
INTERNET DRAFT Seungyun Lee
NGTRANS Working Group Myung-Ki Shin
Expires: January 2002 Yong-Jin Kim
 ETRI
 Erik Nordmark
 Alain Durand
 Sun Microsystems
 July 2001

Dual Stack Hosts using "Bump-in-the-API" (BIA)
<draft-ietf-ngtrans-bia-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with all
 provisions of Section 10 of RFC2026.

 Internet Drafts are working documents of the Internet Engineering Task
 Force (IETF), its areas, and working groups. Note that other groups may
 also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsolete by other documents at anytime.
 It is inappropriate to use Internet Drafts as reference material or to
 cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document specifies a mechanism of dual stack hosts using a
 technique called "Bump-in-the-API"(BIA) which allows for the hosts to
 communicate with other IPv6 hosts using existing IPv4 applications. The
 goal of this mechanism is the same as that of the Bump-in-the-stack
 mechanism [BIS], but this mechanism provides the translation method
 between the IPv4 APIs and IPv6 APIs. Thus, the goal is simply achieved
 without IP header translation.

Table of Contents:

 1. Introduction
 2. Dual Stack Host Architecture using BIA
 2.1 Function Mapper
 2.2 Name Resolver

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-bia-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 1]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

 2.3 Address Mapper
 3. Behavior Example
 3.1 Originator Behavior
 3.2 Recipient Behavior
 4. Considerations
 4.1 Socket API Conversion
 4.2 ICMP Messages Handling
 4.3 Internally Assigned IPv4 Addresses
 4.4 IPv4 Address Pool and Mapping Table
 4.5 Implementation Issues
 5. Limitations
 6. Applicability Statement and Disclaimer
 6.1 Applicability
 6.2 Disclaimer
 7. Security Considerations
 8. Acknowledgments
 References

1. Introduction

RFC2767 [BIS] specifies a host translation mechanism using a technique
 called "Bump-in-the-Stack". It translates IPv4 into IPv6, and vice versa
 using the IP conversion mechanism defined in [SIIT]. BIS allows hosts to
 communicate with other IPv6 hosts using existing IPv4 applicationns.
 However, this approach is to use an API translator which is inserted
 between TCP/IP module and network card driver, so that it has the same
 limitations as the [SIIT] based IP header translation methods. In
 addition, its implemetation is dependent upon the network interface
 driver.

 This document specifies a new mechanism of dual stack hosts called
 Bump-in-the-API(BIA) technique. The BIA technique inserts an API
 translator between the socket API module and the TCP/IP module in the
 dual stack hosts, so that it translates the IPv4 socket API function
 into IPv6 socket API function and vice versa. With this mechanism, the
 translation can be simplified without IP header translation.

 Using BIA, the dual stack host assumes that there exists both
 TCP(UDP)/IPv4 and TCP(UDP)/IPv6 stacks on the hosts.

 When IPv4 applications on the dual stack communicate with other IPv6
 hosts, the API translator detects the socket API functions from IPv4
 applications and invokes the IPv6 socket API functions to communicate
 with the IPv6 hosts, and vice versa. In order to support communication
 between IPv4 applications and the target IPv6 hosts, pooled IPv4
 addresses will be assigned through the name resolver in the API

https://datatracker.ietf.org/doc/html/rfc2767

 translator.

 This document uses terms defined in [IPv6],[TRANS-MECH] and [BIS].

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 2]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

2. Dual Stack Host Architecture using BIA

 Figure 1 shows the architecture of the host in which BIA is installed.

 +--+
 | +--+ |
 | | | |
 | | IPv4 applications | |
 | | | |
 | +--+ |
 | +--+ |
 | | Socket API (IPv4, IPv6) | |
 | +--+ |
 | +-[API translator]------------------------+ |
 | | +-----------+ +---------+ +------------+ | | | | | | | |
 | | | Name | | Address | | Function | | |
 | | | Resolver | | Mapper | | Mapper | | |
 | | +-----------+ +---------+ +------------+ | |
 | +--+ |
 | +--------------------+ +-------------------+ |
 | | | | | |
 | | TCP(UDP)/IPv4 | | TCP(UDP)/IPv6 | |
 | | | | | |
 | +--------------------+ +-------------------+ |
 +--+
 Figure 1 Architecture of the dual stack host using BIA

 Dual stack hosts defined in RFC1933 [TRANS-MECH] need applications,
 TCP/IP modules and addresses for both IPv4 and IPv6. The proposed hosts
 in this document have an API translator to communicate with other IPv6
 hosts using existing IPv4 applications. The API translator consists of 3
 modules, a name resolver, an address mapper and a function mapper.

2.1 Function Mapper

 It translates IPv4 socket API function into IPv6 socket API function,
 and vice versa.

 When detecting the IPv4 socket API functions from IPv4 applications, it
 intercepts the function call and invokes new IPv6 socket API functions
 which correspond to the IPv4 socket API functions. Those IPv6 API
 functions are used to communicate with the target IPv6 hosts. When
 detecting the IPv6 socket API functions from the data received from the
 IPv6 hosts, it works symmetrically in relation to the previous case.

2.2 Name Resolver

https://datatracker.ietf.org/doc/html/rfc1933

 It returns a proper answer in response to the IPv4 application's
 request.

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 3]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

 When the IPv4 application sends a query to a name server with A records,
 it detects the query, then creates another query to resolve both A and
 AAAA records for the host name, and sends the query to the server.

 If only the AAAA record is available, it requests the address mapper to
 assign an IPv4 address corresponding to the IPv6 address, then creates
 the A record for the assigned IPv4 address, and returns the A record to
 the application.

 NOTE: This action is the same as that of the Extension Name Resolver in
 [BIS].

2.3 Address Mapper

 It internally maintains a table of the pairs of an IPv4 address and an
 IPv6 address. The IPv4 addresses are assigned from an IPv4 address pool.
 It uses the unassigned IPv4 addresses (e.g., 0.0.0.0 ~ 0.0.0.255).

 When the name resolver or the function mapper requests it to assign an
 IPv4 address corresponding to an IPv6 address, it selects and returns an
 IPv4 address out of the pool, and registers a new entry into the table
 dynamically. The registration occurs in the following 2 cases :

 (1) When the name resolver gets only an 'AAAA' record for the target
 host name and there is not a mapping entry for the IPv6 address.

 (2) When the function mapper gets a socket API function call from the
 data received and there is not a mapping entry for the IPv6 source
 address.

 NOTE: This is the same as that of the Address Mapper in [BIS].

3. Behavior Examples

 This section describes behaviors of the proposed dual stack host called
 "dual stack", which communicates with an IPv6 host called "host6" using
 an IPv4 application.

 In this section, the meanings of arrows are as follows :

 ---> A DNS message for name resolving created by the
 applications and the name resolver in the API translator.
 +++> An IPv4 address request to and reply from the address mapper
 for the name resolver and the function mapper.
 ===> Data flow by socket API functions created by the
 applications and the function mapper in the API translator.

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 4]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

3.1 Originator Behavior

 This sub-section describes the behavior when the "dual stack" sends data
 to "host6".

 When an IPv4 application sends a DNS query to its name server, the name
 resolver intercepts the query and then creates a new query to resolve
 both A and AAAA records. When only the AAAA record is resolved, the name
 resolver requests the address mapper to assign an IPv4 address
 corresponding to the IPv6 address.

 The name resolver creates an A record for the assigned IPv4 address and
 returns it to the IPv4 applications.

 In order for the IPv4 application to send IPv4 packets to host6, it
 calls the IPv4 socket API function.

 The function mapper detects the socket API function from the
 application. If the result is from IPv6 applications, it skips the
 translation. In the case of IPv4 applications, it requires an IPv6
 address to invoke the IPv6 socket API function, thus the function mapper
 requests an IPv6 address to the address mapper. The address mapper
 selects an IPv4 address from the table and returns the destination IPv6
 address. Using this IPv6 address, the function mapper invokes an IPv6
 socket API function corresponding to the IPv4 socket API function.

 When the function mapper receives an IPv6 function call,it requests the
 IPv4 address to the address mapper in order to translate the IPv6 socket
 API function into an IPv4 socket API function. Then, the function mapper
 invokes the socket API function for the IPv4 applications.

 Figure 2 illustrates the behavior described above:

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 5]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

 "dual stack" "host6"
 IPv4 Socket | [API Translator] | TCP(UDP)/IP Name
 appli- API |Name Address Function| (v6/v4) Server
 cation |Resolver Mapper Mapper |
 | | | | | | | |
 <<Resolve an IPv4 address for "host6".>> | | |
 | | | | | | | |
 |--------|------->| Query of 'A' records for host6. | |
 | | | | | | | |
 | | |--------|--------|---------|--------------|------>|
 | | | Query of 'A' records and 'AAAA' for host6 |
 | | | | | | | |
 | | |<-------|--------|---------|--------------|-------|
 | | | Reply only with 'AAAA' record. | |
 | | | | | | |
 | | |<<Only 'AAAA' record is resolved.>> |
 | | | | | | |
 | | |+++++++>| Request one IPv4 address |
 | | | | corresponding to the IPv6 address.
 | | | | | | |
 | | | |<<Assign one IPv4 address.>> |
 | | | | | | |
 | | |<+++++++| Reply with the IPv4 address. |
 | | | | | | |
 | | |<<Create 'A' record for the IPv4 address.>>
 | | | | | | |
 |<------ | Reply with the 'A' record. | |
 | | | | | | |

 Figure 2 Behavior of the originator (1/2)

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 6]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

 "dual stack" "host6"
 IPv4 Socket | [API Translator] | TCP(UDP)/IP
 appli- API |Name Address Function| (v6/v4)
 cation |Resolver Mapper Mapper |
 | | | | | | |
 <<Call IPv4 Socket API function >> | | |
 | | | | | | |
 |========|========|========|=======>|An IPv4 Socket API function Call
 | | | | | | |
 | | | |<+++++++| Request IPv6 addresses|
 | | | | | corresponding to the |
 | | | | | IPv4 addresses. |
 | | | | | | |
 | | | |+++++++>| Reply with the IPv6 addresses.
 | | | | | | |
 | | | | |<<Translate IPv4 into IPv6.>>
 | | | | | | |
 | An IPv6 Socket API function call.|=========|=============>|
 | | | | | | |
 | | | | |<<Reply an IPv6 data |
 | | | | | to dual stack.>> |
 | | | | | | |
 | An IPv6 Socket API function call.|<========|==============|
 | | | | | | |
 | | | | |<<Translate IPv6 into IPv4.>>
 | | | | | | |
 | | | |<+++++++| Request IPv4 addresses|
 | | | | | corresponding to the |
 | | | | | IPv4 addresses. |
 | | | | | | |
 | | | |+++++++>| Reply with the IPv6 addresses.
 | | | | | | |
 |<=======|========|========|========| An IPv4 Socket function call.
 | | | | | | |

 Figure 2 Behavior of the originator (2/2)

3.2 Recipient Behavior

 This subsection describes the recipient behavior of "dual stack". The
 communication is triggered by "host6".

 "host6" resolves the address of "dual stack" with 'AAAA' records through
 its name server, and then sends an IPv6 packet to the "dual stack".

 The IPv6 packet reaches the "dual stack" and the function mapper detects

 it.

 The function mapper requests the IPv4 address to the address mapper in
 order to invoke the IPv4 socket API function to communicate with for

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 7]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

 IPv4 application. Then the function mapper invokes the corresponding
 IPv4 socket API function for the IPv4 applications corresponding to the
 IPv6 functions.

 Figure 3 illustrates the behavior described above:

 "dual stack" "host6"
 IPv4 Socket | [API Translator] | TCP(UDP)/IP
 appli- API |Name Address Function| (v6/v4)
 cation |Resolver Mapper Mapper |
 | | | | | | |
 <<Receive data from "host6".>> | | |
 | | | | | | |
 | An IPv6 Socket function call.|<========|==============|
 | | | | | | |
 | | | |<+++++++| Request IPv4 addresses|
 | | | | | corresponding to the IPv6
 | | | | | addresses. |
 | | | | | | |
 | | | |+++++++>| Reply with the IPv4 addresses.
 | | | | | | |
 | | | | |<<Translate IPv6 into IPv4.>>
 | | | | | | |
 |<=======|========|========|========| An IPv4 function call |
 | | | | | | |
 <<Reply an IPv4 data to "host6".>> | | |
 | | | | | | |
 |========|========|========|=======>| An IPv4 function call |
 | | | | | | |
 | | | | |<<Translate IPv4 into IPv6.>>
 | | | | | | |
 | | | |<+++++++| Request IPv6 addresses|
 | | | | | corresponding to the IPv4
 | | | | | addresses. |
 | | | | | | |
 | | | |+++++++>| Reply with the IPv6 addresses.
 | | | | | | |
 | An IPv6 Socket function call.|=========|=============>|
 | | | | | | |

 Figure 3 Behavior of Receiving data from IPv6 host

4. Considerations

4.1 Socket API Conversion

 IPv4 socket API functions are translated into semantically the same IPv6

 socket API functions and vice versa. It depends on operating systems. IP
 addresses embedded in application layer protocols (e.g., FTP, DNS, etc.)
 can be translated in API functions.

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 8]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

 NOTE: Basically, IPv4 socket API functions are not fully compatible with
 IPv6 since the IPv6 has new advanced features.

4.2 ICMP Message Handling

 When an application needs ICMP messages values (e.g., Type, Code, etc.)
 sent from a network layer, ICMPv4 message values SHOULD be translated
 into ICMPv6 message values based on [SIIT], and vice versa. It can be
 implemented using raw socket.

4.3 IPv4 Address Pool and Mapping Table

 The address pool consists of the unassigned IPv4 addresses. However, if
 a number of IPv4 applications communicate with IPv6 hosts, the available
 address spaces will be exhausted. As a result, it will be impossible for
 IPv4 applications to communicate with IPv6 hosts. It requires smart
 management techniques for address pool. For example, it is desirable
 for the mapper to free the oldest entry and re-use the IPv4 address for
 creating a new entry. This issues is the same as [BIS].

4.4 Internally Assigned IPv4 Addresses

 The IPv4 addresses, which are internally assigned to IPv6 target hosts
 out of the pool, are the unassigned IPv4 addresses (e.g., 0.0.0.0 ~
 0.0.0.255). There is no potential collision with another use of the
 private address space when the IPv4 address flows out from the host.

4.5 Implementation Issues

 Some operating systems support the pre-load library functions, so it is
 easy to implement the API translator by using it. For example, user can
 replace all existing socket API functions with user-defined socket API
 functions which translate the socket API function. In this case, every
 IPv4 application has its own translation library using pre-load library
 which will be bound into the application before executing it
 dynamically.

 The other operating systems support the user-defined layered protocol
 allowing a user to develop some additional protocols and put them in the
 existing protocol stack. In this case, the API translator can be
 implemented as a layered protocol module.

 In the above two approaches, it is assumed that there exists both
 TCP(UDP)/IPv4 and TCP(UDP)/IPv6 stacks and there is no need to modify or
 to add a new TCP-UDP/IPv6 stack.

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 9]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

5. Limitations

 This mechanism supports unicast communications only. If it can support
 multicast functions, some other additional functionalities must be
 considered in the function mapper module.

 Since the IPv6 API has new advanced features, it is difficult to
 translate this kind of IPv6 APIs into IPv4 APIs. Thus, IPv6 inbound
 communication with advanced features may be discarded.

6. Applicability Statement and Disclaimer

6.1 Applicability

 The main purposes of this mechanism are the same as BIS [BIS]. It makes
 IPv4 applications communicate with IPv6 hosts without any modification
 of IPv4 applications. Since it uses the API level translation, the
 translation is simpler than the IP packet level translation. It is also
 possible to translate system independently through the socket level
 translation if the socket API can be supported at the same level on the
 IPv4 and IPv6.

6.2 Disclaimer

 We strongly recommend that application programers SHOULD use this
 mechanism only when an application source code is not available.

7. Security Considerations

 Since the mechanism use the API translator at the socket API level,
 hosts can utilize the security of network layer (e.g., IPsec) when they
 communicate with IPv6 hosts using IPv4 applications via the mechanism.

8. Acknowledgments

 We would like to acknowledge the implementation contributions by Wanjik
 Lee.

References

 [TRANS-MECH] Gilligan, R. and E. Nordmark, "Transition Mechanisms for
 IPv6 Hosts and Routers", RFC 1933, April 1996.

https://datatracker.ietf.org/doc/html/rfc1933

 [SIIT] Nordmark, E., "Stateless IP/ICMP Translator (SIIT)", RFC

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 10]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

 2765, February 2000.

 [FTP] Postel, J. and J. Reynolds, "File Transfer Protocol",
 STD 9, RFC 959, October 1985.

 [NAT] Kjeld B. and P. Francis, "The IP Network Address
 Translator (NAT)", RFC 1631, May 1994.

 [IPV4] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [IPV6] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [PRIVATE] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.
 J. and E. Lear, "Address Allocation for Private
 Internets", BCP 5, RFC 1918, February 1996.

 [NAT-PT] Tsirtsis, G. and P. Srisuresh, "Network Address
 Translation - Protocol Translation (NAT-PT)", RFC 2766,
 February 2000.

 [BIS] K. Tsuchiya, H. Higuchi, Y. Atarashi, "Dual Stack Hosts
 using the "Bump-In-the-Stack" Technique (BIS)", RFC 2767,
 February 2000.

Authors Addresses

 Seungyun Lee
 ETRI PEC
 161 Kajong-Dong, Yusong-Gu, Taejon 305-600, Korea
 Tel : +82 42 860 5508
 Fax : +82 42 861 5404
 Email : syl@pec.etri.re.kr

 Myung-Ki Shin
 ETRI PEC
 161 Kajong-Dong, Yusong-Gu, Taejon 305-600, Korea
 Tel : +82 42 860 4847
 Fax : +82 42 861 5404
 Email : mkshin@pec.etri.re.kr

 Yong-Jin Kim
 ETRI PEC
 161 Kajong-Dong, Yusong-Gu, Taejon 305-600, Korea
 Tel : +82 42 860 6564
 Fax : +82 42 861 5404

https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc1631
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc2767

 Email : yjkim@pec.etri.re.kr

 Alain Durand

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 11]

INTERNET-DRAFT Dual stack host using "Bump-in-the-API" (BIA) July 2001

 Sun Microsystems
 901 San Antonio Road
 UMPK 17-202
 Palo Alto, CA 94303-4900, USA
 Tel : +1 650 786 7503
 Fax : +1 650 786 5896
 Email : Alain.Durand@sun.com

 Erik Nordmark
 Sun Microsystems, Inc.
 901 San Antonio Road
 Palo Alto, CA 94303, USA
 Tel : +1 650 786 5166
 Fax : +1 650 786 5896
 Email : nordmark@sun.com

Lee,Shin,Kim,Erik,Durand Expires January 2002 [Page 12]

