
INTERNET-DRAFT R. E. Gilligan
April 14, 2000 FreeGate Corp.
Obsoletes: 1933 E.Nordmark
 Sun Microsystems, Inc.

 Transition Mechanisms for IPv6 Hosts and Routers
 <draft-ietf-ngtrans-mech-06.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This draft expires on October 14, 2000

Abstract

 This document specifies IPv4 compatibility mechanisms that can be
 implemented by IPv6 hosts and routers. These mechanisms include
 providing complete implementations of both versions of the Internet
 Protocol (IPv4 and IPv6), and tunneling IPv6 packets over IPv4
 routing infrastructures. They are designed to allow IPv6 nodes to
 maintain complete compatibility with IPv4, which should greatly
 simplify the deployment of IPv6 in the Internet, and facilitate the
 eventual transition of the entire Internet to IPv6.

 This document obsoletes RFC 1933.

<draft-ietf-ngtrans-mech-06.txt> [Page 1]

https://datatracker.ietf.org/doc/html/rfc1933
https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1933
https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 Contents

 Status of this Memo.. 1

1. Introduction... 3
1.1. Terminology... 4
1.2. Structure of this Document.......................... 6

2. Dual IP Layer Operation.................................. 6
2.1. Address Configuration............................... 7
2.2. DNS... 7
2.3. Advertising Addresses in the DNS.................... 8

3. Common Tunneling Mechanisms.............................. 10
3.1. Encapsulation....................................... 11
3.2. Tunnel MTU and Fragmentation........................ 12
3.3. Hop Limit... 14
3.4. Handling IPv4 ICMP errors........................... 14
3.5. IPv4 Header Construction............................ 15
3.6. Decapsulation....................................... 17
3.7. Link-Local Addresses................................ 18
3.8. Neighbor Discovery over Tunnels..................... 19

4. Configured Tunneling..................................... 20
4.1. Default Configured Tunnel........................... 20

 4.2. Default Configured Tunnel using IPv4 "Anycast Address" 20
4.3. Ingress Filtering................................... 21

5. Automatic Tunneling...................................... 21
5.1. IPv4-Compatible Address Format...................... 21
5.2. IPv4-Compatible Address Configuration............... 22
5.3. Automatic Tunneling Operation....................... 23
5.4. Use With Default Configured Tunnels................. 24
5.5. Source Address Selection............................ 24
5.6. Ingress Filtering................................... 25

6. Acknowledgments.. 25

7. Security Considerations.................................. 26

8. Authors' Addresses....................................... 26

9. References... 26

10. Changes from RFC 1933................................... 28

https://datatracker.ietf.org/doc/html/rfc1933

<draft-ietf-ngtrans-mech-06.txt> [Page 2]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

1. Introduction

 The key to a successful IPv6 transition is compatibility with the
 large installed base of IPv4 hosts and routers. Maintaining
 compatibility with IPv4 while deploying IPv6 will streamline the task
 of transitioning the Internet to IPv6. This specification defines a
 set of mechanisms that IPv6 hosts and routers may implement in order
 to be compatible with IPv4 hosts and routers.

 The mechanisms in this document are designed to be employed by IPv6
 hosts and routers that need to interoperate with IPv4 hosts and
 utilize IPv4 routing infrastructures. We expect that most nodes in
 the Internet will need such compatibility for a long time to come,
 and perhaps even indefinitely.

 However, IPv6 may be used in some environments where interoperability
 with IPv4 is not required. IPv6 nodes that are designed to be used
 in such environments need not use or even implement these mechanisms.

 The mechanisms specified here include:

 - Dual IP layer (also known as Dual Stack): A technique for
 providing complete support for both Internet protocols -- IPv4
 and IPv6 -- in hosts and routers.

 - Configured tunneling of IPv6 over IPv4: Point-to-point tunnels
 made by encapsulating IPv6 packets within IPv4 headers to carry
 them over IPv4 routing infrastructures.

 - IPv4-compatible IPv6 addresses: An IPv6 address format that
 employs embedded IPv4 addresses.

 - Automatic tunneling of IPv6 over IPv4: A mechanism for using
 IPv4-compatible addresses to automatically tunnel IPv6 packets
 over IPv4 networks.

 The mechanisms defined here are intended to be part of a "transition
 toolbox" -- a growing collection of techniques which implementations
 and users may employ to ease the transition. The tools may be used
 as needed. Implementations and sites decide which techniques are
 appropriate to their specific needs. This document defines the
 initial core set of transition mechanisms, but these are not expected
 to be the only tools available. Additional transition and
 compatibility mechanisms are expected to be developed in the future,
 with new documents being written to specify them.

<draft-ietf-ngtrans-mech-06.txt> [Page 3]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

1.1. Terminology

 The following terms are used in this document:

 Types of Nodes

 IPv4-only node:

 A host or router that implements only IPv4. An IPv4-
 only node does not understand IPv6. The installed base
 of IPv4 hosts and routers existing before the transition
 begins are IPv4-only nodes.

 IPv6/IPv4 node:

 A host or router that implements both IPv4 and IPv6.

 IPv6-only node:

 A host or router that implements IPv6, and does not
 implement IPv4. The operation of IPv6-only nodes is not
 addressed here.

 IPv6 node:

 Any host or router that implements IPv6. IPv6/IPv4 and
 IPv6-only nodes are both IPv6 nodes.

 IPv4 node:

 Any host or router that implements IPv4. IPv6/IPv4 and
 IPv4-only nodes are both IPv4 nodes.

 Types of IPv6 Addresses

 IPv4-compatible IPv6 address:

 An IPv6 address bearing the high-order 96-bit prefix
 0:0:0:0:0:0, and an IPv4 address in the low-order 32-
 bits. IPv4-compatible addresses are used by IPv6/IPv4
 nodes which perform automatic tunneling,

 IPv6-native address:

 The remainder of the IPv6 address space. An IPv6
 address that bears a prefix other than 0:0:0:0:0:0.

 Techniques Used in the Transition

<draft-ietf-ngtrans-mech-06.txt> [Page 4]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 IPv6-over-IPv4 tunneling:

 The technique of encapsulating IPv6 packets within IPv4
 so that they can be carried across IPv4 routing
 infrastructures.

 Configured tunneling:

 IPv6-over-IPv4 tunneling where the IPv4 tunnel endpoint
 address is determined by configuration information on
 the encapsulating node. The tunnels can be either
 unidirectional or bidirectional. Bidirectional
 configured tunnels behave as virtual point-to-point
 links.

 Automatic tunneling:

 IPv6-over-IPv4 tunneling where the IPv4 tunnel endpoint
 address is determined from the IPv4 address embedded in
 the IPv4-compatible destination address of the IPv6
 packet being tunneled.

 IPv4 multicast tunneling:

 IPv6-over-IPv4 tunneling where the IPv4 tunnel endpoint
 address is determined using Neighbor Discovery [7].
 Unlike configured tunneling this does not require any
 address configuration and unlike automatic tunneling it
 does not require the use of IPv4-compatible addresses.
 However, the mechanism assumes that the IPv4
 infrastructure supports IPv4 multicast. Specified in
 [3] and not further discussed in this document.

 Other transition mechanisms, including other tunneling mechanisms,
 are outside the scope of this document.

 Modes of operation of IPv6/IPv4 nodes

 IPv6-only operation:

 An IPv6/IPv4 node with its IPv6 stack enabled and its
 IPv4 stack disabled.

 IPv4-only operation:

 An IPv6/IPv4 node with its IPv4 stack enabled and its
 IPv6 stack disabled.

<draft-ietf-ngtrans-mech-06.txt> [Page 5]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 IPv6/IPv4 operation:

 An IPv6/IPv4 node with both stacks enabled.

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [16].

1.2. Structure of this Document

 The remainder of this document is organized as follows:

 - Section 2 discusses the operation of nodes with a dual IP layer,
 IPv6/IPv4 nodes.

 - Section 3 discusses the common mechanisms used in both of the
 IPv6-over-IPv4 tunneling techniques.

 - Section 4 discusses configured tunneling.

 - Section 5 discusses automatic tunneling and the IPv4-compatible
 IPv6 address format.

2. Dual IP Layer Operation

 The most straightforward way for IPv6 nodes to remain compatible with
 IPv4-only nodes is by providing a complete IPv4 implementation. IPv6
 nodes that provide a complete IPv4 and IPv6 implementations are
 called "IPv6/IPv4 nodes." IPv6/IPv4 nodes have the ability to send
 and receive both IPv4 and IPv6 packets. They can directly
 interoperate with IPv4 nodes using IPv4 packets, and also directly
 interoperate with IPv6 nodes using IPv6 packets.

 Even though a node may be equipped to support both protocols, one or
 the other stack may be disabled for operational reasons. Thus
 IPv6/IPv4 nodes may be operated in one of three modes:

 - With their IPv4 stack enabled and their IPv6 stack disabled.

 - With their IPv6 stack enabled and their IPv4 stack disabled.

 - With both stacks enabled.

<draft-ietf-ngtrans-mech-06.txt> [Page 6]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 IPv6/IPv4 nodes with their IPv6 stack disabled will operate like
 IPv4-only nodes. Similarly, IPv6/IPv4 nodes with their IPv4 stacks
 disabled will operate like IPv6-only nodes. IPv6/IPv4 nodes MAY
 provide a configuration switch to disable either their IPv4 or IPv6
 stack.

 The dual IP layer technique may or may not be used in conjunction
 with the IPv6-over-IPv4 tunneling techniques, which are described in
 sections 3, 4 and 5. An IPv6/IPv4 node that supports tunneling MAY
 support only configured tunneling, or both configured and automatic
 tunneling. Thus three modes of tunneling support are possible:

 - IPv6/IPv4 node that does not perform tunneling.

 - IPv6/IPv4 node that performs configured tunneling only.

 - IPv6/IPv4 node that performs configured tunneling and automatic
 tunneling.

2.1. Address Configuration

 Because they support both protocols, IPv6/IPv4 nodes may be
 configured with both IPv4 and IPv6 addresses. IPv6/IPv4 nodes use
 IPv4 mechanisms (e.g. DHCP) to acquire their IPv4 addresses, and IPv6
 protocol mechanisms (e.g. stateless address autoconfiguration) to
 acquire their IPv6-native addresses. Section 5.2 describes a
 mechanism by which IPv6/IPv4 nodes that support automatic tunneling
 MAY use IPv4 protocol mechanisms to acquire their IPv4-compatible
 IPv6 address.

2.2. DNS

 The Domain Naming System (DNS) is used in both IPv4 and IPv6 to map
 between hostnames and IP addresses. A new resource record type named
 "A6" has been defined for IPv6 addresses [6] with support for an
 earlier record named "AAAA". Since IPv6/IPv4 nodes must be able to
 interoperate directly with both IPv4 and IPv6 nodes, they must
 provide resolver libraries capable of dealing with IPv4 "A" records
 as well as IPv6 "A6" and "AAAA" records.

 DNS resolver libraries on IPv6/IPv4 nodes MUST be capable of handling
 both A6/AAAA and A records. However, when a query locates an A6/AAAA
 record holding an IPv6 address, and an A record holding an IPv4
 address, the resolver library MAY filter or order the results

<draft-ietf-ngtrans-mech-06.txt> [Page 7]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 returned to the application in order to influence the version of IP
 packets used to communicate with that node. In terms of filtering,
 the resolver library has three alternatives:

 - Return only the IPv6 address to the application.

 - Return only the IPv4 address to the application.

 - Return both addresses to the application.

 If it returns only the IPv6 address, the application will communicate
 with the node using IPv6. If it returns only the IPv4 address, the
 application will communicate with the node using IPv4. If it returns
 both addresses, the application will have the choice which address to
 use, and thus which IP protocol to employ.

 If it returns both, the resolver MAY elect to order the addresses --
 IPv6 first, or IPv4 first. Since most applications try the addresses
 in the order they are returned by the resolver, this can affect the
 IP version "preference" of applications.

 The decision to filter or order DNS results is implementation
 specific. IPv6/IPv4 nodes MAY provide policy configuration to
 control filtering or ordering of addresses returned by the resolver,
 or leave the decision entirely up to the application.

 An implementation MUST allow the application to control whether or
 not such filtering takes place.

2.3. Advertising Addresses in the DNS

 There are some constraint placed on the use of the DNS during
 transition. Most of these are obvious but are stated here for
 completeness.

 The recommendation is that A6/AAAA records for a node should not be
 added to the DNS until all of these are true:

 1) The address is assigned to the interface on the node.

 2) The address is configured on the interface.

 3) The interface is on a link which is connected to the IPv6
 infrastructure.

 If an IPv6 node is isolated from an IPv6 perspective (e.g. it is not

<draft-ietf-ngtrans-mech-06.txt> [Page 8]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 connected to the 6bone to take a concrete example) constraint #3
 would mean that it should not have an address in the DNS.

 This works great when other dual stack nodes tries to contact the
 isolated dual stack node. There is no IPv6 address in the DNS thus
 the peer doesn't even try communicating using IPv6 but goes directly
 to IPv4 (we are assuming both nodes have A records in the DNS.)

 However, this does not work well when the isolated node is trying to
 establish communication. Even though it does not have an IPv6
 address in the DNS it will find A6/AAAA records in the DNS for the
 peer. Since the isolated node has IPv6 addresses assigned to at
 least one interface it will try to communicate using IPv6. If it has
 no IPv6 route to the 6bone (e.g. because the local router was
 upgraded to advertise IPv6 addresses using Neighbor Discovery but
 that router doesn't have any IPv6 routes) this communication will
 fail. Typically this means a few minutes of delay as TCP times out.
 The TCP specification says that ICMP unreachable messages could be
 due to routing transients thus they should not immediately terminate
 the TCP connection. This means that the normal TCP timeout of a few
 minutes apply. Once TCP times out the application will hopefully try
 the IPv4 addresses based on the A records in the DNS, but this will
 be painfully slow.

 A possible implication of the recommendations above is that, if one
 enables IPv6 on a node on a link without IPv6 infrastructure, and
 choose to add A6/AAAA records to the DNS for that node, then external
 IPv6 nodes that might see these A6/AAAA records will possibly try to
 reach that node using IPv6 and suffer delays or communication failure
 due to unreachability. (A delay is incurred if the application
 correctly falls back to using IPv4 if it can not establish
 communication using IPv6 addresses. If this fallback is not done the
 application would fail to communicate in this case.) Thus it is
 suggested that either the recommendations be followed, or care be
 taken to only do so with nodes that will not be impacted by external
 accessing delays and/or communication failure.

 In the future when a site or node removes the support for IPv4 the
 above recommendations apply to when the A records for the node(s)
 should be removed from the DNS.

<draft-ietf-ngtrans-mech-06.txt> [Page 9]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

3. Common Tunneling Mechanisms

 In most deployment scenarios, the IPv6 routing infrastructure will be
 built up over time. While the IPv6 infrastructure is being deployed,
 the existing IPv4 routing infrastructure can remain functional, and
 can be used to carry IPv6 traffic. Tunneling provides a way to
 utilize an existing IPv4 routing infrastructure to carry IPv6
 traffic.

 IPv6/IPv4 hosts and routers can tunnel IPv6 datagrams over regions of
 IPv4 routing topology by encapsulating them within IPv4 packets.
 Tunneling can be used in a variety of ways:

 - Router-to-Router. IPv6/IPv4 routers interconnected by an IPv4
 infrastructure can tunnel IPv6 packets between themselves. In
 this case, the tunnel spans one segment of the end-to-end path
 that the IPv6 packet takes.

 - Host-to-Router. IPv6/IPv4 hosts can tunnel IPv6 packets to an
 intermediary IPv6/IPv4 router that is reachable via an IPv4
 infrastructure. This type of tunnel spans the first segment of
 the packet's end-to-end path.

 - Host-to-Host. IPv6/IPv4 hosts that are interconnected by an
 IPv4 infrastructure can tunnel IPv6 packets between themselves.
 In this case, the tunnel spans the entire end-to-end path that
 the packet takes.

 - Router-to-Host. IPv6/IPv4 routers can tunnel IPv6 packets to
 their final destination IPv6/IPv4 host. This tunnel spans only
 the last segment of the end-to-end path.

 Tunneling techniques are usually classified according to the
 mechanism by which the encapsulating node determines the address of
 the node at the end of the tunnel. In the first two tunneling
 methods listed above -- router-to-router and host-to-router -- the
 IPv6 packet is being tunneled to a router. The endpoint of this type
 of tunnel is an intermediary router which must decapsulate the IPv6
 packet and forward it on to its final destination. When tunneling to
 a router, the endpoint of the tunnel is different from the
 destination of the packet being tunneled. So the addresses in the
 IPv6 packet being tunneled can not provide the IPv4 address of the
 tunnel endpoint. Instead, the tunnel endpoint address must be
 determined from configuration information on the node performing the
 tunneling. We use the term "configured tunneling" to describe the
 type of tunneling where the endpoint is explicitly configured.

 In the last two tunneling methods -- host-to-host and router-to-host

<draft-ietf-ngtrans-mech-06.txt> [Page 10]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 -- the IPv6 packet is tunneled all the way to its final destination.
 In this case, the destination address of both the IPv6 packet and the
 encapsulating IPv4 header identify the same node! This fact can be
 exploited by encoding information in the IPv6 destination address
 that will allow the encapsulating node to determine tunnel endpoint
 IPv4 address automatically. Automatic tunneling employs this
 technique, using an special IPv6 address format with an embedded IPv4
 address to allow tunneling nodes to automatically derive the tunnel
 endpoint IPv4 address. This eliminates the need to explicitly
 configure the tunnel endpoint address, greatly simplifying
 configuration.

 The two tunneling techniques -- automatic and configured -- differ
 primarily in how they determine the tunnel endpoint address. Most of
 the underlying mechanisms are the same:

 - The entry node of the tunnel (the encapsulating node) creates an
 encapsulating IPv4 header and transmits the encapsulated packet.

 - The exit node of the tunnel (the decapsulating node) receives
 the encapsulated packet, reassembles the packet if needed,
 removes the IPv4 header, updates the IPv6 header, and processes
 the received IPv6 packet.

 - The encapsulating node MAY need to maintain soft state
 information for each tunnel recording such parameters as the MTU
 of the tunnel in order to process IPv6 packets forwarded into
 the tunnel. Since the number of tunnels that any one host or
 router may be using may grow to be quite large, this state
 information can be cached and discarded when not in use.

 The remainder of this section discusses the common mechanisms that
 apply to both types of tunneling. Subsequent sections discuss how
 the tunnel endpoint address is determined for automatic and
 configured tunneling.

3.1. Encapsulation

 The encapsulation of an IPv6 datagram in IPv4 is shown below:

<draft-ietf-ngtrans-mech-06.txt> [Page 11]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 +-------------+
 | IPv4 |
 | Header |
 +-------------+ +-------------+
 | IPv6 | | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | Transport | | Transport |
 | Layer | ===> | Layer |
 | Header | | Header |
 +-------------+ +-------------+
 | | | |
 ~ Data ~ ~ Data ~
 | | | |
 +-------------+ +-------------+

 Encapsulating IPv6 in IPv4

 In addition to adding an IPv4 header, the encapsulating node also has
 to handle some more complex issues:

 - Determine when to fragment and when to report an ICMP "packet
 too big" error back to the source.

 - How to reflect IPv4 ICMP errors from routers along the tunnel
 path back to the source as IPv6 ICMP errors.

 Those issues are discussed in the following sections.

3.2. Tunnel MTU and Fragmentation

 The encapsulating node could view encapsulation as IPv6 using IPv4 as
 a link layer with a very large MTU (65535-20 bytes to be exact; 20
 bytes "extra" are needed for the encapsulating IPv4 header). The
 encapsulating node would need only to report IPv6 ICMP "packet too
 big" errors back to the source for packets that exceed this MTU.
 However, such a scheme would be inefficient for two reasons:

 1) It would result in more fragmentation than needed. IPv4 layer
 fragmentation SHOULD be avoided due to the performance problems
 caused by the loss unit being smaller than the retransmission
 unit [11].

<draft-ietf-ngtrans-mech-06.txt> [Page 12]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 2) Any IPv4 fragmentation occurring inside the tunnel would have to
 be reassembled at the tunnel endpoint. For tunnels that
 terminate at a router, this would require additional memory to
 reassemble the IPv4 fragments into a complete IPv6 packet before
 that packet could be forwarded onward.

 The fragmentation inside the tunnel can be reduced to a minimum by
 having the encapsulating node track the IPv4 Path MTU across the
 tunnel, using the IPv4 Path MTU Discovery Protocol [8] and recording
 the resulting path MTU. The IPv6 layer in the encapsulating node can
 then view a tunnel as a link layer with an MTU equal to the IPv4 path
 MTU, minus the size of the encapsulating IPv4 header.

 Note that this does not completely eliminate IPv4 fragmentation in
 the case when the IPv4 path MTU would result in an IPv6 MTU less than
 1280 bytes. (Any link layer used by IPv6 has to have an MTU of at
 least 1280 bytes [4].) In this case the IPv6 layer has to "see" a
 link layer with an MTU of 1280 bytes and the encapsulating node has
 to use IPv4 fragmentation in order to forward the 1280 byte IPv6
 packets.

 The encapsulating node can employ the following algorithm to
 determine when to forward an IPv6 packet that is larger than the
 tunnel's path MTU using IPv4 fragmentation, and when to return an
 IPv6 ICMP "packet too big" message:

 if (IPv4 path MTU - 20) is less than or equal to 1280
 if packet is larger than 1280 bytes
 Send IPv6 ICMP "packet too big" with MTU = 1280.
 Drop packet.
 else
 Encapsulate but do not set the Don't Fragment
 flag in the IPv4 header. The resulting IPv4
 packet might be fragmented by the IPv4 layer on
 the encapsulating node or by some router along
 the IPv4 path.
 endif
 else
 if packet is larger than (IPv4 path MTU - 20)
 Send IPv6 ICMP "packet too big" with
 MTU = (IPv4 path MTU - 20).
 Drop packet.
 else
 Encapsulate and set the Don't Fragment flag
 in the IPv4 header.
 endif
 endif

<draft-ietf-ngtrans-mech-06.txt> [Page 13]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 Encapsulating nodes that have a large number of tunnels might not be
 able to store the IPv4 Path MTU for all tunnels. Such nodes can, at
 the expense of additional fragmentation in the network, avoid using
 the IPv4 Path MTU algorithm across the tunnel and instead use the MTU
 of the link layer (under IPv4) in the above algorithm instead of the
 IPv4 path MTU.

 In this case the Don't Fragment bit MUST NOT be set in the
 encapsulating IPv4 header.

3.3. Hop Limit

 IPv6-over-IPv4 tunnels are modeled as "single-hop". That is, the
 IPv6 hop limit is decremented by 1 when an IPv6 packet traverses the
 tunnel. The single-hop model serves to hide the existence of a
 tunnel. The tunnel is opaque to users of the network, and is not
 detectable by network diagnostic tools such as traceroute.

 The single-hop model is implemented by having the encapsulating and
 decapsulating nodes process the IPv6 hop limit field as they would if
 they were forwarding a packet on to any other datalink. That is,
 they decrement the hop limit by 1 when forwarding an IPv6 packet.
 (The originating node and final destination do not decrement the hop
 limit.)

 The TTL of the encapsulating IPv4 header is selected in an
 implementation dependent manner. The current suggested value is
 published in the "Assigned Numbers RFC. Implementations MAY provide
 a mechanism to allow the administrator to configure the IPv4 TTL such
 as the one specified in the IP Tunnel MIB [17].

3.4. Handling IPv4 ICMP errors

 In response to encapsulated packets it has sent into the tunnel, the
 encapsulating node might receive IPv4 ICMP error messages from IPv4
 routers inside the tunnel. These packets are addressed to the
 encapsulating node because it is the IPv4 source of the encapsulated
 packet.

 The ICMP "packet too big" error messages are handled according to
 IPv4 Path MTU Discovery [8] and the resulting path MTU is recorded in
 the IPv4 layer. The recorded path MTU is used by IPv6 to determine
 if an IPv6 ICMP "packet too big" error has to be generated as
 described in section 3.2.

<draft-ietf-ngtrans-mech-06.txt> [Page 14]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 The handling of other types of ICMP error messages depends on how
 much information is included in the "packet in error" field, which
 holds the encapsulated packet that caused the error.

 Many older IPv4 routers return only 8 bytes of data beyond the IPv4
 header of the packet in error, which is not enough to include the
 address fields of the IPv6 header. More modern IPv4 routers are
 likely to return enough data beyond the IPv4 header to include the
 entire IPv6 header and possibly even the data beyond that.

 If the offending packet includes enough data, the encapsulating node
 MAY extract the encapsulated IPv6 packet and use it to generate an
 IPv6 ICMP message directed back to the originating IPv6 node, as
 shown below:

 +--------------+
 | IPv4 Header |
 | dst = encaps |
 | node |
 +--------------+
 | ICMP |
 | Header |
 - - +--------------+
 | IPv4 Header |
 | src = encaps |
 IPv4 | node |
 +--------------+ - -
 Packet | IPv6 |
 | Header | Original IPv6
 in +--------------+ Packet -
 | Transport | Can be used to
 Error | Header | generate an
 +--------------+ IPv6 ICMP
 | | error message
 ~ Data ~ back to the source.
 | |
 - - +--------------+ - -

 IPv4 ICMP Error Message Returned to Encapsulating Node

3.5. IPv4 Header Construction

 When encapsulating an IPv6 packet in an IPv4 datagram, the IPv4
 header fields are set as follows:

<draft-ietf-ngtrans-mech-06.txt> [Page 15]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 Version:

 4

 IP Header Length in 32-bit words:

 5 (There are no IPv4 options in the encapsulating
 header.)

 Type of Service:

 0. [Note that work underway in the IETF is redefining
 the Type of Service byte and as a result future RFCs
 might define a different behavior for the ToS byte when
 tunneling.]

 Total Length:

 Payload length from IPv6 header plus length of IPv6 and
 IPv4 headers (i.e. a constant 60 bytes).

 Identification:

 Generated uniquely as for any IPv4 packet transmitted by
 the system.

 Flags:

 Set the Don't Fragment (DF) flag as specified in section
3.2. Set the More Fragments (MF) bit as necessary if

 fragmenting.

 Fragment offset:

 Set as necessary if fragmenting.

 Time to Live:

 Set in implementation-specific manner.

 Protocol:

 41 (Assigned payload type number for IPv6)

 Header Checksum:

 Calculate the checksum of the IPv4 header.

<draft-ietf-ngtrans-mech-06.txt> [Page 16]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 Source Address:

 IPv4 address of outgoing interface of the encapsulating
 node.

 Destination Address:

 IPv4 address of tunnel endpoint.

 Any IPv6 options are preserved in the packet (after the IPv6 header).

3.6. Decapsulation

 When an IPv6/IPv4 host or a router receives an IPv4 datagram that is
 addressed to one of its own IPv4 address, and the value of the
 protocol field is 41, it reassembles if the packet if it is
 fragmented at the IPv4 level, then it removes the IPv4 header and
 submits the IPv6 datagram to its IPv6 layer code.

 The decapsulating node MUST be capable of reassembling an IPv4 packet
 that is 1300 bytes (1280 bytes plus IPv4 header).

 The decapsulation is shown below:

 +-------------+
 | IPv4 |
 | Header |
 +-------------+ +-------------+
 | IPv6 | | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | Transport | | Transport |
 | Layer | ===> | Layer |
 | Header | | Header |
 +-------------+ +-------------+
 | | | |
 ~ Data ~ ~ Data ~
 | | | |
 +-------------+ +-------------+

 Decapsulating IPv6 from IPv4

 When decapsulating the packet, the IPv6 header is not modified.
 [Note that work underway in the IETF is redefining the Type of
 Service byte and as a result future RFCs might define a different

<draft-ietf-ngtrans-mech-06.txt> [Page 17]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 behavior for the ToS byte when decapsulating a tunneled packet.] If
 the packet is subsequently forwarded, its hop limit is decremented by
 one.

 As part of the decapsulation the node SHOULD silently discard a
 packet with an invalid IPv4 source address such as a multicast
 address, a broadcast address, 0.0.0.0, and 127.0.0.1. In general it
 SHOULD apply the rules for martian filtering in [18] and ingress
 filtering [13] on the IPv4 source address.

 The encapsulating IPv4 header is discarded.

 After the decapsulation the node SHOULD silently discard a packet
 with an invalid IPv6 source address. This includes IPv6 multicast
 addresses, the unspecified address, and the loopback address but also
 IPv4-compatible IPv6 source addresses where the IPv4 part of the
 address is an (IPv4) multicast address, broadcast address, 0.0.0.0,
 or 127.0.0.1. In general it SHOULD apply the rules for martian
 filtering in [18] and ingress filtering [13] on the IPv4-compatible
 source address.

 The decapsulating node performs IPv4 reassembly before decapsulating
 the IPv6 packet. All IPv6 options are preserved even if the
 encapsulating IPv4 packet is fragmented.

 After the IPv6 packet is decapsulated, it is processed almost the
 same as any received IPv6 packet. The only difference being that a
 decapsulated packet MUST NOT be forwarded unless the node has been
 explicitly configured to forward such packets for the given IPv4
 source address. This configuration can be implicit in e.g., having a
 configured tunnel which matches the IPv4 source address. This
 restriction is needed to prevent tunneling to be used as a tool to
 circumvent ingress filtering [13].

3.7. Link-Local Addresses

 Both the configured and automatic tunnels are IPv6 interfaces (over
 the IPv4 "link layer") thus MUST have link-local addresses. The
 link-local addresses are used by routing protocols operating over the
 tunnels.

 The Interface Identifier [14] for such an Interface SHOULD be the
 32-bit IPv4 address of that interface, with the bytes in the same
 order in which they would appear in the header of an IPv4 packet,
 padded at the left with zeros to a total of 64 bits. Note that the
 "Universal/Local" bit is zero, indicating that the Interface

<draft-ietf-ngtrans-mech-06.txt> [Page 18]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 Identifier is not globally unique. When the host has more than one
 IPv4 address in use on the physical interface concerned, an
 administrative choice of one of these IPv4 addresses is made.

 The IPv6 Link-local address [14] for an IPv4 virtual interface is
 formed by appending the Interface Identifier, as defined above, to
 the prefix FE80::/64.

 +-------+-------+-------+-------+-------+-------+------+------+
 | FE 80 00 00 00 00 00 00 |
 +-------+-------+-------+-------+-------+-------+------+------+
 | 00 00 | 00 | 00 | IPv4 Address |
 +-------+-------+-------+-------+-------+-------+------+------+

3.8. Neighbor Discovery over Tunnels

 Automatic tunnels and unidirectional configured tunnels are
 considered to be unidirectional. Thus the only aspects of Neighbor
 Discovery [7] and Stateless Address Autoconfiguration [5] that apply
 to these tunnels is the formation of the link-local address.

 If an implementation provides bidirectional configured tunnels it
 MUST at least accept and respond to the probe packets used by
 Neighbor Unreachability Detection [7]. Such implementations SHOULD
 also send NUD probe packets to detect when the configured tunnel
 fails at which point the implementation can use an alternate path to
 reach the destination. Note that Neighbor Discovery allows that the
 sending of NUD probes be omitted for router to router links if the
 routing protocol tracks bidirectional reachability.

 For the purposes of Neighbor Discovery the automatic and configured
 tunnels specified in this document as assumed to NOT have a link-
 layer address, even though the link-layer (IPv4) does have address.
 This means that a sender of Neighbor Discovery packets

 - SHOULD NOT include Source Link Layer Address options or Target
 Link Layer Address options on the tunnel link.

 - MUST silently ignore any received SLLA or TLLA options on the
 tunnel link.

<draft-ietf-ngtrans-mech-06.txt> [Page 19]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

4. Configured Tunneling

 In configured tunneling, the tunnel endpoint address is determined
 from configuration information in the encapsulating node. For each
 tunnel, the encapsulating node must store the tunnel endpoint
 address. When an IPv6 packet is transmitted over a tunnel, the
 tunnel endpoint address configured for that tunnel is used as the
 destination address for the encapsulating IPv4 header.

 The determination of which packets to tunnel is usually made by
 routing information on the encapsulating node. This is usually done
 via a routing table, which directs packets based on their destination
 address using the prefix mask and match technique.

4.1. Default Configured Tunnel

 IPv6/IPv4 hosts that are connected to datalinks with no IPv6 routers
 MAY use a configured tunnel to reach an IPv6 router. This tunnel
 allows the host to communicate with the rest of the IPv6 Internet
 (i.e. nodes with IPv6-native addresses). If the IPv4 address of an
 IPv6/IPv4 router bordering the IPv6 backbone is known, this can be
 used as the tunnel endpoint address. This tunnel can be configured
 into the routing table as an IPv6 "default route". That is, all IPv6
 destination addresses will match the route and could potentially
 traverse the tunnel. Since the "mask length" of such a default route
 is zero, it will be used only if there are no other routes with a
 longer mask that match the destination. The default configured
 tunnel can be used in conjunction with automatic tunneling, as
 described in section 5.4.

4.2. Default Configured Tunnel using IPv4 "Anycast Address"

 The tunnel endpoint address of such a default tunnel could be the
 IPv4 address of one IPv6/IPv4 router at the border of the IPv6
 backbone. Alternatively, the tunnel endpoint could be an IPv4
 "anycast address". With this approach, multiple IPv6/IPv4 routers at
 the border advertise IPv4 reachability to the same IPv4 address. All
 of these routers accept packets to this address as their own, and
 will decapsulate IPv6 packets tunneled to this address. When an
 IPv6/IPv4 node sends an encapsulated packet to this address, it will
 be delivered to only one of the border routers, but the sending node
 will not know which one. The IPv4 routing system will generally
 carry the traffic to the closest router.

<draft-ietf-ngtrans-mech-06.txt> [Page 20]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 Using a default tunnel to an IPv4 "anycast address" provides a high
 degree of robustness since multiple border router can be provided,
 and, using the normal fallback mechanisms of IPv4 routing, traffic
 will automatically switch to another router when one goes down.
 However, care must be taking when using such a default tunnel to
 prevent different IPv4 fragments from arriving at different routers
 for reassembly. This can be prevented by either avoiding
 fragmentation of the encapsulated packets (by ensuring an IPv4 MTU of
 at least 1300 bytes) or by preventing frequent changes to IPv4
 routing.

4.3. Ingress Filtering

 The decapsulating node MUST verify that the tunnel source address is
 acceptable before forwarding decapsulated packets to avoid
 circumventing ingress filtering [13]. Note that packets which are
 delivered to transport protocols on the decapsulating node SHOULD NOT
 be subject to these checks. For bidirectional configured tunnels
 this is done by verifying that the source address is the IPv4 address
 of the other end of the tunnel. For unidirectional configured
 tunnels the decapsulating node MUST be configured with a list of
 source IPv4 address prefixes that are acceptable. Such a list MUST
 default to not having any entries i.e. the node has to be explicitly
 configured to forward decapsulated packets received over
 unidirectional configured tunnels.

5. Automatic Tunneling

 In automatic tunneling, the tunnel endpoint address is determined by
 the IPv4-compatible destination address of the IPv6 packet being
 tunneled. Automatic tunneling allows IPv6/IPv4 nodes to communicate
 over IPv4 routing infrastructures without pre-configuring tunnels.

5.1. IPv4-Compatible Address Format

 IPv6/IPv4 nodes that perform automatic tunneling are assigned IPv4-
 compatible address. An IPv4-compatible address is identified by an
 all-zeros 96-bit prefix, and holds an IPv4 address in the low-order
 32-bits. IPv4-compatible addresses are structured as follows:

<draft-ietf-ngtrans-mech-06.txt> [Page 21]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 | 96-bits | 32-bits |
 +--------------------------------------+--------------+
 | 0:0:0:0:0:0 | IPv4 Address |
 +--------------------------------------+--------------+
 IPv4-Compatible IPv6 Address Format

 IPv4-compatible addresses are assigned exclusively to nodes that
 support automatic tunneling. A node SHOULD be configured with an
 IPv4-compatible address only if it is prepared to accept IPv6 packets
 destined to that address encapsulated in IPv4 packets destined to the
 embedded IPv4 address.

 An IPv4-compatible address is globally unique as long as the IPv4
 address is not from the private IPv4 address space [15]. An
 implementation SHOULD behave as if its IPv4-compatible address(es)
 are assigned to the node's automatic tunneling interface, even if the
 implementation does not implement automatic tunneling using a concept
 of interfaces. Thus the IPv4-compatible address SHOULD NOT be viewed
 as being attached to e.g. an Ethernet interface i.e. implications
 should not use the Neighbor Discovery mechanisms like NUD [7] at the
 Ethernet. Any such interactions should be done using the
 encapsulated packets i.e. over the automatic tunneling (conceptual)
 interface.

5.2. IPv4-Compatible Address Configuration

 An IPv6/IPv4 node with an IPv4-compatible address uses that address
 as one of its IPv6 addresses, while the IPv4 address embedded in the
 low-order 32-bits serves as the IPv4 address for one of its
 interfaces.

 An IPv6/IPv4 node MAY acquire its IPv4-compatible IPv6 addresses via
 IPv4 address configuration protocols. It MAY use any IPv4 address
 configuration mechanism to acquire its IPv4 address, then "map" that
 address into an IPv4-compatible IPv6 address by pre-pending it with
 the 96-bit prefix 0:0:0:0:0:0. This mode of configuration allows
 IPv6/IPv4 nodes to "leverage" the installed base of IPv4 address
 configuration servers.

 The specific algorithm for acquiring an IPv4-compatible address using
 IPv4-based address configuration protocols is as follows:

 1) The IPv6/IPv4 node uses standard IPv4 mechanisms or protocols to
 acquire the IPv4 address for one of its interfaces. These

<draft-ietf-ngtrans-mech-06.txt> [Page 22]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 include:

 - The Dynamic Host Configuration Protocol (DHCP) [2]

 - The Bootstrap Protocol (BOOTP) [1]

 - The Reverse Address Resolution Protocol (RARP) [9]

 - Manual configuration

 - Any other mechanism which accurately yields the node's
 own IPv4 address

 2) The node uses this address as the IPv4 address for this
 interface.

 3) The node prepends the 96-bit prefix 0:0:0:0:0:0 to the 32-bit
 IPv4 address that it acquired in step (1). The result is an
 IPv4-compatible IPv6 address with one of the node's IPv4-
 addresses embedded in the low-order 32-bits. The node uses this
 address as one of its IPv6 addresses.

5.3. Automatic Tunneling Operation

 In automatic tunneling, the tunnel endpoint address is determined
 from the packet being tunneled. If the destination IPv6 address is
 IPv4-compatible, then the packet can be sent via automatic tunneling.
 If the destination is IPv6-native, the packet can not be sent via
 automatic tunneling.

 A routing table entry can be used to direct automatic tunneling. An
 implementation can have a special static routing table entry for the
 prefix 0:0:0:0:0:0/96. (That is, a route to the all-zeros prefix
 with a 96-bit mask.) Packets that match this prefix are sent to a
 pseudo-interface driver which performs automatic tunneling. Since
 all IPv4-compatible IPv6 addresses will match this prefix, all
 packets to those destinations will be auto-tunneled.

 Once it is delivered to the automatic tunneling module, the IPv6
 packet is encapsulated within an IPv4 header according to the rules
 described in section 3. The source and destination addresses of the
 encapsulating IPv4 header are assigned as follows:

 Destination IPv4 address:

 Low-order 32-bits of IPv6 destination address

<draft-ietf-ngtrans-mech-06.txt> [Page 23]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 Source IPv4 address:

 IPv4 address of interface the packet is sent via

 The automatic tunneling module always sends packets in this
 encapsulated form, even if the destination is on an attached
 datalink.

 The automatic tunneling module MUST NOT send to IPv4 broadcast or
 multicast destinations. It MUST drop all IPv6 packets destined to
 IPv4-compatible destinations when the embedded IPv4 address is
 broadcast, multicast, the unspecified (0.0.0.0) address, or the
 loopback address (127.0.0.1). Note that the sender can only tell if
 an address is a network or subnet broadcast for broadcast addresses
 assigned to directly attached links.

5.4. Use With Default Configured Tunnels

 Automatic tunneling is often used in conjunction with the default
 configured tunnel technique. "Isolated" IPv6/IPv4 hosts -- those
 with no on-link IPv6 routers -- are configured to use automatic
 tunneling and IPv4-compatible IPv6 addresses, and have at least one
 default configured tunnel to an IPv6 router. That IPv6 router is
 configured to perform automatic tunneling as well. These isolated
 hosts send packets to IPv4-compatible destinations via automatic
 tunneling and packets for IPv6-native destinations via the default
 configured tunnel. IPv4-compatible destinations will match the 96-
 bit all-zeros prefix route discussed in the previous section, while
 IPv6-native destinations will match the default route via the
 configured tunnel. Reply packets from IPv6-native destinations are
 routed back to the an IPv6/IPv4 router which delivers them to the
 original host via automatic tunneling. Further examples of the
 combination of tunneling techniques are discussed in [12].

5.5. Source Address Selection

 When an IPv6/IPv4 node originates an IPv6 packet, it must select the
 source IPv6 address to use. IPv6/IPv4 nodes that are configured to
 perform automatic tunneling may be configured with global IPv6-native
 addresses as well as IPv4-compatible addresses. The selection of
 which source address to use will determine what form the return
 traffic is sent via. If the IPv4-compatible address is used, the
 return traffic will have to be delivered via automatic tunneling, but
 if the IPv6-native address is used, the return traffic will not be

<draft-ietf-ngtrans-mech-06.txt> [Page 24]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 automatic-tunneled. In order to make traffic as symmetric as
 possible, the following source address selection preference is
 RECOMMENDED:

 Destination is IPv4-compatible:

 Use IPv4-compatible source address associated with IPv4
 address of outgoing interface

 Destination is IPv6-native:

 Use IPv6-native address of outgoing interface

 If an IPv6/IPv4 node has no global IPv6-native address, but is
 originating a packet to an IPv6-native destination, it MAY use its
 IPv4-compatible address as its source address.

5.6. Ingress Filtering

 The decapsulating node MUST verify that the encapsulated packets are
 acceptable before forwarding decapsulated packets to avoid
 circumventing ingress filtering [13]. Note that packets which are
 delivered to transport protocols on the decapsulating node SHOULD NOT
 be subject to these checks. Since automatic tunnels always
 encapsulate to the destination (i.e. the IPv4 destination will be
 the destination) any packet received over an automatic tunnel SHOULD
 NOT be forwarded.

6. Acknowledgments

 We would like to thank the members of the IPng working group and the
 Next Generation Transition (ngtrans) working group for their many
 contributions and extensive review of this document. Special thanks
 are due to Jim Bound, Ross Callon, and Bob Hinden for many helpful
 suggestions and to John Moy for suggesting the IPv4 "anycast address"
 default tunnel technique.

<draft-ietf-ngtrans-mech-06.txt> [Page 25]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

7. Security Considerations

 Tunneling is not known to introduce any security holes except for the
 possibility to circumvent ingress filtering [13]. This is prevented
 by requiring that decapsulating routers only forward packets if they
 have been configured to accept encapsulated packets from the IPv4
 source address in the receive packet. Additionally, in the case of
 automatic tunneling, nodes are required by not forwarding the
 decapsulated packets since automatic tunneling ends the tunnel and
 the destination.

8. Authors' Addresses

 Robert E. Gilligan
 FreeGate Corp
 1208 E. Arques Ave
 Sunnyvale, CA 94086
 USA

 Phone: +1-408-617-1004
 Fax: +1-408-617-1010
 Email: gilligan@freegate.com

 Erik Nordmark
 Sun Microsystems, Inc.
 901 San Antonio Rd.
 Palo Alto, CA 94303
 USA

 Phone: +1-650-786-5166
 Fax: +1-650-786-5896
 Email: nordmark@eng.sun.com

9. References

 [1] Croft, W., and J. Gilmore, "Bootstrap Protocol", RFC 951,
 September 1985.

 [2] Droms, R., "Dynamic Host Configuration Protocol", RFC 1541.
 October 1993.

 [3] Carpenter, B., and Jung, C. "Transmission of IPv6 over IPv4
 Domains without Explicit Tunnels", RFC 2529, March 1999.

https://datatracker.ietf.org/doc/html/rfc951
https://datatracker.ietf.org/doc/html/rfc1541
https://datatracker.ietf.org/doc/html/rfc2529

<draft-ietf-ngtrans-mech-06.txt> [Page 26]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 [4] Deering, S., and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

 [5] Thomson, S., and T. Narten, "IPv6 Stateless Address
 Autoconfiguration," RFC 2462, December 1998.

 [6] Crawford, M., Thomson, S., and C. Huitema. "DNS Extensions to
 Support IPv6 Address Allocation and Renumbering", draft-ietf-

ipngwg-dns-lookups-07.txt

 [7] Narten, T., Nordmark, E., and W. Simpson, "Neighbor Discovery
 for IP Version 6 (IPv6)", RFC 2461, December 1998.

 [8] Mogul, J., and S. Deering, "Path MTU Discovery", RFC 1191,
 November 1990.

 [9] Finlayson, R., Mann, T., Mogul, J., and M. Theimer, "Reverse
 Address Resolution Protocol", RFC 903, June 1984.

 [10] Braden, R., "Requirements for Internet Hosts - Communication
 Layers", STD 3, RFC 1122, October 1989.

 [11] Kent, C., and J. Mogul, "Fragmentation Considered Harmful". In
 Proc. SIGCOMM '87 Workshop on Frontiers in Computer
 Communications Technology. August 1987.

 [12] Callon, R. and Haskin, D., "Routing Aspects of IPv6 Transition",
RFC 2185. September 1997.

 [13] Ferguson, P., and Senie, D., "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", RFC 2267, January 1998.

 [14] Hinden, R., and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

 [15] Rechter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.J., and
 Lear, E. "Address Allocation for Private Internets", RFC 1918,
 February 1996.

 [16] S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March 1997.

 [17] D. Thaler, "IP Tunnel MIB", RFC 2667, August 1999.

 [18] F. Baker, "Requirements for IP Version 4 Routers", RFC 1812,
 June 1995.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2462
https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-dns-lookups-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-dns-lookups-07.txt
https://datatracker.ietf.org/doc/html/rfc2461
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc903
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2185
https://datatracker.ietf.org/doc/html/rfc2267
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2667
https://datatracker.ietf.org/doc/html/rfc1812

<draft-ietf-ngtrans-mech-06.txt> [Page 27]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

10. Changes from RFC 1933

 - Deleted section 3.1.1 (IPv4 loopback address) in order to
 prevent it from being mis-construed as requiring routers to
 filter the address ::127.0.0.1, which would put another test in
 the forwarding path for IPv6 routers.

 - Deleted section 4.4 (Default Sending Algorithm). This section
 allowed nodes to send packets in "raw form" to IPv4-compatible
 destinations on the same datalink. Implementation experience
 has shown that this adds complexity which is not justified by
 the minimal savings in header overhead.

 - Added definitions for operating modes for IPv6/IPv4 nodes.

 - Revised DNS section to clarify resolver filtering and ordering
 options.

 - Re-wrote the discussion of IPv4-compatible addresses to clarify
 that they are used exclusively in conjunction with the automatic
 tunneling mechanism. Re-organized document to place definition
 of IPv4-compatible address format with description of automatic
 tunneling.

 - Changed the term "IPv6-only address" to "IPv6-native address"
 per current usage.

 - Updated to algorithm for determining tunnel MTU to reflect the
 change in the IPv6 minimum MTU from 576 to 1280 bytes [4].

 - Deleted the definition for the term "IPv6-in-IPv4
 encapsulation." It has not been widely used.

 - Revised IPv4-compatible address configuration section (5.2) to
 recognize multiple interfaces.

 - Added discussion of source address selection when using IPv4-
 compatible addresses.

 - Added section on the combination of the default configured
 tunneling technique with hosts using automatic tunneling.

 - Added prohibition against automatic tunneling to IPv4 broadcast
 or multicast destinations.

 - Clarified that configured tunnels can be unidirectional or

https://datatracker.ietf.org/doc/html/rfc1933

<draft-ietf-ngtrans-mech-06.txt> [Page 28]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

INTERNET DRAFT IPv6 Transition Mechanisms March 2000

 bidirectional.

 - Added description of bidirectional virtual links as another type
 of tunnels. Nodes MUST respond to NUD probes on such links and
 SHOULD send NUD probes.

 - Added reference to [16] specification as an alternative for
 tunneling over a multicast capable IPv4 cloud.

 - Clarified that IPv4-compatible addresses are assigned
 exclusively to nodes that support automatic tunnels i.e. nodes
 that can receive such packets.

 - Added text about formation of link-local addresses and use of
 Neighbor Discovery on tunnels.

 - Added restriction that decapsulated packets not be forwarded
 unless the source address is acceptable to the decapsulating
 router.

 - Clarified that decapsulating nodes MUST be capable of
 reassembling an IPv4 packet that is 1300 bytes (1280 bytes plus
 IPv4 header).

 - Clarified that when using a default tunnel to an IPv4 "anycast
 address" the network must either have an IPv4 MTU of least 1300
 bytes (to avoid fragmentation of minimum size IPv6 packets) or
 be configured to avoid frequent changes to IPv4 routing to the
 "anycast address" (to avoid different IPv4 fragments arriving at
 different tunnel endpoints).

 - Using A6/AAAA instead of AAAA to reference IPv6 address records
 in the DNS.

 - Specified when to put IPv6 addresses in the DNS.

 - Added reference to the tunnel mib for TTL specification for the
 tunnels.

 - Added a table of contents.

 - Added recommendations for use of source and target link layer
 address options for the tunnel links.

 - Added checks in the decapsulation checking both an IPv4-
 compatible IPv6 source address and the outer IPv4 source
 addresses for multicast, broadcast, all-zeros etc.

<draft-ietf-ngtrans-mech-06.txt> [Page 29]

https://datatracker.ietf.org/doc/html/draft-ietf-ngtrans-mech-06.txt

