
INTERNET-DRAFT Tom Talpey
Expires: December 2005 Network Appliance, Inc.

 Spencer Shepler
 Sun Microsystems, Inc.

 Jon Bauman
 University of Michigan

 July, 2005

NFSv4 Session Extensions
draft-ietf-nfsv4-sess-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt The list of

 Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2005). All Rights Reserved.

Talpey et al. Expires December 2005 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft NFSv4 Session Extensions July 2005

Abstract

 Extensions are proposed to NFS version 4 which enable it to support
 long-lived sessions, endpoint management, and operation atop a
 variety of RPC transports, including TCP and RDMA. These
 extensions enable support for reliably implemented client response
 caching by NFSv4 servers, enhanced security, multipathing and
 trunking of transport connections. These extensions provide
 identical benefits over both TCP and RDMA connection types.

Table of Contents

1. Introduction . 3
1.1. Motivation . 4
1.2. Problem Statement 5
1.3. NFSv4 Session Extension Characteristics 7
2. Transport Issues . 7
2.1. Session Model . 7
2.1.1. Connection State 9
2.1.2. NFSv4 Channels, Sessions and Connections 9
2.1.3. Reconnection, Trunking and Failover 11
2.1.4. Server Duplicate Request Cache 12
2.2. Session Initialization and Transfer Models 13
2.2.1. Session Negotiation 13
2.2.2. RDMA Requirements 15
2.2.3. RDMA Connection Resources 15
2.2.4. TCP and RDMA Inline Transfer Model 16
2.2.5. RDMA Direct Transfer Model 19
2.3. Connection Models 22
2.3.1. TCP Connection Model 23
2.3.2. Negotiated RDMA Connection Model 24
2.3.3. Automatic RDMA Connection Model 24
2.4. Buffer Management, Transfer, Flow Control 25
2.5. Retry and Replay . 28
2.6. The Back Channel . 28
2.7. COMPOUND Sizing Issues 30
2.8. Data Alignment . 30
3. NFSv4 Integration . 31
3.1. Minor Versioning . 32
3.2. Slot Identifiers and Server Duplicate Request Cache . . 32
3.3. COMPOUND and CB_COMPOUND 36
3.4. eXternal Data Representation Efficiency 37
3.5. Effect of Sessions on Existing Operations 37
3.6. Authentication Efficiencies 38
4. Security Considerations 39
4.1. Authentication . 40
5. IANA Considerations 41
6. NFSv4 Protocol Extensions 42

Talpey et al. Expires December 2005 [Page 2]

Internet-Draft NFSv4 Session Extensions July 2005

6.1. Operation: CREATECLIENTID 42
6.2. Operation: CREATESESSION 47
6.3. Operation: BIND_BACKCHANNEL 52
6.4. Operation: DESTROYSESSION 54
6.5. Operation: SEQUENCE 55
6.6. Callback operation: CB_RECALLCREDIT 57
6.7. Callback operation: CB_SEQUENCE 57
7. NFSv4 Session Protocol Description 59
8. Acknowledgements . 65
9. References . 65
9.1. Normative References 65
9.2. Informative References 66
10. Authors' Addresses . 68
11. Full Copyright Statement 69

1. Introduction

 This draft proposes extensions to NFS version 4 [RFC3530] enabling
 it to support sessions and endpoint management, and to support
 operation atop RDMA-capable RPC over transports such as iWARP.
 [RDMAP, DDP] These extensions enable support for exactly-once
 semantics by NFSv4 servers, multipathing and trunking of transport
 connections, and enhanced security. The ability to operate over
 RDMA enables greatly enhanced performance. Operation over existing
 TCP is enhanced as well.

 While discussed here with respect to IETF-chartered transports, the
 proposed protocol is intended to function over other standards,
 such as Infiniband. [IB]

 The following are the major aspects of this proposal:

 o Changes are proposed within the framework of NFSv4 minor
 versioning. RPC, XDR, and the NFSv4 procedures and operations
 are preserved. The proposed extension functions equally well
 over existing transports and RDMA, and interoperates
 transparently with existing implementations, both at the local
 programmatic interface and over the wire.

 o An explicit session is introduced to NFSv4, and new operations
 are added to support it. The session allows for enhanced
 trunking, failover and recovery, and authentication
 efficiency, along with necessary support for RDMA. The
 session is implemented as operations within NFSv4 COMPOUND and
 does not impact layering or interoperability with existing
 NFSv4 implementations. The NFSv4 callback channel is
 dynamically associated and is connected by the client and not
 the server, enhancing security and operation through

https://datatracker.ietf.org/doc/html/rfc3530

Talpey et al. Expires December 2005 [Page 3]

Internet-Draft NFSv4 Session Extensions July 2005

 firewalls. In fact, the callback channel will be enabled to
 share the same connection as the operations channel.

 o An enhanced RPC layer enables NFSv4 operation atop RDMA. The
 session assists RDMA-mode connection, and additional
 facilities are provided for managing RDMA resources at both
 NFSv4 server and client. Existing NFSv4 operations continue
 to function as before, though certain size limits are
 negotiated. A companion draft to this document, "RDMA
 Transport for ONC RPC" [RPCRDMA] is to be referenced for
 details of RPC RDMA support.

 o Support for exactly-once semantics ("EOS") is enabled by the
 new session facilities, by providing to the server a way to
 bound the size of the duplicate request cache for a single
 client, and to manage its persistent storage.

 Block Diagram

 +-----------------+-------------------------------------+
 | NFSv4 | NFSv4 + session extensions |
 +-----------------+------+----------------+-------------+
 | Operations | Session | |
 +------------------------+----------------+ |
 | RPC/XDR | |
 +-------------------------------+---------+ |
 | Stream Transport | RDMA Transport |
 +-------------------------------+-----------------------+

1.1. Motivation

 NFS version 4 [RFC3530] has been granted "Proposed Standard"
 status. The NFSv4 protocol was developed along several design
 points, important among them: effective operation over wide-area
 networks, including the Internet itself; strong security
 integrated into the protocol; extensive cross-platform
 interoperability including integrated locking semantics compatible
 with multiple operating systems; and protocol extensibility.

 The NFS version 4 protocol, however, does not provide support for
 certain important transport aspects. For example, the protocol
 does not address response caching, which is required to provide
 correctness for retried client requests across a network partition,
 nor does it provide an interoperable way to support trunking and
 multipathing of connections. This leads to inefficiencies,
 especially where trunking and multipathing are concerned, and
 presents additional difficulties in supporting RDMA fabrics, in
 which endpoints may require dedicated or specialized resources.

https://datatracker.ietf.org/doc/html/rfc3530

Talpey et al. Expires December 2005 [Page 4]

Internet-Draft NFSv4 Session Extensions July 2005

 Sessions can be employed to unify NFS-level constructs such as the
 clientid, with transport-level constructs such as transport
 endpoints. Each transport endpoint draws on resources via its
 membership in a session. Resource management can be more strictly
 maintained, leading to greater server efficiency in implementing
 the protocol. The enhanced operation over a session affords an
 opportunity to the server to implement a highly reliable duplicate
 request cache, and thereby export exactly-once semantics.

 NFSv4 advances the state of high-performance local sharing, by
 virtue of its integrated security, locking, and delegation, and its
 excellent coverage of the sharing semantics of multiple operating
 systems. It is precisely this environment where exactly-once
 semantics become a fundamental requirement.

 Additionally, efforts to standardize a set of protocols for Remote
 Direct Memory Access, RDMA, over the Internet Protocol Suite have
 made significant progress. RDMA is a general solution to the
 problem of CPU overhead incurred due to data copies, primarily at
 the receiver. Substantial research has addressed this and has
 borne out the efficacy of the approach. An overview of this is the
 RDDP Problem Statement document, [RDDPPS].

 Numerous upper layer protocols achieve extremely high bandwidth and
 low overhead through the use of RDMA. Products from a wide variety
 of vendors employ RDMA to advantage, and prototypes have
 demonstrated the effectiveness of many more. Here, we are
 concerned specifically with NFS and NFS-style upper layer
 protocols; examples from Network Appliance [DAFS, DCK+03], Fujitsu
 Prime Software Technologies [FJNFS, FJDAFS] and Harvard University
 [KM02] are all relevant.

 By layering a session binding for NFS version 4 directly atop a
 standard RDMA transport, a greatly enhanced level of performance
 and transparency can be supported on a wide variety of operating
 system platforms. These combined capabilities alter the landscape
 between local filesystems and network attached storage, enable a
 new level of performance, and lead new classes of application to
 take advantage of NFS.

1.2. Problem Statement

 Two issues drive the current proposal: correctness, and
 performance. Both are instances of "raising the bar" for NFS,
 whereby the desire to use NFS in new classes applications can be
 accommodated by providing the basic features to make such use
 feasible. Such applications include tightly coupled sharing
 environments such as cluster computing, high performance computing

Talpey et al. Expires December 2005 [Page 5]

Internet-Draft NFSv4 Session Extensions July 2005

 (HPC) and information processing such as databases. These trends
 are explored in depth in [NFSPS].

 The first issue, correctness, exemplified among the attributes of
 local filesystems, is support for exactly-once semantics. Such
 semantics have not been reliably available with NFS. Server-based
 duplicate request caches [CJ89] help, but do not reliably provide
 strict correctness. For the type of application which is expected
 to make extensive use of the high-performance RDMA-enabled
 environment, the reliable provision of such semantics is a
 fundamental requirement.

 Introduction of a session to NFSv4 will address these issues. With
 higher performance and enhanced semantics comes the problem of
 enabling advanced endpoint management, for example high-speed
 trunking, multipathing and failover. These characteristics enable
 availability and performance. RFC3530 presents some issues in
 permitting a single clientid to access a server over multiple
 connections.

 A second issue encountered in common by NFS implementations is the
 CPU overhead required to implement the protocol. Primary among the
 sources of this overhead is the movement of data from NFS protocol
 messages to its eventual destination in user buffers or aligned
 kernel buffers. The data copies consume system bus bandwidth and
 CPU time, reducing the available system capacity for applications.
 [RDDPPS] Achieving zero-copy with NFS has to date required
 sophisticated, "header cracking" hardware and/or extensive
 platform-specific virtual memory mapping tricks.

 Combined in this way, NFSv4, RDMA and the emerging high-speed
 network fabrics will enable delivery of performance which matches
 that of the fastest local filesystems, preserving the key existing
 local filesystem semantics, while enhancing them by providing
 network filesystem sharing semantics.

 RDMA implementations generally have other interesting properties,
 such as hardware assisted protocol access, and support for user
 space access to I/O. RDMA is compelling here for another reason;
 hardware offloaded networking support in itself does not avoid data
 copies, without resorting to implementing part of the NFS protocol
 in the NIC. Support of RDMA by NFS enables the highest performance
 at the architecture level rather than by implementation; this
 enables ubiquitous and interoperable solutions.

 By providing file access performance equivalent to that of local
 file systems, NFSv4 over RDMA will enable applications running on a
 set of client machines to interact through an NFSv4 file system,

https://datatracker.ietf.org/doc/html/rfc3530

Talpey et al. Expires December 2005 [Page 6]

Internet-Draft NFSv4 Session Extensions July 2005

 just as applications running on a single machine might interact
 through a local file system.

 This raises the issue of whether additional protocol enhancements
 to enable such interaction would be desirable and what such
 enhancements would be. This is a complicated issue which the
 working group needs to address and will not be further discussed in
 this document.

1.3. NFSv4 Session Extension Characteristics

 This draft will present a solution based upon minor versioning of
 NFSv4. It will introduce a session to collect transport endpoints
 and resources such as reply caching, which in turn enables
 enhancements such as trunking, failover and recovery. It will
 describe use of RDMA by employing support within an underlying RPC
 layer [RPCRDMA]. Most importantly, it will focus on making the
 best possible use of an RDMA transport.

 These extensions are proposed as elements of a new minor revision
 of NFS version 4. In this draft, NFS version 4 will be referred to
 generically as "NFSv4", when describing properties common to all
 minor versions. When referring specifically to properties of the
 original, minor version 0 protocol, "NFSv4.0" will be used, and
 changes proposed here for minor version 1 will be referred to as
 "NFSv4.1".

 This draft proposes only changes which are strictly upward-
 compatible with existing RPC and NFS Application Programming
 Interfaces (APIs).

2. Transport Issues

 The Transport Issues section of the document explores the details
 of utilizing the various supported transports.

2.1. Session Model

 The first and most evident issue in supporting diverse transports
 is how to provide for their differences. This draft proposes
 introducing an explicit session.

 A session introduces minimal protocol requirements, and provides
 for a highly useful and convenient way to manage numerous endpoint-
 related issues. The session is a local construct; it represents a
 named, higher-layer object to which connections can refer, and
 encapsulates properties important to each associated client.

Talpey et al. Expires December 2005 [Page 7]

Internet-Draft NFSv4 Session Extensions July 2005

 A session is a dynamically created, long-lived server object
 created by a client, used over time from one or more transport
 connections. Its function is to maintain the server's state
 relative to the connection(s) belonging to a client instance. This
 state is entirely independent of the connection itself. The
 session in effect becomes the object representing an active client
 on a connection or set of connections.

 Clients may create multiple sessions for a single clientid, and may
 wish to do so for optimization of transport resources, buffers, or
 server behavior. A session could be created by the client to
 represent a single mount point, for separate read and write
 "channels", or for any number of other client-selected parameters.

 The session enables several things immediately. Clients may
 disconnect and reconnect (voluntarily or not) without loss of
 context at the server. (Of course, locks, delegations and related
 associations require special handling, and generally expire in the
 extended absence of an open connection.) Clients may connect
 multiple transport endpoints to this common state. The endpoints
 may have all the same attributes, for instance when trunked on
 multiple physical network links for bandwidth aggregation or path
 failover. Or, the endpoints can have specific, special purpose
 attributes such as callback channels.

 The NFSv4 specification does not provide for any form of flow
 control; instead it relies on the windowing provided by TCP to
 throttle requests. This unfortunately does not work with RDMA,
 which in general provides no operation flow control and will
 terminate a connection in error when limits are exceeded. Limits
 are therefore exchanged when a session is created; These limits
 then provide maxima within which each session's connections must
 operate, they are managed within these limits as described in
 [RPCRDMA]. The limits may also be modified dynamically at the
 server's choosing by manipulating certain parameters present in
 each NFSv4.1 request.

 The presence of a maximum request limit on the session bounds the
 requirements of the duplicate request cache. This can be used to
 advantage by a server, which can accurately determine any storage
 needs and enable it to maintain duplicate request cache persistence
 and to provide reliable exactly-once semantics.

 Finally, given adequate connection-oriented transport security
 semantics, authentication and authorization may be cached on a per-
 session basis, enabling greater efficiency in the issuing and
 processing of requests on both client and server. A proposal for
 transparent, server-driven implementation of this in NFSv4 has been

Talpey et al. Expires December 2005 [Page 8]

Internet-Draft NFSv4 Session Extensions July 2005

 made. [CCM] The existence of the session greatly facilitates the
 implementation of this approach. This is discussed in detail in
 the Authentication Efficiencies section later in this draft.

2.1.1. Connection State

 In RFC3530, the combination of a connected transport endpoint and a
 clientid forms the basis of connection state. While has been made
 to be workable with certain limitations, there are difficulties in
 correct and robust implementation. The NFSv4.0 protocol must
 provide a server-initiated connection for the callback channel, and
 must carefully specify the persistence of client state at the
 server in the face of transport interruptions. The server has only
 the client's transport address binding (the IP 4-tuple) to identify
 the client RPC transaction stream and to use as a lookup tag on the
 duplicate request cache. (A useful overview of this is in [RW96].)
 If the server listens on multiple adddresses, and the client
 connects to more than one, it must employ different clientid's on
 each, negating its ability to aggregate bandwidth and redundancy.
 In effect, each transport connection is used as the server's
 representation of client state. But, transport connections are
 potentially fragile and transitory.

 In this proposal, a session identifier is assigned by the server
 upon initial session negotiation on each connection. This
 identifier is used to associate additional connections, to
 renegotiate after a reconnect, to provide an abstraction for the
 various session properties, and to address the duplicate request
 cache. No transport-specific information is used in the duplicate
 request cache implementation of an NFSv4.1 server, nor in fact the
 RPC XID itself. The session identifier is unique within the
 server's scope and may be subject to certain server policies such
 as being bounded in time.

 It is envisioned that the primary transport model will be
 connection oriented. Connection orientation brings with it certain
 potential optimizations, such as caching of per-connection
 properties, which are easily leveraged through the generality of
 the session. However, it is possible that in future, other
 transport models could be accommodated below the session
 abstraction.

2.1.2. NFSv4 Channels, Sessions and Connections

 There are at least two types of NFSv4 channels: the "operations"
 channel used for ordinary requests from client to server, and the
 "back" channel, used for callback requests from server to client.

https://datatracker.ietf.org/doc/html/rfc3530

Talpey et al. Expires December 2005 [Page 9]

Internet-Draft NFSv4 Session Extensions July 2005

 As mentioned above, different NFSv4 operations on these channels
 can lead to different resource needs. For example, server callback
 operations (CB_RECALL) are specific, small messages which flow from
 server to client at arbitrary times, while data transfers such as
 read and write have very different sizes and asymmetric behaviors.
 It is sometimes impractical for the RDMA peers (NFSv4 client and
 NFSv4 server) to post buffers for these various operations on a
 single connection. Commingling of requests with responses at the
 client receive queue is particularly troublesome, due both to the
 need to manage both solicited and unsolicited completions, and to
 provision buffers for both purposes. Due to the lack of any
 ordering of callback requests versus response arrivals, without any
 other mechanisms, the client would be forced to allocate all
 buffers sized to the worst case.

 The callback requests are likely to be handled by a different task
 context from that handling the responses. Significant
 demultiplexing and thread management may be required if both are
 received on the same queue. However, if callbacks are relatively
 rare (perhaps due to client access patterns), many of these
 difficulties can be minimized.

 Also, the client may wish to perform trunking of operations channel
 requests for performance reasons, or multipathing for availability.
 This proposal permits both, as well as many other session and
 connection possibilities, by permitting each operation to carry
 session membership information and to share session (and clientid)
 state in order to draw upon the appropriate resources. For
 example, reads and writes may be assigned to specific, optimized
 connections, or sorted and separated by any or all of size,
 idempotency, etc.

 To address the problems described above, this proposal allows
 multiple sessions to share a clientid, as well as for multiple
 connections to share a session.

 Single Connection model:

 NFSv4.1 Session
 / \
 Operations_Channel [Back_Channel]
 \ /
 Connection
 |

Talpey et al. Expires December 2005 [Page 10]

Internet-Draft NFSv4 Session Extensions July 2005

 Multi-connection trunked model (2 operations channels shown):

 NFSv4.1 Session
 / \
 Operations_Channels [Back_Channel]
 | | |
 Connection Connection [Connection]
 | | |

 Multi-connection split-use model (2 mounts shown):

 NFSv4.1 Session
 / \
 (/home) (/usr/local - readonly)
 / \ |
 Operations_Channel [Back_Channel] |
 | | Operations_Channel
 Connection [Connection] |
 | | Connection
 |

 In this way, implementation as well as resource management may be
 optimized. Each session will have its own response caching and
 buffering, and each connection or channel will have its own
 transport resources, as appropriate. Clients which do not require
 certain behaviors may optimize such resources away completely, by
 using specific sessions and not even creating the additional
 channels and connections.

2.1.3. Reconnection, Trunking and Failover

 Reconnection after failure references stored state on the server
 associated with lease recovery during the grace period. The
 session provides a convenient handle for storing and managing
 information regarding the client's previous state on a per-
 connection basis, e.g. to be used upon reconnection. Reconnection
 to a previously existing session, and its stored resources, are
 covered in the "Connection Models" section below.

 One important aspect of reconnection is that of RPC library
 support. Traditionally, an Upper Layer RPC-based Protocol such as
 NFS leaves all transport knowledge to the RPC layer implementation
 below it. This allows NFS to operate over a wide variety of
 transports and has proven to be a highly successful approach. The
 session, however, introduces an abstraction which is, in a way,
 "between" RPC and NFSv4.1. It is important that the session

Talpey et al. Expires December 2005 [Page 11]

Internet-Draft NFSv4 Session Extensions July 2005

 abstraction not have ramifications within the RPC layer.

 One such issue arises within the reconnection logic of RPC.
 Previously, an explicit session binding operation, which
 established session context for each new connection, was explored.
 This however required that the session binding also be performed
 during reconnect, which in turn required an RPC request. This
 additional request requires new RPC semantics, both in
 implementation and the fact that a new request is inserted into the
 RPC stream. Also, the binding of a connection to a session
 required the upper layer to become "aware" of connections,
 something the RPC layer abstraction architecturally abstracts away.
 Therefore the session binding is not handled in connection scope
 but instead explicitly carried in each request.

 For Reliability Availability and Serviceability (RAS) issues such
 as bandwidth aggregation and multipathing, clients frequently seek
 to make multiple connections through multiple logical or physical
 channels. The session is a convenient point to aggregate and
 manage these resources.

2.1.4. Server Duplicate Request Cache

 Server duplicate request caches, while not a part of an NFS
 protocol, have become a standard, even required, part of any NFS
 implementation. First described in [CJ89], the duplicate request
 cache was initially found to reduce work at the server by avoiding
 duplicate processing for retransmitted requests. A second, and in
 the long run more important benefit, was improved correctness, as
 the cache avoided certain destructive non-idempotent requests from
 being reinvoked.

 However, such caches do not provide correctness guarantees; they
 cannot be managed in a reliable, persistent fashion. The reason is
 understandable - their storage requirement is unbounded due to the
 lack of any such bound in the NFS protocol, and they are dependent
 on transport addresses for request matching.

 As proposed in this draft, the presence of maximum request count
 limits and negotiated maximum sizes allows the size and duration of
 the cache to be bounded, and coupled with a long-lived session
 identifier, enables its persistent storage on a per-session basis.

 This provides a single unified mechanism which provides the
 following guarantees required in the NFSv4 specification, while
 extending them to all requests, rather than limiting them only to a
 subset of state-related requests:

Talpey et al. Expires December 2005 [Page 12]

Internet-Draft NFSv4 Session Extensions July 2005

 "It is critical the server maintain the last response sent to
 the client to provide a more reliable cache of duplicate non-
 idempotent requests than that of the traditional cache
 described in [CJ89]..." [RFC3530]

 The maximum request count limit is the count of active operations,
 which bounds the number of entries in the cache. Constraining the
 size of operations additionally serves to limit the required
 storage to the product of the current maximum request count and the
 maximum response size. This storage requirement enables server-
 side efficiencies.

 Session negotiation allows the server to maintain other state. An
 NFSv4.1 client invoking the session destroy operation will cause
 the server to denegotiate (close) the session, allowing the server
 to deallocate cache entries. Clients can potentially specify that
 such caches not be kept for appropriate types of sessions (for
 example, read-only sessions). This can enable more efficient
 server operation resulting in improved response times, and more
 efficient sizing of buffers and response caches.

 Similarly, it is important for the client to explicitly learn
 whether the server is able to implement reliable semantics.
 Knowledge of whether these semantics are in force is critical for a
 highly reliable client, one which must provide transactional
 integrity guarantees. When clients request that the semantics be
 enabled for a given session, the session reply must inform the
 client if the mode is in fact enabled. In this way the client can
 confidently proceed with operations without having to implement
 consistency facilities of its own.

2.2. Session Initialization and Transfer Models

 Session initialization issues, and data transfer models relevant to
 both TCP and RDMA are discussed in this section.

2.2.1. Session Negotiation

 The following parameters are exchanged between client and server at
 session creation time. Their values allow the server to properly
 size resources allocated in order to service the client's requests,
 and to provide the server with a way to communicate limits to the
 client for proper and optimal operation. They are exchanged prior
 to all session-related activity, over any transport type.
 Discussion of their use is found in their descriptions as well as
 throughout this section.

https://datatracker.ietf.org/doc/html/rfc3530

Talpey et al. Expires December 2005 [Page 13]

Internet-Draft NFSv4 Session Extensions July 2005

 Maximum Requests
 The client's desired maximum number of concurrent requests is
 passed, in order to allow the server to size its reply cache
 storage. The server may modify the client's requested limit
 downward (or upward) to match its local policy and/or
 resources. Over RDMA-capable RPC transports, the per-request
 management of low-level transport message credits is handled
 within the RPC layer. [RPCRDMA]

 Maximum Request/Response Sizes
 The maximum request and response sizes are exchanged in order
 to permit allocation of appropriately sized buffers and
 request cache entries. The size must allow for certain
 protocol minima, allowing the receipt of maximally sized
 operations (e.g. RENAME requests which contains two name
 strings). Note the maximum request/response sizes cover the
 entire request/response message and not simply the data
 payload as traditional NFS maximum read or write size. Also
 note the server implementation may not, in fact probably does
 not, require the reply cache entries to be sized as large as
 the maximum response. The server may reduce the client's
 requested sizes.

 Inline Padding/Alignment
 The server can inform the client of any padding which can be
 used to deliver NFSv4 inline WRITE payloads into aligned
 buffers. Such alignment can be used to avoid data copy
 operations at the server for both TCP and inline RDMA
 transfers. For RDMA, the client informs the server in each
 operation when padding has been applied. [RPCRDMA]

 Transport Attributes
 A placeholder for transport-specific attributes is provided,
 with a format to be determined. Possible examples of
 information to be passed in this parameter include transport
 security attributes to be used on the connection, RDMA-
 specific attributes, legacy "private data" as used on existing
 RDMA fabrics, transport Quality of Service attributes, etc.
 This information is to be passed to the peer's transport layer
 by local means which is currently outside the scope of this
 draft, however one attribute is provided in the RDMA case:

 RDMA Read Resources
 RDMA implementations must explicitly provision resources
 to support RDMA Read requests from connected peers.
 These values must be explicitly specified, to provide
 adequate resources for matching the peer's expected needs
 and the connection's delay-bandwidth parameters. The

Talpey et al. Expires December 2005 [Page 14]

Internet-Draft NFSv4 Session Extensions July 2005

 client provides its chosen value to the server in the
 initial session creation, the value must be provided in
 each client RDMA endpoint. The values are asymmetric and
 should be set to zero at the server in order to conserve
 RDMA resources, since clients do not issue RDMA Read
 operations in this proposal. The result is communicated
 in the session response, to permit matching of values
 across the connection. The value may not be changed in
 the duration of the session, although a new value may be
 requested as part of a new session.

2.2.2. RDMA Requirements

 A complete discussion of the operation of RPC-based protocols atop
 RDMA transports is in [RPCRDMA]. Where RDMA is considered, this
 proposal assumes the use of such a layering; it addresses only the
 upper layer issues relevant to making best use of RPC/RDMA.

 A connection oriented (reliable sequenced) RDMA transport will be
 required. There are several reasons for this. First, this model
 most closely reflects the general NFSv4 requirement of long-lived
 and congestion-controlled transports. Second, to operate correctly
 over either an unreliable or unsequenced RDMA transport, or both,
 would require significant complexity in the implementation and
 protocol not appropriate for a strict minor version. For example,
 retransmission on connected endpoints is explicitly disallowed in
 the current NFSv4 draft; it would again be required with these
 alternate transport characteristics. Third, the proposal assumes a
 specific RDMA ordering semantic, which presents the same set of
 ordering and reliability issues to the RDMA layer over such
 transports.

 The RDMA implementation provides for making connections to other
 RDMA-capable peers. In the case of the current proposals before
 the RDDP working group, these RDMA connections are preceded by a
 "streaming" phase, where ordinary TCP (or NFS) traffic might flow.
 However, this is not assumed here and sizes and other parameters
 are explicitly exchanged upon a session entering RDMA mode.

2.2.3. RDMA Connection Resources

 On transport endpoints which support automatic RDMA mode, that is,
 endpoints which are created in the RDMA-enabled state, a single,
 preposted buffer must initially be provided by both peers, and the
 client session negotiation must be the first exchange.

 On transport endpoints supporting dynamic negotiation, a more
 sophisticated negotiation is possible, but is not discussed in the

Talpey et al. Expires December 2005 [Page 15]

Internet-Draft NFSv4 Session Extensions July 2005

 current draft.

 RDMA imposes several requirements on upper layer consumers.
 Registration of memory and the need to post buffers of a specific
 size and number for receive operations are a primary consideration.

 Registration of memory can be a relatively high-overhead operation,
 since it requires pinning of buffers, assignment of attributes
 (e.g. readable/writable), and initialization of hardware
 translation. Preregistration is desirable to reduce overhead.
 These registrations are specific to hardware interfaces and even to
 RDMA connection endpoints, therefore negotiation of their limits is
 desirable to manage resources effectively.

 Following the basic registration, these buffers must be posted by
 the RPC layer to handle receives. These buffers remain in use by
 the RPC/NFSv4 implementation; the size and number of them must be
 known to the remote peer in order to avoid RDMA errors which would
 cause a fatal error on the RDMA connection.

 The session provides a natural way for the server to manage
 resource allocation to each client rather than to each transport
 connection itself. This enables considerable flexibility in the
 administration of transport endpoints.

2.2.4. TCP and RDMA Inline Transfer Model

 The basic transfer model for both TCP and RDMA is referred to as
 "inline". For TCP, this is the only transfer model supported,
 since TCP carries both the RPC header and data together in the data
 stream.

 For RDMA, the RDMA Send transfer model is used for all NFS requests
 and replies, but data is optionally carried by RDMA Writes or RDMA
 Reads. Use of Sends is required to ensure consistency of data and
 to deliver completion notifications. The pure-Send method is
 typically used where the data payload is small, or where for
 whatever reason target memory for RDMA is not available.

Talpey et al. Expires December 2005 [Page 16]

Internet-Draft NFSv4 Session Extensions July 2005

 Inline message exchange

 Client Server
 : Request :
 Send : ------------------------------> : untagged
 : : buffer
 : Response :
 untagged : <------------------------------ : Send
 buffer : :

 Client Server
 : Read request :
 Send : ------------------------------> : untagged
 : : buffer
 : Read response with data :
 untagged : <------------------------------ : Send
 buffer : :

 Client Server
 : Write request with data :
 Send : ------------------------------> : untagged
 : : buffer
 : Write response :
 untagged : <------------------------------ : Send
 buffer : :

 Responses must be sent to the client on the same connection that
 the request was sent. It is important that the server does not
 assume any specific client implementation, in particular whether
 connections within a session share any state at the client. This
 is also important to preserve ordering of RDMA operations, and
 especially RMDA consistency. Additionally, it ensures that the RPC
 RDMA layer makes no requirement of the RDMA provider to open its
 memory registration handles (Steering Tags) beyond the scope of a
 single RDMA connection. This is an important security
 consideration.

 Two values must be known to each peer prior to issuing Sends: the
 maximum number of sends which may be posted, and their maximum
 size. These values are referred to, respectively, as the message
 credits and the maximum message size. While the message credits
 might vary dynamically over the duration of the session, the
 maximum message size does not. The server must commit to
 preserving this number of duplicate request cache entires, and
 preparing a number of receive buffers equal to or greater than its

Talpey et al. Expires December 2005 [Page 17]

Internet-Draft NFSv4 Session Extensions July 2005

 currently advertised credit value, each of the advertised size.
 These ensure that transport resources are allocated sufficient to
 receive the full advertised limits.

 Note that the server must post the maximum number of session
 requests to each client operations channel. The client is not
 required to spread its requests in any particular fashion across
 connections within a session. If the client wishes, it may create
 multiple sessions, each with a single or small number of operations
 channels to provide the server with this resource advantage. Or,
 over RDMA the server may employ a "shared receive queue". The
 server can in any case protect its resources by restricting the
 client's request credits.

 While tempting to consider, it is not possible to use the TCP
 window as an RDMA operation flow control mechanism. First, to do
 so would violate layering, requiring both senders to be aware of
 the existing TCP outbound window at all times. Second, since
 requests are of variable size, the TCP window can hold a widely
 variable number of them, and since it cannot be reduced without
 actually receiving data, the receiver cannot limit the sender.
 Third, any middlebox interposing on the connection would wreck any
 possible scheme. [MIDTAX] In this proposal, maximum request count
 limits are exchanged at the session level to allow correct
 provisioning of receive buffers by transports.

 When operating over TCP or other similar transport, request limits
 and sizes are still employed in NFSv4.1, but instead of being
 required for correctness, they provide the basis for efficient
 server implementation of the duplicate request cache. The limits
 are chosen based upon the expected needs and capabilities of the
 client and server, and are in fact arbitrary. Sizes may be
 specified by the client as zero (requesting the server's preferred
 or optimal value), and request limits may be chosen in proportion
 to the client's capabilities. For example, a limit of 1000 allows
 1000 requests to be in progress, which may generally be far more
 than adequate to keep local networks and servers fully utilized.

 Both client and server have independent sizes and buffering, but
 over RDMA fabrics client credits are easily managed by posting a
 receive buffer prior to sending each request. Each such buffer may
 not be completed with the corresponding reply, since responses from
 NFSv4 servers arrive in arbitrary order. When an operations
 channel is also used for callbacks, the client must account for
 callback requests by posting additional buffers. Note that
 implementation-specific facilities such as a shared receive queue
 may also allow optimization of these allocations.

Talpey et al. Expires December 2005 [Page 18]

Internet-Draft NFSv4 Session Extensions July 2005

 When a session is created, the client requests a preferred buffer
 size, and the server provides its answer. The server posts all
 buffers of at least this size. The client must comply by not
 sending requests greater than this size. It is recommended that
 server implementations do all they can to accommodate a useful
 range of possible client requests. There is a provision in
 [RPCRDMA] to allow the sending of client requests which exceed the
 server's receive buffer size, but it requires the server to "pull"
 the client's request as a "read chunk" via RDMA Read. This
 introduces at least one additional network roundtrip, plus other
 overhead such as registering memory for RDMA Read at the client and
 additional RDMA operations at the server, and is to be avoided.

 An issue therefore arises when considering the NFSv4 COMPOUND
 procedures. Since an arbitrary number (total size) of operations
 can be specified in a single COMPOUND procedure, its size is
 effectively unbounded. This cannot be supported by RDMA Sends, and
 therefore this size negotiation places a restriction on the
 construction and maximum size of both COMPOUND requests and
 responses. If a COMPOUND results in a reply at the server that is
 larger than can be sent in an RDMA Send to the client, then the
 COMPOUND must terminate and the operation which causes the overflow
 will provide a TOOSMALL error status result.

2.2.5. RDMA Direct Transfer Model

 Placement of data by explicitly tagged RDMA operations is referred
 to as "direct" transfer. This method is typically used where the
 data payload is relatively large, that is, when RDMA setup has been
 performed prior to the operation, or when any overhead for setting
 up and performing the transfer is regained by avoiding the overhead
 of processing an ordinary receive.

 The client advertises RDMA buffers in this proposed model, and not
 the server. This means the "XDR Decoding with Read Chunks"
 described in [RPCRDMA] is not employed by NFSv4.1 replies, and
 instead all results transferred via RDMA to the client employ "XDR
 Decoding with Write Chunks". There are several reasons for this.

 First, it allows for a correct and secure mode of transfer. The
 client may advertise specific memory buffers only during specific
 times, and may revoke access when it pleases. The server is not
 required to expose copies of local file buffers for individual
 clients, or to lock or copy them for each client access.

 Second, client credits based on fixed-size request buffers are
 easily managed on the server, but for the server additional
 management of buffers for client RDMA Reads is not well-bounded.

Talpey et al. Expires December 2005 [Page 19]

Internet-Draft NFSv4 Session Extensions July 2005

 For example, the client may not perform these RDMA Read operations
 in a timely fashion, therefore the server would have to protect
 itself against denial-of-service on these resources.

 Third, it reduces network traffic, since buffer exposure outside
 the scope and duration of a single request/response exchange
 necessitates additional memory management exchanges.

 There are costs associated with this decision. Primary among them
 is the need for the server to employ RDMA Read for operations such
 as large WRITE. The RDMA Read operation is a two-way exchange at
 the RDMA layer, which incurs additional overhead relative to RDMA
 Write. Additionally, RDMA Read requires resources at the data
 source (the client in this proposal) to maintain state and to
 generate replies. These costs are overcome through use of
 pipelining with credits, with sufficient RDMA Read resources
 negotiated at session initiation, and appropriate use of RDMA for
 writes by the client - for example only for transfers above a
 certain size.

 A description of which NFSv4 operation results are eligible for
 data transfer via RDMA Write is in [NFSDDP]. There are only two
 such operations: READ and READLINK. When XDR encoding these
 requests on an RDMA transport, the NFSv4.1 client must insert the
 appropriate xdr_write_list entries to indicate to the server
 whether the results should be transferred via RDMA or inline with a
 Send. As described in [NFSDDP], a zero-length write chunk is used
 to indicate an inline result. In this way, it is unnecessary to
 create new operations for RDMA-mode versions of READ and READLINK.

 Another tool to avoid creation of new, RDMA-mode operations is the
 Reply Chunk [RPCRDMA], which is used by RPC in RDMA mode to return
 large replies via RDMA as if they were inline. Reply chunks are
 used for operations such as READDIR, which returns large amounts of
 information, but in many small XDR segments. Reply chunks are
 offered by the client and the server can use them in preference to
 inline. Reply chunks are transparent to upper layers such as
 NFSv4.

 In any very rare cases where another NFSv4.1 operation requires
 larger buffers than were negotiated when the session was created
 (for example extraordinarily large RENAMEs), the underlying RPC
 layer may support the use of "Message as an RDMA Read Chunk" and
 "RDMA Write of Long Replies" as described in [RPCRDMA]. No
 additional support is required in the NFSv4.1 client for this. The
 client should be certain that its requested buffer sizes are not so
 small as to make this a frequent occurrence, however.

Talpey et al. Expires December 2005 [Page 20]

Internet-Draft NFSv4 Session Extensions July 2005

 All operations are initiated by a Send, and are completed with a
 Send. This is exactly as in conventional NFSv4, but under RDMA has
 a significant purpose: RDMA operations are not complete, that is,
 guaranteed consistent, at the data sink until followed by a
 successful Send completion (i.e. a receive). These events provide
 a natural opportunity for the initiator (client) to enable and
 later disable RDMA access to the memory which is the target of each
 operation, in order to provide for consistent and secure operation.
 The RDMAP Send with Invalidate operation may be worth employing in
 this respect, as it relieves the client of certain overhead in this
 case.

 A "onetime" boolean advisory to each RDMA region might become a
 hint to the server that the client will use the three-tuple for
 only one NFSv4 operation. For a transport such as iWARP, the
 server can assist the client in invalidating the three-tuple by
 performing a Send with Solicited Event and Invalidate. The server
 may ignore this hint, in which case the client must perform a local
 invalidate after receiving the indication from the server that the
 NFSv4 operation is complete. This may be considered in a future
 version of this draft and [NFSDDP].

 In a trusted environment, it may be desirable for the client to
 persistently enable RDMA access by the server. Such a model is
 desirable for the highest level of efficiency and lowest overhead.

 RDMA message exchanges

 Client Server
 : Direct Read Request :
 Send : ------------------------------> : untagged
 : : buffer
 : Segment :
 tagged : <------------------------------ : RDMA Write
 buffer : : :
 : [Segment] :
 tagged : <------------------------------ : [RDMA Write]
 buffer : :
 : Direct Read Response :
 untagged : <------------------------------ : Send (w/Inv.)
 buffer : :

Talpey et al. Expires December 2005 [Page 21]

Internet-Draft NFSv4 Session Extensions July 2005

 Client Server
 : Direct Write Request :
 Send : ------------------------------> : untagged
 : : buffer
 : Segment :
 tagged : v------------------------------ : RDMA Read
 buffer : +-----------------------------> :
 : : :
 : [Segment] :
 tagged : v------------------------------ : [RDMA Read]
 buffer : +-----------------------------> :
 : :
 : Direct Write Response :
 untagged : <------------------------------ : Send (w/Inv.)
 buffer : :

2.3. Connection Models

 There are three scenarios in which to discuss the connection model.
 Each will be discussed individually, after describing the common
 case encountered at initial connection establishment.

 After a successful connection, the first request proceeds, in the
 case of a new client association, to initial session creation, and
 then optionally to session callback channel binding, prior to
 regular operation.

 Commonly, each new client "mount" will be the action which drives
 creation of a new session. However there are any number of other
 approaches. Clients may choose to share a single connection and
 session among all their mount points. Or, clients may support
 trunking, where additional connections are created but all within a
 single session. Alternatively, the client may choose to create
 multiple sessions, each tuned to the buffering and reliability
 needs of the mount point. For example, a readonly mount can
 sharply reduce its write buffering and also makes no requirement
 for the server to support reliable duplicate request caching.

 Similarly, the client can choose among several strategies for
 clientid usage. Sessions can share a single clientid, or create
 new clientids as the client deems appropriate. For kernel-based
 clients which service multiple authenticated users, a single
 clientid shared across all mount points is generally the most
 appropriate and flexible approach. For example, all the client's
 file operations may wish to share locking state and the local
 client kernel takes the responsibility for arbitrating access
 locally. For clients choosing to support other authentication

Talpey et al. Expires December 2005 [Page 22]

Internet-Draft NFSv4 Session Extensions July 2005

 models, perhaps example userspace implementations, a new clientid
 is indicated. Through use of session create options, both models
 are supported at the client's choice.

 Since the session is explicitly created and destroyed by the
 client, and each client is uniquely identified, the server may be
 specifically instructed to discard unneeded presistent state. For
 this reason, it is possible that a server will retain any previous
 state indefinitely, and place its destruction under administrative
 control. Or, a server may choose to retain state for some
 configurable period, provided that the period meets other NFSv4
 requirements such as lease reclamation time, etc. However, since
 discarding this state at the server may affect the correctness of
 the server as seen by the client across network partitioning, such
 discarding of state should be done only in a conservative manner.

 Each client request to the server carries a new SEQUENCE operation
 within each COMPOUND, which provides the session context. This
 session context then governs the request control, duplicate request
 caching, and other persistent parameters managed by the server for
 a session.

2.3.1. TCP Connection Model

 The following is a schematic diagram of the NFSv4.1 protocol
 exchanges leading up to normal operation on a TCP stream.

 Client Server
 TCPmode : Create Clientid(nfs_client_id4) : TCPmode
 : ------------------------------> :
 : :
 : Clientid reply(clientid, ...) :
 : <------------------------------ :
 : :
 : Create Session(clientid, size S, :
 : maxreq N, STREAM, ...) :
 : ------------------------------> :
 : :
 : Session reply(sessionid, size S', :
 : maxreq N') :
 : <------------------------------ :
 : :
 : <normal operation> :
 : ------------------------------> :
 : <------------------------------ :
 : : :

 No net additional exchange is added to the initial negotiation by

Talpey et al. Expires December 2005 [Page 23]

Internet-Draft NFSv4 Session Extensions July 2005

 this proposal. In the NFSv4.1 exchange, the CREATECLIENTID
 replaces SETCLIENTID (eliding the callback "clientaddr4"
 addressing) and CREATESESSION subsumes the function of
 SETCLIENTID_CONFIRM, as described elsewhere in this document.
 Callback channel binding is optional, as in NFSv4.0. Note that the
 STREAM transport type is shown above, but since the transport mode
 remains unchanged and transport attributes are not necessarily
 exchanged, DEFAULT could also be passed.

2.3.2. Negotiated RDMA Connection Model

 One possible design which has been considered is to have a
 "negotiated" RDMA connection model, supported via use of a session
 bind operation as a required first step. However due to issues
 mentioned earlier, this proved problematic. This section remains
 as a reminder of that fact, and it is possible such a mode can be
 supported.

 It is not considered critical that this be supported for two
 reasons. One, the session persistence provides a way for the
 server to remember important session parameters, such as sizes and
 maximum request counts. These values can be used to restore the
 endpoint prior to making the first reply. Two, there are currently
 no critical RDMA parameters to set in the endpoint at the server
 side of the connection. RDMA Read resources, which are in general
 not settable after entering RDMA mode, are set only at the client -
 the originator of the connection. Therefore as long as the RDMA
 provider supports an automatic RDMA connection mode, no further
 support is required from the NFSv4.1 protocol for reconnection.

 Note, the client must provide at least as many RDMA Read resources
 to its local queue for the benefit of the server when reconnecting,
 as it used when negotiating the session. If this value is no
 longer appropriate, the client should resynchronize its session
 state, destroy the existing session, and start over with the more
 appropriate values.

2.3.3. Automatic RDMA Connection Model

 The following is a schematic diagram of the NFSv4.1 protocol
 exchanges performed on an RDMA connection.

Talpey et al. Expires December 2005 [Page 24]

Internet-Draft NFSv4 Session Extensions July 2005

 Client Server
 RDMAmode : : : RDMAmode
 : : :
 Prepost : : : Prepost
 receive : : : receive
 : :
 : Create Clientid(nfs_client_id4) :
 : ------------------------------> :
 : : Prepost
 : Clientid reply(clientid, ...) : receive
 : <------------------------------ :
 Prepost : :
 receive : Create Session(clientid, size S, :
 : maxreq N, RDMA ...) :
 : ------------------------------> :
 : : Prepost <=N'
 : Session reply(sessionid, size S', : receives of
 : maxreq N') : size S'
 : <------------------------------ :
 : :
 : <normal operation> :
 : ------------------------------> :
 : <------------------------------ :
 : : :

2.4. Buffer Management, Transfer, Flow Control

 Inline operations in NFSv4.1 behave effectively the same as TCP
 sends. Procedure results are passed in a single message, and its
 completion at the client signal the receiving process to inspect
 the message.

 RDMA operations are performed solely by the server in this
 proposal, as described in the previous "RDMA Direct Model" section.
 Since server RDMA operations do not result in a completion at the
 client, and due to ordering rules in RDMA transports, after all
 required RDMA operations are complete, a Send (Send with Solicited
 Event for iWARP) containing the procedure results is performed from
 server to client. This Send operation will result in a completion
 which will signal the client to inspect the message.

 In the case of client read-type NFSv4 operations, the server will
 have issued RDMA Writes to transfer the resulting data into client-
 advertised buffers. The subsequent Send operation performs two
 necessary functions: finalizing any active or pending DMA at the
 client, and signaling the client to inspect the message.

Talpey et al. Expires December 2005 [Page 25]

Internet-Draft NFSv4 Session Extensions July 2005

 In the case of client write-type NFSv4 operations, the server will
 have issued RDMA Reads to fetch the data from the client-advertised
 buffers. No data consistency issues arise at the client, but the
 completion of the transfer must be acknowledged, again by a Send
 from server to client.

 In either case, the client advertises buffers for direct (RDMA
 style) operations. The client may desire certain advertisement
 limits, and may wish the server to perform remote invalidation on
 its behalf when the server has completed its RDMA. This may be
 considered in a future version of this draft.

 In the absence of remote invalidation, the client may perform its
 own, local invalidation after the operation completes. This
 invalidation should occur prior to any RPCSEC GSS integrity
 checking, since a validly remotely accessible buffer can possibly
 be modified by the peer. However, after invalidation and the
 contents integrity checked, the contents are locally secure.

 Credit updates over RDMA transports are supported at the RPC layer
 as described in [RPCRDMA]. In each request, the client requests a
 desired number of credits to be made available to the connection on
 which it sends the request. The client must not send more requests
 than the number which the server has previously advertised, or in
 the case of the first request, only one. If the client exceeds its
 credit limit, the connection may close with a fatal RDMA error.

 The server then executes the request, and replies with an updated
 credit count accompanying its results. Since replies are sequenced
 by their RDMA Send order, the most recent results always reflect
 the server's limit. In this way the client will always know the
 maximum number of requests it may safely post.

 Because the client requests an arbitrary credit count in each
 request, it is relatively easy for the client to request more, or
 fewer, credits to match its expected need. A client that
 discovered itself frequently queuing outgoing requests due to lack
 of server credits might increase its requested credits
 proportionately in response. Or, a client might have a simple,
 configurable number. The protocol also provides a per-operation
 "maxslot" exchange to assist in dynamic adjustment at the session
 level, described in a later section.

 Occasionally, a server may wish to reduce the total number of
 credits it offers a certain client on a connection. This could be
 encountered if a client were found to be consuming its credits
 slowly, or not at all. A client might notice this itself, and
 reduce its requested credits in advance, for instance requesting

Talpey et al. Expires December 2005 [Page 26]

Internet-Draft NFSv4 Session Extensions July 2005

 only the count of operations it currently has queued, plus a few as
 a base for starting up again. Such mechanisms can, however, be
 potentially complicated and are implementation-defined. The
 protocol does not require them.

 Because of the way in which RDMA fabrics function, it is not
 possible for the server (or client back channel) to cancel
 outstanding receive operations. Therefore, effectively only one
 credit can be withdrawn per receive completion. The server (or
 client back channel) would simply not replenish a receive operation
 when replying. The server can still reduce the available credit
 advertisement in its replies to the target value it desires, as a
 hint to the client that its credit target is lower and it should
 expect it to be reduced accordingly. Of course, even if the server
 could cancel outstanding receives, it cannot do so, since the
 client may have already sent requests in expectation of the
 previous limit.

 This brings out an interesting scenario similar to the client
 reconnect discussed earlier in "Connection Models". How does the
 server reduce the credits of an inactive client?

 One approach is for the server to simply close such a connection
 and require the client to reconnect at a new credit limit. This is
 acceptable, if inefficient, when the connection setup time is short
 and where the server supports persistent session semantics.

 A better approach is to provide a back channel request to return
 the operations channel credits. The server may request the client
 to return some number of credits, the client must comply by
 performing operations on the operations channel, provided of course
 that the request does not drop the client's credit count to zero
 (in which case the connection would deadlock). If the client finds
 that it has no requests with which to consume the credits it was
 previously granted, it must send zero-length Send RDMA operations,
 or NULL NFSv4 operations in order to return the resources to the
 server. If the client fails to comply in a timely fashion, the
 server can recover the resources by breaking the connection.

 While in principle, the back channel credits could be subject to a
 similar resource adjustment, in practice this is not an issue,
 since the back channel is used purely for control and is expected
 to be statically provisioned.

 It is important to note that in addition to maximum request counts,
 the sizes of buffers are negotiated per-session. This permits the
 most efficient allocation of resources on both peers. There is an
 important requirement on reconnection: the sizes posted by the

Talpey et al. Expires December 2005 [Page 27]

Internet-Draft NFSv4 Session Extensions July 2005

 server at reconnect must be at least as large as previously used,
 to allow recovery. Any replies that are replayed from the server's
 duplicate request cache must be able to be received into client
 buffers. In the case where a client has received replies to all
 its retried requests (and therefore received all its expected
 responses), then the client may disconnect and reconnect with
 different buffers at will, since no cache replay will be required.

2.5. Retry and Replay

 NFSv4.0 forbids retransmission on active connections over reliable
 transports; this includes connected-mode RDMA. This restriction
 must be maintained in NFSv4.1.

 If one peer were to retransmit a request (or reply), it would
 consume an additional credit on the other. If the server
 retransmitted a reply, it would certainly result in an RDMA
 connection loss, since the client would typically only post a
 single receive buffer for each request. If the client
 retransmitted a request, the additional credit consumed on the
 server might lead to RDMA connection failure unless the client
 accounted for it and decreased its available credit, leading to
 wasted resources.

 RDMA credits present a new issue to the duplicate request cache in
 NFSv4.1. The request cache may be used when a connection within a
 session is lost, such as after the client reconnects. Credit
 information is a dynamic property of the connection, and stale
 values must not be replayed from the cache. This implies that the
 request cache contents must not be blindly used when replies are
 issued from it, and credit information appropriate to the channel
 must be refreshed by the RPC layer.

 Finally, RDMA fabrics do not guarantee that the memory handles
 (Steering Tags) within each rdma three-tuple are valid on a scope
 outside that of a single connection. Therefore, handles used by
 the direct operations become invalid after connection loss. The
 server must ensure that any RDMA operations which must be replayed
 from the request cache use the newly provided handle(s) from the
 most recent request.

2.6. The Back Channel

 The NFSv4 callback operations present a significant resource
 problem for the RDMA enabled client. Clearly, callbacks must be
 negotiated in the way credits are for the ordinary operations
 channel for requests flowing from client to server. But, for
 callbacks to arrive on the same RDMA endpoint as operation replies

Talpey et al. Expires December 2005 [Page 28]

Internet-Draft NFSv4 Session Extensions July 2005

 would require dedicating additional resources, and specialized
 demultiplexing and event handling. Or, callbacks may not require
 RDMA sevice at all (they do not normally carry substantial data
 payloads). It is highly desirable to streamline this critical path
 via a second communications channel.

 The session callback channel binding facility is designed for
 exactly such a situation, by dynamically associating a new
 connected endpoint with the session, and separately negotiating
 sizes and counts for active callback channel operations. The
 binding operation is firewall-friendly since it does not require
 the server to initiate the connection.

 This same method serves as well for ordinary TCP connection mode.
 It is expected that all NFSv4.1 clients may make use of the session
 facility to streamline their design.

 The back channel functions exactly the same as the operations
 channel except that no RDMA operations are required to perform
 transfers, instead the sizes are required to be sufficiently large
 to carry all data inline, and of course the client and server
 reverse their roles with respect to which is in control of credit
 management. The same rules apply for all transfers, with the
 server being required to flow control its callback requests.

 The back channel is optional. If not bound on a given session, the
 server must not issue callback operations to the client. This in
 turn implies that such a client must never put itself in the
 situation where the server will need to do so, lest the client lose
 its connection by force, or its operation be incorrect. For the
 same reason, if a back channel is bound, the client is subject to
 revocation of its delegations if the back channel is lost. Any
 connection loss should be corrected by the client as soon as
 possible.

 This can be convenient for the NFSv4.1 client; if the client
 expects to make no use of back channel facilities such as
 delegations, then there is no need to create it. This may save
 significant resources and complexity at the client.

 For these reasons, if the client wishes to use the back channel,
 that channel must be bound first, before using the operations
 channel. In this way, the server will not find itself in a
 position where it will send callbacks on the operations channel
 when the client is not prepared for them.

 There is one special case, that where the back channel is bound in
 fact to the operations channel's connection. This configuration

Talpey et al. Expires December 2005 [Page 29]

Internet-Draft NFSv4 Session Extensions July 2005

 would be used normally over a TCP stream connection to exactly
 implement the NFSv4.0 behavior, but over RDMA would require complex
 resource and event management at both sides of the connection. The
 server is not required to accept such a bind request on an RDMA
 connection for this reason, though it is recommended.

2.7. COMPOUND Sizing Issues

 Very large responses may pose duplicate request cache issues.
 Since servers will want to bound the storage required for such a
 cache, the unlimited size of response data in COMPOUND may be
 troublesome. If COMPOUND is used in all its generality, then the
 inclusion of certain non-idempotent operations within a single
 COMPOUND request may render the entire request non-idempotent.
 (For example, a single COMPOUND request which read a file or
 symbolic link, then removed it, would be obliged to cache the data
 in order to allow identical replay). Therefore, many requests
 might include operations that return any amount of data.

 It is not satisfactory for the server to reject COMPOUNDs at will
 with NFS4ERR_RESOURCE when they pose such difficulties for the
 server, as this results in serious interoperability problems.
 Instead, any such limits must be explicitly exposed as attributes
 of the session, ensuring that the server can explicitly support any
 duplicate request cache needs at all times.

2.8. Data Alignment

 A negotiated data alignment enables certain scatter/gather
 optimizations. A facility for this is supported by [RPCRDMA].
 Where NFS file data is the payload, specific optimizations become
 highly attractive.

 Header padding is requested by each peer at session initiation, and
 may be zero (no padding). Padding leverages the useful property
 that RDMA receives preserve alignment of data, even when they are
 placed into anonymous (untagged) buffers. If requested, client
 inline writes will insert appropriate pad bytes within the request
 header to align the data payload on the specified boundary. The
 client is encouraged to be optimistic and simply pad all WRITEs
 within the RPC layer to the negotiated size, in the expectation
 that the server can use them efficiently.

 It is highly recommended that clients offer to pad headers to an
 appropriate size. Most servers can make good use of such padding,
 which allows them to chain receive buffers in such a way that any
 data carried by client requests will be placed into appropriate

Talpey et al. Expires December 2005 [Page 30]

Internet-Draft NFSv4 Session Extensions July 2005

 buffers at the server, ready for filesystem processing. The
 receiver's RPC layer encounters no overhead from skipping over pad
 bytes, and the RDMA layer's high performance makes the insertion
 and transmission of padding on the sender a significant
 optimization. In this way, the need for servers to perform RDMA
 Read to satisfy all but the largest client writes is obviated. An
 added benefit is the reduction of message roundtrips on the network
 - a potentially good trade, where latency is present.

 The value to choose for padding is subject to a number of criteria.
 A primary source of variable-length data in the RPC header is the
 authentication information, the form of which is client-determined,
 possibly in response to server specification. The contents of
 COMPOUNDs, sizes of strings such as those passed to RENAME, etc.
 all go into the determination of a maximal NFSv4 request size and
 therefore minimal buffer size. The client must select its offered
 value carefully, so as not to overburden the server, and vice-
 versa. The payoff of an appropriate padding value is higher
 performance.

 Sender gather:
 |RPC Request|Pad bytes|Length| -> |User data...|
 \------+---------------------/ \
 \ \
 \ Receiver scatter: \-----------+- ...
 /-----+----------------\ \ \
 |RPC Request|Pad|Length| -> |FS buffer|->|FS buffer|->...

 In the above case, the server may recycle unused buffers to the
 next posted receive if unused by the actual received request, or
 may pass the now-complete buffers by reference for normal write
 processing. For a server which can make use of it, this removes
 any need for data copies of incoming data, without resorting to
 complicated end-to-end buffer advertisement and management. This
 includes most kernel-based and integrated server designs, among
 many others. The client may perform similar optimizations, if
 desired.

 Padding is negotiated by the session creation operation, and
 subsequently used by the RPC RDMA layer, as described in [RPCRDMA].

3. NFSv4 Integration

 The following section discusses the integration of the proposed
 RDMA extensions with NFSv4.0.

Talpey et al. Expires December 2005 [Page 31]

Internet-Draft NFSv4 Session Extensions July 2005

3.1. Minor Versioning

 Minor versioning is the existing facility to extend the NFSv4
 protocol, and this proposal takes that approach.

 Minor versioning of NFSv4 is relatively restrictive, and allows for
 tightly limited changes only. In particular, it does not permit
 adding new "procedures" (it permits adding only new "operations").
 Interoperability concerns make it impossible to consider additional
 layering to be a minor revision. This somewhat limits the changes
 that can be proposed when considering extensions.

 To support the duplicate request cache integrated with sessions and
 request control, it is desirable to tag each request with an
 identifier to be called a Slotid. This identifier must be passed
 by NFSv4 when running atop any transport, including traditional
 TCP. Therefore it is not desirable to add the Slotid to a new RPC
 transport, even though such a transport is indicated for support of
 RDMA. This draft and [RPCRDMA] do not propose such an approach.

 Instead, this proposal conforms to the requirements of NFSv4 minor
 versioning, through the use of a new operation within NFSv4
 COMPOUND procedures as detailed below.

 If sessions are in use for a given clientid, this same clientid
 cannot be used for non-session NFSv4 operation, including NFSv4.0.
 Because the server will have allocated session-specific state to
 the active clientid, it would be an unnecessary burden on the
 server implementor to support and account for additional, non-
 session traffic, in addition to being of no benefit. Therefore
 this proposal prohibits a single clientid from doing this.
 Nevertheless, employing a new clientid for such traffic is
 supported.

3.2. Slot Identifiers and Server Duplicate Request Cache

 The presence of deterministic maximum request limits on a session
 enables in-progress requests to be assigned unique values with
 useful properties.

 The RPC layer provides a transaction ID (xid), which, while
 required to be unique, is not especially convenient for tracking
 requests. The transaction ID is only meaningful to the issuer
 (client), it cannot be interpreted at the server except to test for
 equality with previously issued requests. Because RPC operations
 may be completed by the server in any order, many transaction IDs
 may be outstanding at any time. The client may therefore perform a
 computationally expensive lookup operation in the process of

Talpey et al. Expires December 2005 [Page 32]

Internet-Draft NFSv4 Session Extensions July 2005

 demultiplexing each reply.

 In the proposal, there is a limit to the number of active requests.
 This immediately enables a convenient, computationally efficient
 index for each request which is designated as a Slot Identifier, or
 slotid.

 When the client issues a new request, it selects a slotid in the
 range 0..N-1, where N is the server's current "totalrequests" limit
 granted the client on the session over which the request is to be
 issued. The slotid must be unused by any of the requests which the
 client has already active on the session. "Unused" here means the
 client has no outstanding request for that slotid. Because the
 slot id is always an integer in the range 0..N-1, client
 implementations can use the slotid from a server response to
 efficiently match responses with outstanding requests, such as, for
 example, by using the slotid to index into a outstanding request
 array. This can be used to avoid expensive hashing and lookup
 functions in the performace-critical receive path.

 The sequenceid, which accompanies the slotid in each request, is
 important for a second, important check at the server: it must be
 able to be determined efficiently whether a request using a certain
 slotid is a retransmit or a new, never-before-seen request. It is
 not feasible for the client to assert that it is retransmitting to
 implement this, because for any given request the client cannot
 know the server has seen it unless the server actually replies. Of
 course, if the client has seen the server's reply, the client would
 not retransmit!

 The sequenceid must increase monotonically for each new transmit of
 a given slotid, and must remain unchanged for any retransmission.
 The server must in turn compare each newly received request's
 sequenceid with the last one previously received for that slotid,
 to see if the new request is:

 o A new request, in which the sequenceid is greater than that
 previously seen in the slot (accounting for sequence
 wraparound). The server proceeds to execute the new request.

 o A retransmitted request, in which the sequenceid is equal to
 that last seen in the slot. Note that this request may be
 either complete, or in progress. The server performs replay
 processing in these cases.

 o A misordered duplicate, in which the sequenceid is less than
 that previously seen in the slot. The server must drop the
 incoming request, which may imply dropping the connection if

Talpey et al. Expires December 2005 [Page 33]

Internet-Draft NFSv4 Session Extensions July 2005

 the transport is reliable, as dictated by section 3.1.1 of
 [RFC3530].

 This last condition is possible on any connection, not just
 unreliable, unordered transports. Delayed behavior on abandoned
 TCP connections which are not yet closed at the server, or
 pathological client implementations can cause it, among other
 causes. Therefore, the server may wish to harden itself against
 certain repeated occurrences of this, as it would for
 retransmissions in [RFC3530].

 It is recommended, though not necessary for protocol correctness,
 that the client simply increment the sequenceid by one for each new
 request on each slotid. This reduces the wraparound window to a
 minimum, and is useful for tracing and avoidance of possible
 implementation errors.

 The client may however, for implementation-specific reasons, choose
 a different algorithm. For example it might maintain a single
 sequence space for all slots in the session - e.g. employing the
 RPC XID itself. The sequenceid, in any case, is never interpreted
 by the server for anything but to test by comparison with
 previously seen values.

 The server may thereby use the slotid, in conjunction with the
 sessionid and sequenceid, within the SEQUENCE portion of the
 request to maintain its duplicate request cache (DRC) for the
 session, as opposed to the traditional approach of ONC RPC
 applications that use the XID along with certain transport
 information [RW96].

 Unlike the XID, the slotid is always within a specific range; this
 has two implications. The first implication is that for a given
 session, the server need only cache the results of a limited number
 of COMPOUND requests. The second implication derives from the
 first, which is unlike XID-indexed DRCs, the slotid DRC by its
 nature cannot be overflowed. Through use of the sequenceid to
 identify retransmitted requests, it is notable that the server does
 not need to actually cache the request itself, reducing the storage
 requirements of the DRC further. These new facilities makes it
 practical to maintain all the required entries for an effective
 DRC.

 The slotid and sequenceid therefore take over the traditional role
 of the port number in the server DRC implementation, and the
 session replaces the IP address. This approach is considerably
 more portable and completely robust - it is not subject to the
 frequent reassignment of ports as clients reconnect over IP

https://datatracker.ietf.org/doc/html/rfc3530#section-3.1.1
https://datatracker.ietf.org/doc/html/rfc3530#section-3.1.1
https://datatracker.ietf.org/doc/html/rfc3530

Talpey et al. Expires December 2005 [Page 34]

Internet-Draft NFSv4 Session Extensions July 2005

 networks. In addition, the RPC XID is not used in the reply cache,
 enhancing robustness of the cache in the face of any rapid reuse of
 XIDs by the client.

 It is required to encode the slotid information into each request
 in a way that does not violate the minor versioning rules of the
 NFSv4.0 specification. This is accomplished here by encoding it in
 a control operation within each NFSv4.1 COMPOUND and CB_COMPOUND
 procedure. The operation easily piggybacks within existing
 messages. The implementation section of this document describes
 the specific proposal.

 In general, the receipt of a new sequenced request arriving on any
 valid slot is an indication that the previous DRC contents of that
 slot may be discarded. In order to further assist the server in
 slot management, the client is required to use the lowest available
 slot when issuing a new request. In this way, the server may be
 able to retire additional entries.

 However, in the case where the server is actively adjusting its
 granted maximum request count to the client, it may not be able to
 use receipt of the slotid to retire cache entries. The slotid used
 in an incoming request may not reflect the server's current idea of
 the client's session limit, because the request may have been sent
 from the client before the update was received. Therefore, in the
 downward adjustment case, the server may have to retain a number of
 duplicate request cache entries at least as large as the old value,
 until operation sequencing rules allow it to infer that the client
 has seen its reply.

 The SEQUENCE (and CB_SEQUENCE) operation also carries a "maxslot"
 value which carries additional client slot usage information. The
 client must always provide its highest-numbered outstanding slot
 value in the maxslot argument, and the server may reply with a new
 recognized value. The client should in all cases provide the most
 conservative value possible, although it can be increased somewhat
 above the actual instantaneous usage to maintain some minimum or
 optimal level. This provides a way for the client to yield unused
 request slots back to the server, which in turn can use the
 information to reallocate resources. Obviously, maxslot can never
 be zero, or the session would deadlock.

 The server also provides a target maxslot value to the client,
 which is an indication to the client of the maxslot the server
 wishes the client to be using. This permits the server to withdraw
 (or add) resources from a client that has been found to not be
 using them, in order to more fairly share resources among a varying
 level of demand from other clients. The client must always comply

Talpey et al. Expires December 2005 [Page 35]

Internet-Draft NFSv4 Session Extensions July 2005

 with the server's value updates, since they indicate newly
 established hard limits on the client's access to session
 resources. However, because of request pipelining, the client may
 have active requests in flight reflecting prior values, therefore
 the server must not immediately require the client to comply.

 It is worthwhile to note that Sprite RPC [BW87] defined a "channel"
 which in some ways is similar to the slotid proposed here. Sprite
 RPC used channels to implement parallel request processing and
 request/response cache retirement.

3.3. COMPOUND and CB_COMPOUND

 Support for per-operation control can be piggybacked onto NFSv4
 COMPOUNDs with full transparency, by placing such facilities into
 their own, new operation, and placing this operation first in each
 COMPOUND under the new NFSv4 minor protocol revision. The contents
 of the operation would then apply to the entire COMPOUND.

 Recall that the NFSv4 minor revision is contained within the
 COMPOUND header, encoded prior to the COMPOUNDed operations. By
 simply requiring that the new operation always be contained in
 NFSv4 minor COMPOUNDs, the control protocol can piggyback perfectly
 with each request and response.

 In this way, the NFSv4 RDMA Extensions may stay in compliance with
 the minor versioning requirements specified in section 10 of
 [RFC3530].

 Referring to section 13.1 of the same document, the proposed
 session-enabled COMPOUND and CB_COMPOUND have the form:

 +-----+--------------+-----------+------------+-----------+----
 | tag | minorversion | numops | control op | op + args | ...
 | | (== 1) | (limited) | + args | |
 +-----+--------------+-----------+------------+-----------+----

 and the reply's structure is:

 +------------+-----+--------+-------------------------------+--//
 |last status | tag | numres | status + control op + results | //
 +------------+-----+--------+-------------------------------+--//
 //-----------------------+----
 // status + op + results | ...
 //-----------------------+----

 The single control operation within each NFSv4.1 COMPOUND defines
 the context and operational session parameters which govern that

https://datatracker.ietf.org/doc/html/rfc3530#section-10
https://datatracker.ietf.org/doc/html/rfc3530#section-10

Talpey et al. Expires December 2005 [Page 36]

Internet-Draft NFSv4 Session Extensions July 2005

 COMPOUND request and reply. Placing it first in the COMPOUND
 encoding is required in order to allow its processing before other
 operations in the COMPOUND.

3.4. eXternal Data Representation Efficiency

 RDMA is a copy avoidance technology, and it is important to
 maintain this efficiency when decoding received messages.
 Traditional XDR implementations frequently use generated
 unmarshaling code to convert objects to local form, incurring a
 data copy in the process (in addition to subjecting the caller to
 recursive calls, etc). Often, such conversions are carried out
 even when no size or byte order conversion is necessary.

 It is recommended that implementations pay close attention to the
 details of memory referencing in such code. It is far more
 efficient to inspect data in place, using native facilities to deal
 with word size and byte order conversion into registers or local
 variables, rather than formally (and blindly) performing the
 operation via fetch, reallocate and store.

 Of particular concern is the result of the READDIR operation, in
 which such encoding abounds.

3.5. Effect of Sessions on Existing Operations

 The use of a session replaces the use of the SETCLIENTID and
 SETCLIENTID_CONFIRM operations, and allows certain simplification
 of the RENEW and callback addressing mechanisms in the base
 protocol.

 The cb_program and cb_location which are obtained by the server in
 SETCLIENTID_CONFIRM must not be used by the server, because the
 NFSv4.1 client performs callback channel designation with
 BIND_BACKCHANNEL. Therefore the SETCLIENTID and
 SETCLIENTID_CONFIRM operations becomes obsolete when sessions are
 in use, and a server should return an error to NFSv4.1 clients
 which might issue either operation.

 Another favorable result of the session is that the server is able
 to avoid requiring the client to perform OPEN_CONFIRM operations.
 The existence of a reliable and effective DRC means that the server
 will be able to determine whether an OPEN request carrying a
 previously known open_owner from a client is or is not a
 retransmission. Because of this, the server no longer requires
 OPEN_CONFIRM to verify whether the client is retransmitting an open
 request. This in turn eliminates the server's reason for
 requesting OPEN_CONFIRM - the server can simply replace any

Talpey et al. Expires December 2005 [Page 37]

Internet-Draft NFSv4 Session Extensions July 2005

 previous information on this open_owner. Client OPEN operations
 are therefore streamlined, reducing overhead and latency through
 avoiding the additional OPEN_CONFIRM exchange.

 Since the session carries the client liveness indication with it
 implicitly, any request on a session associated with a given client
 will renew that client's leases. Therefore the RENEW operation is
 made unnecessary when a session is present, as any request
 (including a SEQUENCE operation with or without additional NFSv4
 operations) performs its function. It is possible (though this
 proposal does not make any recommendation) that the RENEW operation
 could be made obsolete.

 An interesting issue arises however if an error occurs on such a
 SEQUENCE operation. If the SEQUENCE operation fails, perhaps due
 to an invalid slotid or other non-renewal-based issue, the server
 may or may not have performed the RENEW. In this case, the state
 of any renewal is undefined, and the client should make no
 assumption that it has been performed. In practice, this should
 not occur but even if it did, it is expected the client would
 perform some sort of recovery which would result in a new,
 successful, SEQUENCE operation being run and the client assured
 that the renewal took place.

3.6. Authentication Efficiencies

 NFSv4 requires the use of the RPCSEC_GSS ONC RPC security flavor
 [RFC2203] to provide authentication, integrity, and privacy via
 cryptography. The server dictates to the client the use of
 RPCSEC_GSS, the service (authentication, integrity, or privacy),
 and the specific GSS-API security mechanism that each remote
 procedure call and result will use.

 If the connection's integrity is protected by an additional means
 than RPCSEC_GSS, such as via IPsec, then the use of RPCSEC_GSS's
 integrity service is nearly redundant (See the Security
 Considerations section for more explanation of why it is "nearly"
 and not completely redundant). Likewise, if the connection's
 privacy is protected by additional means, then the use of both
 RPCSEC_GSS's integrity and privacy services is nearly redundant.

 Connection protection schemes, such as IPsec, are more likely to be
 implemented in hardware than upper layer protocols like RPCSEC_GSS.
 Hardware-based cryptography at the IPsec layer will be more
 efficient than software-based cryptography at the RPCSEC_GSS layer.

 When transport integrity can be obtained, it is possible for server
 and client to downgrade their per-operation authentication, after

https://datatracker.ietf.org/doc/html/rfc2203

Talpey et al. Expires December 2005 [Page 38]

Internet-Draft NFSv4 Session Extensions July 2005

 an appropriate exchange. This downgrade can in fact be as complete
 as to establish security mechanisms that have zero cryptographic
 overhead, effectively using the underlying integrity and privacy
 services provided by transport.

 Based on the above observations, a new GSS-API mechanism, called
 the Channel Conjunction Mechanism [CCM], is being defined. The CCM
 works by creating a GSS-API security context using as input a
 cookie that the initiator and target have previously agreed to be a
 handle for GSS-API context created previously over another GSS-API
 mechanism.

 NFSv4.1 clients and servers should support CCM and they must use as
 the cookie the handle from a successful RPCSEC_GSS context creation
 over a non-CCM mechanism (such as Kerberos V5). The value of the
 cookie will be equal to the handle field of the rpc_gss_init_res
 structure from the RPCSEC_GSS specification.

 The [CCM] Draft provides further discussion and examples.

4. Security Considerations

 The NFSv4 minor version 1 retains all of existing NFSv4 security;
 all security considerations present in NFSv4.0 apply to it equally.

 Security considerations of any underlying RDMA transport are
 additionally important, all the more so due to the emerging nature
 of such transports. Examining these issues is outside the scope of
 this draft.

 When protecting a connection with RPCSEC_GSS, all data in each
 request and response (whether transferred inline or via RDMA)
 continues to receive this protection over RDMA fabrics [RPCRDMA].
 However when performing data transfers via RDMA, RPCSEC_GSS
 protection of the data transfer portion works against the
 efficiency which RDMA is typically employed to achieve. This is
 because such data is normally managed solely by the RDMA fabric,
 and intentionally is not touched by software. Therefore when
 employing RPCSEC_GSS under CCM, and where integrity protection has
 been "downgraded", the cooperation of the RDMA transport provider
 is critical to maintain any integrity and privacy otherwise in
 place for the session. The means by which the local RPCSEC_GSS
 implementation is integrated with the RDMA data protection
 facilities are outside the scope of this draft.

 It is logical to use the same GSS context on a session's callback
 channel as that used on its operations channel(s), particularly
 when the connection is shared by both. The client must indicate to

Talpey et al. Expires December 2005 [Page 39]

Internet-Draft NFSv4 Session Extensions July 2005

 the server:

 - what security flavor(s) to use in the call back. A special
 callback flavor might be defined for this.

 - if the flavor is RPCSEC_GSS, then the client must have previously
 created an RPCSEC_GSS session with the server. The client offers to
 the server the the opaque handle<> value from the rpc_gss_init_res
 structure, the window size of RPCSEC_GSS sequence numbers, and an
 opaque gss_cb_handle.

 This exchange can be performed as part of session and clientid
 creation, and the issue warrants careful analysis before being
 specified.

 If the NFS client wishes to maintain full control over RPCSEC_GSS
 protection, it may still perform its transfer operations using
 either the inline or RDMA transfer model, or of course employ
 traditional TCP stream operation. In the RDMA inline case, header
 padding is recommended to optimize behavior at the server. At the
 client, close attention should be paid to the implementation of
 RPCSEC_GSS processing to minimize memory referencing and especially
 copying. These are well-advised in any case!

 The proposed session callback channel binding improves security
 over that provided by NFSv4 for the callback channel. The
 connection is client-initiated, and subject to the same firewall
 and routing checks as the operations channel. The connection
 cannot be hijacked by an attacker who connects to the client port
 prior to the intended server. The connection is set up by the
 client with its desired attributes, such as optionally securing
 with IPsec or similar. The binding is fully authenticated before
 being activated.

4.1. Authentication

 Proper authentication of the principal which issues any session and
 clientid in the proposed NFSv4.1 operations exactly follows the
 similar requirement on client identifiers in NFSv4.0. It must not
 be possible for a client to impersonate another by guessing its
 session identifiers for NFSv4.1 operations, nor to bind a callback
 channel to an existing session. To protect against this, NFSv4.0
 requires appropriate authentication and matching of the principal
 used. This is discussed in Section 16, Security Considerations of
 [RFC3530]. The same requirement when using a session identifier
 applies to NFSv4.1 here.

https://datatracker.ietf.org/doc/html/rfc3530

Talpey et al. Expires December 2005 [Page 40]

Internet-Draft NFSv4 Session Extensions July 2005

 Going beyond NFSv4.0, the presence of a session associated with any
 clientid may also be used to enhance NFSv4.1 security with respect
 to client impersonation. In NFSv4.0, there are many operations
 which carry no clientid, including in particular those which employ
 a stateid argument. A rogue client which wished to carry out a
 denial of service attack on another client could perform CLOSE,
 DELEGRETURN, etc operations with that client's current filehandle,
 sequenceid and stateid, after having obtained them from
 eavesdropping or other approach. Locking and open downgrade
 operations could be similarly attacked.

 When an NFSv4.1 session is in place for any clientid,
 countermeasures are easily applied through use of authentication by
 the server. Because the clientid and sessionid must be present in
 each request within a session, the server may verify that the
 clientid is in fact originating from a principal with the
 appropriate authenticated credentials, that the sessionid belongs
 to the clientid, and that the stateid is valid in these contexts.
 This is in general not possible with the affected operations in
 NFSv4.0 due to the fact that the clientid is not present in the
 requests.

 In the event that authentication information is not available in
 the incoming request, for example after a reconnection when the
 security was previously downgraded using CCM, the server must
 require the client re-establish the authentication in order that
 the server may validate the other client-provided context, prior to
 executing any operation. The sessionid, present in the newly
 retransmitted request, combined with the retransmission detection
 enabled by the NFSv4.1 duplicate request cache, are a convenient
 and reliable context for the server to use for this contingency.

 The server should take care to protect itself against denial of
 service attacks in the creation of sessions and clientids. Clients
 who connect and create sessions, only to disconnect and never use
 them may leave significant state behind. (The same issue applies
 to NFSv4.0 with clients who may perform SETCLIENTID, then never
 perform SETCLIENTID_CONFIRM.) Careful authentication coupled with
 resource checks is highly recommended.

5. IANA Considerations

 As a proposal based on minor protocol revision, any new minor
 number might be registered and reserved with the agreed-upon
 specification. Assigned operation numbers and any RPC constants
 might undergo the same process.

Talpey et al. Expires December 2005 [Page 41]

Internet-Draft NFSv4 Session Extensions July 2005

 There are no issues stemming from RDMA use itself regarding port
 number assignments not already specified by [RFC3530]. Initial
 connection is via ordinary TCP stream services, operating on the
 same ports and under the same set of naming services.

 In the Automatic RDMA connection model described above, it is
 possible that a new well-known port, or a new transport type
 assignment (netid) as described in [RFC3530], may be desirable.

6. NFSv4 Protocol Extensions

 This section specifies details of the extensions to NFSv4 proposed
 by this document. Existing NFSv4 operations (under minor version
 0) continue to be fully supported, unmodified.

6.1. Operation: CREATECLIENTID - Instantiate Clientid

 SYNOPSIS

 client -> clientid

 ARGUMENT

 struct CREATECLIENTID4args {
 nfs_client_id4 clientdesc;
 };

 RESULT

 struct CREATECLIENTID4resok {
 clientid4 clientid;
 verifier4 clientid_confirm;
 };

 union SETCLIENTID4res switch (nfsstat4 status) {
 case NFS4_OK:
 CREATECLIENTID4resok resok4;
 case NFS4ERR_CLID_INUSE:
 void;
 default:
 void;
 };

 DESCRIPTION

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530

Talpey et al. Expires December 2005 [Page 42]

Internet-Draft NFSv4 Session Extensions July 2005

 The client uses the CREATECLIENTID operation to register a
 particular client identifier with the server. The clientid
 returned from this operation will be necessary for requests that
 create state on the server and will serve as a parent object to
 sessions created by the client. In order to verify the clientid it
 must first be used as an argument to CREATESESSION.

 IMPLEMENTATION

 A server's client record is a 5-tuple:

 1. clientdesc.id:
 The long form client identifier, sent via the client.id
 subfield of the CREATECLIENTID4args structure

 2. clientdesc.verifier:
 A client-specific value used to indicate reboots, sent via the
 clientdesc.verifier subfield of the CREATECLIENTID4args
 structure

 3. principal:
 The RPCSEC_GSS principal sent via the RPC headers

 4. clientid:
 The shorthand client identifier, generated by the server and
 returned via the clientid field in the CREATECLIENTID4resok
 structure

 5. confirmed:
 A private field on the server indicating whether or not a
 client record has been confirmed. A client record is
 confirmed if there has been a successful CREATESESSION
 operation to confirm it. Otherwise it is unconfirmed. An
 unconfirmed record is established by a CREATECLIENTID call.
 Any unconfirmed record that is not confirmed within a lease
 period may be removed.

 The following identifiers represent special values for the fields
 in the records.

 id_arg:
 The value of the clientdesc.id subfield of the
 CREATECLIENTID4args structure of the current request.

 verifier_arg:
 The value of the clientdesc.verifier subfield of the
 CREATECLIENTID4args structure of the current request.

Talpey et al. Expires December 2005 [Page 43]

Internet-Draft NFSv4 Session Extensions July 2005

 old_verifier_arg:
 A value of the clientdesc.verifier field of a client record
 received in a previous request; this is distinct from
 verifier_arg.

 principal_arg:
 The value of the RPCSEC_GSS principal for the current request.

 old_principal_arg:
 A value of the RPCSEC_GSS principal received for a previous
 request. This is distinct from principal_arg.

 clientid_ret:
 The value of the clientid field the server will return in the
 CREATECLIENTID4resok structure for the current request.

 old_clientid_ret:
 The value of the clientid field the server returned in the
 CREATECLIENTID4resok structure for a previous request. This
 is distinct from clientid_ret.

 Since CREATECLIENTID is a non-idempotent operation, we must
 consider the possibility that replays may occur as a result of a
 client reboot, network partition, malfunctioning router, etc.
 Replays are identified by the value of the client field of
 CREATECLIENTID4args and the method for dealing with them is
 outlined in the scenarios below.

 The scenarios are described in terms of what client records whose
 clientdesc.id subfield have value equal to id_arg exist in the
 server's set of client records. Any cases in which there is more
 than one record with identical values for id_arg represent a server
 implementation error. Operation in the potential valid cases is
 summarized as follows.

 1) Common case
 If no client records with clientdesc.id matching id_arg exist,
 a new shorthand client identifier clientid_ret is generated,
 and the following unconfirmed record is added to the server's
 state.

 { id_arg, verifier_arg, principal_arg, clientid_ret, FALSE }

 Subsequently, the server returns clientid_ret.

 2) Router Replay
 If the server has the following confirmed record, then this
 request is likely the result of a replayed request due to a

Talpey et al. Expires December 2005 [Page 44]

Internet-Draft NFSv4 Session Extensions July 2005

 faulty router or lost connection.

 { id_arg, verifier_arg, principal_arg, clientid_ret, TRUE }

 Since the record has been confirmed, the client must have
 received the server's reply from the initial CREATECLIENTID
 request. Since this is simply a spurious request, there is no
 modification to the server's state, and the server makes no
 reply to the client.

 3) Client Collision
 If the server has the following confirmed record, then this
 request is likely the result of a chance collision between the
 values of the clientdesc.id subfield of CREATECLIENTID4args
 for two different clients.

 { id_arg, *, old_principal_arg, clientid_ret, TRUE }

 Since the value of the clientdesc.id subfield of each client
 record must be unique, there is no modification of the
 server's state, and NFS4ERR_CLID_INUSE is returned to indicate
 the client should retry with a different value for the
 clientdesc.id subfield of CREATECLIENTID4args.

 This scenario may also represent a malicious attempt to
 destroy a client's state on the server. For security reasons,
 the server MUST NOT remove the client's state when there is a
 principal mismatch.

 4) Replay
 If the server has the following unconfirmed record then this
 request is likely the result of a client replay due to a
 network partition or some other connection failure.

 { id_arg, verifier_arg, principal_arg, clientid_ret, FALSE }

 Since the response to the CREATECLIENTID request that created
 this record may have been lost, it is not acceptable to drop
 this duplicate request. However, rather than processing it
 normally, the existing record is left unchanged and
 clientid_ret, which was generated for the previous request, is
 returned.

 5) Change of Principal
 If the server has the following unconfirmed record then this
 request is likely the result of a client which has for
 whatever reasons changed principals (possibly to change
 security flavor) after calling CREATECLIENTID, but before

Talpey et al. Expires December 2005 [Page 45]

Internet-Draft NFSv4 Session Extensions July 2005

 calling CREATESESSION.

 { id_arg, verifier_arg, old_principal_arg, clientid_ret, FALSE}

 Since the client has not changed, the principal field of the
 unconfirmed record is updated to principal_arg and
 clientid_ret is again returned. There is a small possibility
 that this is merely a collision on the client field of
 CREATECLIENTID4args between unrelated clients, but since that
 is unlikely, and an unconfirmed record does not generally have
 any filesystem pertinent state, we can assume it is the same
 client without risking loss of any important state.

 After processing, the following record will exist on the
 server.

 { id_arg, verifier_arg, principal_arg, clientid_ret, FALSE}

 6) Client Reboot
 If the server has the following confirmed client record, then
 this request is likely from a previously confirmed client
 which has rebooted.

 { id_arg, old_verifier_arg, principal_arg, clientid_ret, TRUE }

 Since the previous incarnation of the same client will no
 longer be making requests, lock and share reservations should
 be released immediately rather than forcing the new
 incarnation to wait for the lease time on the previous
 incarnation to expire. Furthermore, session state should be
 removed since if the client had maintained that information
 across reboot, this request would not have been issued. If
 the server does not support the CLAIM_DELEGATE_PREV claim
 type, associated delegations should be purged as well;
 otherwise, delegations are retained and recovery proceeds
 according to RFC3530. The client record is updated with the
 new verifier and its status is changed to unconfirmed.

 After processing, clientid_ret is returned to the client and
 the following record will exist on the server.

 { id_arg, verifier_arg, principal_arg, clientid_ret, FALSE }

 7) Reboot before confirmation
 If the server has the following unconfirmed record, then this
 request is likely from a client which rebooted before sending

https://datatracker.ietf.org/doc/html/rfc3530

Talpey et al. Expires December 2005 [Page 46]

Internet-Draft NFSv4 Session Extensions July 2005

 a CREATESESSION request.

 { id_arg, old_verifier_arg, *, clientid_ret, FALSE }

 Since this is believed to be a request from a new incarnation
 of the original client, the server updates the value of
 clientdesc.verifier and returns the original clientid_ret.
 After processing, the following state exists on the server.

 { id_arg, verifier_arg, *, clientid_ret, FALSE }

 ERRORS

 NFS4ERR_BADXDR
 NFS4ERR_CLID_INUSE
 NFS4ERR_INVAL
 NFS4ERR_RESOURCE
 NFS4ERR_SERVERFAULT

6.2. Operation: CREATESESSION - Create New Session and Confirm Clientid

 SYNOPSIS

 clientid, session_args -> sessionid, session_args

 ARGUMENT

Talpey et al. Expires December 2005 [Page 47]

Internet-Draft NFSv4 Session Extensions July 2005

 struct CREATESESSION4args {
 clientid4 clientid;
 bool persist;
 count4 maxrequestsize;
 count4 maxresponsesize;
 count4 maxrequests;
 count4 headerpadsize;
 switch (bool clientid_confirm) {
 case TRUE:
 verifier4 setclientid_confirm;
 case FALSE:
 void;
 }
 switch (channelmode4 mode) {
 case DEFAULT:
 void;
 case STREAM:
 streamchannelattrs4 streamchanattrs;
 case RDMA:
 rdmachannelattrs4 rdmachanattrs;
 };
 };

 RESULT

Talpey et al. Expires December 2005 [Page 48]

Internet-Draft NFSv4 Session Extensions July 2005

 typedef opaque sessionid4[16];

 struct CREATESESSION4resok {
 sessionid4 sessionid;
 bool persist;
 count4 maxrequestsize;
 count4 maxresponsesize;
 count4 maxrequests;
 count4 headerpadsize;
 switch (channelmode4 mode) {
 case DEFAULT:
 void;
 case STREAM:
 streamchannelattrs4 streamchanattrs;
 case RDMA:
 rdmachannelattrs4 rdmachanattrs;
 };
 };

 union CREATESESSION4res switch (nfsstat4 status) {
 case NFS4_OK:
 CREATESESSION4resok resok4;
 default:
 void;
 };

 DESCRIPTION

 This operation is used by the client to create new session objects
 on the server. Additionally the first session created with a new
 shorthand client identifier serves to confirm the creation of that
 client's state on the server. The server returns the parameter
 values for the new session.

 IMPLEMENTATION

 To describe the implementation, the same notation for client
 records introduced in the description of CREATECLIENTID is used
 with the following addition.

 clientid_arg:
 The value of the clientid field of the CREATESESSION4args
 structure of the current request.

 Since CREATESESSION is a non-idempotent operation, we must consider
 the possibility that replays may occur as a result of a client
 reboot, network partition, malfunctioning router, etc. Replays are

Talpey et al. Expires December 2005 [Page 49]

Internet-Draft NFSv4 Session Extensions July 2005

 identified by the value of the clientid and sessionid fields of
 CREATESESSION4args and the method for dealing with them is outlined
 in the scenarios below.

 The processing of this operation is divided into two phases:
 clientid confirmation and session creation. In case the state for
 the provided clientid has not been verified, it is confirmed before
 the session is created. Otherwise the clientid confirmation phase
 is skipped and only the session creation phase occurs. Note that
 since only confirmed clients may create sessions, the clientid
 confirmation stage does not depend upon sessionid_arg.

 CLIENTID CONFIRMATION

 The operational cases are described in terms of what client records
 whose clientid field have value equal to clientid_arg exist in the
 server's set of client records. Any cases in which there is more
 than one record with identical values for clientid represent a
 server implementation error. Operation in the potential valid
 cases is summarized as follows.

 1) Common Case
 If the server has the following unconfirmed record, then this
 is the expected confirmation of an unconfirmed record.

 { *, *, principal_arg, clientid_arg, FALSE }

 The confirmed field of the record is set to TRUE and
 processing of the operation continues normally.

 2) Stale Clientid
 If the server contains no records with clientid equal to
 clientid_arg, then most likely the client's state has been
 purged during a period of inactivity, possibly due to a loss
 of connectivity. NFS4ERR_STALE_CLIENTID is returned, and no
 changes are made to any client records on the server.

 3) Principal Change or Collision
 If the server has the following record, then the client has
 changed principals after the previous CREATECLIENTID request,
 or there has been a chance collision between shortand client
 identifiers.

 { *, *, old_principal_arg, clientid_arg, * }

 Neither of these cases are permissible. Processing stops and
 NFS4ERR_CLID_INUSE is returned to the client. No changes are
 made to any client records on the server.

Talpey et al. Expires December 2005 [Page 50]

Internet-Draft NFSv4 Session Extensions July 2005

 SESSION CREATION

 To determine whether this request is a replay, the server examines
 the sessionid argument provided by the client. If the sessionid
 matches the identifier of a previously created session, then this
 request must be interpreted as a replay. No new state is created
 and a reply with the parameters of the existing session is returned
 to the client. If a session corresponding to the sessionid does
 not already exist, then the request is not a replay and is
 processed as follows.

 NOTE: It is the responsibility of the client to generate
 appropriate values for sessionid. Since the ordering of messages
 sent on different transport connections is not guaranteed,
 immediately reusing the sessionid of a previously destroyed session
 may yield unpredictable results. Client implementations should
 avoid recently used sessionids to ensure correct behavior.

 The server examines the persist, maxrequestsize, maxresponsesize,
 maxrequests and headerpadsize arguments. For each argument, if the
 value is acceptable to the server, it is recommended that the
 server use the provided value to create the new session. If it is
 not acceptable, the server may use a different value, but must
 return the value used to the client. These parameters have the
 following interpretation.

 persist:
 True if the client desires server support for "reliable"
 semantics. For sessions in which only idempotent operations
 will be used (e.g. a read-only session), clients should set
 this value to false. If the server does not or cannot provide
 "reliable" semantics this value must be set to false on
 return.

 maxrequestsize:
 The maximum size of a COMPOUND request that will be sent by
 the client including RPC headers.

 maxresponsesize:
 The maximum size of a COMPOUND reply that the client will
 accept from the server including RPC headers. The server must
 not increase the value of this parameter. If a client sends a
 COMPOUND request for which the size of the reply would exceed
 this value, the server will return NFS4ERR_RESOURCE.

 maxrequests:
 The maximum number of concurrent COMPOUND requests that the
 client will issue on the session. Subsequent COMPOUND

Talpey et al. Expires December 2005 [Page 51]

Internet-Draft NFSv4 Session Extensions July 2005

 requests will each be assigned a slot identifier by the client
 on the range 0 to maxrequests - 1 inclusive. A slot id cannot
 be reused until the previous request on that slot has
 completed.

 headerpadsize:
 The maximum amount of padding the client is willing to apply
 to ensure that write payloads are aligned on some boundary at
 the server. The server should reply with its preferred value,
 or zero if padding is not in use. The server may decrease
 this value but must not increase it.

 The server creates the session by recording the parameter values
 used and if the persist parameter is true and has been accepted by
 the server, allocating space for the duplicate request cache (DRC).

 If the session state is created successfully, the server associates
 it with the session identifier provided by the client. This
 identifier must be unique among the client's active sessions but
 there is no need for it to be globally unique. Finally, the server
 returns the negotiated values used to create the session to the
 client.

 ERRORS

 NFS4ERR_BADXDR
 NFS4ERR_CLID_INUSE
 NFS4ERR_RESOURCE
 NFS4ERR_SERVERFAULT
 NFS4ERR_STALE_CLIENTID

Talpey et al. Expires December 2005 [Page 52]

Internet-Draft NFSv4 Session Extensions July 2005

6.3. Operation: BIND_BACKCHANNEL - Create a callback channel binding

 SYNOPSIS

 Establish a callback channel on the connection.

 ARGUMENTS

 struct BIND_BACKCHANNEL4args {
 clientid4 clientid;
 uint32_t callback_program;
 uint32_t callback_ident;
 count4 maxrequestsize;
 count4 maxresponsesize;
 count4 maxrequests;
 switch (channelmode4 mode) {
 case DEFAULT:
 void;
 case STREAM:
 streamchannelattrs4 streamchanattrs;
 case RDMA:
 rdmachannelattrs4 rdmachanattrs;
 };
 };

Talpey et al. Expires December 2005 [Page 53]

Internet-Draft NFSv4 Session Extensions July 2005

 RESULTS

 struct BIND_BACKCHANNEL4resok {
 count4 maxrequestsize;
 count4 maxresponsesize;
 count4 maxrequests;
 switch (channelmode4 mode) {
 case DEFAULT:
 void;
 case STREAM:
 streamchannelattrs4 streamchanattrs;
 case RDMA:
 rdmachannelattrs4 rdmachanattrs;
 };
 };

 union BIND_BACKCHANNEL4res switch (nfsstat4 status) {
 case NFS4_OK:
 BIND_BACKCHANNEL4resok resok4;
 default:
 void;
 };

 DESCRIPTION

 The BIND_BACKCHANNEL operation serves to establish the current
 connection as a designated callback channel for the specified
 session. Normally, only one callback channel is bound, however if
 more than one are established, they are used at the server's
 prerogative, no affinity or preference is specified by the client.

 The arguments and results of the BIND_BACKCHANNEL call are a subset
 of the session parameters, and used identically to those values on
 the callback channel only. However, not all session operation
 channel parameters are relevant to the callback channel, for
 example header padding (since writes of bulk data are not performed
 in callbacks).

 ERRORS

 ...

Talpey et al. Expires December 2005 [Page 54]

Internet-Draft NFSv4 Session Extensions July 2005

6.4. Operation: DESTROYSESSION - Destroy existing session

 SYNOPSIS

 void -> status

 ARGUMENT

 struct DESTROYSESSION4args {
 sessionid4 sessionid; };

 RESULT

 struct SESSION_DESTROYres {
 nfsstat status;
 };

 DESCRIPTION

 The SESSION_DESTROY operation closes the session and discards any
 active state such as locks, leases, and server duplicate request
 cache entries. Any remaining connections bound to the session are
 immediately unbound and may additionally be closed by the server.

 This operation must be the final, or only operation in any request.
 Because the operation results in destruction of the session, any
 duplicate request caching for this request, as well as previously
 completed requests, will be lost. For this reason, it is advisable
 to not place this operation in a request with other state-modifying
 operations. In addition, a SEQUENCE operation is not required in
 the request.

 Note that because the operation will never be replayed by the
 server, a client that retransmits the request may receive an error
 in response, even though the session may have been successfully
 destroyed.

 ...

 ERRORS

 <tbd>

Talpey et al. Expires December 2005 [Page 55]

Internet-Draft NFSv4 Session Extensions July 2005

6.5. Operation: SEQUENCE - Supply per-procedure sequencing and control

 SYNOPSIS

 control -> control

 ARGUMENT

 typedef uint32_t sequenceid4;
 typedef uint32_t slotid4;

 struct SEQUENCE4args {
 clientid4 clientid;
 sessionid4 sessionid;
 sequenceid4 sequenceid;
 slotid4 slotid;
 slotid4 maxslot;
 };

 RESULT

 struct SEQUENCE4resok {
 clientid4 clientid;
 sessionid4 sessionid;
 sequenceid4 sequenceid;
 slotid4 slotid;
 slotid4 maxslot;
 slotid4 target_maxslot;
 };

 union SEQUENCE4res switch (nfsstat4 status) {
 case NFS4_OK:
 SEQUENCE4resok resok4;
 default:
 void;
 };

 DESCRIPTION

 The SEQUENCE operation is used to manage operational accounting for
 the session on which the operation is sent. The contents include
 the client and session to which this request belongs, slotid and
 sequenceid, used by the server to implement session request control
 and the duplicate reply cache semantics, and exchanged slot counts

Talpey et al. Expires December 2005 [Page 56]

Internet-Draft NFSv4 Session Extensions July 2005

 which are used to adjust these values. This operation must appear
 once as the first operation in each COMPOUND sent after the channel
 is successfully bound, or a protocol error must result.

 ...

 ERRORS

 NFS4ERR_BADSESSION
 NFS4ERR_BADSLOT

6.6. Callback operation: CB_RECALLCREDIT - change flow control limits

 SYNOPSIS

 targetcount -> status

 ARGUMENTS

 struct CB_RECALLCREDIT4args {
 sessionid4 sessionid;
 uint32_t target;
 };

 RESULT

 struct CB_RECALLCREDIT4res {
 nfsstat4 status;
 };

 DESCRIPTION

 The CB_RECALLCREDIT operation requests the client to return session
 and transport credits to the server, by zero-length RDMA Sends or
 NULL NFSv4 operations.

 ...

 ERRORS

 <none>

Talpey et al. Expires December 2005 [Page 57]

Internet-Draft NFSv4 Session Extensions July 2005

6.7. Callback operation: CB_SEQUENCE - Supply callback channel
sequencing and control

 SYNOPSIS

 control -> control

 ARGUMENT

 typedef uint32_t sequenceid4;
 typedef uint32_t slotid4;

 struct CB_SEQUENCE4args {
 clientid4 clientid;
 sessionid4 sessionid;
 sequenceid4 sequenceid;
 slotid4 slotid;
 slotid4 maxslot;
 };

 RESULT

 struct CB_SEQUENCE4resok {
 clientid4 clientid;
 sessionid4 sessionid;
 sequenceid4 sequenceid;
 slotid4 slotid;
 slotid4 maxslot;
 slotid4 target_maxslot;
 };

 union CB_SEQUENCE4res switch (nfsstat4 status) {
 case NFS4_OK:
 CB_SEQUENCE4resok resok4;
 default:
 void;
 };

 DESCRIPTION

 The CB_SEQUENCE operation is used to manage operational accounting
 for the callback channel of the session on which the operation is
 sent. The contents include the client and session to which this
 request belongs, slotid and sequenceid, used by the server to

Talpey et al. Expires December 2005 [Page 58]

Internet-Draft NFSv4 Session Extensions July 2005

 implement session request control and the duplicate reply cache
 semantics, and exchanged slot counts which are used to adjust these
 values. This operation must appear once as the first operation in
 each CB_COMPOUND sent after the callback channel is successfully
 bound, or a protocol error must result.

 ...

 ERRORS

 NFS4ERR_BADSESSION
 NFS4ERR_BADSLOT

7. NFSv4 Session Protocol Description

 This section contains the proposed protocol changes in RPC
 description language. The constants named in this section are
 illustrative. When the working group decides on the full content
 of the NFSv4.1 minor revision, they may change in order to avoid
 conflict.

Talpey et al. Expires December 2005 [Page 59]

Internet-Draft NFSv4 Session Extensions July 2005

 NFS4ERR_BADSESSION = 10049,/* invalid session */
 NFS4ERR_BADSLOT = 10050 /* invalid slotid */

 /*
 * CREATECLIENTID: v4.1 setclientid for session use
 */

 struct CREATECLIENTID4args {
 nfs_client_id4 clientdesc;
 };

 struct CREATECLIENTID4resok {
 clientid4 clientid;
 verifier4 clientid_confirm;
 };

 union CREATECLIENTID4res switch (nfsstat4 status) {
 case NFS4_OK:
 CREATECLIENTID4resok resok4;
 default:
 void;
 };

 /*
 * Channel attributes - TBD.
 */

 enum channelmode4 {
 DEFAULT = 0, /* don't change */
 STREAM = 1, /* TCP stream */
 RDMA = 2 /* upshift to RDMA */
 };

 struct streamchannelattrs4 {
 opaque nothing[0]; /* TBD */
 };

 struct rdmachannelattrs4 {
 count4 maxrdmareads;
 /* plus TBD */
 };

Talpey et al. Expires December 2005 [Page 60]

Internet-Draft NFSv4 Session Extensions July 2005

 /*
 * CREATESESSION: v4.1 session creation and optional
 * clientid confirm
 */

 typedef opaque sessionid4[16];

 union optverifier4 switch (bool clientid_confirm) {
 case TRUE:
 verifier4 setclientid_confirm;
 case FALSE:
 void;
 };

 union transportattrs4 switch (channelmode4 mode) {
 case DEFAULT:
 void;
 case STREAM:
 streamchannelattrs4 streamchanattrs;
 case RDMA:
 rdmachannelattrs4 rdmachanattrs;
 };

 struct CREATESESSION4args {
 clientid4 clientid;
 bool persist;
 count4 maxrequestsize;
 count4 maxresponsesize;
 count4 maxrequests;
 count4 headerpadsize;
 optverifier4 verifier;
 transportattrs4 transportattrs;
 };

 struct CREATESESSION4resok {
 sessionid4 sessionid;
 bool persist;
 count4 maxrequestsize;
 count4 maxresponsesize;
 count4 maxrequests;
 count4 headerpadsize;
 transportattrs4 transportattrs;
 };

 union CREATESESSION4res switch (nfsstat4 status) {
 case NFS4_OK:
 CREATESESSION4resok resok4;
 default:

Talpey et al. Expires December 2005 [Page 61]

Internet-Draft NFSv4 Session Extensions July 2005

 void;
 };

 /*
 * BIND_BACKCHANNEL: v4.1 callback binding
 */

 struct BIND_BACKCHANNEL4args {
 clientid4 clientid;
 uint32_t callback_program;
 uint32_t callback_ident;
 count4 maxrequestsize;
 count4 maxresponsesize;
 count4 maxrequests;
 transportattrs4 transportattrs;
 };

 struct BIND_BACKCHANNEL4resok {
 count4 maxrequestsize;
 count4 maxresponsesize;
 count4 maxrequests;
 transportattrs4 transportattrs;
 };

 union BIND_BACKCHANNEL4res switch (nfsstat4 status) {
 case NFS4_OK:
 BIND_BACKCHANNEL4resok resok4;
 default:
 void;
 };

 /*
 * DESTROYSESSION: v4.1 session destruction
 */

 struct DESTROYSESSION4args {
 sessionid4 sessionid;
 };

 struct DESTROYSESSION4res {
 nfsstat4 status;

Talpey et al. Expires December 2005 [Page 62]

Internet-Draft NFSv4 Session Extensions July 2005

 };

 /*
 * SEQUENCE: v4.1 operation sequence control
 */

 typedef uint32_t sequenceid4;
 typedef uint32_t slotid4;

 struct SEQUENCE4args {
 clientid4 clientid;
 sessionid4 sessionid;
 sequenceid4 sequenceid;
 slotid4 slotid;
 slotid4 maxslot;
 };

 struct SEQUENCE4resok {
 clientid4 clientid;
 sessionid4 sessionid;
 sequenceid4 sequenceid;
 slotid4 slotid;
 slotid4 maxslot;
 slotid4 target_maxslot;
 };

 union SEQUENCE4res switch (nfsstat4 status) {
 case NFS4_OK:
 struct SEQUENCE4resok resok4;
 default:
 void;
 };

 /* Operation values */
 OP_CREATECLIENTID = 40,
 OP_CREATESESSION = 41,
 OP_BIND_BACKCHANNEL= 42,
 OP_DESTROYSESSION = 43,
 OP_SEQUENCE = 44,

 /* Operation arguments */
 case OP_CREATECLIENTID:

Talpey et al. Expires December 2005 [Page 63]

Internet-Draft NFSv4 Session Extensions July 2005

 CREATECLIENTID4args opcreateclientid;
 case OP_CREATESESSION:
 CREATESESSION4args opcreatesession;
 case OP_BIND_BACKCHANNEL:
 BIND_BACKCHANNEL4args opbind_backchannel;
 case OP_DESTROYSESSION:
 DESTROYSESSION4args opdestroysession;
 case OP_SEQUENCE:
 SEQUENCE4args opsequence;

 /* Operation results */
 case OP_CREATECLIENTID:
 CREATECLIENTID4res opcreateclientid;
 case OP_CREATESESSION:
 CREATESESSION4res opcreatesession;
 case OP_BIND_BACKCHANNEL:
 BIND_BACKCHANNEL4res opbind_backchannel;
 case OP_DESTROYSESSION:
 DESTROYSESSION4res opdestroysession;
 case OP_SEQUENCE:
 SEQUENCE4res opsequence;

 /*
 * CB_RECALLCREDIT: Recall session credits from
 * operations channel(s)
 */

 struct CB_RECALLCREDIT4args {
 sessionid4 sessionid;
 uint32_t target;
 };

 struct CB_RECALLCREDIT4res {
 nfsstat4 status;
 };

 /*
 * CB_SEQUENCE: v4.1 operation sequence control
 */

 struct CB_SEQUENCE4args {
 clientid4 clientid;
 sessionid4 sessionid;
 sequenceid4 sequenceid;
 slotid4 slotid;

Talpey et al. Expires December 2005 [Page 64]

Internet-Draft NFSv4 Session Extensions July 2005

 slotid4 maxslot;
 };

 struct CB_SEQUENCE4resok {
 clientid4 clientid;
 sessionid4 sessionid;
 sequenceid4 sequenceid;
 slotid4 slotid;
 slotid4 maxslot;
 slotid4 target_maxslot;
 };

 union CB_SEQUENCE4res switch (nfsstat4 status) {
 case NFS4_OK:
 struct CB_SEQUENCE4resok resok4;
 default:
 void;
 };

 /* Operation values */
 OP_CB_RECALL_CREDIT = 5,
 OP_CB_SEQUENCE = 6

 /* Operation arguments */
 case OP_CB_RECALLCREDIT:
 CB_RECALLCREDIT4args opcbrecallcredit;
 case OP_CB_SEQUENCE:
 CB_SEQUENCE4args opcbsequence;

 /* Operation results */
 case OP_CB_RECALLCREDIT:
 CB_RECALLCREDIT4res opcbrecallcredit;
 case OP_CB_SEQUENCE:
 CB_SEQUENCE4res opcbsequence;

8. Acknowledgements

 The authors wish to acknowledge the valuable contributions and
 review of Charles Antonelli, Brent Callaghan, Mike Eisler, John
 Howard, Chet Juszczak, Trond Myklebust, Dave Noveck, John Scott,
 Mike Stolarchuk and Mark Wittle.

Talpey et al. Expires December 2005 [Page 65]

Internet-Draft NFSv4 Session Extensions July 2005

9. References

9.1. Normative References

 [RFC3530]
 S. Shepler, et al., "NFS Version 4 Protocol", Standards Track
 RFC, http://www.ietf.org/rfc/rfc3530

9.2. Informative References

 [BW87]
 B. Welch, "The Sprite Remote Procedure Call System",
 University of California Berkeley Technical Report CSD-87-302,

ftp://sunsite.berkeley.edu/pub/techreps/CSD-87-302.html

 [CCM]
 M. Eisler, N. Williams, "The Channel Conjunction Mechanism
 (CCM) for GSS", Internet-Draft Work in Progress,

http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-ccm

 [CJ89]
 C. Juszczak, "Improving the Performance and Correctness of an
 NFS Server," Winter 1989 USENIX Conference Proceedings, USENIX
 Association, Berkeley, CA, Februry 1989, pages 53-63.

 [DAFS]
 Direct Access File System, available from

http://www.dafscollaborative.org

 [DCK+03]
 M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Noveck, T.
 Talpey, M. Wittle, "The Direct Access File System", in
 Proceedings of 2nd USENIX Conference on File and Storage
 Technologies (FAST '03), San Francisco, CA, March 31 - April
 2, 2003

 [DDP]
 H. Shah, J. Pinkerton, R. Recio, P. Culley, "Direct Data
 Placement over Reliable Transports", Internet-Draft Work in
 Progress, http://www.ietf.org/internet-drafts/draft-ietf-rddp-

ddp

 [FJDAFS]
 Fujitsu Prime Software Technologies, "Meet the DAFS
 Performance with DAFS/VI Kernel Implementation using cLAN",

http://www.pst.fujitsu.com/english/dafsdemo/index.html

http://www.ietf.org/rfc/rfc3530
ftp://sunsite.berkeley.edu/pub/techreps/CSD-87-302.html
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-ccm
http://www.dafscollaborative.org
http://www.ietf.org/internet-drafts/draft-ietf-rddp-ddp
http://www.ietf.org/internet-drafts/draft-ietf-rddp-ddp
http://www.pst.fujitsu.com/english/dafsdemo/index.html

Talpey et al. Expires December 2005 [Page 66]

Internet-Draft NFSv4 Session Extensions July 2005

 [FJNFS]
 Fujitsu Prime Software Technologies, "An Adaptation of VIA to
 NFS on Linux",

http://www.pst.fujitsu.com/english/nfs/index.html

 [IB] InfiniBand Architecture Specification, Volume 1, Release 1.1.
 available from http://www.infinibandta.org

 [KM02]
 K. Magoutis, "Design and Implementation of a Direct Access
 File System (DAFS) Kernel Server for FreeBSD", in Proceedings
 of USENIX BSDCon 2002 Conference, San Francisco, CA, February
 11-14, 2002.

 [MAF+02]
 K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, D.
 Gallatin, R. Kisley, R. Wickremesinghe, E. Gabber, "Structure
 and Performance of the Direct Access File System (DAFS)", in
 Proceedings of 2002 USENIX Annual Technical Conference,
 Monterey, CA, June 9-14, 2002.

 [MIDTAX]
 B. Carpenter, S. Brim, "Middleboxes: Taxonomy and Issues",
 Informational RFC, http://www.ietf.org/rfc/rfc3234

 [NFSDDP]
 B. Callaghan, T. Talpey, "NFS Direct Data Placement",
 Internet-Draft Work in Progress, http://www.ietf.org/internet-

drafts/draft-ietf-nfsv4-nfsdirect

 [NFSPS]
 T. Talpey, C. Juszczak, "NFS RDMA Problem Statement",
 Internet-Draft Work in Progress, http://www.ietf.org/internet-

drafts/draft-ietf-nfsv4-nfs-rdma-problem-statement

 [RDDP]
 Remote Direct Data Placement Working Group charter,

http://www.ietf.org/html.charters/rddp-charter.html

 [RDDPPS]
 A. Romanow, J. Mogul, T. Talpey, S. Bailey, Remote Direct Data
 Placement Working Group Problem Statement, Standards Track
 Informational RFC, http://www.ietf.org/internet-drafts/draft-

ietf-rddp-problem-statement

 [RDMAP]
 R. Recio, P. Culley, D. Garcia, J. Hilland, "An RDMA Protocol
 Specification", Internet-Draft Work in Progress,

http://www.pst.fujitsu.com/english/nfs/index.html
http://www.infinibandta.org
http://www.ietf.org/rfc/rfc3234
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-nfsdirect
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-nfsdirect
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-nfs-rdma-problem-statement
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-nfs-rdma-problem-statement
http://www.ietf.org/html.charters/rddp-charter.html
http://www.ietf.org/internet-drafts/draft-ietf-rddp-problem-statement
http://www.ietf.org/internet-drafts/draft-ietf-rddp-problem-statement

Talpey et al. Expires December 2005 [Page 67]

Internet-Draft NFSv4 Session Extensions July 2005

http://www.ietf.org/internet-drafts/draft-ietf-rddp-rdmap

 [RPCRDMA]
 B. Callaghan, T. Talpey, "RDMA Transport for ONC RPC"
 Internet-Draft Work in Progress, http://www.ietf.org/internet-

drafts/draft-ietf-nfsv4-rpcrdma

 [RFC2203]
 M. Eisler, A. Chiu, L. Ling, "RPCSEC_GSS Protocol
 Specification", Standards Track RFC,

http://www.ietf.org/rfc/rfc2203

 [RW96]
 R. Werme, "RPC XID Issues", Connectathon 1996, San Jose, CA,

http://www.cthon.org/talks96/werme1.pdf

10. Authors' Addresses

 Comments on this draft may be sent to the NFSv4 Working Group
 (nfsv4@ietf.org) and/or the authors.

 Tom Talpey
 Network Appliance, Inc.
 375 Totten Pond Road
 Waltham, MA 02451 USA

 Phone: +1 781 768 5329
 EMail: thomas.talpey@netapp.com

 Spencer Shepler
 Sun Microsystems, Inc.
 7808 Moonflower Drive
 Austin, TX 78750 USA

 Phone: +1 512 349 9376
 EMail: spencer.shepler@sun.com

 Jon Bauman
 University of Michigan
 Center for Information Technology Integration
 535 W. William St. Suite 3100
 Ann Arbor, MI 48103 USA

 Phone: +1 734 615-4782
 Email: baumanj@umich.edu

http://www.ietf.org/internet-drafts/draft-ietf-rddp-rdmap
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-rpcrdma
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-rpcrdma
http://www.ietf.org/rfc/rfc2203
http://www.cthon.org/talks96/werme1.pdf

Talpey et al. Expires December 2005 [Page 68]

Internet-Draft NFSv4 Session Extensions July 2005

11. Full Copyright Statement

 Copyright (C) The Internet Society (2005). This document is
 subject to the rights, licenses and restrictions contained in BCP

78, and except as set forth therein, the authors retain all their
 rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
 ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
 PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Talpey et al. Expires December 2005 [Page 69]

