel
     is successfully bound, or a protocol error must result.

      ...

     ERRORS

           NFS4ERR_BADSESSION
           NFS4ERR_BADSLOT

6.6.  Callback operation: CB_RECALLCREDIT - change flow control limits

     SYNOPSIS

          targetcount -> status

     ARGUMENTS

          struct CB_RECALLCREDIT4args {
               sessionid4     sessionid;
               uint32_t  target;
          };

     RESULT

          struct CB_RECALLCREDIT4res {
               nfsstat4   status;
          };

     DESCRIPTION

     The CB_RECALLCREDIT operation requests the client to return session
     and transport credits to the server, by zero-length RDMA Sends or
     NULL NFSv4 operations.

      ...

     ERRORS

           <none>
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6.7.  Callback operation: CB_SEQUENCE - Supply callback channel
sequencing and control

     SYNOPSIS

          control -> control

     ARGUMENT

          typedef uint32_t sequenceid4;
          typedef uint32_t slotid4;

          struct CB_SEQUENCE4args {
               clientid4 clientid;
               sessionid4     sessionid;
               sequenceid4    sequenceid;
               slotid4        slotid;
               slotid4        maxslot;
          };

     RESULT

          struct CB_SEQUENCE4resok {
               clientid4 clientid;
               sessionid4     sessionid;
               sequenceid4    sequenceid;
               slotid4        slotid;
               slotid4        maxslot;
               slotid4        target_maxslot;
          };

          union CB_SEQUENCE4res switch (nfsstat4 status) {
           case NFS4_OK:
               CB_SEQUENCE4resok   resok4;
           default:
               void;
          };

     DESCRIPTION

     The CB_SEQUENCE operation is used to manage operational accounting
     for the callback channel of the session on which the operation is
     sent.  The contents include the client and session to which this
     request belongs, slotid and sequenceid, used by the server to
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     implement session request control and the duplicate reply cache
     semantics, and exchanged slot counts which are used to adjust these
     values.  This operation must appear once as the first operation in
     each CB_COMPOUND sent after the callback channel is successfully
     bound, or a protocol error must result.

      ...

     ERRORS

           NFS4ERR_BADSESSION
           NFS4ERR_BADSLOT

7.  NFSv4 Session Protocol Description

     This section contains the proposed protocol changes in RPC
     description language.  The constants named in this section are
     illustrative.  When the working group decides on the full content
     of the NFSv4.1 minor revision, they may change in order to avoid
     conflict.
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          NFS4ERR_BADSESSION      = 10049,/* invalid session  */
          NFS4ERR_BADSLOT         = 10050 /* invalid slotid   */

          /*
           * CREATECLIENTID: v4.1 setclientid for session use
           */

          struct CREATECLIENTID4args {
               nfs_client_id4 clientdesc;
          };

          struct CREATECLIENTID4resok {
               clientid4 clientid;
               verifier4 clientid_confirm;
          };

          union CREATECLIENTID4res switch (nfsstat4 status) {
           case NFS4_OK:
               CREATECLIENTID4resok     resok4;
           default:
               void;
          };

          /*
           * Channel attributes - TBD.
           */

          enum channelmode4 {
               DEFAULT   = 0,      /* don't change */
               STREAM    = 1,      /* TCP stream */
               RDMA = 2       /* upshift to RDMA */
          };

          struct streamchannelattrs4 {
               opaque nothing[0];  /* TBD */
          };

          struct rdmachannelattrs4 {
               count4    maxrdmareads;
               /* plus TBD */
          };
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          /*
           * CREATESESSION: v4.1 session creation and optional
           * clientid confirm
           */

          typedef opaque sessionid4[16];

          union optverifier4 switch (bool clientid_confirm) {
           case TRUE:
               verifier4 setclientid_confirm;
           case FALSE:
               void;
          };

          union transportattrs4 switch (channelmode4 mode) {
           case DEFAULT:
               void;
           case STREAM:
               streamchannelattrs4 streamchanattrs;
           case RDMA:
               rdmachannelattrs4   rdmachanattrs;
          };

          struct CREATESESSION4args {
               clientid4 clientid;
               bool      persist;
               count4         maxrequestsize;
               count4         maxresponsesize;
               count4         maxrequests;
               count4         headerpadsize;
               optverifier4   verifier;
               transportattrs4     transportattrs;
          };

          struct CREATESESSION4resok {
               sessionid4     sessionid;
               bool      persist;
               count4         maxrequestsize;
               count4         maxresponsesize;
               count4         maxrequests;
               count4         headerpadsize;
               transportattrs4     transportattrs;
          };

          union CREATESESSION4res switch (nfsstat4 status) {
           case NFS4_OK:
               CREATESESSION4resok resok4;
           default:
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               void;
          };

          /*
           * BIND_BACKCHANNEL: v4.1 callback binding
           */

          struct BIND_BACKCHANNEL4args {
               clientid4 clientid;
               uint32_t  callback_program;
               uint32_t  callback_ident;
               count4         maxrequestsize;
               count4         maxresponsesize;
               count4         maxrequests;
               transportattrs4     transportattrs;
          };

          struct BIND_BACKCHANNEL4resok {
               count4         maxrequestsize;
               count4         maxresponsesize;
               count4         maxrequests;
               transportattrs4     transportattrs;
          };

          union BIND_BACKCHANNEL4res switch (nfsstat4 status) {
           case NFS4_OK:
               BIND_BACKCHANNEL4resok   resok4;
           default:
               void;
          };

          /*
           * DESTROYSESSION: v4.1 session destruction
           */

          struct DESTROYSESSION4args {
               sessionid4     sessionid;
          };

          struct DESTROYSESSION4res {
               nfsstat4  status;



Talpey et al.             Expires December 2005                [Page 62]



Internet-Draft          NFSv4 Session Extensions               July 2005

          };

          /*
           * SEQUENCE: v4.1 operation sequence control
           */

          typedef uint32_t sequenceid4;
          typedef uint32_t slotid4;

          struct SEQUENCE4args {
               clientid4 clientid;
               sessionid4     sessionid;
               sequenceid4    sequenceid;
               slotid4        slotid;
               slotid4        maxslot;
          };

          struct SEQUENCE4resok {
               clientid4 clientid;
               sessionid4     sessionid;
               sequenceid4    sequenceid;
               slotid4        slotid;
               slotid4        maxslot;
               slotid4        target_maxslot;
          };

          union SEQUENCE4res switch (nfsstat4 status) {
           case NFS4_OK:
               struct SEQUENCE4resok    resok4;
           default:
               void;
          };

           /* Operation values */
           OP_CREATECLIENTID  = 40,
           OP_CREATESESSION   = 41,
           OP_BIND_BACKCHANNEL= 42,
           OP_DESTROYSESSION  = 43,
           OP_SEQUENCE        = 44,

           /* Operation arguments */
           case OP_CREATECLIENTID:
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                    CREATECLIENTID4args opcreateclientid;
           case OP_CREATESESSION:
                    CREATESESSION4args opcreatesession;
           case OP_BIND_BACKCHANNEL:
                    BIND_BACKCHANNEL4args opbind_backchannel;
           case OP_DESTROYSESSION:
                    DESTROYSESSION4args opdestroysession;
           case OP_SEQUENCE:
                    SEQUENCE4args opsequence;

           /* Operation results */
           case OP_CREATECLIENTID:
                    CREATECLIENTID4res opcreateclientid;
           case OP_CREATESESSION:
                    CREATESESSION4res opcreatesession;
           case OP_BIND_BACKCHANNEL:
                    BIND_BACKCHANNEL4res opbind_backchannel;
           case OP_DESTROYSESSION:
                    DESTROYSESSION4res opdestroysession;
           case OP_SEQUENCE:
                    SEQUENCE4res opsequence;

          /*
           * CB_RECALLCREDIT: Recall session credits from
           * operations channel(s)
           */

          struct CB_RECALLCREDIT4args {
               sessionid4     sessionid;
               uint32_t  target;
          };

          struct CB_RECALLCREDIT4res {
               nfsstat4   status;
          };

          /*
           * CB_SEQUENCE: v4.1 operation sequence control
           */

          struct CB_SEQUENCE4args {
               clientid4 clientid;
               sessionid4     sessionid;
               sequenceid4    sequenceid;
               slotid4        slotid;
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               slotid4        maxslot;
          };

          struct CB_SEQUENCE4resok {
               clientid4 clientid;
               sessionid4     sessionid;
               sequenceid4    sequenceid;
               slotid4        slotid;
               slotid4        maxslot;
               slotid4        target_maxslot;
          };

          union CB_SEQUENCE4res switch (nfsstat4 status) {
           case NFS4_OK:
               struct CB_SEQUENCE4resok resok4;
           default:
               void;
          };

           /* Operation values */
           OP_CB_RECALL_CREDIT     = 5,
           OP_CB_SEQUENCE          = 6

           /* Operation arguments */
           case OP_CB_RECALLCREDIT:
                    CB_RECALLCREDIT4args opcbrecallcredit;
           case OP_CB_SEQUENCE:
                    CB_SEQUENCE4args opcbsequence;

           /* Operation results */
           case OP_CB_RECALLCREDIT:
                    CB_RECALLCREDIT4res opcbrecallcredit;
           case OP_CB_SEQUENCE:
                    CB_SEQUENCE4res opcbsequence;
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