
Network Working Group J. Manner
Internet-Draft TKK
Intended status: Standards Track G. Karagiannis
Expires: August 10, 2008 University of Twente/Ericsson
 A. McDonald
 Siemens/Roke Manor Research
 February 7, 2008

NSLP for Quality-of-Service Signaling
draft-ietf-nsis-qos-nslp-16.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 10, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 This specification describes the NSIS Signaling Layer Protocol (NSLP)
 for signaling QoS reservations in the Internet. It is in accordance
 with the framework and requirements developed in NSIS. Together with
 GIST, it provides functionality similar to RSVP and extends it. The
 QoS NSLP is independent of the underlying QoS specification or

Manner, et al. Expires August 10, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft QoS NSLP February 2008

 architecture and provides support for different reservation models.
 It is simplified by the elimination of support for multicast flows.
 This specification explains the overall protocol approach, design
 decisions made and provides examples. It specifies object, message
 formats and processing rules.

Table of Contents

1. Introduction . 5
2. Terminology . 6
3. Protocol Overview . 7
3.1. Overall Approach . 7
3.1.1. Protocol Messages 10
3.1.2. QoS Models and QoS Specifications 11
3.1.3. Policy Control . 13

3.2. Design Background . 14
3.2.1. Soft States . 14
3.2.2. Sender and Receiver Initiation 14

 3.2.3. Protection Against Message Re-ordering and
 Duplication . 15

3.2.4. Explicit Confirmations 15
3.2.5. Reduced Refreshes 15
3.2.6. Summary Refreshes and Summary Tear 15
3.2.7. Message Scoping 16
3.2.8. Session Binding 16
3.2.9. Message Binding 17
3.2.10. Layering . 17
3.2.11. Support for Request Priorities 19
3.2.12. Rerouting . 19
3.2.13. Pre-emption . 24

3.3. GIST Interactions . 24
3.3.1. Support for Bypassing Intermediate Nodes 25
3.3.2. Support for Peer Change Identification 25
3.3.3. Support for Stateless Operation 26
3.3.4. Priority of Signaling Messages 26
3.3.5. Knowledge of Intermediate QoS NSLP Unaware Nodes . . . 26

4. Examples of QoS NSLP Operation 27
4.1. Sender-initiated Reservation 27
4.2. Sending a Query . 28
4.3. Basic Receiver-initiated Reservation 29
4.4. Bidirectional Reservations 31
4.5. Aggregate Reservations 32
4.6. Message Binding . 34
4.7. Reduced State or Stateless Interior Nodes 37
4.7.1. Sender-initiated Reservation 38
4.7.2. Receiver-initiated Reservation 39

4.8. Proxy Mode . 40

Manner, et al. Expires August 10, 2008 [Page 2]

Internet-Draft QoS NSLP February 2008

5. QoS NSLP Functional Specification 41
5.1. QoS NSLP Message and Object Formats 41
5.1.1. Common Header . 42
5.1.2. Message Formats 43
5.1.3. Object Formats . 47

5.2. General Processing Rules 59
5.2.1. State Manipulation 60
5.2.2. Message Forwarding 61
5.2.3. Standard Message Processing Rules 61
5.2.4. Retransmissions 61
5.2.5. Rerouting . 62

5.3. Object Processing . 64
5.3.1. Reservation Sequence Number (RSN) 64
5.3.2. Request Identification Information (RII) 65
5.3.3. BOUND_SESSION_ID 66
5.3.4. REFRESH_PERIOD . 67
5.3.5. INFO_SPEC . 67
5.3.6. SESSION_ID_LIST 69
5.3.7. RSN_LIST . 70
5.3.8. QSPEC . 71

5.4. Message Processing Rules 71
5.4.1. RESERVE Messages 71
5.4.2. QUERY Messages . 76
5.4.3. RESPONSE Messages 77
5.4.4. NOTIFY Messages 78

6. IANA Considerations . 79
6.1. QoS NSLP Message Type 79
6.2. NSLP Message Objects 79
6.3. QoS NSLP Binding Codes 80
6.4. QoS NSLP Error Classes and Error Codes 80
6.5. QoS NSLP Error Source Identifiers 81
6.6. NSLP IDs and Router Alert Option Values 81

7. Security Considerations 82
7.1. Trust Relationship Model 83
7.2. Authorization Model Examples 85
7.2.1. Authorization for the Two Party Approach 85
7.2.2. Token-based Three Party Approach 86
7.2.3. Generic Three Party Approach 87

7.3. Computing the Authorization Decision 87
8. Acknowledgments . 88
9. Contributors . 88
10. References . 88
10.1. Normative References 88
10.2. Informative References 89

Appendix A. Abstract NSLP-RMF API 90
A.1. Triggers from QOS-NSLP towards RMF 90
A.2. Triggers from RMF/QOSM towards QOS-NSLP 92
A.3. Configuration interface 94

Manner, et al. Expires August 10, 2008 [Page 3]

Internet-Draft QoS NSLP February 2008

Appendix B. Glossary . 95
 Authors' Addresses . 96
 Intellectual Property and Copyright Statements 97

Manner, et al. Expires August 10, 2008 [Page 4]

Internet-Draft QoS NSLP February 2008

1. Introduction

 This document defines a Quality of Service (QoS) NSIS Signaling Layer
 Protocol (NSLP), henceforth referred to as the "QoS NSLP". This
 protocol establishes and maintains state at nodes along the path of a
 data flow for the purpose of providing some forwarding resources for
 that flow. It is intended to satisfy the QoS-related requirements of

RFC 3726 [RFC3726]. This QoS NSLP is part of a larger suite of
 signaling protocols, whose structure is outlined in the NSIS
 framework [RFC4080]; this defines a common NSIS Transport Layer
 Protocol (NTLP). The abstract NTLP has been developed into a
 concrete protocol, GIST (General Internet Signaling Transport)
 [I-D.ietf-nsis-ntlp]. The QoS NSLP relies on GIST to carry out many
 aspects of signaling message delivery.

 The design of the QoS NSLP is conceptually similar to RSVP, RFC 2205
 [RFC2205], and uses soft-state peer-to-peer refresh messages as the
 primary state management mechanism (i.e., state installation/refresh
 is performed between pairs of adjacent NSLP nodes, rather than in an
 end-to-end fashion along the complete signaling path). The QoS NSLP
 extends the set of reservation mechanisms to meet the requirements of

RFC 3726 [RFC3726], in particular support of sender or receiver-
 initiated reservations, as well as, a type of bi-directional
 reservation and support of reservations between arbitrary nodes,
 e.g., edge-to-edge, end-to-access, etc. On the other hand, there is
 currently no support for IP multicast.

 A distinction is made between the operation of the signaling protocol
 and the information required for the operation of the Resource
 Management Function (RMF). This document describes the signaling
 protocol, whilst [I-D.ietf-nsis-qspec] describes the RMF-related
 information carried in the QSPEC (QoS Specification) object in QoS
 NSLP messages. This is similar to the decoupling between RSVP and
 the IntServ architecture, RFC 1633 [RFC1633]. The QSPEC carries
 information on resources available, resources required, traffic
 descriptions and other information required by the RMF.

 This document is structured as follows. The overall protocol design
 is outlined in Section 3.1. The operation and use of the QoS NSLP is
 described in more detail in the rest of Section 3. Section 4 then
 clarifies the protocol by means of a number of examples. These
 sections should be read by people interested in the overall protocol
 capabilities. The functional specification in Section 5 contains
 more detailed object and message formats and processing rules and
 should be the basis for implementers. The subsequent sections
 describe IANA allocation issues, and security considerations.

https://datatracker.ietf.org/doc/html/rfc3726
https://datatracker.ietf.org/doc/html/rfc3726
https://datatracker.ietf.org/doc/html/rfc4080
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc3726
https://datatracker.ietf.org/doc/html/rfc3726
https://datatracker.ietf.org/doc/html/rfc1633
https://datatracker.ietf.org/doc/html/rfc1633

Manner, et al. Expires August 10, 2008 [Page 5]

Internet-Draft QoS NSLP February 2008

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The terminology defined by GIST [I-D.ietf-nsis-ntlp] applies to this
 draft.

 In addition, the following terms are used:

 QNE: an NSIS Entity (NE), which supports the QoS NSLP.

 QNI: the first node in the sequence of QNEs that issues a reservation
 request for a session.

 QNR: the last node in the sequence of QNEs that receives a
 reservation request for a session.

 P-QNE: Proxy-QNE, a node set to reply to messages with the PROXY
 scope flag set.

 Session: A session defines an association between a QNI and QNR
 related to a data flow. Intermediate QNEs on the path, the QNI and
 the QNR use the same identifier to refer to the state stored for the
 association. The same QNI and QNR may have more than one session
 active at any one time.

 Session Identification (SESSION_ID, SID): This is a cryptographically
 random and (probabilistically) globally unique identifier of the
 application layer session that is associated with a certain flow.
 Often there will only be one data flow for a given session, but in
 mobility/multihoming scenarios there may be more than one and they
 may be differently routed [RFC4080].

 Source or message source: The one of two adjacent NSLP peers that is
 sending a signaling message (maybe the upstream or the downstream
 peer). Note that this is not necessarily the QNI.

 QoS NSLP operation state: State used/kept by the QoS NSLP processing
 to handle messaging aspects.

 QoS reservation state: State used/kept by Resource Management
 Function to describe reserved resources for a session.

 Flow ID: This is essentially the Message Routing Information (MRI)

 in GIST for path-coupled signaling.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4080

Manner, et al. Expires August 10, 2008 [Page 6]

Internet-Draft QoS NSLP February 2008

 Figure 1 shows the components that have a role in a QoS NSLP
 signaling session. The flow sender and receiver would in most cases
 be part of the QNI and QNR nodes. Yet, these may be separate nodes,
 too.

 QoS NSLP nodes
 IP address (QoS unaware NSIS nodes are IP address
 = Flow not shown) = Flow
 Source | | | Destination
 Address | | | Address
 V V V
 +--------+ Data +------+ +------+ +------+ +--------+
 | Flow |-------|------|------|------|-------|------|---->| Flow |
 | Sender | Flow | | | | | | |Receiver|
 +--------+ | QNI | | QNE | | QNR | +--------+
 | | | | | |
 +------+ +------+ +------+
 =====================>
 <=====================
 Signaling
 Flow

 Figure 1: Components of the QoS NSLP architecture

 A glossary of terms and abbreviations used in this document can be
 found in Appendix B.

3. Protocol Overview

3.1. Overall Approach

 This section presents a logical model for the operation of the QoS
 NSLP and associated provisioning mechanisms within a single node.
 The model is shown in Figure 2.

Manner, et al. Expires August 10, 2008 [Page 7]

Internet-Draft QoS NSLP February 2008

 +---------------+
 | Local |
 |Applications or|
 |Management (e.g|
 |for aggregates)|
 +---------------+
 ^
 V
 V
 +----------+ +----------+ +---------+
 | QoS NSLP | | Resource | | Policy |
 |Processing|<<<<<<>>>>>>>|Management|<<<>>>| Control |
 +----------+ +----------+ +---------+
 . ^ | * ^
 | V . * ^
 +----------+ * ^
 | NTLP | * ^
 |Processing| * V
 +----------+ * V
 | | * V
 ++
 . . * V
 | | *
 . . * . Traffic Control .
 | | * . +---------+.
 . . * . |Admission|.
 | | * . | Control |.
 +----------+ +------------+ . +---------+.
 <-.-| Input | | Outgoing |-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.->
 | Packet | | Interface | .+----------+ +---------+.
 ===>|Processing|====| Selection |===.| Packet |====| Packet |.==>
 | | |(Forwarding)| .|Classifier| Scheduler|.
 +----------+ +------------+ .+----------+ +---------+.

 <.-.-> = signaling flow
 =====> = data flow (sender --> receiver)
 <<<>>> = control and configuration operations
 ****** = routing table manipulation

 Figure 2: QoS NSLP in a Node

 This diagram shows an example implementation scenario where QoS
 conditioning is performed on the output interface. However, this
 does not limit the possible implementations. For example, in some
 cases traffic conditioning may be performed on the incoming
 interface, or it may be split over the input and output interfaces.
 Also, the interactions with the Policy Control component may be more
 complex, involving interaction with the Resource Management Function,

Manner, et al. Expires August 10, 2008 [Page 8]

Internet-Draft QoS NSLP February 2008

 and the AAA infrastructure.

 From the perspective of a single node, the request for QoS may result
 from a local application request, or from processing an incoming QoS
 NSLP message. The request from a local application includes not only
 user applications (e.g., multimedia applications) but also network
 management (e.g. initiating a tunnel to handle an aggregate, or
 interworking with some other reservation protocol - such as RSVP) and
 the policy control module (e.g., for explicit teardown triggered by
 AAA). In this sense, the model does not distinguish between hosts
 and routers.

 Incoming messages are captured during input packet processing and
 handled by GIST. Only messages related to QoS are passed to the QoS
 NSLP. GIST may also generate triggers to the QoS NSLP (e.g.,
 indications that a route change has occurred). The QoS request is
 handled by the RMF, which coordinates the activities required to
 grant and configure the resource. It also handles policy-specific
 aspects of QoS signaling.

 The grant processing involves two local decision modules, 'policy
 control' and 'admission control'. Policy control determines whether
 the user is authorized to make the reservation. Admission control
 determines whether the network of the node has sufficient available
 resources to supply the requested QoS. If both checks succeed,
 parameters are set in the packet classifier and in the link layer
 interface (e.g., in the packet scheduler) to obtain the desired QoS.
 Error notifications are passed back to the request originator. The
 resource management function may also manipulate the forwarding
 tables at this stage, to select (or at least pin) a route; this must
 be done before interface-dependent actions are carried out (including
 sending outgoing messages over any new route), and is in any case
 invisible to the operation of the protocol.

 Policy control is expected to make use of the authentication
 infrastructure or the authentication protocols external to the node
 itself. Some discussion can be found in a separate document on
 authorization issues [qos-auth]. More generally, the processing of
 policy and resource management functions may be outsourced to an
 external node leaving only 'stubs' co-located with the NSLP node;
 this is not visible to the protocol operation. A more detailed
 discussion of authentication and authorization can be found in

Section 3.1.3.

 Admission control, packet scheduling, and any part of policy control
 beyond simple authorization have to be implemented using specific
 definitions for types and levels of QoS. A key assumption is made
 that the QoS NSLP is independent of the QoS parameters (e.g., IntServ

Manner, et al. Expires August 10, 2008 [Page 9]

Internet-Draft QoS NSLP February 2008

 service elements). These are captured in a QoS Model and interpreted
 only by the resource management and associated functions, and are
 opaque to the QoS NSLP itself. QoS Models are discussed further in

Section 3.1.2.

 The final stage of processing for a resource request is to indicate
 to the QoS NSLP protocol processing that the required resources have
 been configured. The QoS NSLP may generate an acknowledgment message
 in one direction, and may forward the resource request in the other.
 Message routing is carried out by the GIST module. Note that while
 Figure 2 shows a unidirectional data flow, the signaling messages can
 pass in both directions through the node, depending on the particular
 message and orientation of the reservation.

3.1.1. Protocol Messages

 The QoS NSLP uses four message types:

 RESERVE: The RESERVE message is the only message that manipulates QoS
 NSLP reservation state. It is used to create, refresh, modify and
 remove such state. The result of a RESERVE message is the same
 whether a message is received once or many times.

 QUERY: A QUERY message is used to request information about the data
 path without making a reservation. This functionality can be used to
 reservations or for support of certain QoS models. The information
 obtained from a QUERY may be used in the admission control process of
 a QNE (e.g., in case of measurement-based admission control). Note
 that a QUERY does not change existing reservation state.

 RESPONSE: The RESPONSE message is used to provide information about
 the result of a previous QoS NSLP message. This includes explicit
 confirmation of the state manipulation signaled in the RESERVE
 message, the response to a QUERY message or an error code if the QNE
 or QNR is unable to provide the requested information or if the
 response is negative. The RESPONSE message does not cause any
 reservation state to be installed or modified.

 NOTIFY: NOTIFY messages are used to convey information to a QNE.
 They differ from RESPONSE messages in that they are sent
 asynchronously and need not refer to any particular state or
 previously received message. The information conveyed by a NOTIFY
 message is typically related to error conditions. Examples would be
 notification to an upstream peer about state being torn down or to
 indicate when a reservation has been preempted.

 QoS NSLP messages are sent peer-to-peer. This means that a QNE
 considers its adjacent upstream or downstream peer to be the source

Manner, et al. Expires August 10, 2008 [Page 10]

Internet-Draft QoS NSLP February 2008

 of each message.

 Each protocol message has a common header which indicates the message
 type and contains various flag bits. Message formats are defined in

Section 5.1.2. Message processing rules are defined in Section 5.4.

 QoS NSLP messages contain three types of objects:

 1. Control Information: Control information objects carry general
 information for the QoS NSLP processing, such as sequence numbers or
 whether a response is required.

 2. QoS specifications (QSPECs): QSPEC objects describe the actual
 resources that are required and depend on the QoS model being used.
 Besides any resource description they may also contain other control
 information used by the RMF's processing.

 3. Policy objects: Policy objects contain data used to authorize the
 reservation of resources.

 Object formats are defined in Section 5.1.3. Object processing rules
 are defined in Section 5.3.

3.1.2. QoS Models and QoS Specifications

 The QoS NSLP provides flexibility over the exact patterns of
 signaling messages that are exchanged. The decoupling of QoS NSLP
 and QSPEC allows the QoS NSLP to be ignorant about the ways in which
 traffic, resources, etc. are described, and it can treat the QSPEC as
 an opaque object. Various QoS models can be designed, and these do
 not affect the specification of the QoS NSLP protocol. Only the RMF
 specific to a given QoS model will need to interpret the QSPEC. The
 Resource Management Function (RMF) reserves resources for each flow.

 The QSPEC fulfills a similar purpose to the TSpec, RSpec and AdSpec
 objects used with RSVP and specified in RFC 2205 [RFC2205] and RFC

2210 [RFC2210]. At each QNE, the content of the QSPEC is interpreted
 by the Resource Management Function and the Policy Control Function
 for the purposes of traffic and policy control (including admission
 control and configuration of the packet classifier and scheduler).

 The QoS NSLP does not mandate any particular behavior for the RMF,
 instead providing interoperability at the signaling protocol level
 whilst leaving the validation of RMF behavior to contracts external
 to the protocol itself. The RMF may make use of various elements
 from the QoS NSLP message, not only the QSPEC object.

 Still, this specification assumes that resource sharing is possible

https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2210
https://datatracker.ietf.org/doc/html/rfc2210
https://datatracker.ietf.org/doc/html/rfc2210

Manner, et al. Expires August 10, 2008 [Page 11]

Internet-Draft QoS NSLP February 2008

 between flows with the same SESSION_ID that originate from the same
 QNI or between flows with a different SESSION_ID that are related
 through the BOUND_SESSION_ID object. For flows with the same
 SESSION_ID, resource sharing is only applicable when the existing
 reservation is not just replaced (which is indicated by the REPLACE
 flag in the common header). We assume that the QoS model supports
 resource sharing between flows. A QoS Model may elect to implement a
 more general behavior of supporting relative operations on existing
 reservations, such as ADDING or SUBTRACTING a certain amount of
 resources from the current reservation. A QoS Model may also elect
 to allow resource sharing more generally, e.g., between all flows
 with the same DSCP.

 The QSPEC carries a collection of objects that can describe QoS
 specifications in a number of different ways. A generic template is
 defined in [I-D.ietf-nsis-qspec] and contains object formats for
 generally useful elements of the QoS description, which is designed
 to ensure interoperability when using the basic set of objects. A
 QSPEC describing the resources requested will usually contain objects
 which need to be understood by all implementations, and it can also
 be enhanced with additional objects specific to a QoS model to
 provide a more exact definition to the RMF, which may be better able
 to use its specific resource management mechanisms (which may, e.g.,
 be link specific) as a result.

 A QoS Model defines the behavior of the RMF, including inputs and
 outputs, and how QSPEC information is used to describe resources
 available, resources required, traffic descriptions, and control
 information required by the RMF. A QoS Model also describes the
 minimum set of parameters QNEs should use in the QSPEC when signaling
 about this QoS Model.

 QoS Models may be local (private to one network), implementation/
 vendor specific, or global (implementable by different networks and
 vendors). All QSPECs should follow the design of the QSPEC template.

 The definition of a QoS model may also have implications on how local
 behavior should be implemented in the areas where the QoS NSLP gives
 freedom to implementers. For example, it may be useful to identify
 recommended behavior for how a RESERVE message that is forwarded
 relates to that received, or when additional signaling sessions
 should be started based on existing sessions, such as required for
 aggregate reservations. In some cases, suggestions may be made on
 whether state that may optionally be retained should be held in
 particular scenarios. A QoS model may specify reservation
 preemption, e.g., an incoming resource request may cause removal of
 an earlier established reservation.

Manner, et al. Expires August 10, 2008 [Page 12]

Internet-Draft QoS NSLP February 2008

3.1.3. Policy Control

 Getting access to network resources, e.g., network access in general
 or access to QoS, typically involves some kind of policy control.
 One example of this is authorization of the resource requester.
 Policy control for QoS NSLP resource reservation signaling is
 conceptually organized as illustrated below in Figure 3.

 +-------------+
 | Policy |
 | Decision |
 | Point (PDP) |
 +------+------+
 |
 /-\-----+-----/\
 //// \\\\
 || ||
 | Policy transport |
 || ||
 \\\\ ////
 \-------+------/
 |
 +-------------+ QoS signaling +------+------+
 | Entity |<==============>| QNE = Policy|<=========>
 | requesting | Data Flow | Enforcement |
 | resource |----------------|-Point (PEP)-|---------->
 +-------------+ +-------------+

 Figure 3: Policy control with the QoS NSLP signaling

 From the QoS NSLP point of view, the policy control model is
 essentially a two-party model between neighboring QNEs. The actual
 policy decision may depend on the involvement of a third entity (the
 policy decision point, PDP), but this happens outside of the QoS NSLP
 protocol by means of existing policy infrastructure (COPS, Diameter,
 etc). The policy control model for the entire end-to-end chain of
 QNEs is therefore one of transitivity, where each of the QNEs
 exchanges policy information with its QoS NSLP policy peer.

 The authorization of a resource request often depends on the identity
 of the entity making the request. Authentication may be required.
 The GIST channel security mechanisms provide one way of
 authenticating the QoS NSLP peer which sent the request, and so may
 be used in making the authorization decision.

 Additional information might also be provided in order to assist in
 making the authorization decision. This might include alternative
 methods of authenticating the request.

Manner, et al. Expires August 10, 2008 [Page 13]

Internet-Draft QoS NSLP February 2008

 The QoS NSLP does not contain objects to carry authorization
 information. At the time of writing, there exists a separate work
 [I-D.manner-nsis-nslp-auth] that defines this functionality for the
 QoS NSLP and the NATFW NSLP.

 It is generally assumed that policy enforcement is likely to
 concentrate on border nodes between administrative domains. This may
 mean that nodes within the domain are "Policy Ignorant Nodes" that
 perform no per-request authentication or authorization, relying on
 the border nodes to perform the enforcement. In such cases, the
 policy management between ingress and egress edge of a domain relies
 on the internal chain of trust between the nodes in the domain. If
 this is not acceptable, a separate signaling session can be set up
 between the ingress and egress edge nodes in order to exchange policy
 information.

3.2. Design Background

 This section presents some of the key functionality behind the
 specification of the QoS NSLP.

3.2.1. Soft States

 The NSIS protocol suite takes a soft-state approach to state
 management. This means that reservation state in QNEs must be
 periodically refreshed. The frequency with which state installation
 is refreshed is expressed in the REFRESH_PERIOD object. This object
 contains a value in milliseconds indicating how long the state that
 is signaled for remains valid. Maintaining the reservation beyond
 this lifetime can be done by sending a RESERVE message periodically.

3.2.2. Sender and Receiver Initiation

 The QoS NSLP supports both sender-initiated and receiver-initiated
 reservations. For a sender-initiated reservation, RESERVE messages
 travel in the same direction as the data flow that is being signaled
 for (the QNI is at the side of the source of the data flow). For a
 receiver-initiated reservation, RESERVE messages travel in the
 opposite direction (the QNI is at the side of the receiver of the
 data flow).

 Note: these definitions follow the definitions in Section 3.3.1. of
 RFC 4080 [RFC4080]. The main issue is, which node is in charge of
 requesting and maintaining the resource reservation. In a receiver-
 initiated reservation, even though the sender sends the initial
 QUERY, the receiver is still in charge of making the actual resource
 request, and maintaining the reservation.

https://datatracker.ietf.org/doc/html/rfc4080#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc4080#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc4080

Manner, et al. Expires August 10, 2008 [Page 14]

Internet-Draft QoS NSLP February 2008

3.2.3. Protection Against Message Re-ordering and Duplication

 RESERVE messages affect the installed reservation state. Unlike
 NOTIFY, QUERY and RESPONSE messages, the order in which RESERVE
 messages are received influences the eventual reservation state that
 will be stored at a QNE, that is, the most recent RESERVE message
 replaces the current reservation. Therefore, in order to protect
 against RESERVE message re-ordering or duplication, the QoS NSLP uses
 a Reservation Sequence Number (RSN). The RSN has local significance
 only, i.e., between a QNE and its downstream peers.

3.2.4. Explicit Confirmations

 A QNE may require a confirmation that the end-to-end reservation is
 in place, or a reply to a query along the path. For such requests,
 it must be able to keep track of which request each response refers
 to. This is supported by including a Request Identification
 Information (RII) object in a QoS NSLP message.

3.2.5. Reduced Refreshes

 For scalability, the QoS NSLP supports an abbreviated form of refresh
 RESERVE message. In this case, the refresh RESERVE references the
 reservation using the RSN and the SESSION_ID, and does not include
 the full reservation specification (including QSPEC). By default
 state refresh should be performed with reduced refreshes in order to
 save bytes during transmission. Stateless QNEs will require full
 refresh since they do not store the whole reservation information.

 If the stateful QNE does not support reduced refreshes, or there is a
 mismatch between the local and received RSN, the stateful QNE must
 reply with an RESPONSE carrying an INFO_SPEC indicating the error.
 Furthermore, the QNE must stop sending reduced refreshes to this peer
 if the error indicates lacking support for this feature.

3.2.6. Summary Refreshes and Summary Tear

 For limiting the number of individual messages, the QoS NSLP supports
 a summary refresh and summary tear messages. When sending a
 refreshing RESERVE for a certain (primary) session, a QNE may include
 a SESSION_ID_LIST object where the QNE indicates (secondary) sessions
 that are also refreshed. An RSN_LIST object must also be added. The
 SESSION IDs and RSNs are stacked in the objects such that the index
 in both stacks refer to the same reservation state, i.e., the
 SESSION_ID and RSN at index i in both objects refers to the same
 session. If the receiving stateful QNE notices unknown SESSION IDs
 or a mismatch with RSNs for a session, it will reply back to the
 upstream stateful QNE with an error.

Manner, et al. Expires August 10, 2008 [Page 15]

Internet-Draft QoS NSLP February 2008

 In order to tear down several sessions at once, a QNE may include
 SESSION_ID_LIST and RSN_LIST objects in a tearing reserve. The
 downstream stateful QNE must then also tear the other sessions
 indicated. The downstream stateful QNE must silently ignore any
 unknown SESSION IDs.

 GIST provides a SII_HANDLE for every downstream session. The
 SII_HANDLE identifies a peer, and should be the same for all sessions
 whose downstream peer is the same. The QoS NSLP uses this
 information to decide whether summary refresh messages can be sent,
 or when a summary tear is possible.

3.2.7. Message Scoping

 A QNE may use local policy when deciding whether to propagate a
 message or not. For example, the local policy can define/configure
 that a QNE is, for a particular session, a QNI and/or a QNR. The QoS
 NSLP also includes an explicit mechanism to restrict message
 propagation by means of a scoping mechanism.

 For a RESERVE or a QUERY message, two scoping flags limit the part of
 the path on which state is installed on the downstream nodes that can
 respond. When the SCOPING flag is set to zero, it indicates that the
 scope is "whole path" (default). When set to one, the scope is
 "single hop". When the PROXY scope flag is set, the path is
 terminated at a pre-defined Proxy QNE (P-QNE). This is similar to
 the Localized RSVP [lrsvp].

 The propagation of a RESPONSE message is limited by the RII object,
 which ensures that it is not forwarded back along the path further
 than the node that requested the RESPONSE.

3.2.8. Session Binding

 Session binding is defined as the enforcement of a relation between
 different QoS NSLP sessions (i.e., signaling flows with different
 SESSION_ID (SID) as defined in GIST [I-D.ietf-nsis-ntlp]).

 Session binding indicates an unidirectional dependency relation
 between two or more sessions by including a BOUND_SESSION_ID object.
 A session with SID_A (the binding session) can express its
 unidirectional dependency relation to another session with SID_B (the
 bound session) by including a BOUND_SESSION_ID object containing
 SID_B in its messages.

 The concept of session binding is used to indicate the unidirectional
 dependency relation between the end-to-end session and the aggregate
 session in case of aggregate reservations. In case of bidirectional

Manner, et al. Expires August 10, 2008 [Page 16]

Internet-Draft QoS NSLP February 2008

 reservations, it is used to express the unidirectional dependency
 relation between the sessions used for forward and reverse
 reservation. Typically, the dependency relation indicated by session
 binding is purely informative in nature and does not automatically
 trigger any implicit action in a QNE. A QNE may use the dependency
 relation information for local resource optimization or to explicitly
 tear down reservations that are no longer useful. However, by using
 an explicit binding code, see Section 5.1.3.4, it is possible to
 formalise this dependency relation, meaning that if the bound session
 (e.g., session with SID_B) is terminated also the binding session
 (e.g., the session with SID_A) must be terminated.

 A message may include more than one BOUND_SESSION_ID object. This
 may happen, e.g., in certain aggregation and bi-directional
 reservation scenarios, where an end-to-end session has an
 unidirectional dependency relation with an aggregate session and at
 the same time it has an unidirectional dependency relation with
 another session used for the reverse path.

3.2.9. Message Binding

 QoS NSLP supports binding of messages in order to allow for
 expressing dependencies between different messages. The message
 binding can indicate either a unidirectional or bidirectional
 dependency relation between two messages by including in one of the
 message the MSG_ID object ("binding message") and in the other
 message ("bound message") the BOUND_MSG_ID object. The
 unidirectional dependency means that only RESERVE messages are bound
 to each other whereas a bidirectional dependency means that there is
 also a dependency for the related RESPONSE messages. The message
 binding can be used to speed up signaling by starting two signaling
 exchanges simultaneously that are synchronized later by using message
 IDs. This can be used as an optimization technique for example in
 scenarios where aggregate reservations are used. Section 4.6
 provides more details.

3.2.10. Layering

 The QoS NSLP supports layered reservations. Layered reservations may
 occur when certain parts of the network (domains) implement one or
 more local QoS models, or when they locally apply specific transport
 characteristics (e.g., GIST unreliable transfer mode instead of
 reliable transfer mode). They may also occur when several per-flow
 reservations are locally combined into an aggregate reservation.

Manner, et al. Expires August 10, 2008 [Page 17]

Internet-Draft QoS NSLP February 2008

3.2.10.1. Local QoS Models

 A domain may have local policies regarding QoS model implementation,
 i.e., it may map incoming traffic to its own locally defined QoS
 models. The QSPEC allows this functionality, and the operation is
 transparent to the QoS NSLP. The use of local QoS models within a
 domain is performed in the RMF.

3.2.10.2. Local Control Plane Properties

 The way signaling messages are handled is mainly determined by the
 parameters that are sent over GIST-NSLP API and by the domain
 internal configuration. A domain may have a policy to implement
 local transport behavior. It may, for instance, elect to use an
 unreliable transport locally in the domain while still keeping end-
 to-end reliability intact.

 The QoS NSLP supports this situation by allowing two sessions to be
 set up for the same reservation. The local session has the desired
 local transport properties and is interpreted in internal QNEs. This
 solution poses two requirements: the end-to-end session must be able
 to bypass intermediate nodes and the egress QNE needs to bind both
 sessions together. Bypassing intermediate nodes is achieved with
 GIST. The local session and the end-to-end session are bound at the
 egress QNE by means of the BOUND_SESSION_ID object.

3.2.10.3. Aggregate Reservations

 In some cases it is desirable to create reservations for an
 aggregate, rather than on a per-flow basis, in order to reduce the
 amount of reservation state needed, as well as, the processing load
 for signaling messages. Note that the QoS NSLP does not specify how
 reservations need to be combined in an aggregate or how end-to-end
 properties need to be computed but only provides signaling support
 for it.

 The essential difference with the layering approaches described in
Section 3.2.10.1 and Section 3.2.10.2 is that the aggregate

 reservation needs a MRI that describes all traffic carried in the
 aggregate (e.g., a DSCP in case of IntServ over DiffServ). The need
 for a different MRI mandates the use of two different sessions,
 similar to Section 3.2.10.3 and to the RSVP aggregation solution in

RFC 3175 [RFC3175].

 Edge QNEs of the aggregation domain that want to maintain some end-
 to-end properties may establish a peering relation by sending the
 end-to-end message transparently over the domain (using the
 intermediate node bypass capability described above). Updating the

https://datatracker.ietf.org/doc/html/rfc3175
https://datatracker.ietf.org/doc/html/rfc3175

Manner, et al. Expires August 10, 2008 [Page 18]

Internet-Draft QoS NSLP February 2008

 end-to-end properties in this message may require some knowledge of
 the aggregated session (e.g., for updating delay values). For this
 purpose, the end-to-end session contains a BOUND_SESSION_ID carrying
 the SESSION_ID of the aggregate session.

3.2.11. Support for Request Priorities

 This specification acknowledges the fact that in some situations,
 some messages or some reservations may be more important than others
 and therefore foresees mechanisms to give these messages or
 reservations priority.

 Priority of certain signaling messages over others may be required in
 mobile scenarios when a message loss during call set-up is less
 harmful than during handover. This situation only occurs when GIST
 or QoS NSLP processing is the congested part or scarce resource.

 Priority of certain reservations over others may be required when QoS
 resources are oversubscribed. In that case, existing reservations
 may be preempted in order to make room for new higher-priority
 reservations. A typical approach to deal with priority and
 preemption is through the specification of a setup priority and
 holding priority for each reservation. The resource management
 function at each QNE then keeps track of the resource consumption at
 each priority level. Reservations are established when resources, at
 their setup priority level, are still available. They may cause
 preemption of reservations with a lower holding priority than their
 setup priority.

 Support of reservation priority is a QSPEC parameter and therefore
 outside the scope of this specification. The GIST specification
 provides a mechanism to support a number of levels of message
 priority that can be requested over the NSLP-GIST API.

3.2.12. Rerouting

 The QoS NSLP needs to adapt to route changes in the data path. This
 assumes the capability to detect rerouting events, create a QoS
 reservation on the new path and optionally tear down reservations on
 the old path.

 From an NSLP perspective, rerouting detection can be performed in two
 ways. It can either come through NetworkNotification from GIST, or
 from information seen at the NSLP. In the latter case, the QoS NSLP
 node is able to detect changes in its QoS NSLP peers by keeping track
 of a Source Identification Information (SII) handle that provides
 information similar in nature to the RSVP_HOP object described in RFC

2205 [RFC2205]. When a RESERVE message with an existing SESSION_ID

https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205

Manner, et al. Expires August 10, 2008 [Page 19]

Internet-Draft QoS NSLP February 2008

 and a different SII is received, the QNE knows its upstream or
 downstream peer has changed, for sender-oriented and receiver-
 oriented reservations, respectively.

 Reservation on the new path happens when a RESERVE message arrives at
 the QNE beyond the point where the old and new paths diverge. If the
 QoS NSLP suspects that a reroute has occurred, then a full RESERVE
 message (including the QSPEC) would be sent. A refreshing RESERVE
 (with no QSPEC) will be identified as an error by a QNE on the new
 path which does not have the reservation installed (i.e. it was not
 on the old path) or which previously had a different previous-hop
 QNE. It will send back an error message which results in a full
 RESERVE message being sent. Rapid recovery at the NSLP layer
 therefore requires short refresh periods. Detection before the next
 RESERVE message arrives is only possible at the IP layer or through
 monitoring of GIST peering relations (e.g., by TTL counting the
 number of GIST hops between NSLP peers or the observing changes in
 the outgoing interface towards GIST peer). These mechanisms can
 provide implementation specific optimizations, and are outside the
 scope of this specification.

 When the QoS NSLP is aware of the route change, it needs to set up
 the reservation on the new path. This is done by sending a new
 RESERVE message. If the next QNE is, in fact, unchanged then this
 will be used to refresh/update the existing reservation. Otherwise
 it will lead to the reservation being installed on the new path.

 Note that the operation for a receiver-initiated reservation session
 differs a bit from the above description. If the routing changes in
 the middle of the path, the QNE that notices that its downstream path
 changed, the divergence point, must send a QUERY with the R-flag
 downstream. It will be processed as above, and at some point hits a
 QNE for which the path downstream towards the QNI remains (the
 convergence point). This node must then send a full RESERVE upstream
 to set up the reservation state along the new path. It should not
 send the QUERY further downstream, since this would have no real use.
 Similarly, when the QNE that sent the QUERY receives the RESERVE, it
 should not send the RESERVE further upstream.

 After the reservation on the new path is set up, the branching node
 may want to tear down the reservation on the old path (sooner than
 would result from normal soft-state time-out). This functionality is
 supported by keeping track of the old SII-Handle provided over the
 GIST API. This handle can be used by the QoS NSLP to route messages
 explicitly to the next node.

 If the old path is downstream, the QNE can send a tearing RESERVE
 using the old SII-Handle. If the old path is upstream, the QNE can

Manner, et al. Expires August 10, 2008 [Page 20]

Internet-Draft QoS NSLP February 2008

 send a NOTIFY with the code for "Route Change". This is forwarded
 upstream until it hits a QNE that can issue a tearing RESERVE
 downstream. A separate document discusses in detail the effect of
 mobility on the QoS NSLP signaling
 [I-D.ietf-nsis-applicability-mobility-signaling].

 A QNI or a branch node may wish to keep the reservation on the old
 branch. This could for instance be the case when a mobile node has
 experienced a mobility event and wishes to keep reservation to its
 old attachment point in case it moves back there. For this purpose,
 a REPLACE flag is provided in the QoS NSLP common header, which, when
 not set, indicates that the reservation on the old branch should be
 kept.

 Note that keeping old reservations affects the resources available to
 other nodes. Thus, the operator of the access network must make the
 final decision on whether this behavior is allowed. Also, the QNEs
 in the access network may add this flag even if the mobile node has
 not used the flag initially.

3.2.12.1. Last Node Behavior

 The design of the QoS NSLP allows reservations to be installed at a
 subset of the nodes along a path. In particular, usage scenarios
 include cases where the data flow endpoints do not support the QoS
 NSLP.

 In the case where the data flow receiver does not support the QoS
 NSLP, some particular considerations must be given to node discovery
 and rerouting at the end of the signaling path.

 There are three cases for the last node on the signaling path: 1)
 Last node is the data receiver 2) Last node is a configured proxy for
 the data receiver 3) Last node is not the data receiver and is not
 explicitly configured to act as a signaling proxy on behalf of the
 data receiver.

 Cases (1) and (2) can be handled by the QoS NSLP itself during the
 initial path setup, since the QNE knows that it should terminate the
 signaling. Case (3) requires some assistance from GIST which
 provides messages across the API to indicate that no further QoS NSLP
 supporting GIST nodes are present downstream, and downstream route
 change probing needs to continue once the reservation is installed to
 detect any changes in this situation.

 Two particular scenarios need to be considered in this third case.
 In the first, referred to as "Path Extension", rerouting occurs such
 that an additional QNE is inserted into the signaling path between

Manner, et al. Expires August 10, 2008 [Page 21]

Internet-Draft QoS NSLP February 2008

 the old last node and the data receiver, as shown in Figure 4.

 /-------\ Initial route
 / v
 /-\
 /--|B|--\ +-+
 / \-/ \ |x| = QoS NSLP aware
 +-+ /-\ +-+
 ----|A| |D|
 +-+ \-/ /-\
 \ +-+ / |x| = QoS NSLP unaware
 \--|C|--/ \-/
 +-+
 \ ^
 \-------/ Updated route

 Figure 4: Path Extension

 When rerouting occurs, the data path changes from A-B-D to A-C-D.
 Initially the signaling path ends at A. Despite initially being the
 last node, node A needs to continue to attempt to send messages
 downstream to probe for path changes, unless it has been explicitly
 configured as a signaling proxy for the data flow receiver. This is
 required so that the signaling path change is detected, and C will
 become the new last QNE.

 In a second case, referred to as "Path Truncation", rerouting occurs
 such that the QNE that was the last node on the signaling path is no
 longer on the data path. This is shown in Figure 5.

 /-------\ Initial route
 / v
 +-+
 /--|B|--\ +-+
 / +-+ \ |x| = QoS NSLP aware
 +-+ /-\ +-+
 ----|A| |D|
 +-+ \-/ /-\
 \ /-\ / |x| = QoS NSLP unaware
 \--|C|--/ \-/
 \-/
 \ ^
 \-------/ Updated route

 Figure 5: Path Truncation

 When rerouting occurs, the data path again changes from A-B-D to A-C-
 D. The signaling path initially ends at B, but this node is not on

Manner, et al. Expires August 10, 2008 [Page 22]

Internet-Draft QoS NSLP February 2008

 the new path. In this case, the normal GIST path change detection
 procedures at A will detect the path change and notify the QoS NSLP.
 GIST will also notify the signaling application that no downstream
 GIST nodes supporting the QoS NSLP are present. Node A will take
 over as the last node on the signaling path.

3.2.12.2. Handling Spurious Route Change Notifications

 The QoS NSLP is notified by GIST (with the NetworkNotification
 primitive) when GIST believes that a rerouting event may have
 occurred. In some cases, events that are detected as possible route
 changes will turn out not to be. The QoS NSLP will not always be
 able to detect this, even after receiving messages from the 'new'
 peer.

 As part of the RecvMessage API primitive, GIST provides an SII-Handle
 which can be used by the NSLP to direct a signaling message to a
 particular peer. The current SII-Handle will change if the signaling
 peer changes. However, it is not guaranteed to remain the same after
 a rerouting event where the peer does not change. Therefore, the QoS
 NSLP mechanism for reservation maintenance after a route change
 includes robustness mechanisms to avoid accidentally tearing down a
 reservation in situations where the peer QNE has remained the same
 after a 'route change' notification from GIST.

 A simple example that illustrates the problem is shown in Figure 6
 below.

 (1) +-+
 /-----\ |x| = QoS NSLP aware
 +-+ /-\ (3) +-+ +-+
 ----|A| |B|-----|C|----
 +-+ \-/ +-+ /-\
 \-----/ |x| = QoS NSLP unaware
 (2) \-/

 Figure 6: Spurious reroute alerting

 In this example the initial route A-B-C uses links (1) and (3).
 After link (1) fails, the path is rerouted using links (2) and (3).
 The set of QNEs along the path is unchanged (it is A-C in both cases,
 since B does not support the QoS NSLP).

 When the outgoing interface at A has changes, GIST may signal across
 its API to the NSLP with a NetworkNotification. The QoS NSLP at A
 will then attempt to repair the path by installing the reservation on
 the path (2),(3). In this case, however, the old and new paths are
 the same.

Manner, et al. Expires August 10, 2008 [Page 23]

Internet-Draft QoS NSLP February 2008

 To install the new reservation A will send a RESERVE message, which
 GIST will transport to C (discovering the new next peer as
 appropriate). The RESERVE also requests a RESPONSE from the QNR.
 When this RESERVE message is received through the RecvMessage API
 call from GIST at the QoS NSLP at C, the SII-Handle will be unchanged
 from its previous communications from A.

 A RESPONSE message will be sent by the QNR, and be forwarded from C
 to A. This confirms that the reservation was installed on the new
 path. The SII-Handle passed with the RecvMessage call from GIST to
 the QoS NSLP will be different to that seen previously, since the
 interface being used on A has changed.

 At this point A can attempt to tear down the reservation on the old
 path. The RESERVE message with the TEAR flag set is sent down the
 old path by using the GIST explicit routing mechanism and specifying
 the SII-Handle relating to the 'old' peer QNE.

 If RSNs were being incremented for each of these RESERVE and RESERVE-
 with-TEAR messages the reservation would be torn down at C and any
 QNEs further along the path. To avoid this the RSN is used in a
 special way. The RESERVE down the new path is sent with the new
 current RSN set to the old RSN plus 2. The RESERVE-with-TEAR down
 the old path is sent with an RSN set to the new current RSN minus 1.
 This is the peer from which it was receiving RESERVE messages (see

Section 5.2.5.2 for more details).

3.2.13. Pre-emption

 The QoS NSLP provides building blocks to implement pre-emption. This
 specification does not define how pre-emption should work, but only
 provides signaling mechanisms that can be used by QoS Models. For
 example, an INFO_SPEC object can be added to messages to indicate
 that the signaled session was pre-empted. A BOUND_SESSION_ID object
 can carry the Session ID of the flow that caused the pre-emption to
 happen for the signaled session. How these are used by QoS Models is
 out of scope of the QoS NSLP specification.

3.3. GIST Interactions

 The QoS NSLP uses GIST for delivery of all its messages. Messages
 are passed from the NSLP to GIST via an API (defined in Appendix B of
 [I-D.ietf-nsis-ntlp]), which also specifies additional information,
 including an identifier for the signaling application (e.g., 'QoS
 NSLP'), session identifier, MRI, and an indication of the intended
 direction - towards data sender or receiver. On reception, GIST
 provides the same information to the QoS NSLP. In addition to the
 NSLP message data itself, other meta-data (e.g. session identifier

Manner, et al. Expires August 10, 2008 [Page 24]

Internet-Draft QoS NSLP February 2008

 and MRI) can be transferred across this interface.

 The QoS NSLP keeps message and reservation state per session. A
 session is identified by a Session Identifier (SESSION_ID). The
 SESSION_ID is the primary index for stored NSLP state and needs to be
 constant and unique (with a sufficiently high probability) along a
 path through the network. The QoS NSLP picks a value for Session-ID.

 This value is subsequently used by GIST and the QoS NSLP to refer to
 this session.

 Currently, the QoS NSLP specification considers mainly the path-
 coupled MRM. However, extensions may specify how other types of MRMs
 may be applied in combination with the QoS NSLP.

 When GIST passes the QoS NSLP data to the NSLP for processing, it
 must also indicate the value of the 'D' (Direction) flag for that
 message in the MRI.

 The QoS NSLP does not provide any method of interacting with
 firewalls or Network Address Translators (NATs). It assumes that a
 basic NAT traversal service is provided by GIST.

3.3.1. Support for Bypassing Intermediate Nodes

 The QoS NSLP may want to restrict the handling of its messages to
 specific nodes. This functionality is needed to support layering
 (explained in Section 3.2.10), when only the edge QNEs of a domain
 process the message. This requires a mechanism at GIST level (which
 can be invoked by the QoS NSLP) to bypass intermediate nodes between
 the edges of the domain.

 The intermediate nodes are bypassed using multiple levels of the
 router alert option. In that case, internal routers are configured
 to handle only certain levels of router alerts. This is accomplished
 by marking the signaling messages, i.e., modifying the QoS NSLP
 default NSLP-ID value to another NSLP-ID predefined value. The
 marking is accomplished by the ingress edge by modifying the QoS NSLP
 default NSLP-ID value to a NSLP-ID predefined value, see Section 6.6.
 The egress stops this marking process by reassigning the QoS NSLP
 default NSLP-ID value to the original RESERVE message. The exact
 operation of modifying the NSLP-ID must be specified in the relevant
 QoS model specification.

3.3.2. Support for Peer Change Identification

 There are several circumstances where it is necessary for a QNE to
 identify the adjacent QNE peer, which is the source of a signaling

Manner, et al. Expires August 10, 2008 [Page 25]

Internet-Draft QoS NSLP February 2008

 application message; e.g., it may be to apply the policy that "state
 can only be modified by messages from the node that created it" or it
 might be that keeping track of peer identity is used as a (fallback)
 mechanism for rerouting detection at the NSLP layer.

 This functionality is implemented in GIST service interface with SII-
 handle. As shown in the above example, we assume the SII- handling
 will support both own SII and peer SII.

 Keeping track of the SII of a certain reservation also provides a
 means for the QoS NSLP to detect route changes. When a QNE receives
 a RESERVE referring to existing state but with a different SII, it
 knows that its upstream peer has changed. It can then use the old
 SII to initiate a teardown along the old section of the path. This
 functionality is supported in GIST service interface when the peer's
 SII which is stored on message reception is passed to GIST upon
 message transmission.

3.3.3. Support for Stateless Operation

 Stateless or reduced state QoS NSLP operation makes the most sense
 when some nodes are able to operate in a stateless way at GIST level
 as well. Such nodes should not worry about keeping reverse state,
 message fragmentation and reassembly (at GIST), congestion control or
 security associations. A stateless or reduced state QNE will be able
 to inform the underlying GIST of this situation. GIST service
 interface supports this functionality with the Retain-State attribute
 in the MessageReceived primitive.

3.3.4. Priority of Signaling Messages

 The QoS NSLP will generate messages with a range of performance
 requirements for GIST. These requirements may result from a
 prioritization at the QoS NSLP (Section 3.2.11) or from the
 responsiveness expected by certain applications supported by the QoS
 NSLP. GIST service interface supports this with the 'priority'
 transfer attribute.

3.3.5. Knowledge of Intermediate QoS NSLP Unaware Nodes

 In some cases it is useful to know that there are routers along the
 path where QoS cannot be provided. The GIST service interface
 supports this by keeping track of IP-TTL and Original-TTL in the
 RecvMessage primitive. A difference between the two indicates the
 number of QoS NSLP unaware nodes. In this case the QNE that detects
 this difference should set the "B" (BREAK) flag. If a QNE generates
 a QUERY, RESERVE or RESPONSE message, after receiving a QUERY or
 RESERVE message with a "Break" flag set, it can set the "B" (BREAK)

Manner, et al. Expires August 10, 2008 [Page 26]

Internet-Draft QoS NSLP February 2008

 flag in these messages. There are however, situations where the
 egress QNE in a local domain may have some other means to provide QoS
 [I-D.ietf-nsis-qspec]. For example, in an RMD-QOSM
 [I-D.ietf-nsis-rmd] (or RMD-QOSM like) aware local domain that uses
 either NTLP stateless nodes or NSIS unaware nodes the end to end
 RESERVE or QUERY message bypasses these NTLP stateless or NSIS
 unaware nodes. However, the reservation within the local domain can
 be signaled by the RMD-QOSM (or RMD-QOSM like QOSM). In such
 situations, the "B" (BREAK) flag in the end to end RESERVE or QUERY
 message should not be set by the edges of the local domain.

4. Examples of QoS NSLP Operation

 The QoS NSLP can be used in a number of ways. The examples given
 here give an indication of some of the basic processing. However,
 they are not exhaustive and do not attempt to cover the details of
 the protocol processing.

4.1. Sender-initiated Reservation

 QNI QNE QNE QNR
 | | | |
 | RESERVE | | |
 +--------->| | |
 | | RESERVE | |
 | +--------->| |
 | | | RESERVE |
 | | +--------->|
 | | | |
 | | | RESPONSE |
 | | |<---------+
 | | RESPONSE | |
 | |<---------+ |
 | RESPONSE | | |
 |<---------+ | |
 | | | |
 | | | |

 Figure 7: Basic Sender Initiated Reservation

 To make a new reservation, the QNI constructs a RESERVE message
 containing a QSPEC object, from its chosen QoS model, which describes
 the required QoS parameters.

 The RESERVE message is passed to GIST which transports it to the next
 QNE. There it is delivered to the QoS NSLP processing which examines
 the message. Policy control and admission control decisions are

Manner, et al. Expires August 10, 2008 [Page 27]

Internet-Draft QoS NSLP February 2008

 made. The exact processing also takes into account the QoS model
 being used. The node performs appropriate actions (e.g., installing
 reservation) based on the QSPEC object in the message.

 The QoS NSLP then generates a new RESERVE message (usually based on
 the one received). This is passed to GIST, which forwards it to the
 next QNE.

 The same processing is performed at further QNEs along the path, up
 to the QNR. The determination that a node is the QNR may be made
 directly (e.g., that node is the destination for the data flow), or
 using GIST functionality to determine that there are no more QNEs
 between this node and the data flow destination.

 Any node may include a request for a RESPONSE in its RESERVE
 messages. It does so by including a Request Identification
 Information (RII) object in the RESERVE message. If the message
 already includes an RII, an interested QNE must not add a new RII
 object nor replace the old RII object. Instead it needs to remember
 the RII value so that it can match a RESPONSE message belonging to
 the RESERVE. When it receives the RESPONSE, it forwards the RESPONSE
 upstream towards the RII originating node.

 In this example, the RESPONSE message is forwarded peer-to-peer along
 the reverse of the path that the RESERVE message took (using GIST
 path state), and so is seen by all the QNEs on this segment of the
 path. It is only forwarded as far as the node which requested the
 RESPONSE originally.

 The reservation can subsequently be refreshed by sending further
 RESERVE messages containing the complete reservation information, as
 for the initial reservation. The reservation can also be modified in
 the same way, by changing the QSPEC data to indicate a different set
 of resources to reserve.

 The overhead required to perform refreshes can be reduced, in a
 similar way to that proposed for RSVP in RFC 2961 [RFC2961]. Once a
 RESPONSE message has been received indicating the successful
 installation of a reservation, subsequent refreshing RESERVE messages
 can simply refer to the existing reservation, rather than including
 the complete reservation specification.

4.2. Sending a Query

 QUERY messages can be used to gather information from QNEs along the
 path. For example, they can be used to find out what resources are
 available before a reservation is made.

https://datatracker.ietf.org/doc/html/rfc2961
https://datatracker.ietf.org/doc/html/rfc2961

Manner, et al. Expires August 10, 2008 [Page 28]

Internet-Draft QoS NSLP February 2008

 In order to perform a query along a path, the QNE constructs a QUERY
 message. This message includes a QSPEC containing the actual query
 to be performed at QNEs along the path. It also contains an RII
 object used to match the response back to the query, and an indicator
 of the query scope (next node, whole path, proxy). The QUERY message
 is passed to GIST to forward it along the path.

 A QNE receiving a QUERY message should inspect it and create a new
 message, based on that received with the query objects modified as
 required. For example, the query may request information on whether
 a flow can be admitted, and so a node processing the query might
 record the available bandwidth. The new message is then passed to
 GIST for further forwarding (unless it knows it is the QNR, or is the
 limit for the scope in the QUERY).

 At the QNR, a RESPONSE message must be generated if the QUERY message
 includes a Request Identification Information (RII) object. Various
 objects from the received QUERY message have to be copied into the
 RESPONSE message. It is then passed to GIST to be forwarded peer-to-
 peer back along the path.

 Each QNE receiving the RESPONSE message should inspect the RII object
 to see if it 'belongs' to it (i.e., it was the one that originally
 created it). If it does not then it simply passes the message back
 to GIST to be forwarded upstream.

 If there was an error in processing a RESERVE, instead of an RII, the
 RESPONSE may carry an RSN. Thus, a QNE must also be prepared to look
 for an RSN object if no RII was present, and act based on the error
 code set in the INFO_SPEC of the RESPONSE.

4.3. Basic Receiver-initiated Reservation

 As described in the NSIS framework [RFC4080] in some signaling
 applications, a node at one end of the data flow takes responsibility
 for requesting special treatment - such as a resource reservation -
 from the network. Both ends then agree whether sender or receiver-
 initiated reservation is to be done. In case of a receiver initiated
 reservation, both ends agree whether a "One Pass With Advertising"
 (OPWA) [opwa95] model is being used. This negotiation can be
 accomplished using mechanisms that are outside the scope of NSIS.

 To make a receiver-initiated reservation, the QNR constructs a QUERY
 message, which may contain a QSPEC object from its chosen QoS model
 (see Figure 8). The QUERY must have the RESERVE-INIT flag set. This
 QUERY message does not need to trigger a RESPONSE message and
 therefore, the QNI must not include the RII object (Section 5.4.2) in
 the QUERY message. The QUERY message may be used to gather

https://datatracker.ietf.org/doc/html/rfc4080

Manner, et al. Expires August 10, 2008 [Page 29]

Internet-Draft QoS NSLP February 2008

 information along the path, which is carried by the QSPEC object. An
 example of such information is the "One Pass With Advertising" (OPWA)
 [opwa95]. This QUERY message causes GIST reverse-path state to be
 installed.

 QNR QNE QNE QNI
 sender receiver
 | | | |
 | QUERY | | |
 +--------->| | |
 | | QUERY | |
 | +--------->| |
 | | | QUERY |
 | | +--------->|
 | | | |
 | | | RESERVE |
 | | |<---------+
 | | RESERVE | |
 | |<---------+ |
 | RESERVE | | |
 |<---------+ | |
 | | | |
 | RESPONSE | | |
 +--------->| | |
 | | RESPONSE | |
 | +--------->| |
 | | | RESPONSE |
 | | +--------->|
 | | | |

 Figure 8: Basic Receiver Initiated Reservation

 The QUERY message is transported by GIST to the next downstream QoS
 NSLP node. There it is delivered to the QoS NSLP processing which
 examines the message. The exact processing also takes into account
 the QoS model being used and may include gathering information on
 path characteristics that may be used to predict the end-to-end QoS.

 The QNE generates a new QUERY message (usually based on the one
 received). This is passed to GIST, which forwards it to the next
 QNE. The same processing is performed at further QNEs along the
 path, up to the flow receiver. The receiver detects that this QUERY
 message carries the RESERVE-INIT flag and by using the information
 contained in the received QUERY message, such as the QSPEC,
 constructs a RESERVE message.

 The RESERVE is forwarded peer-to-peer along the reverse of the path
 that the QUERY message took (using GIST reverse path state). Similar

Manner, et al. Expires August 10, 2008 [Page 30]

Internet-Draft QoS NSLP February 2008

 to the sender-initiated approach, any node may include an RII in its
 RESERVE messages. The RESPONSE is sent back to confirm the resources
 are set up. The reservation can subsequently be refreshed with
 RESERVE messages in the upstream direction.

4.4. Bidirectional Reservations

 The term "bidirectional reservation" refers to two different cases
 that are supported by this specification:

 o Binding two sender-initiated reservations together, e.g., one
 sender-initiated reservation from QNE A to QNE B and another one from
 QNE B to QNE A (Figure 9).

 o Binding a sender-initiated and a receiver-initiated reservation
 together, e.g., a sender-initiated reservation from QNE A towards QNE
 B, and a receiver-initiated reservation from QNE A towards QNE B for
 the data flow in the opposite direction (from QNE B to QNE A). This
 case is particularly useful when one end of the communication has all
 required information to set up both sessions (Figure 10).

 Both ends have to agree on which bi-directional reservation type they
 need to use. This negotiation can be accomplished using mechanisms
 that are outside the scope of NSIS.

 The scenario with two sender-initiated reservations is shown in
 Figure 9. Note that RESERVE messages for both directions may visit
 different QNEs along the path because of asymmetric routing. Both
 directions of the flows are bound by inserting the BOUND_SESSION_ID
 object at the QNI and QNR. RESPONSE messages are optional and not
 shown in the picture for simplicity.

 A QNE QNE B
 | | FLOW-1 | |
 |===============================>|
 |RESERVE-1 | | |
 QNI+--------->|RESERVE-1 | |
 | +-------------------->|QNR
 | | | |
 | | FLOW-2 | |
 |<===============================|
 | | |RESERVE-2 |
 | RESERVE-2 |<---------+QNI
 QNR|<--------------------+ |
 | | | |

 Figure 9: Bi-directional reservation for sender+sender scenario

Manner, et al. Expires August 10, 2008 [Page 31]

Internet-Draft QoS NSLP February 2008

 The scenario with a sender-initiated and a receiver-initiated
 reservation is shown in Figure 10. In this case, QNI B sends out two
 RESERVE messages, one for the sender-initiated and one for the
 receiver-initiated reservation. Note that the sequence of the two
 RESERVE messages may be interleaved.

 A QNE QNE B
 | | FLOW-1 | |
 |===============================>|
 | QUERY-1 | | |
 QNI+--------->| QUERY-1 | |
 | +-------------------->|QNR
 | | | |
 | |RESERVE-1 | |
 |RESERVE-1 +<--------------------|QNR
 QNI+<---------| | |
 | | | |
 | | FLOW-2 | |
 |<===============================|
 | | |RESERVE-2 |
 |RESERVE-2 | |<---------+QNI
 QNR|<--------------------+ |
 | | | |

 Figure 10: Bi-directional reservation for sender+receiver scenario

4.5. Aggregate Reservations

 In order to reduce signaling and per-flow state in the network, the
 reservations for a number of flows may be aggregated.

Manner, et al. Expires August 10, 2008 [Page 32]

Internet-Draft QoS NSLP February 2008

 QNI QNE QNE/QNI' QNE' QNR'/QNE QNR
 aggregator deaggregator
 | | | | | |
 | RESERVE | | | | |
 +--------->| | | | |
 | | RESERVE | | | |
 | +--------->| | | |
 | | | RESERVE | | |
 | | +-------------------->| |
 | | | RESERVE' | | |
 | | +=========>| RESERVE' | |
 | | | +=========>| RESERVE |
 | | | | +--------->|
 | | | | RESPONSE'| |
 | | | RESPONSE'|<=========+ |
 | | |<=========+ | |
 | | | | | RESPONSE |
 | | | | RESPONSE |<---------+
 | | |<--------------------+ | | |
 | | RESPONSE | | | |
 | |<---------+ | | |
 | RESPONSE | | | | |
 |<---------+ | | | |
 | | | | | |
 | | | | | |

 Figure 11: Sender Initiated Reservation with Aggregation

 An end-to-end per-flow reservation is initiated with the messages
 shown in Figure 11 as "RESERVE".

 At the aggregator a reservation for the aggregated flow is initiated
 (shown in Figure 11 as "RESERVE'"). This may use the same QoS model
 as the end-to-end reservation but has an MRI identifying the
 aggregated flow (e.g., tunnel) instead of for the individual flows.

 This document does not specify how the QSPEC of the aggregate session
 can be derived from the QSPECs of the end-to-end sessions.

 The messages used for the signaling of the individual reservation
 need to be marked such that the intermediate routers will not inspect
 them. In the QoS NSLP the following marking possibility is applied,
 see also RFC3175.

 All routers use essentially the same algorithm for which messages
 they process, i.e. all messages at aggregation level 0. However,
 messages have their aggregation level incremented on entry to an
 aggregation region and decremented on exit. In this technique the

https://datatracker.ietf.org/doc/html/rfc3175

Manner, et al. Expires August 10, 2008 [Page 33]

Internet-Draft QoS NSLP February 2008

 interior routers are not required to do any rewriting of the RAO
 values. However, the aggregating/deaggregating routers must be
 configured with which of their interfaces lie at which aggregation
 level, and also requires consistent message rewriting at these
 boundaries.

 In particular, the Aggregator performs the marking by modifying the
 QoS NSLP default NSLP-ID value to a NSLP-ID predefined value, see

Section 6.6. A RAO value is then uniquely derivable from each
 predefined NSLP-ID. However, the RAO does not have to have a one-to-
 one relation to a specific NSLP-ID.

 Aggregator Deaggregator

 +---+ +---+ +---+ +---+
 |QNI|-----|QNE|-----|QNE|-----|QNR| aggregate
 +---+ +---+ +---+ +---+ reservation

 +---+ +---+ +---+ +---+
 |QNI|-----|QNE|-----. .-----. .-----|QNE|-----|QNR| end-to-end
 +---+ +---+ +---+ +---+ reservation

 Figure 12: Reservation aggregation

 The deaggregator acts as the QNR for the aggregate reservation.
 Session binding information carried in the RESERVE message enables
 the deaggregator to associate the end-to-end and aggregate
 reservations with one another (using the BOUND_SESSION_ID).

 The key difference between this example and the one shown in Section
4.1 is that the flow identifier for the aggregate is expected to be

 different to that for the end-to-end reservation. The aggregate
 reservation can be updated independently of the per-flow end-to-end
 reservations.

4.6. Message Binding

Section 4.5 sketches the interaction of an aggregated end-to-end flow
 and an aggregate. For this scenario, and probably others, it is
 useful to have a method for synchronizing signaling message exchanges
 of different sessions. This can be used to speed up signaling,
 because some message exchanges can be started simultaneously and can
 be processed in parallel until further processing of a message from
 one particular session depends on another message from a different
 session. For instance, in Figure 11 there is a case where inclusion
 of a new reservation requires to increase the capacity of the
 encompassing aggregate first. So the RESERVE (bound message) for the

Manner, et al. Expires August 10, 2008 [Page 34]

Internet-Draft QoS NSLP February 2008

 individual flow arriving at the deaggregator should wait until the
 RESERVE' (binding message) for the aggregate arrived successfully
 (otherwise the individual flow could not be included into the
 existing aggregate and cannot be admitted). Another alternative
 would be to increase the aggregate first and then to reserve
 resources for a set of aggregated individual flows. In this case the
 binding and synchronization between the (RESERVE and RESERVE')
 messages is not needed.

 A message binding may be used (depending an the aggregators policy)
 as follows: a QNE (aggregator QNI' in Figure 14) generates randomly a
 128-bit MSG_ID (same rules apply as for generating a SESSION_ID) and
 includes it as BOUND_MSG_ID object into the bound signaling message
 (RESERVE (1) in Figure 14) that should wait for the arrival of a
 related binding signaling message (RESERVE' (3) in Figure 14) that
 carries the associated MSG_ID object. The BOUND_SESSION_ID should
 also be set accordingly. Only one MSG_ID or BOUND_MSG_ID object per
 message is allowed. If the dependency relation between the two
 messages is bidirectional then the Message_Binding_Type flag is SET
 (value is 1). Otherwise, the Message_Binding_Type flag is UNSET. In
 most cases an RII object must be included in order to get a
 corresponding RESPONSE back.

 The receiving QNE enqueues (probably after some pre-processing) this
 message for the corresponding session. It also starts a MsgIDWait
 timer in order to discard the message in case the related
 "triggering" message (RESERVE' in Figure 15) does not arrive. The
 timeout period for this time SHOULD be set to the default
 retransmission timeout period (QOSNSLP_REQUEST_RETRY). In case a
 retransmitted RESERVE message arrives before the timeout it will
 simply override the waiting message (i.e. the latter is discarded and
 the new message is now waiting with the MsgIDWait timer being reset).
 At the same time, the "triggering" message including a MSG_ID object,
 carrying the same value as the BOUND_MSG_ID object is sent by the
 same initiating QNE (QNI' in Figure 13). The intermediate QNE' sees
 the MSG_ID object, but can determine that it is not the endpoint for
 the session (QNR') and therefore simply forwards the message after
 normal processing. The receiving QNE (QNR') as endpoint for the
 aggregate session (i.e., deaggregator) interprets the MSG_ID object
 and looks for a corresponding waiting message with a BOUND_MSG_ID of
 the same value whose waiting condition is satisfied now. Depending
 on successful processing of the RESERVE' (3), processing of the
 waiting RESERVE will be resumed and the MsgIDWait timer will be
 stopped as soon as the related RESERVE' arrived.

Manner, et al. Expires August 10, 2008 [Page 35]

Internet-Draft QoS NSLP February 2008

 QNI QNE QNE/QNI' QNE' QNR'/QNE QNR
 aggregator deaggregator
 | | | | | |
 | RESERVE | | | | |
 +--------->| | | | |
 | | RESERVE | | | |
 | +--------->| | | |
 | | | RESERVE | | |
 | | | (1) | | |
 | | +-------------------->| |
 | | | RESERVE' | | |
 | | | (2) | | |
 | | +=========>| RESERVE' | |
 | | | | (3) | |
 | | | +=========>| RESERVE |
 | | | | | (4) |
 | | | | +--------->|
 | | | | RESPONSE'| |
 | | | RESPONSE'|<=========+ |
 | | |<=========+ | |
 | | | | | RESPONSE |
 | | | | RESPONSE |<---------+
 | | |<--------------------+ | | |
 | | RESPONSE | | | |
 | |<---------+ | | |
 | RESPONSE | | | | |
 |<---------+ | | | |
 | | | | | |
 | | | | | |

 (1): RESERVE: SESSION_ID=F, BOUND_MSG_ID=x, BOUND_SESSION_ID=A
 (2)+(3): RESERVE': SESSION_ID=A, MSG_ID=x
 (4): RESERVE: SESSION_ID=F (MSG_ID object was removed)

 Figure 13: Example for using message binding

 Several further cases have to be considered in this context:

 o "Triggering message" (3) arrives before waiting (bound) message
 (1): In this case the processing of the triggering message depends
 on the value of the Message_Binding_Type flag. If
 Message_Binding_Type is UNSET (value is 0) then the triggering
 message can be processed normally, but the MSG_ID and the result
 (success or failure) should be saved for the waiting message.
 Thus the RESPONSE' can be sent by the QNR' immediately. If the
 waiting message (1) finally arrives at the QNR', it can be
 detected that the waiting condition was already satisfied, because

Manner, et al. Expires August 10, 2008 [Page 36]

Internet-Draft QoS NSLP February 2008

 the triggering message already arrived earlier. If
 Message_Binding_Type is SET (value is 1) then the triggering
 message interprets the MSG_ID object and looks for the
 corresponding waiting message with a BOUND_MSG_ID of the same
 value, which in this case has not yet arrived. It then starts a
 MsgIDWait timer in order to discard the message in case the
 related message (RESERVE (1) in Figure 14) does not arrive.
 Depending on successful processing of the RESERVE (1), processing
 of the waiting RESERVE' will be resumed, the MsgIDWait timer will
 be stopped as soon as the related RESERVE arrived and the
 RESPONSE' can be sent by the QNR' towards the QNI'.
 o The "triggering message" (3) does not arrive at all: this may be
 the case due to message loss (which will cause a retransmission by
 the QNI' if the RII object is included) or due to a reservation
 failure at an intermediate node (QNE' in the example). The
 MsgIDWait timeout will then simply discard the waiting message at
 QNR'. In this case the QNR' MAY send a RESPONSE message towards
 the QNI informing that the synchronisation of the two messages has
 failed.
 o Retransmissions should use the same MSG_ID, because usually only
 one message of the two related messages is retransmitted. As
 mentioned above: retransmissions will only occur if the RII object
 is set in the RESERVE. If a retransmitted message with a MSG_ID
 arrives while a bound message with the same MSG_ID is still
 waiting, the retransmitted message will replace the bound message.

 For a receiving node there are conceptually two lists indexed by
 message IDs. One list contains the IDs and results of triggering
 messages (those carrying a MSG_ID object), the other list contains
 the IDs and message contents of the bound waiting messages (those who
 carried a BOUND_MSG_ID). The former list is used when a triggering
 message arrives before the bound message. The latter list is used
 when a bound message arrives before a triggering message.

4.7. Reduced State or Stateless Interior Nodes

 This example uses a different QoS model within a domain, in
 conjunction with GIST and NSLP functionality which allows the
 interior nodes to avoid storing GIST and QoS NSLP state. As a result
 the interior nodes only store the QSPEC-related reservation state, or
 even no state at all. This allows the QoS model to use a form of
 "reduced-state" operation, where reservation states with a coarser
 granularity (e.g., per-class) are used, or a "stateless" operation
 where no QoS NSLP state is needed (or created). This is usefull e.g.
 for measurement-based admission control schemes.

 The key difference between this example and the use of different QoS
 models in Section 4.5 is that the transport characteristics for the

Manner, et al. Expires August 10, 2008 [Page 37]

Internet-Draft QoS NSLP February 2008

 reservation, i.e., GIST can be used in a different way for the edge-
 to-edge and hop-by-hop sessions. The reduced state reservation can
 be updated independently of the per-flow end-to-end reservations.

4.7.1. Sender-initiated Reservation

 The QNI initiates a RESERVE message (see Fig. 14). At the QNEs on
 the edges of the stateless or reduced-state region the processing is
 different and the nodes support two QoS models. At the ingress the
 original RESERVE message is forwarded but ignored by the stateless or
 reduced-state nodes. This is accomplished by marking this message,
 i.e., modifying the QoS NSLP default NSLP-ID value to another NSLP-ID
 predefined value (see Section 4.6). The marking must be accomplished
 by the ingress by modifying the QoS_NSLP default NSLP-ID value to a
 NSLP-ID predefined value. The egress must reassign the QoS NSLP
 default NSLP-ID value to the original end-to-end RESERVE message. An
 example of such operation is given in [I-D.ietf-nsis-rmd].

 The egress node is the next QoS NSLP hop for the end-to-end RESERVE
 message. Reliable GIST transfer mode can be used between the ingress
 and egress without requiring GIST state in the interior. At the
 egress node the RESERVE message is then forwarded normally.

 At the ingress a second RESERVE' message is also built (Fig. 14).
 This makes use of a QoS model suitable for a reduced state or
 stateless form of operation (such as the RMD per hop reservation).
 Since the original RESERVE and the RESERVE' messages are addressed
 identically, the RESERVE' message also arrives at the same egress QNE
 that was also traversed by the RESERVE message. Message binding is
 used to synchronize the messages.

 When processed by interior (stateless) nodes the QoS NSLP processing
 exercises its options to not keep state wherever possible, so that no
 per flow QoS NSLP state is stored. Some state, e.g., per class, for
 the QSPEC related data may be held at these interior nodes. The QoS
 NSLP also requests that GIST use different transport characteristics
 (e.g., sending of messages in unreliable GIST transfer mode). It
 also requests the local GIST processing not to retain messaging
 association state or reverse message routing state.

 Nodes, such as those in the interior of the stateless or reduced-
 state domain, that do not retain reservation state cannot send back
 RESPONSE messages (and so cannot use the refresh reduction
 extension).

 At the egress node the RESERVE' message is interpreted in conjunction
 with the reservation state from the end-to-end RESERVE message (using
 information carried in the message to correlate the signaling flows).

Manner, et al. Expires August 10, 2008 [Page 38]

Internet-Draft QoS NSLP February 2008

 The RESERVE message is only forwarded further if the processing of
 the RESERVE' message was successful at all nodes in the local domain,
 otherwise the end-to-end reservation is regarded as having failed to
 be installed. Note that the egress should use a timer, with a
 preconfigured value, that can be used to synchronise the arrival of
 both messages, i.e., the end-to-end RESERVE message and the local
 RESERVE' message.

 QNE QNE QNE QNE
 ingress interior interior egress
 GIST stateful GIST stateless GIST stateless GIST stateful
 | A B |
 RESERVE | | | |
 -------->| RESERVE | | |
 +--->|
 | RESERVE' | | |
 +-------------->| | |
 | | RESERVE' | |
 | +-------------->| |
 | | | RESERVE' |
 | | +------------->|
 | | | RESPONSE' |
 |<---+
 | | | | RESERVE
 | | | +-------->
 | | | | RESPONSE
 | | | |<--------
 | | | RESPONSE |
 |<---+
 RESPONSE| | | |
 <--------| | | |

 Figure 14: Sender-initiated reservation with Reduced State Interior
 Nodes

 Resource management errors in the example above are reflected in the
 QSPEC and QoS Model processing. For example, if the RESERVE' fails
 at QNE A, it can no send an error message back to the ingress QNE.
 Thus, the RESERVE' is forwarded along the intended path, but the
 QSPEC includes information for subsequent QNEs telling them an error
 happened upstream. It is up to the QoS model to determine what to
 do. Eventually, the RESERVE' will reach the egress QNE, and again,
 the QoS model then determines the response.

4.7.2. Receiver-initiated Reservation

 Since NSLP neighbor relationships are not maintained in the reduced-
 state region, only sender-initiated signaling can be supported within

Manner, et al. Expires August 10, 2008 [Page 39]

Internet-Draft QoS NSLP February 2008

 the reduced state region. If a receiver-initiated reservation over a
 stateless or reduced state domain is required this can be implemented
 as shown in Figure 15.

 QNE QNE QNE
 ingress interior egress
 GIST stateful GIST stateless GIST stateful
 | | |
 QUERY | | |
 -------->| QUERY | |
 +------------------------------>|
 | | | QUERY
 | | +-------->
 | | | RESERVE
 | | |<--------
 | | RESERVE |
 |<------------------------------+
 | RESERVE' | RESERVE' |
 |-------------->|-------------->|
 | | RESPONSE' |
 |<------------------------------+
 RESERVE | | |
 <--------| | |

 Figure 15: Receiver-initiated reservation with Reduced State Interior
 Nodes

 The RESERVE message that is received by the egress QNE of the
 stateless domain is sent transparently to the ingress QNE (known as
 the source of the QUERY message). When the RESERVE message reaches
 the ingress, the ingress QNE needs to send a sender- initiated
 RESERVE' over the stateless domain. The ingress QNE needs to wait
 for a RESPONSE'. If the RESPONSE' notifies that the reservation was
 accomplished successfully then the ingress QNE sends a RESERVE
 message further upstream.

4.8. Proxy Mode

 Besides the sender- and receiver-initiated reservations, the QoS NSLP
 includes a functionality we refer to as Proxy Mode. Here a QNE is
 set by administrator assignment to work as a proxy QNE (P-QNE) for a
 certain region, e.g., for an administrative domain. A node
 initiating the signaling may set the PROXY scope flag to indicate
 that the signaling is meant to be confined within the area controlled
 by the proxy, e.g., the local access network.

 The Proxy Mode has two uses. First it allows to confine the QoS NSLP
 signaling to a pre-defined section of the path. Secondly, it allows

Manner, et al. Expires August 10, 2008 [Page 40]

Internet-Draft QoS NSLP February 2008

 a node to make reservations for an incoming data flow.

 For outgoing data flows and sender-initiated reservations, the end
 host is the QNI, and sends a RESERVE with the PROXY scope flag set.
 The P-QNE is the QNR, it will receive the RESERVE, notice the PROXY
 scope flag is set and reply with a RESPONSE (if requested). This
 operation is the same as illustrated in Figure 7. The receiver-
 oriented reservation for outgoing flows works the same way as in
 Figure 8, the P-QNE is the QNI.

 For incoming data flows, the end host is the QNI, and it sends a
 RESERVE towards the data sender with the PROXY scope flag set. Here
 the end host sets the MRI so that it indicates the end host as the
 receiver of the data, and sets the D-flag.

 GIST is able to send messages towards the data sender if there is
 existing message routing state or it is able to use the Upstream Q-
 mode Encapsulation. In some cases GIST will be unable to determine
 the appropriate next hop for the message, and so will indicate a
 failure to deliver it (by sending an error message). This may occur,
 for example, if GIST attempts to determine an upstream next hop and
 there are multiple possible inbound routes that could be used.

 Bi-directional reservations, as discussed in Section 4.4. The P-QNE
 will be the QNR or QNI for reservations.

 If the PROXY scope flag is set in an incoming QoS NSLP message, the
 QNE must set the same flag in all QoS NSLP messages it sends that are
 related to this session.

5. QoS NSLP Functional Specification

5.1. QoS NSLP Message and Object Formats

 A QoS NSLP message consists of a common header, followed by a body
 consisting of a variable number of variable-length, typed "objects".
 The common header and other objects are encapsulated together in a
 GIST NSLP-Data object. The following subsections define the formats
 of the common header and each of the QoS NSLP message types. In the
 message formats, the common header is denoted as COMMON_HEADER.

 For each QoS NSLP message type, there is a set of rules for the
 permissible choice of object types. These rules are specified using
 the Augmented Backus-Naur Form (ABNF) specified in RFC 5234
 [RFC5234]. The ABNF implies an order for the objects in a message.
 However, in many (but not all) cases, object order makes no logical
 difference. An implementation SHOULD create messages with the

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234

Manner, et al. Expires August 10, 2008 [Page 41]

Internet-Draft QoS NSLP February 2008

 objects in the order shown here, but MUST accept the objects in any
 order.

5.1.1. Common Header

 All GIST NSLP-Data objects for the QoS NSLP MUST contain this common
 header as the first 32 bits of the object (this is not the same as
 the GIST Common Header).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Message Type | Message Flags | Generic Flags |
 +-+

 The fields in the common header are as follows:

 Msg Type: 8 bits

 1 = RESERVE

 2 = QUERY

 3 = RESPONSE

 4 = NOTIFY

 Message-specific flags: 8 bits

 These flags are defined as part of the specfication of individual
 messages, and, thus, are different with each message type.

 Generic flags: 16 bits

 Generic flags have the same meaning for all message types. There
 exist currently four generic flags, the (next hop) Scoping flag (S),
 the Proxy scope flag (P), the Acknowledgement Requested flag (A), and
 the Break flag (B).

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Reserved |B|A|P|S|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 SCOPING (S) - when set, indicates that the message is scoped and
 should not travel down the entire path but only as far as the next
 QNE (scope="next hop"). By default, this flag is not set (default
 scope="whole path").

Manner, et al. Expires August 10, 2008 [Page 42]

Internet-Draft QoS NSLP February 2008

 PROXY (P) - when set, indicates that the message is scoped, and
 should not travel down the entire path but only as far as the P-QNE.
 By default, this flag is not set.

 ACK-REQ (A) - when set, indicates that the message should be
 acknowledged by the receiving peer. The flag is only used between
 stateful peers, and only used with RESERVE and QUERY messages.
 Currently, the flag is only used with refresh messages. By default
 the flag is not set.

 BREAK (B) - when set, indicates that there are routers along the path
 where QoS cannot be provided.

 The set of appropriate flags depends on the particular message being
 processed. Any bit not defined as a flag for a particular message
 MUST be set to zero on sending and MUST be ignored on receiving.

 The ACK-REQ flag is useful when a QNE wants to make sure the messages
 received by the downstream QNE are truly processed by the QoS NSLP,
 not just delivered by GIST. This is useful for faster dead peer
 diagnostics on the NSLP layer. This liveliness test can only be used
 with refresh RESERVE messages. The ACK-REQ-flag must not be set for
 RESERVE messages that already include an RII object, since a
 confirmation has already been requested from the QNR. Reliable
 transmission of messages between two QoS NSLP peer should be handled
 by GIST, not the NSLP by itself.

5.1.2. Message Formats

5.1.2.1. RESERVE

 The format of a RESERVE message is as follows:

 RESERVE = COMMON_HEADER
 RSN [RII] [REFRESH_PERIOD] [*BOUND_SESSION_ID]
 [SESSION_ID_LIST [RSN_LIST]]
 [MSG_ID / BOUND_MSG_ID] [INFO_SPEC]
 [[PACKET_CLASSIFIER] QSPEC]

 The RSN is the only mandatory object and MUST always be present in
 all cases. A QSPEC MUST be included in the initial RESERVE sent
 towards the QNR. A PACKET_CLASSIFIER MAY be provided. If the
 PACKET_CLASSIFIER is not provided, then the full set of information
 provided in the GIST MRI for the session should be used for packet
 classification purposes.

 Subsequent RESERVE messages meant as reduced refreshes, where no
 QSPEC is provided, MUST NOT include a PACKET_CLASSIFIER either.

Manner, et al. Expires August 10, 2008 [Page 43]

Internet-Draft QoS NSLP February 2008

 There are no requirements on transmission order, although the above
 order is recommended.

 Two message-specific flags are defined for use in the common header
 with the RESERVE message. These are:

 +-+-+-+-+-+-+-+-+
 |Reserved |T|R|
 +-+-+-+-+-+-+-+-+

 TEAR (T) - when set, indicates that reservation state and QoS NSLP
 operation state should be torn down. The former is indicated to the
 RMF. Depending on the QoS model, the tear message may include a
 QSPEC to further specify state removal, e.g., for an aggregation, the
 QSPEC may specify the amount of resources removed from the aggregate.

 REPLACE (R) - when set the flag has two uses. First, it indicates
 that a RESERVE with different MRI (but same SID) replaces an existing
 one, so the old one MAY be torn down immediately. This is the
 default situation. This flag may be unset to indicate a desire from
 an upstream node to keep an existing reservation on an old branch in
 place. Second, this flag is also used to indicate whether the
 reserved resources on the old branch should be torn down or not when
 a data path change happens. In this case, the MRI is the same and
 only the route path changes.

 If the REFRESH_PERIOD is not present, a default value of 30 seconds
 is assumed.

 If the session of this message is bound to another session, then the
 RESERVE message SHOULD include the SESSION_ID of that other session
 in a BOUND_SESSION_ID object. In the situation of aggregated
 tunnels, the aggregated session MAY not include the SESSION_ID of its
 bound sessions in BOUND_SESSION_ID(s).

 The negotiation of whether to perform sender or receiver-initiated
 signaling is done outside the QoS NSLP. Yet, in theory, it is
 possible that a "reservation collision" may occur if the sender
 believes that a sender-initiated reservation should be performed for
 a flow, whilst the other end believes that it should be starting a
 receiver- initiated reservation. If different session identifiers
 are used then this error condition is transparent to the QoS NSLP
 though it may result in an error from the RMF, otherwise the removal
 of the duplicate reservation is left to the QNIs/QNRs for the two
 sessions.

 If a reservation is already installed and a RESERVE message is
 received with the same session identifier from the other direction

Manner, et al. Expires August 10, 2008 [Page 44]

Internet-Draft QoS NSLP February 2008

 (i.e., going upstream where the reservation was installed by a
 downstream RESERVE message, or vice versa) then an error indicating
 "RESERVE received from wrong direction" MUST be sent in a RESPONSE
 message to the signaling message source for this second RESERVE.

 A refresh right along the path can be forced by requesting a RESPONSE
 from the far end (i.e., by including an RII object in the RESERVE
 message). Without this, a refresh RESERVE would not trigger RESERVE
 messages to be sent further along the path, as each hop has its own
 refresh timer.

 A QNE may ask for confirmation of tear operation by including an RII
 object. QoS NSLP retransmissions SHOULD be disabled. A QNE sending
 a tearing RESERVE with an RII included MAY ask GIST to use reliable
 transport. When the QNE sends out a tearing RESERVE, it MUST NOT
 send refresh messages anymore.

 If the routing path changed due to mobility and the mobile node's IP
 address changed, and it sent a Mobile IP binding update, the
 resulting refresh is a new RESERVE. This RESERVE includes a new MRI
 and will be propagated end-to-end; there is no need to force end-to-
 end forwarding by including an RII.

 Note: It is possible for a host to use this mechanism to constantly
 force the QNEs on the path to send refreshing RESERVE messages. It
 may, therefore, be appropriate for QNEs to perform rate limiting on
 the refresh messages that they send.

5.1.2.2. QUERY

 The format of a QUERY message is as follows:
 QUERY = COMMON_HEADER
 [RII][*BOUND_SESSION_ID]
 [PACKET_CLASSIFIER] [INFO_SPEC] QSPEC

 QUERY messages MUST always include a QSPEC. QUERY messages MAY
 include a PACKET_CLASSIFIER when the message is used to trigger a
 receiver-initiated reservation. If a PACKET_CLASSIFIER is not
 included then the full GIST MRI should be used for packet
 classification purposes in the subsequent RESERVE. A QUERY message
 MAY contain a second QSPEC object.

 A QUERY message for requesting information about network resources
 MUST contain an RII object to match an incoming RESPONSE to the
 QUERY.

 The QSPEC object describes what is being queried for and may contain
 objects that gather information along the data path. There are no

Manner, et al. Expires August 10, 2008 [Page 45]

Internet-Draft QoS NSLP February 2008

 requirements on transmission order, although the above order is
 recommended.

 One message-specific flags are defined for use in the common header
 with the QUERY message. This is:

 +-+-+-+-+-+-+-+-+
 |Reserved |R|
 +-+-+-+-+-+-+-+-+

 RESERVE-INIT (R) - when this is set, the QUERY is meant as a trigger
 for the recipient to make a resource reservation by sending a
 RESERVE.

 If the session of this message is bound to another session, then the
 RESERVE message SHOULD include the SESSION_ID of that other session
 in a BOUND_SESSION_ID object. In the situation of aggregated
 tunnels, the aggregated session MAY not include the SESSION_ID of its
 bound sessions in BOUND_SESSION_ID(s).

5.1.2.3. RESPONSE

 The format of a RESPONSE message is as follows:

 RESPONSE = COMMON_HEADER
 [RII / RSN] INFO_SPEC [SESSION_ID_LIST [RSN_LIST]]
 [QSPEC]

 A RESPONSE message MUST contain an INFO_SPEC object which indicates
 the success of a reservation installation or an error condition.
 Depending on the value of the INFO_SPEC, the RESPONSE MAY also
 contain a QSPEC object. The value of an RII or an RSN object was
 provided by some previous QNE. There are no requirement on
 transmission order, although the above order is recommended.

 No message-specific flags are defined for use in the common header
 with the RESPONSE message.

5.1.2.4. NOTIFY

 The format of a NOTIFY message is as follows:

 NOTIFY = COMMON_HEADER
 INFO_SPEC [QSPEC]

 A NOTIFY message MUST contain an INFO_SPEC object indicating the
 reason for the notification. Depending on the INFO_SPEC value, it
 MAY contain a QSPEC object providing additional information.

Manner, et al. Expires August 10, 2008 [Page 46]

Internet-Draft QoS NSLP February 2008

 No message-specific flags are defined for use with the NOTIFY
 message.

5.1.3. Object Formats

 The QoS NSLP uses a Type-Length-Value (TLV) object format similar to
 that used by GIST. Every object consists of one or more 32-bit words
 with a one-word header. For convenience the standard object header
 is shown here:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |A|B|r|r| Type |r|r|r|r| Length |
 +-+

 The value for the Type field comes from the shared NSLP object type
 space, the various objects are presented in subsequent sections. The
 Length field is given in units of 32 bit words and measures the
 length of the Value component of the TLV object (i.e., it does not
 include the standard header).

 The bits marked 'A' and 'B' are flags used to signal the desired
 treatment for objects whose treatment has not been defined in the
 protocol specification (i.e., whose Type field is unknown at the
 receiver). The following four categories of object have been
 identified, and are described here.

 AB=00 ("Mandatory"): If the object is not understood, the entire
 message containing it MUST be rejected, and an error message sent
 back.

 AB=01 ("Ignore"): If the object is not understood, it MUST be deleted
 and the rest of the message processed as usual.

 AB=10 ("Forward"): If the object is not understood, it MUST be
 retained unchanged in any message forwarded as a result of message
 processing, but not stored locally.

 AB=11 ("Refresh"): If the object is not understood, it should be
 incorporated into the locally stored QoS NSLP signaling application
 operational state for this flow/session, forwarded in any resulting
 message, and also used in any refresh or repair message which is
 generated locally. The contents of this object does not need to be
 interpreted, and should only be stored as bytes on the QNE.

 The remaining bits marked 'r' are reserved. The extensibility flags
 AB are similar to those used in the GIST specification. All objects

Manner, et al. Expires August 10, 2008 [Page 47]

Internet-Draft QoS NSLP February 2008

 defined in this specification MUST be understood by all QNEs, thus,
 they MUST have the AB-bits set to "00". A QoS NSLP implementation
 must recognize objects of the following types: RII, RSN,
 REFRESH_PERIOD, BOUND_SESSION_ID, INFO_SPEC, and QSPEC.

 The object header is followed by the Value field, which varies for
 different objects. The format of the Value field for currently
 defined objects is specified below.

 The object diagrams here use '//' to indicate a variable sized field.

5.1.3.1. Request Identification Information (RII)

 Type: 0x01

 Length: Fixed - 1 32-bit word

 Value: An identifier which MUST be (probabilistically) unique within
 the context of a SESSION_ID, and SHOULD be different every time a
 RESPONSE is desired. Used by a QNE to match back a RESPONSE to a
 request in a RESERVE or QUERY message.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Response Identification Information (RII) |
 +-+

5.1.3.2. Reservation Sequence Number (RSN)

 Type: 0x02

 Length: Fixed - 2 32-bit words

 Value: An incrementing sequence number that indicates the order in
 which state modifying actions are performed by a QNE, and an epoch
 identifier to allow the identification of peer restarts. The RSN has
 local significance only, i.e., between a QNE and its downstream
 stateful peers. The RSN is not reset when the downstream peer
 changes.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reservation Sequence Number (RSN) |
 +-+
 | Epoch Identifier |
 +-+

Manner, et al. Expires August 10, 2008 [Page 48]

Internet-Draft QoS NSLP February 2008

5.1.3.3. Refresh Period (REFRESH_PERIOD)

 Type: 0x03

 Length: Fixed - 1 32-bit word

 Value: The refresh timeout period R used to generate this message; in
 milliseconds.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Refresh Period (R) |
 +-+

5.1.3.4. Bound Session ID (BOUND_SESSION_ID)

 Type: 0x04

 Length: Fixed - 5 32-bit words

 Value: contains an 8-bit Binding_Code that indicates the nature of
 binding. The rest specifies the SESSION_ID (as specified in GIST
 [I-D.ietf-nsis-ntlp]) of the session that MUST be bound to the
 session associated with the message carrying this object.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | RESERVED | Binding Code |
 +-+
 | |
 + +
 | |
 + Session ID +
 | |
 + +
 | |
 +-+

 Currently defined Binding Codes are:

 o 0x01 - Tunnel and end-to-end sessions

 o 0x02 - Bi-directional sessions

 o 0x03 - Aggregate sessions

Manner, et al. Expires August 10, 2008 [Page 49]

Internet-Draft QoS NSLP February 2008

 o 0x04 - Dependent sessions (binding session is alive only if the
 other session is also alive)

 o 0x05 - Indicated session caused pre-emption

 More binding codes maybe defined based on the above four atomic
 binding actions. Note a message may include more than one
 BOUND_SESSION_ID object. This may be needed in case one needs to
 define more specifically the reason for binding, or if the session
 must on depend on more than one other session (with possibly
 different reasons). Note that a session with e.g., SID_A (the
 binding session) can express its unidirectional dependency relation
 to another session with e.g., SID_B (the bound session) by including
 a BOUND_SESSION_ID object containing SID_B in its messages.

5.1.3.5. Packet Classifier (PACKET_CLASSIFIER)

 Type: 0x05

 Length: Variable

 Value: Contains a variable length MRM-specific data

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 // Method-specific classifier data (variable) //
 +-+

 At this stage, the QoS NSLP only uses the path-coupled routing MRM.
 The method-specific classifier data is two bytes long and consists of
 a set of flags:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |X|Y|P|T|F|S|A|B| Reserved |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The flags are:

 X - Source Address and Prefix

 Y - Destination Address and Prefix

 P - Protocol

 T - DiffServ Code Point

Manner, et al. Expires August 10, 2008 [Page 50]

Internet-Draft QoS NSLP February 2008

 F - Flow Label

 S - SPI

 A - Source Port

 B - Destination Port

 The flags indicate which fields from the MRI MUST be used by the
 packet classifier. This allows a subset of the information in the
 MRI to be used for identifying the set of packets which are part of
 the reservation. Flags MUST only be set if the data is present in
 the MRI (i.e., where there is a corresponding flag in the GIST MRI,
 the flag can only be set if the corresponding GIST MRI flag is set).
 It should be noted that some flags in the PACKET_CLASSIFIER (X and Y)
 relate to data that is always present in the MRI, but are optional to
 use for QoS NSLP packet classification. The appropriate set of flags
 set may depend, to some extent, on the QoS model being used.

 As mentioned earlier in this section, the QoS NSLP is currently only
 defined for use with the Path-Coupled Message Routing Mechanism (MRM)
 in GIST. Future work may extend the QoS NSLP to additional routing
 mechanisms. Such MRMs must include sufficient information in the MRI
 to allow the subset of packets for which QoS is to be provided to be
 identified. When QoS NSLP is extended to support a new MRM,
 appropriate method-specific classifier data for the PACKET_CLASSIFIER
 object MUST be defined.

5.1.3.6. Information Object (INFO_SPEC) and Error Codes

 Type: 0x06

 Length: Variable

 Value: Contains a 16-bit error code, a 4-bit error class, a 4-bit
 error source identifier type, and an 8-bit error source identifier
 length (in 32-bit words), an error source identifier and optionally
 variable length error-specific information.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error Code |E-Class|ESI Typ| ESI-Length |
 +-+
 // Error Source Identifier //
 +-+
 // Optional error-specific information //
 +-+

Manner, et al. Expires August 10, 2008 [Page 51]

Internet-Draft QoS NSLP February 2008

 Class Field:

 The four E-Class bits of the object indicate the error severity
 class. The currently defined severity classes are:

 o 0x01 - Informational

 o 0x02 - Success

 o 0x03 - Protocol Error

 o 0x04 - Transient Failure

 o 0x05 - Permanent Failure

 o 0x06 - QoS Model Error

 Error field:

 Within each error severity class a number of Error Code values are
 defined.

 o Informational:

 * 0x01 - Unknown BOUND_SESSION_ID: the message refers to an unknown
 SESSION_ID in its BOUND_SESSION_ID object.

 * 0x02 - Route Change: possible route change occurred on downstream
 path.

 * 0x03 - Reduced refreshes not supported, full QSPEC required.

 * 0x04 - Congestion situation: Possible congestion situation occurred
 on downstream path.

 * 0x05 - Unknown SESSION ID in SESSION_ID_LIST

 * 0x06 - Mismatching RSN in RSN LIST

 o Success:

 * 0x01 - Reservation successful

 * 0x02 - Tear down successful

 * 0x03 - Acknowledgement

 * 0x04 - Refresh successful

Manner, et al. Expires August 10, 2008 [Page 52]

Internet-Draft QoS NSLP February 2008

 o Protocol Error:

 * 0x01 - Illegal message type: the type given in the Message Type
 field of the common header is unknown.

 * 0x02 - Wrong message length: the length given for the message does
 not match the length of the message data.

 * 0x03 - Bad flags value: an undefined flag or combination of flags
 was set in the generic flags

 * 0x04 - Bad flags value: an undefined flag or combination of flags
 was set in the message-specific flags

 * 0x05 - Mandatory object missing: an object required in a message of
 this type was missing.

 * 0x06 - Illegal object present: an object was present which must not
 be used in a message of this type.

 * 0x07 - Unknown object present: an object of an unknown type was
 present in the message.

 * 0x08 - Wrong object length: the length given for the object did not
 match the length of the object data present.

 * 0x09 - RESERVE received from wrong direction.

 * 0x0a - Unknown object field value: a field in an object had an
 unknown value.

 * 0x0b - Duplicate object present.

 * 0x0c - Malformed QSPEC.

 * 0x0d - Unknown MRI.

 * 0x0e - Erroneous value in the TLV object's value field.

 * 0x0f - Incompatible QSPEC

 o Transient Failure:

 * 0x01 - No GIST reverse-path forwarding state

 * 0x02 - No path state for RESERVE, when doing a receiver- oriented
 reservation

Manner, et al. Expires August 10, 2008 [Page 53]

Internet-Draft QoS NSLP February 2008

 * 0x03 - RII conflict

 * 0x04 - Full QSPEC required

 * 0x05 - Mismatch synchronization between end-to-end RESERVE and
 intra-domain RESERVE

 * 0x06 - Reservation preempted

 * 0x07 - Reservation failure

 * 0x08 - Path truncated - Next peer dead

 o Permanent Failure:

 * 0x01 - Internal or system error

 * 0x02 - Authorization failure

 o QoS Model Error:

 This error class can be used by QoS Models to add error codes
 specific to the QoS Model being used. All these errors and events
 are created outside the QoS NSLP itself. The error codes in this
 class are defined in QoS model specifications. Note that this error
 class may also include codes that are not purely errors, but rather
 some non-fatal information.

 Error Source Identifier

 The Error Source Identifier is for diagnostic purposes and its
 inclusion is OPTIONAL. It is suggested that implementations use this
 for the IP address, host name or other identifier of the QNE
 generating the INFO_SPEC to aid diagnostic activities. A QNE SHOULD
 NOT be used in any other purpose other than error logging or
 presenting to the user as part of any diagnostic information. A QNE
 SHOULD NOT attempt to send a message to that address.

 If no Error Source Identifier is included, the Error Source
 Identifier Type field must be zero.

 Currently three Error Source Identifiers have been defined: IPv4,
 IPv6 and FQDN.

 Error Source Identifier: IPv4

 Error Source Identifier Type: 0x01

Manner, et al. Expires August 10, 2008 [Page 54]

Internet-Draft QoS NSLP February 2008

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 32-bit IPv4 address |
 +-+

 Error Source Identifier: IPv6

 Error Source Identifier Type: 0x02

 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 1

 +-+
 | |
 + +
 | |
 + 128-bit IPv6 address +
 | |
 + +
 | |
 +-+

 Error Source Identifier: FQDN name in UTF-8

 Error Source Identifier Type: 0x03

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 // FQDN Name //
 +-+

 If the length of the FQDN name is not a multiple of 32-bits, the
 field is padded with zero octets to the next 32-bit boundary.

 If a QNE encounters protocol errors, it MAY include additional
 information, mainly for diagnostic purposes. Additional information
 MAY be included if the type of an object is erroneous, or a field has
 an erroneous value.

 If the type of an object is erroneous, the following optional error-
 specific information may be included at the end of the INFO_SPEC.

 Object Type Info:

Manner, et al. Expires August 10, 2008 [Page 55]

Internet-Draft QoS NSLP February 2008

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Object Type | Reserved |
 +-+

 This object provides information about the type of object which
 caused the error.

 If a field in an object had an incorrect value, the following
 optional error-specific information may be added at the end of the
 INFO_SPEC.

 Object Value Info:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Rsvd | Real Object Length | Offset |
 +-+
 // Object //
 +-+

 Real Object Length: Since the length in the original TLV header may
 be inaccurate, this field provides the actual length of the object
 (including the TLV Header) included in the error message.

 Offset: The byte in the object at which the QNE found the error.
 When this field is set to "0", the complete object is included.

 Object: The invalid TLV object (including the TLV Header).

 This object carries information about a TLV object which was found to
 be invalid in the original message. An error message may contain
 more than one Object Value Info object.

5.1.3.7. SESSION ID List (SESSION_ID_LIST)

 Type: 0x07

 Length: Variable

 Value: A list of 128-bit SESSION IDs used in summary refresh and
 summary tear messages. All SESSION IDs are concatenated together.

Manner, et al. Expires August 10, 2008 [Page 56]

Internet-Draft QoS NSLP February 2008

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + Session ID 1 +
 | |
 + +
 | |
 +-+
 : :
 +-+
 | |
 + +
 | |
 + Session ID n +
 | |
 + +
 | |
 +-+

5.1.3.8. Reservation Sequence Number (RSN) List (RSN_LIST)

 Type: 0x08

 Length: Variable

 Value: A list of 32-bit Reservation Sequence Number (RSN) values.
 All RSN are concatenated together.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Epoch Identifier |
 +-+
 | Reservation Sequence Number 1 (RSN1) |
 +-+
 : :
 +-+
 | Reservation Sequence Number n (RSNn) |
 +-+

5.1.3.9. Message ID (MSG_ID)

 Type: 0x09

 Length: Fixed - 5 32-bit words

Manner, et al. Expires August 10, 2008 [Page 57]

Internet-Draft QoS NSLP February 2008

 Value: contains an 1-bit Message_Binding_Type (D) that indicates the
 dependency relation of a message binding. The rest specifies a 128
 bit randomly generated value that "uniquely" identifies this
 particular message.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | RESERVED |D|
 +-+
 | |
 + +
 | |
 + Message ID +
 | |
 + +
 | |
 +-+

 The Message Binding Codes are:

 * 0 - Unidirectional binding dependency

 * 1 - Bi-directional binding dependency

5.1.3.10. Bound Message ID (BOUND_MSG_ID)

 Type: 0x0A

 Length: Fixed - 5 32-bit words

 Value: contains an 1-bit Message_Binding_Type (D) that indicates the
 dependency relation of a message binding. The rest specifies a 128
 bit randomly generated value that refers to a Message ID in another
 message.

Manner, et al. Expires August 10, 2008 [Page 58]

Internet-Draft QoS NSLP February 2008

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | RESERVED |D|
 +-+
 | |
 + +
 | |
 + Bound Message ID +
 | |
 + +
 | |
 +-+

 The Message Binding Codes are:

 * 0 - Unidirectional binding dependency

 * 1 - Bi-directional binding dependency

5.1.3.11. QoS Specification (QSPEC)

 Type: 0x0B

 Length: Variable

 Value: Variable length QSPEC (QoS specification) information, which
 is QoS Model dependent.

 The contents and encoding rules for this object are specified in
 other documents. See [I-D.ietf-nsis-qspec].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 // QSPEC Data //
 | |
 +-+

5.2. General Processing Rules

 This section provides the general processing rules used by QoS-NSLP.
 The triggers communicated between RM/QOSM and QoS-NSLP
 functionalities are given in Appenices A.1, A.2 and A.3.

Manner, et al. Expires August 10, 2008 [Page 59]

Internet-Draft QoS NSLP February 2008

5.2.1. State Manipulation

 The processing of a message and its component objects involves
 manipulating the QoS NSLP and reservation state of a QNE.

 For each flow, a QNE stores (RMF-related) reservation state which
 depends on the QoS model / QSPEC used and QoS NSLP operation state
 which includes non-persistent state (e.g., the API parameters while a
 QNE is processing a message) and persistent state which is kept as
 long as the session is active.

 The persistent QoS NSLP state is conceptually organized in a table
 with the following structure. The primary key (index) for the table
 is the SESSION_ID:

 SESSION_ID

 A 128-bit identifier.

 The state information for a given key includes:

 Flow ID

 Based on GIST MRI. Several entries are possible in case of mobility
 events.

 SII-Handle for each upstream and downstream peer

 The SII-Handle is a local identifier generated by GIST and passed
 over the API. It is a handle that allows to refer to a particular
 GIST next hop. See SII-Handle in [I-D.ietf-nsis-ntlp] for more
 information.

 RSN from the upstream peer

 The RSN is a 32 bit counter.

 The latest local RSN

 A 32 bit counter.

 List of RII for outstanding responses with processing information.

 The RII is a 32 bit number.

 State lifetime

 The state lifetime indicates how long the state that is being

Manner, et al. Expires August 10, 2008 [Page 60]

Internet-Draft QoS NSLP February 2008

 signaled for remains valid.

 List of bound sessions

 A list of BOUND_SESSION_ID 128-bit identifiers for each session bound
 to this state.

 Scope of the signaling

 If the Proxy scope is used, a flag is needed to identify all
 signaling of this session as being scoped.

 Adding the state requirements of all these items gives an upper bound
 on the state to be kept by a QNE. The need to keep state depends on
 the desired functionality at the NSLP layer.

5.2.2. Message Forwarding

 QoS NSLP messages are sent peer-to-peer along the path. The QoS NSLP
 does not have the concept of a message being sent directly to the end
 of the path. Instead, messages are received by a QNE, which may then
 send another message (which may be identical to the received message,
 or contain some subset of objects from it) to continue in the same
 direction (i.e., towards QNI or QNR) as the message received.

 The decision on whether to generate a message to forward may be
 affected by the value of the SCOPING or PROXY flags, or by the
 presence of an RII object.

5.2.3. Standard Message Processing Rules

 If a mandatory object is missing from a message then the receiving
 QNE MUST NOT propagate the message any further. It MUST construct a
 RESPONSE message indicating the error condition and send it back to
 the peer QNE that sent the message.

 If a message contains an object of an unrecognised type, then the
 behavior depends on the AB extensibility flags.

 If the Proxy scope flag was set in an incoming QoS NSLP message, the
 QNE must set the same flag in all QoS NSLP messages it sends that are
 related to this session.

5.2.4. Retransmissions

 Retransmissions may happen end-to-end, e.g., between QNI and QNR
 (using an RII object), or peer-to-peer, between two adjacent QNEs.
 When a QNE transmits a RESERVE with an RII object set, it waits for a

Manner, et al. Expires August 10, 2008 [Page 61]

Internet-Draft QoS NSLP February 2008

 RESPONSE from the responding QNE. QoS NSLP messages for which a
 response is requested by including an RII object, but fail to elicit
 a response are retransmitted. Similarly, a QNE may include the ACK-
 REQ-flag to request confirmation of a refresh message reception from
 its immediate peer. The retransmitted message should be exactly the
 same as the original message, e.g., the RSN is not modified with each
 retransmission.

 The initial retransmission occurs after a QOSNSLP_REQUEST_RETRY wait
 period. Retransmissions MUST be made with exponentially increasing
 wait intervals (doubling the wait each time). QoS NSLP messages
 SHOULD be retransmitted until either a RESPONSE (which might be an
 error) has been obtained, or until QOSNSLP_RETRY_MAX seconds after
 the initial transmission. In the latter case, a failure SHOULD be
 indicated to the signaling application. The default values for the
 above-mentioned timers are:

 QOSNSLP_REQUEST_RETRY: 2 seconds Wait interval before initial
 retransmit of the message

 QOSNSLP_RETRY_MAX: 30 seconds Give up retrying to send the message

 Retransmissions SHOULD be disabled for tear messages.

5.2.5. Rerouting

5.2.5.1. Last Node Behavior

 As discussed in Section 3.2.12 some care needs to be taken to handle
 cases where the last node on the path may change.

 A node that is the last node on the path, but not the data receiver
 (or an explicitly configured proxy for it), MUST continue to attempt
 to send messages downstream to probe for path changes. This must be
 done in order to handle the "Path Extension" case described in

Section 3.2.12.1.

 A node on the path, that was not previously the last node, MUST take
 over as the last node on the signaling path if GIST path change
 detection identifies that there are no further downstream nodes on
 the path. This must be done in order to handle the "Path Truncation"
 case described in Section 3.2.12.1.

5.2.5.2. Avoiding Mistaken Teardown

 In order to handle the spurious route change problem described in
Section 3.2.12.2, the RSN must be used in a particular way when

 maintaining the reservation after a route change is believed to have

Manner, et al. Expires August 10, 2008 [Page 62]

Internet-Draft QoS NSLP February 2008

 occurred.

 We assume that the current RSN (RSN[current]) is initially RSN0.

 When a route change is believed to have occurred, the QNE SHOULD send
 a RESERVE message, including the full QSPEC. This must contain an
 RSN which is RSN[current] = RSN0 + 2. It SHOULD include an RII, to
 request a response from the QNR. An SII-Handle MUST NOT be specified
 when passing this message over the API to GIST, so that it is
 correctly routed to the new peer QNE.

 When the QNE receives the RESPONSE message that relates to the
 RESERVE message sent down the new path, it SHOULD send a RESERVE
 message with the TEAR flag sent down the old path. To do so, it MUST
 request GIST to use its explicit routing mechanism and the QoS NSLP
 MUST supply an SII-Handle relating to the old peer QNE. When sending
 this RESERVE message it MUST contain an RSN which is RSN[current] -
 1. (RSN[current] remains unchanged).

 If the RESPONSE received after sending the RESERVE down the new path
 contains the code "Refresh successful" in the INFO_SPEC, then the QNE
 MAY elect not to send the tearing RESERVE, since this indicates that
 the path is unchanged.

5.2.5.3. Upstream Route Change Notification

 GIST may notify the QoS NSLP that a possible upstream route change
 has occurred over the GIST API. On receiving such a notification,
 the QoS NSLP SHOULD send a NOTIFY message with Informational code
 0x02 for signaling sessions associated with the identified MRI. If
 this is sent, it MUST be sent to the old peer using the GIST explicit
 routing mechanism through the use of the SII-Handle.

 On receiving such a NOTIFY message, the QoS NSLP SHOULD use the
 InvalidateRoutingState API call to inform GIST that routing state may
 be out of date. The QoS NSLP SHOULD send a NOTIFY message upstream.
 The NOTIFY message should be propagated back to the QNI or QNR.

5.2.5.4. Route Change Oscillation

 In some circumstances a route change may occur, but the path then
 falls back to the original route.

 After a route change the routers on the old path will continue to
 refresh the reservation until soft state times out, or an explicit
 TEAR is received.

 After detecting an upstream route change a QNE SHOULD consider the

Manner, et al. Expires August 10, 2008 [Page 63]

Internet-Draft QoS NSLP February 2008

 new upstream peer as current and not fall back to the old upstream
 peer unless:

 - it stops receiving refreshes from the old upstream peer for at
 least the soft state timeout period and then starts receiving
 messages from the old upstream peer again

 - or, it stops receiving refreshes from the new upstream peer for at
 least the soft state timeout period.

 GIST routing state keeps track of the latest upstream peer it has
 seen, and so may spuriously indicate route changes occur when the old
 upstream peer refreshes its routing state until the state at that
 node is explicitly torn down or times out.

5.3. Object Processing

 This section presents processing rules for individual QoS NSLP
 objects.

5.3.1. Reservation Sequence Number (RSN)

 A QNE's own RSN is a sequence number which applies to a particular
 signaling session (i.e., with a particular SESSION_ID). It MUST be
 incremented for each new RESERVE message where the reservation for
 the session changes. The RSN is manipulated using the serial number
 arithmetic rules from [RFC1982], which also defines wrapping rules
 and the meaning of 'equals', 'less than' and 'greater than' for
 comparing sequence numbers in a circular sequence space.

 The RSN starts at zero. It is stored as part of the per-session
 state and it carries on incrementing (i.e., it is not reset to zero)
 when a downstream peer change occurs. (Note that section 5.2.5.2
 provides some particular rules for use when a downstream peer
 changes.)

 The RSN object also contains an Epoch Identifier, which provides a
 method for determining when a peer has restarted (e.g., due to node
 reboot or software restart). The exact method for providing this
 value is implementation defined. Options include storing a serial
 number which is incremented on each restart, picking a random value
 on each restart or using the restart time.

 On receiving a RESERVE message a QNE examines the Epoch Identifier to
 determine if the peer sending the message has restarted. If the
 Epoch Identifier is different to that stored for the reservation then
 the RESERVE message MUST be treated as an updated reservation (even
 if the RSN is less than the current stored value), and the stored RSN

https://datatracker.ietf.org/doc/html/rfc1982

Manner, et al. Expires August 10, 2008 [Page 64]

Internet-Draft QoS NSLP February 2008

 and Epoch Identifier MUST be updated to the new values.

 When receiving a RESERVE message a QNE uses the RSN given in the
 message to determine whether the state being requested is different
 to that already stored. If the RSN is equal to that stored for the
 current reservation the current state MUST be refreshed. If the RSN
 is greater than the current stored value, the current reservation
 MUST be modified appropriately as specified in the QSPEC (provided
 that admission control and policy control succeed), and the stored
 RSN value updated to that for the new reservation. If the RSN is
 greater than the current stored value and the RESERVE was a reduced
 refresh, the QNE SHOULD send upstream a transient error message "Full
 QSPEC required". If the RSN is less than the current value, then it
 indicates an out-of-order message and the RESERVE message MUST be
 discarded.

 If the QNE does not store per-session state (and so does not keep any
 previous RSN values) then it MAY ignore the value of the RSN. It
 MUST also copy the same RSN into the RESERVE message (if any) it
 sends as a consequence of receiving this one.

5.3.2. Request Identification Information (RII)

 A QNE sending QUERY or RESERVE messages may require a response to be
 sent. It does so by including a Request Identification Information
 (RII) object. When creating an RII object the QNE MUST select the
 value for the RII such that it is probabilistically unique within the
 given session. A RII object is typically set by the QNI.

 A number of choices are available when implementing this.
 Possibilities might include using a random value, or a node
 identifier together with a counter. If the value collides with one
 selected by another QNE for a different QUERY then RESPONSE messages
 may be incorrectly terminated, and may not be passed back to the node
 that requested them.

 The node that created the RII object MUST remember the value used in
 the RII to match back any RESPONSE it will receive. The node SHOULD
 use a timer to identify situations where it has taken too long to
 receive the expected RESPONSE. If the timer expires without
 receiving a RESPONSE it MAY perform a retransmission as discussed in

Section 5.2.4. In this case this QNE MUST NOT generate any RESPONSE
 or NOTIFY message to notify this error.

 If an intermediate QNE wants to receive a response for an outgoing
 message, but the message already included an RII when it arrived, the
 QNE MUST NOT add a new RII object nor replace the old RII object, but
 MUST simply remember this RII to match a later RESPONSE message.

Manner, et al. Expires August 10, 2008 [Page 65]

Internet-Draft QoS NSLP February 2008

 When it receives the RESPONSE, it forwards the RESPONSE upstream
 towards the RII originating node. Note that only the node that
 originally created the RII can set up a retransmission timer. Thus,
 if an intermediate QNE decides to use the RII already contained in
 the message, it MUST NOT set up a retransmission timer, but rely on
 the retransmission timer set up by the QNE that inserted the RII.

 When receiving a message containing an RII object the node MUST send
 a RESPONSE if

 o The SCOPING flag is set ('next hop' scope),

 o The PROXY scope flag is set and the QNE is the P-QNE, or

 o This QNE is the last one on the path for the given session.

 and the QNE keeps per-session state for the given session.

 In the rare event that the QNE wants to request a response for a
 message that already included an RII, and this RII value conflicts
 with an existing RII value on the QNE, the node should interrupt the
 processing the message, and send an error message upstream to
 indicate an RII collision, and request a retry with a new RII value.

5.3.3. BOUND_SESSION_ID

 As shown in the examples in Section 4, the QoS NSLP can relate
 multiple sessions together. It does this by including the SESSION_ID
 from one session in a BOUND_SESSION_ID object in messages in another
 session.

 When receiving a message with a BOUND_SESSION_ID object, a QNE MUST
 copy the BOUND_SESSION_ID object into all messages it sends for the
 same session. A QNE that stores per-session state MUST store the
 value of the BOUND_SESSION_ID.

 The BOUND_SESSION_ID is only indicative in nature. However, a QNE
 implementation may use BOUND_SESSION_ID information to optimize
 resource allocation, e.g., for bidirectional reservations. When
 receiving a tear down message (e.g., a RESERVE message with tear down
 semantic) for an aggregate reservation, it may use this information
 to initiate a tear down for end-to-end sessions bound to the
 aggregate. A QoS NSLP implementation MUST be ready to process more
 than one BOUND_SESSION_ID object within a single message.

Manner, et al. Expires August 10, 2008 [Page 66]

Internet-Draft QoS NSLP February 2008

5.3.4. REFRESH_PERIOD

 Refresh timer management values are carried by the REFRESH_PERIOD
 object which has local significance only. At the expiration of a
 "refresh timeout" period, each QNE independently examines its state
 and sends a refreshing RESERVE message to the next QNE peer where it
 is absorbed. This peer-to-peer refreshing (as opposed to the QNI
 initiating a refresh which travels all the way to the QNR) allows
 QNEs to choose refresh intervals as appropriate for their
 environment. For example, it is conceivable that refreshing
 intervals in the backbone, where reservations are relatively stable,
 are much larger than in an access network. The "refresh timeout" is
 calculated within the QNE and is not part of the protocol; however,
 it must be chosen to be compatible with the reservation lifetime as
 expressed by the REFRESH_PERIOD, and an assessment of the reliability
 of message delivery.

 The details of timer management and timer changes (slew handling and
 so on) are identical to the ones specified in Section 3.7 of RFC 2205
 [RFC2205].

 There are two time parameters relevant to each QoS NSLP state in a
 node: the refresh period R between generation of successive refreshes
 for the state by the neighbor node, and the local state's lifetime L.
 Each RESERVE message may contain a REFRESH_PERIOD object specifying
 the R value that was used to generate this (refresh) message. This R
 value is then used to determine the value for L when the state is
 received and stored. The values for R and L may vary from peer to
 peer.

5.3.5. INFO_SPEC

 The INFO_SPEC object is carried by the RESPONSE and NOTIFY messages
 and it is used to report a successful, an unsuccessful, or an error
 situation. In case of an error situation the error messages SHOULD
 be generated even if no RII object is included in the RESERVE or in
 the QUERY messages. Note that when the TEAR flag is set in the
 RESERVE message an error situation SHOULD NOT trigger the generation
 of a RESPONSE message.

 Six classes of INFO_SPEC objects are identified and specified in
Section 5.1.3.6. The message processing rules for each class are

 defined below.

 A RESPONSE message MUST carry INFO_SPEC objects towards the QNI. The
 RESPONSE message MUST be forwarded unconditionally up to the QNI.
 The actions that SHOULD be undertaken by the QNI that receives the
 INFO_SPEC object are specified by the local policy of the QoS model

https://datatracker.ietf.org/doc/html/rfc2205#section-3.7
https://datatracker.ietf.org/doc/html/rfc2205

Manner, et al. Expires August 10, 2008 [Page 67]

Internet-Draft QoS NSLP February 2008

 supported by this QNE. The default action is that the QNI that
 receives the INFO_SPEC object SHOULD not trigger any other QoS NSLP
 procedure.

 The Informational INFO_SPEC class MUST be generated by a by a
 stateful QoS NSLP QNE when an Informational error class is caught.
 The Informational INFO-SPEC object MUST be carried by a RESPONSE or a
 NOTIFY message.

 In case of an unidirectional reservation, the Success INFO_SPEC class
 MUST be generated by a stateful QoS NSLP QNR when a RESERVE message
 is received and the reservation state installation or refresh
 succeeded. In case of a bi-directional reservation the INFO-SPEC
 object SHOULD be generated by a stateful QoS NSLP QNE when a RESERVE
 message is received and the reservation state installation or refresh
 succeeded. The Success INFO-SPEC object MUST be carried by a
 RESPONSE or a NOTIFY message.

 In case of an unidirectional reservation, the Protocol Error
 INFO_SPEC class MUST be generated by a stateful QoS NSLP QNE when a
 RESERVE or QUERY message is received by the QNE and a protocol error
 is caught. In case of a bi-directional reservation, the Protocol
 Error INFO_SPEC class SHOULD be generated by a stateful QoS NSLP QNE
 when a RESERVE or QUERY message is received by the QNE and a protocol
 error is caught. A RESPONSE message MUST carry this object, which
 MUST be forwarded unconditionally towards the upstream QNE that
 generated the RESERVE or QUERY message that triggered the generation
 of this INFO_SPEC object. The default action for a stateless QoS
 NSLP QNE that detects such an error is that none of the QoS NSLP
 objects SHOULD be processed and the RESERVE or QUERY message SHOULD
 be forwarded downstream.

 In case of an unidirectional reservation, the Transient Failure
 INFO_SPEC class MUST be generated by a stateful QoS NSLP QNE when a
 RESERVE or QUERY message is received by the QNE and one Transient
 failure error code is caught, or when an event happens that causes a
 transient error. In case of a bi-directional reservation, the
 Transient Failure INFO_SPEC class SHOULD be generated by a stateful
 QoS NSLP QNE when a RESERVE or QUERY message is received by the QNE
 and one Transient failure error code is caught.

 A RESPONSE message MUST carry this object, which MUST be forwarded
 unconditionally towards the upstream QNE that generated the RESERVE
 or QUERY message that triggered the generation of this INFO_SPEC
 object. The transient RMF-related error MAY also be carried by a
 NOTIFY message. The default action is that the QNE that receives
 this INFO_SPEC object SHOULD re-trigger the retransmission of the
 RESERVE or QUERY message that triggered the generation of the

Manner, et al. Expires August 10, 2008 [Page 68]

Internet-Draft QoS NSLP February 2008

 INFO_SPEC object. The default action for a stateless QoS NSLP QNE
 that detects such an error is that none of the QoS NSLP objects
 SHOULD be processed and the RESERVE or QUERY message SHOULD be
 forwarded downstream.

 In case of an unidirectional reservation, the Permanent Failure
 INFO_SPEC class MUST be generated by a stateful QoS NSLP QNE when a
 RESERVE or QUERY message is received by a QNE and an internal or
 system error occured, or authorization failed. In case of a bi-
 directional reservation, the Permanent Failure INFO_SPEC class SHOULD
 be generated by a stateful QoS NSLP QNE when a RESERVE or QUERY
 message is received by a QNE and an internal or system error occured,
 or authorization failed. A RESPONSE message MUST carry this object,
 which MUST be forwarded unconditionally towards the upstream QNE that
 generated the RESERVE or QUERY message that triggered this protocol
 error. The permanent RMF-related, the internal or system errors MAY
 also be carried by a NOTIFY message. The default action for a
 stateless QoS NSLP QNE that detects such an error is that none of the
 QoS NSLP objects SHOULD be processed and the RESERVE or QUERY message
 SHOULD be forwarded downstream.

 The QoS-specific error class may be used when errors outside the QoS
 NSLP itself occur that are related to the particular QoS Model being
 used. The processing rules of these errors are not specified in this
 document.

5.3.6. SESSION_ID_LIST

 A SESSION_ID_LIST is carried in RESERVE messages. It is used in two
 cases, to refresh or two tear down the indicated sessions. A
 SESSION_ID_LIST carries information about sessions that should be
 refreshed or torn down, in addition to the main (primary) session
 indicated in the RESERVE.

 If the primary SESSION_ID is not understood, the SESSION_ID_LIST
 object MUST NOT be processed.

 When a stateful QNE goes through the SESSION_ID_LIST, if it finds one
 or more unknown SESSION ID values, it SHOULD construct an
 informational RESPONSE message back to the upstream stateful QNE with
 error code for unknown SESSION ID in SESSION_ID_LIST, and include all
 uknown SESSION IDs in a SESSION_ID_LIST.

 If the RESERVE is a tear, for each session in the SESSION_ID_LIST,
 the stateful QNE MUST inform the RMF that the reservation is no
 longer required. RSN values MUST also be interpreted in order to
 distinguish whether the tear down is valid, or whether it is refering
 to an old state, and, thus, should be silently discarded.

Manner, et al. Expires August 10, 2008 [Page 69]

Internet-Draft QoS NSLP February 2008

 If the RESERVE is a refresh, the stateful QNE MUST also process the
 RSN_LIST object as detailed in the next section.

 If the RESERVE is a tear, for each session in the SESSION_ID_LIST,
 the QNE MUST inform the RMF that the reservation is no longer
 required. RSN values MUST be interpreted.

 Note that a stateless QNE can not support summary or single reduced
 refreshes, and always needs full single refreshes.

5.3.7. RSN_LIST

 An RSN_LIST MUST be carried in RESERVE messages when a QNE wants to
 perform a refresh or tear-down of several sessions with a single NSLP
 message. The RSN_LIST object MUST be populated with RSN values of
 the same sessions and in the same order as indicated in the
 SESSION_ID_LIST. Thus, entries in both objects at position X refer
 to the same session.

 If the primary session and RSN reference in the RESERVE were not
 understood, the stateful QNE MUST NOT process the RSN_LIST. Instead
 an error RESPONSE SHOULD be sent back to the upstream stateful QNE.

 On receiving an RSN_LIST object, the stateful QNE should check
 whether the number of items in the SESSION_ID_LIST and RSN_LIST
 objects match. If there is a mismatch, the stateful QNE SHOULD send
 back a protocol error indicating a bad value in the object.

 While matching the RSN_LIST values to the SESSION_ID_LIST values, if
 one or more RSN values in the RSN_LIST are not in synch with the
 local values, the stateful QNE SHOULD construct an informational
 RESPONSE message with an error code for RSN mismatch in RSN_LIST.
 The stateful QNE MUST include the erroneous SESSION ID and RSN values
 in SESSION_ID_LIST and RSN_LIST objects in the RESPONSE.

 If no errors were found in processing the RSN_LIST, the stateful QNE
 refreshes the reservation states of all sessions, both the primary
 single session indicated in the refresh, and all sessions in the
 SESSION_ID_LIST.

 For each successfully processed session in the RESERVE, the stateful
 QNE performs a refresh of the reservation state. Thus, even if some
 sessions were not in synch, the remaining sessions in the
 SESSION_ID_LIST and RSN_LIST are refreshed.

Manner, et al. Expires August 10, 2008 [Page 70]

Internet-Draft QoS NSLP February 2008

5.3.8. QSPEC

 The contents of the QSPEC depends on the QoS model being used. A
 template for QSPEC objects can be found in [I-D.ietf-nsis-qspec].

 Upon reception, the complete QSPEC is passed to the Resource
 Management Function (RMF), along with other information from the
 message necessary for the RMF processing. A QNE may also receive an
 INFO_SPEC that includes a partial or full QSPEC. This will also be
 passed to the RMF.

5.4. Message Processing Rules

 This section provides rules for message processing. Not all possible
 error situations are considered. A general rule for dealing with
 erroneous messages is that a node should evaluate the situation
 before deciding how to react. There are two ways to react to
 erroneous messages:

 a) Silently drop the message, or

 b) Drop the message, and reply with an error code to the sender.

 The default behavior, in order to protect the QNE from a possible DoS
 attack, is to silently drop the message. However, if the QNE is able
 to authenticate the sender, e.g., through GIST, the QNE may send a
 proper error message back to the neighbor QNE in order to let it know
 that there is an inconsistency in the states of adjacent QNEs.

5.4.1. RESERVE Messages

 The RESERVE message is used to manipulate QoS reservation state in
 QNEs. A RESERVE message may create, refresh, modify or remove such
 state. A QNE sending a RESERVE MAY require a response to be sent by
 including a Request Identification Information (RII) object, see

Section 5.3.2.

 RESERVE messages MUST only be sent towards the QNR. A QNE that
 receives a RESERVE message checks the message format. In case of
 malformed messages, the QNE MAY send a RESPONSE message with the
 appropriate INFO_SPEC.

 Before performing any state changing actions a QNE MUST determine
 whether the request is authorized. The way to do this check depends
 on the authorization model being used.

 When the RESERVE is authorized, a QNE checks the COMMON_HEADER flags.
 If the TEAR flag is set, the message is a tearing RESERVE which

Manner, et al. Expires August 10, 2008 [Page 71]

Internet-Draft QoS NSLP February 2008

 indicates complete QoS NSLP state removal (as opposed to a
 reservation of zero resources). On receiving such a RESERVE message
 the QNE MUST inform the RMF that the reservation is no longer
 required. The RSN value MUST be processed. After this, there are
 two modes of operation:

 1. If the tearing RESERVE did not include an RII, i.e., the QNI did
 not want a confirmation, the QNE SHOULD remove the QoS NSLP state.
 It MAY signal to GIST (over the API) that reverse path state for this
 reservation is no longer required. Any errors in processing the
 tearing RESERVE SHOULD NOT be sent back towards the QNI since the
 upstream QNEs will already have removed their session states, thus,
 they are unable to do anything to the error.

 2. If an RII was included, the stateful QNE SHOULD still keep the
 NSLP operational state until a RESPONSE for the tear going towards
 the QNI is received. This operational state SHOULD be kept for one
 refresh interval, after which the NSLP operational state for the
 session is removed. Depending on the QoS model, the tear message MAY
 include a QSPEC to further specify state removal. If the QoS model
 requires a QSPEC, and none is provided, the QNE SHOULD reply with an
 error message, and SHOULD NOT remove the reservation.

 If the tearing RESERVE includes a QSPEC, but none is required by the
 QoS model, the QNE MAY silently discard the QSPEC and proceed as if
 it did not exist in the message. In general, a QoS NSLP
 implementation should carefully consider, when an error message
 should be sent, and when not. If the tearing RESERVE did not include
 an RII, then the upstream QNE has removed the RMF and NSLP states,
 and will not be able to do anything to the error. If an RII was
 included, the upstream QNE may still have the NSLP operational state,
 but no RMF state.

 If a QNE receives a tearing RESERVE for a session it still has the
 operational state, but the RMF state was removed, the QNE SHOULD
 accept the message and forward it downstream as if all is well.

 If the tearing RESERVE includes a SESSION_ID_LIST, the stateful QNE
 MUST process the object as described earlier in this document, and
 for each identified session, indicate to the RMF that the reservation
 is no longer required.

 If a QNE receives a refreshing RESERVE for a session it still has the
 operational state, but the RMF state was removed, the QNE MUST
 silently drop the message and not forward it downstream.

 As discussed in Section 5.2.5.2, to avoid incorrect removal of state
 after a rerouting event, a node receiving a RESERVE message with the

Manner, et al. Expires August 10, 2008 [Page 72]

Internet-Draft QoS NSLP February 2008

 TEAR flag set which does not come from the current peer QNE,
 identified by its SII, MUST be ignored and MUST NOT be forwarded.

 If the QNE has reservations which are bound and dependent to this
 session (they contain the SESSION_ID of this session in their
 BOUND_SESSION_ID object and use Binding Code: 0x04), it MUST send a
 NOTIFY message for each of the reservations with an appropriate
 INFO_SPEC. If the QNE has reservations which are bound, but which
 they are not dependent to this session (the Binding Code in the
 BOUND_SESSION_ID object has one of the values: 0x01, 0x02, 0x03), it
 MAY send a NOTIFY message for each of the reservations with an
 appropriate INFO_SPEC. The QNE MAY elect to send RESERVE messages
 with the TEAR flag set for these reservations.

 The default behavior of a QNE that receives a RESERVE with a
 SESSION_ID for which it already has state installed but with a
 different flow ID is to replace the existing reservation (and tear
 down the reservation on the old branch if the RESERVE is received
 with a different SII).

 In some cases, this may not be the desired behavior. In that case,
 the QNI or a QNE MAY set the REPLACE flag in the common header to
 zero to indicate that the new session does not replace the existing
 one.

 A QNE that receives a RESERVE with the REPLACE flag set to zero but
 with the same SII, will indicate REPLACE=0 to the RMF (where it will
 be used for the resource handling). Furthermore, if the QNE
 maintains a QoS NSLP state then it will also add the new flow ID in
 the QoS NSLP state. If the SII is different, this means that the QNE
 is a merge point. In that case, in addition to the operations
 specified above, the value REPLACE=0 is also indicating that a
 tearing RESERVE SHOULD NOT be sent on the old branch.

 When a QNE receives a RESERVE message with an unknown SESSION_ID and
 this message contains no QSPEC because it was meant as a refresh then
 the node MUST send a RESPONSE message with an INFO_SPEC that
 indicates a missing QSPEC to the upstream peer ("Full QSPEC
 required"). The upstream peer SHOULD send a complete RESERVE (i.e.,
 one containing a QSPEC) on the new path (new SII).

 At a QNE, resource handling is performed by the RMF. For sessions
 with the REPLACE flag set to zero, we assume that the QoS model
 includes directions to deal with resource sharing. This may include,
 adding the reservations, or taking the maximum of the two or more
 complex mathematical operations.

 This resource handling mechanism in the QoS Model is also applicable

Manner, et al. Expires August 10, 2008 [Page 73]

Internet-Draft QoS NSLP February 2008

 to sessions with different SESSION_ID but related through the
 BOUND_SESSION_ID object. Session replacement is not an issue here,
 but the QoS Model may specify whether to let the sessions that are
 bound together share resources on common links or not.

 Finally, it is possible that a RESERVE is received with no QSPEC at
 all. This is the case of a reduced refresh. In this case, rather
 than sending a refreshing RESERVE with the full QSPEC, only the
 SESSION_ID and the RSN are sent to refresh the reservation. Note
 that this mechanism just reduces the message size (and probably eases
 processing). One RESERVE per session is still needed. Such a
 reduced refresh may further include a SESSION_ID_LIST and RSN_LIST,
 which indicate further sessions to be refreshed along the primary
 session. The processing of these objects were described earlier in
 this document.

 If the REPLACE flag is set, the QNE SHOULD update the reservation
 state according to the QSPEC contained in the message (if the QSPEC
 is missing the QNE SHOULD indicate this error by replying with a
 RESPONSE containing the corresponding INFO_SPEC "Full QSPEC
 required"). It MUST update the lifetime of the reservation. If the
 REPLACE flag is not set, a QNE SHOULD NOT remove the old reservation
 state if the SII which is passed by GIST over the API is different
 than the SII that was stored for this reservation. The QNE MAY elect
 to keep sending refreshing RESERVE messages.

 If a stateful QoS NSLP QNE receives a RESERVE message with the BREAK
 flag set then the BREAK flag of new generated messages (e.g., RESERVE
 or RESPONSE) MUST be set. When a stateful QoS NSLP QNE receives a
 RESERVE message with the BREAK flag not set then the IP-TTL and
 Original-TTL values in GIST RecvMessage primitive MUST be monitored.
 If they differ, it is RECOMMENDED to set the BREAK flag in new
 generated messages (e.g., RESERVE or RESPONSE). In situations where
 a QNE or a domain is able to provide QoS using other means, see

Section 3.3.5, then the BREAK flag SHOULD NOT be set.

 If the RESERVE message included an RII, and any of the following are
 true, the QNE MUST send a RESPONSE message:

 o If the QNE is configured, for a particular session, to be a QNR,

 o the SCOPING flag is set,

 o the Proxy scope flag is set and the QNE is a P-QNE, or

 o the QNE is the last QNE on the path to the destination.

 When a QNE receives a RESERVE message, its processing may involve

Manner, et al. Expires August 10, 2008 [Page 74]

Internet-Draft QoS NSLP February 2008

 sending out another RESERVE message.

 If a QNE has received a RESPONSE mandating the use of full refreshes
 from its downstream peer for a session, the QNE MUST continue to use
 full refresh messages.

 If the session of this message is bound to another session, then the
 RESERVE message SHOULD include the SESSION_ID of that other session
 in a BOUND_SESSION_ID object. In the situation of aggregated
 tunnels, the aggregated session MAY not include the SESSION_ID of its
 bound sessions in BOUND_SESSION_ID(s).

 In case of receiver-initiated reservations, the RESERVE message must
 follow the same path that has been followed by the QUERY message.
 Therefore, GIST is informed, over the QoS NSLP/GIST API, to pass the
 message upstream, i.e., by setting GIST "D" flag, see GIST
 [I-D.ietf-nsis-ntlp].

 The QNE MUST create a new RESERVE and send it to its next peer, when:

 - A new resource set up was done,

 - A new resource set up was not done, but the QOSM still defines that
 a RESERVE must be propagated,

 - The RESERVE is a refresh and includes new MRI, or

 - If the RESERVE-INIT flag is included in an arrived QUERY.

 If the QNE sent out a refresh RESERVE with the ACK-REQ-flag set, and
 did not receive a RESPONSE from its immediate stateful peer within
 the retransmission period of QOSNSLP_RETRY_MAX, the QNE SHOULD send a
 NOTIFY to its immediate upstream sateful peer and indicate "Path
 truncated - Next peer dead" in the INFO_SPEC. The ACK-REQ-flag
 SHOULD NOT be added to a RESERVE that already include an RII object,
 since a confirmation from the QNR has already been requested.

 Finally, if a received RESERVE requested acknowledgement through the
 ACK-REQ-flag in the COMMON HEADER flags and the processing of the
 message was successul, the stateful QNE SHOULD send back a RESPONSE
 with an INFO_SPEC carrying the acknowledgement success code. The QNE
 MAY include the ACK-REQ-flag in the next refresh message it will send
 for the session. The use of the ACK-REQ-flag for diagnostics
 purposes is a policy issue, i.e., using an acknowledged refresh
 message as a hint to further probe the end-to-end path can be used
 simply as a hint to check that the end-to-end path is still intact.

Manner, et al. Expires August 10, 2008 [Page 75]

Internet-Draft QoS NSLP February 2008

5.4.2. QUERY Messages

 A QUERY message is used to request information about the data path
 without making a reservation. This functionality can be used to
 'probe' the network for path characteristics or for support of
 certain QoS models, or for initiating a receiver-initiated
 reservation.

 A QNE sending a QUERY indicates a request for a response by including
 a Request Identification Information (RII) object, see Section 5.3.2.
 A request to initiate a receiver-initiated reservation is done
 through the RESERVE-INIT flag, see Section 5.1.2.2.

 When a QNE receives a QUERY message the QSPEC is passed to the RMF
 for processing. The RMF may return a modified QSPEC that is used in
 any QUERY or RESPONSE message sent out as a result of the QUERY
 processing.

 When processing a QUERY message, a QNE checks whether the RESERVE-
 INIT flag is set. If the flag is set, the QUERY is used to install
 reverse path state. In this case, if the QNE is not the QNI, it
 creates a new QUERY message to send downstream. If the QUERY
 contained a QSPEC, it MUST be passed to the RMF where it may be
 modified by the QoS Model specific QUERY processing. If the QNE is
 the QNI, the QNE creates a RESERVE message, which contains a QSPEC
 received from the RMF and which may be based on the received QSPEC.
 If this node was not expecting to perform a receiver-initiated
 reservation then an error MUST be sent back along the path.

 If an RII object is present, and if the QNE is the QNR, the SCOPING
 flag is set or the PROXY scope flag is set and the QNE is a P-QNE,
 the QNE MUST generate a RESPONSE message and pass it back along the
 reverse of the path used by the QUERY.

 In other cases, the QNE MUST generate a QUERY message which is then
 forwarded further along the path using the same MRI, Session ID and
 Direction as provided when the QUERY was received over the GIST API.

 The QSPEC to be used is that provided by the RMF as described
 previously. When generating a QUERY to send out to pass the query
 further along the path, the QNE MUST copy the RII object (if present)
 unchanged into the new QUERY message. A QNE that is also interested
 in the response to the query keeps track of the RII to identify the
 RESPONSE when it passes through it.

 Note that QUERY messages with the RESERVE-INIT flag set MUST be
 answered by the QNR. This feature may be used, e.g., following
 handovers, to set up new path state in GIST, and request the other

Manner, et al. Expires August 10, 2008 [Page 76]

Internet-Draft QoS NSLP February 2008

 party to send a RESERVE back on this new GIST path.

 If a stateful QoS NSLP QNE receives a QUERY message with the RESERVE-
 INIT flag and BREAK flag set then the BREAK flag of new generated
 messages (e.g., QUERY, RESERVE or RESPONSE) MUST be set. When a
 stateful QoS NSLP QNE receives a QUERY message with the RESERVE- INIT
 flag set and BREAK flag not set then the IP-TTL and Original-TTL
 values in GIST RecvMessage primitive MUST be monitored. If they
 differ, it is RECOMMENDED to set the BREAK flag in new generated
 messages (e.g., QUERY, RESERVE or RESPONSE). In situations where a
 QNE or a domain is able to provide QoS using other means, see Section

3.3.5, then the BREAK flag SHOULD NOT be set.

 Finally, if a received QUERY requested acknowledgement through the
 ACK-REQ-flag in the COMMON HEADER flags and the processing of the
 message was successul, the stateful QNE SHOULD send back a RESPONSE
 with an INFO_SPEC carrying the acknowledgement success code.

5.4.3. RESPONSE Messages

 The RESPONSE message is used to provide information about the result
 of a previous QoS NSLP message, e.g., confirmation of a reservation
 or information resulting from a QUERY. The RESPONSE message does not
 cause any state to be installed, but may cause state(s) to be
 modified, e.g., if the RESPONSE contains information about an error.

 A RESPONSE message MUST be sent when the QNR processes a RESERVE or
 QUERY message containing an RII object or if the QNE receives a
 scoped RESERVE or a scoped QUERY. In this case, the RESPONSE message
 MUST contain the RII object copied from the RESERVE or the QUERY.
 Also, if there is an error in processing a received RESERVE, a
 RESPONSE is sent indicating the nature of the error. In this case,
 the RII and RSN, if available, MUST be included in the RESPONSE.

 On receipt of a RESPONSE message containing an RII object, the
 stateful QoS NSLP QNE MUST attempt to match it to the outstanding
 response requests for that signaling session. If the match succeeds,
 then the RESPONSE MUST NOT be forwarded further along the path if it
 contains an INFO_SPEC class informational or success. If the QNE did
 not insert this RII itself, if must forward the RESPONSE to the next
 peer. Thus, for RESPONSES indicating success, forwarding should only
 stop if the QNE inserted the RII by itself, If the RESPONSE carries
 an INFO_SPEC indicating an error, forwarding SHOULD continue upstream
 towards the QNI by using RSNs as described in the next paragraph.

 On receipt of a RESPONSE message containing an RSN object, a stateful
 QoS NSLP QNE MUST compare the RSN to that of the appropriate
 signaling session. If the match succeeds then the INFO_SPEC MUST be

Manner, et al. Expires August 10, 2008 [Page 77]

Internet-Draft QoS NSLP February 2008

 processed. If the INFO_SPEC object is used to notify errors then the
 node MUST use the stored upstream peer RSN value, associated with the
 same session, and forward the RESPONSE message further along the path
 towards the QNI.

 If the INFO_SPEC is not used to notify error situations, see above,
 then if the RESPONSE message carries an RSN, the message MUST NOT be
 forwarded further along the path.

 If there is no match for RSN, the message SHOULD be silently dropped.

 On receipt of a RESPONSE message containing neither an RII nor an RSN
 object, the RESPONSE MUST NOT be forwarded further along the path.

 In the typical case RESPONSE messages do not change the states
 installed in intermediate QNEs. However, depending on the QoS model,
 there may be situations where states are affected, e.g.,

 - if the RESPONSE includes an INFO_SPEC describing an error situation
 resulting in reservations to be removed, or

 - the QoS model allows a QSPEC to define [min,max] limits on the
 resources requested, and downstream QNEs gave less resources than
 their upstream nodes, which means that the upstream nodes may release
 a part of the resource reservation.

 If a stateful QoS NSLP QNE receives a RESPONSE message with the BREAK
 flag set then the BREAK flag of new generated message (e.g.,
 RESPONSE) MUST be set.

5.4.4. NOTIFY Messages

 NOTIFY messages are used to convey information to a QNE
 asynchronously. NOTIFY messages do not cause any state to be
 installed. The decision to remove state depends on the QoS model.
 The exact operation depends on the QoS model. A NOTIFY message does
 not directly cause other messages to be sent. NOTIFY messages are
 sent asynchronously, rather than in response to other messages. They
 may be sent in either direction (upstream or downstream).

 A special case of synchronous NOTIFY is when the upstream QNE asked
 to use reduced refresh by setting the appropriate flag in the
 RESERVE. The QNE receiving such a RESERVE MUST reply with a NOTIFY
 and a proper INFO_SPEC code whether the QNE agrees to use reduced
 refresh between the upstream QNE.

 The Transient error code 0x07 "Reservation preempted" is sent to the
 QNI whose resources were preempted. The NOTIFY message carries

Manner, et al. Expires August 10, 2008 [Page 78]

Internet-Draft QoS NSLP February 2008

 information to the QNI that one QNE no longer has a reservation for
 the session. It is up to the QNI to decide what to do based on the
 QoS Model being used. The QNI would normally tear down the preempted
 reservation by sending a RESERVE with the TEAR flag set using the SII
 of the preempted reservation. However, the QNI can follow other
 procedures as specified in its QoS Model. More discussion on
 preemption can be found in the QSPEC Template [I-D.ietf-nsis-qspec]
 and the individual QoS Model specifications.

6. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the QoS
 NSLP, in accordance with BCP 26 RFC 2434 [RFC2434].

 The QoS NSLP requires IANA to create a number of new registries:

 - QoS NSLP Message Types

 - QoS NSLP Binding Codes

 - QoS NSLP Error Classes and Error Codes

 It also requires registration of new values in a number of
 registries:

 - NSLP Object Types - GIST NSLP-ID - Router Alert Option Values (IPv4
 and IPv6)

6.1. QoS NSLP Message Type

 The QoS NSLP Message Type is an 8 bit value. This specification
 defines four QoS NSLP message types, which form the initial contents
 of this registry: RESERVE (0x01), QUERY (0x02), RESPONSE (0x03) and
 NOTIFY (0x04).

 The value 0 is reserved. Values 1-239 are to be allocated by
 Standards Action. Values 240 to 255 are for Experimental/Private
 Use.

 When a new message type is defined, any message flags used with it
 must also be defined.

6.2. NSLP Message Objects

 [Delete this part if already done by another NSLP:

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Manner, et al. Expires August 10, 2008 [Page 79]

Internet-Draft QoS NSLP February 2008

 A new registry is to be created for NSLP Message Objects. This is a
 12-bit field (giving values from 0 to 4095). This registry is shared
 between a number of NSLPs. Allocation policies are as follows:

 0-1023: Standards Action

 1024-1999: Specification Required

 2000-2047: Private/Experimental Use

 2048-4095: Reserved

 When a new object is defined, the extensbility bits (A/B) must also
 be defined.]

 This document defines eleven new NSLP objects. These are described
 in Section 5.1.3: RII (0x01), RSN (0x02), REFRESH_PERIOD (0x03),
 BOUND_SESSION_ID (0x04), PACKET_CLASSIFIER (0x05), INFO_SPEC (0x06),
 SESSION ID LIST (0x07), RSN LIST (0x08), MSG_ID (0x09), BOUND_MSG_ID
 (0x0A), and QSPEC (0x0B).

 Values are to be assigned from the Standards Action required section
 of the NSLP Object Type registry.

6.3. QoS NSLP Binding Codes

 A new registry is to be created for the 8-bit Binding Codes used in
 the BOUND_SESSION_ID object. The initial values for this registry
 are listed in Section 5.1.3.4.

 Value 0 is reserved. Values 1 to 127 are to be assigned based on a
 policy of Specification Required. Values 128 to 159 are for
 Exerimental/Private Use. Other values are Reserved.

6.4. QoS NSLP Error Classes and Error Codes

 In addition Error Classes and Error Codes for the INFO_SPEC object
 are defined. These are described in Section 5.1.3.6.

 The Error Class is 4-bits in length. The initial values are:

 0: Reserved

 1: Informational

 2: Success

 3: Protocol Error

Manner, et al. Expires August 10, 2008 [Page 80]

Internet-Draft QoS NSLP February 2008

 4: Transient Failure

 5: Permanent Failure

 6: QoS Model Error

 7-15: Reserved

 The Error Code is 16 bits in length. Each Error Codes are assigned
 within a particular Error Class. This requires the creation of a
 registry for Error Codes in each Error Class. The error code 0 in
 each class is Reserved.

 Policies for the error code registries are as follows:

 0-8191: Standards Action

 8192-12287: Specification Required

 12288-16383: Experimental/Private Use

 16384-65536: Reserved

 The initial assignments for the Error Code registries are given in
section 5.1.3.6.

6.5. QoS NSLP Error Source Identifiers

Section 5.1.3.4 defines Error Source Identifiers, the type of which
 is identified by a 4 bit value. The value 0 is reserved, all other
 values are assigned on a basis of Specification Required, except for
 14 and 15 which are for Experimental/Private Use.

 Initial assignments are given in section 5.1.3.4.

6.6. NSLP IDs and Router Alert Option Values

 This specification defines an NSLP for use with GIST. Furthermore it
 specifies that a number of NSLP-ID values are used for the support of
 bypassing intermediary nodes. Consequently, new identifiers must be
 assigned for them from the GIST NSLP identifier registry. The QoS
 NSLP requires that 32 NSLP-ID values be assigned, corresponding to
 QoS NSLP Aggregation Levels 0 to 31.

 The GIST specification also requires that NSLP-IDs be associated with
 specific Router Alert Option (RAO) values (although multiple NSLP-IDs
 may be associated with the same value). For the purposes of the QoS
 NSLP, each of its NSLP-ID values should be associated with a

Manner, et al. Expires August 10, 2008 [Page 81]

Internet-Draft QoS NSLP February 2008

 different RAO value. This requires that a block of 32 new IPv4 RAO
 values and a block of 32 new IPv6 RAO values be assigned,
 corresponding to QoS NSLP Aggregation Levels 0 to 31.

7. Security Considerations

 The security requirement for the QoS NSLP is to protect the signaling
 exchange for establishing QoS reservations against identified
 security threats. For the signaling problem as a whole, these
 threats have been outlined in NSIS threats [RFC4081]; the NSIS
 framework [RFC4080] assigns a subset of the responsibility to GIST
 and the remaining threats need to be addressed by NSLPs. The main
 issues to be handled can be summarized as:

 Authorization:

 The QoS NSLP must assure that the network is protected against theft-
 of-service by offering mechanisms to authorize the QoS reservation
 requester. A user requesting a QoS reservation might want proper
 resource accounting and protection against spoofing and other
 security vulnerabilities which lead to denial of service and
 financial loss. In many cases authorization is based on the
 authenticated identity. The authorization solution must provide
 guarantees that replay attacks are either not possible or limited to
 a certain extent. Authorization can also be based on traits which
 enables the user to remain anonymous. Support for user identity
 confidentiality can be accomplished.

 Message Protection:

 Signaling message content should be protected against modification,
 replay, injection and eavesdropping while in transit. Authorization
 information, such as authorization tokens, need protection. This
 type of protection at the NSLP layer is necessary to protect messages
 between NSLP nodes.

 Rate Limitation:

 QNEs should perform rate limiting on the refresh messages that they
 send. An attacker could send erroneous messages on purpose, forcing
 the QNE to constantly reply with an error message. Authentication
 mechanisms would help in figuring out if error situations should be
 reported to the sender, or silently ignored. If the sender is
 authenticated, the QNE should reply promptly.

 Prevention of Denial of Service Attacks:

https://datatracker.ietf.org/doc/html/rfc4081
https://datatracker.ietf.org/doc/html/rfc4080

Manner, et al. Expires August 10, 2008 [Page 82]

Internet-Draft QoS NSLP February 2008

 GIST and QoS NSLP nodes have finite resources (state storage,
 processing power, bandwidth). The protocol mechanisms s in this
 document try to minimize exhaustion attacks against these resources
 when performing authentication and authorization for QoS resources.

 To some extent the QoS NSLP relies on the security mechanisms
 provided by GIST which by itself relies on existing authentication
 and key exchange protocols. Some signaling messages cannot be
 protected by GIST and hence should be used with care by the QoS NSLP.
 An API must ensure that the QoS NSLP implementation is aware of the
 underlying security mechanisms and must be able to indicate which
 degree of security is provided between two GIST peers. If a level of
 security protection for QoS NSLP messages is required which goes
 beyond the security offered by GIST or underlying security
 mechanisms, additional security mechanisms described in this document
 must be used. The different usage environments and the different
 scenarios where NSIS is used make it very difficult to make general
 statements without reducing its flexibility.

7.1. Trust Relationship Model

 This specification is based on a model which requires trust between
 neighboring NSLP nodes to establish a chain-of-trust along the QoS
 signaling path. The model is simple to deploy, was used in previous
 QoS authorization environments (such as RSVP) and seems to provide
 sufficiently strong security properties. We refer to this model as
 the New Jersey Turnpike.

 On the New Jersey Turnpike, motorists pick up a ticket at a toll
 booth when entering the highway. At the highway exit the ticket is
 presented and payment is made at the toll booth for the distance
 driven. For QoS signaling in the Internet this procedure is roughly
 similar. In most cases the data sender is charged for transmitted
 data traffic where charging is provided only between neighboring
 entities.

Manner, et al. Expires August 10, 2008 [Page 83]

Internet-Draft QoS NSLP February 2008

 +------------------+ +------------------+ +------------------+
 | Network | | Network | | Network |
 | X | | Y | | Z |
 | | | | | |
 | -----------> -----------> |
 | | | | | |
 | | | | | |
 +--------^---------+ +------------------+ +-------+----------+
 | .
 | .
 | v
 +--+---+ Data Data +--+---+
 | Node | ==============================> | Node |
 | A | Sender Receiver | B |
 +------+ +------+

 Legend:

 ----> Peering relationship which allows neighboring
 networks/entities to charge each other for the
 QoS reservation and data traffic

 ====> Data flow

 Communication to the end host

 Figure 42: New Jersey Turnpike Model

 The model shown in Figure 42 uses peer-to-peer relationships between
 different administrative domains as a basis for accounting and
 charging. As mentioned above, based on the peering relationship a
 chain-of-trust is established. There are several issues which come
 to mind when considering this type of model:

 o The model allows authorization on a request basis or on a per-
 session basis. Authorization mechanisms are elaborated in Section

4.9. The duration for which the QoS authorization is valid needs to
 be controlled. Combining the interval with the soft-state interval
 is possible. Notifications from the networks also seem to be viable
 approach.

 o The price for a QoS reservation needs to be determined somehow and
 communicated to the charged entity and to the network where the
 charged entity is attached. Protocols providing Advice of Charge
 functionality are out of scope.

 o This architecture is simple enough to allow a scalable solution
 (ignoring reverse charging, multicast issues and price distribution).

Manner, et al. Expires August 10, 2008 [Page 84]

Internet-Draft QoS NSLP February 2008

 Charging the data sender as performed in the model simplifies
 security handling by demanding only peer-to-peer security protection.
 Node A would perform authentication and key establishment. The
 established security association (together with the session key)
 would allow the user to protect QoS signaling messages. The identity
 used during the authentication and key establishment phase would be
 used by Network X (see Figure 42) to perform the so-called policy-
 based admission control procedure. In our context this user
 identifier would be used to establish the necessary infrastructure to
 provide authorization and charging. Signaling messages later
 exchanged between the different networks are then also subject to
 authentication and authorization. The authenticated entity thereby
 is, however, the neighboring network and not the end host.

 The New Jersey Turnpike model is attractive because of its
 simplicity. S. Schenker et. al. [shenker] discuss various accounting
 implications and introduced the edge pricing model. The edge pricing
 model shows similarity to the model described in this section with
 the exception that mobility and the security implications itself are
 not addressed.

7.2. Authorization Model Examples

 Various authorization models can be used in conjunction with the QoS
 NSLP.

7.2.1. Authorization for the Two Party Approach

 The two party approach (Figure 43) is conceptually the simplest
 authorization model.

 +-------------+ QoS request +--------------+
Entity	----------------->	Entity
requesting		authorizing
resource	granted / rejected	resource
	<-----------------	request
 +-------------+ +--------------+
 ^ ^
 +...........................+
 compensation

 Figure 43: Two party approach

 In this example the authorization decision only involves the two
 entities, or makes use of previous authorization using an out-of-band
 mechanism to avoid the need for active participation of an external
 entity during the NSIS protocol execution.

Manner, et al. Expires August 10, 2008 [Page 85]

Internet-Draft QoS NSLP February 2008

 This type of model may be applicable, e.g., between two neighboring
 networks (inter-domain signaling) where a long-term contract (or
 other out-of-band mechanisms) exists to manage charging and provides
 sufficient information to authorize individual requests.

7.2.2. Token-based Three Party Approach

 An alternative approach makes use of tokens, such as those described
 in RFC 3520 [RFC3520] and RFC 3521 [RFC3521] or used as part of the
 Open Settlement Protocol [osp]. Authorization tokens are used to
 associate two different signaling protocols runs (e.g., SIP and NSIS)
 and their authorization decision with each other. The latter is a
 form of assertion or trait. As an example, with the authorization
 token mechanism, some form of authorization is provided by the SIP
 proxy, which acts as the resource authorizing entity in Figure 44.
 If the request is authorized, then the SIP signaling returns an
 authorization token which can be included in the QoS signaling
 protocol messages to refer to the previous authorization decision.
 The tokens themselves may take a number of different forms, some of
 which may require the entity performing the QoS reservation to query
 external state.

 Authorization
 Token Request +--------------+
 +-------------->| Entity C | financial settlement
 | | authorizing | <..................+
 | | resource | .
 | +------+ request | .
 | | +--------------+ .
 | | .
 | |Authorization .
 | |Token .
 | | .
 | | .
 | | .
 | | QoS request .
 +-------------+ + Authz. Token +--------------+ .
 | Entity |----------------->| Entity B | .
 | requesting | | performing | .
 | resource |granted / rejected| QoS | <..+
 | A |<-----------------| reservation |
 +-------------+ +--------------+

 Figure 44: Token based three party approach

 For the digital money type of systems (e.g., OSP tokens), the token
 represents a limited amount of credit. So, new tokens must be sent
 with later refresh messages once the credit is exhausted.

https://datatracker.ietf.org/doc/html/rfc3520
https://datatracker.ietf.org/doc/html/rfc3520
https://datatracker.ietf.org/doc/html/rfc3521
https://datatracker.ietf.org/doc/html/rfc3521

Manner, et al. Expires August 10, 2008 [Page 86]

Internet-Draft QoS NSLP February 2008

7.2.3. Generic Three Party Approach

 Another method is for the node performing the QoS reservation to
 delegate the authorization decision to a third party, as illustrated
 in Figure 45. The authorization decision may be performed on a per-
 request basis, periodically, or on a per-session basis.

 +--------------+
 | Entity C |
 | authorizing |
 | resource |
 | request |
 +-----------+--+
 ^ |
 QoS | | QoS
 authz| |authz
 req.| | res.
 QoS | v
 +-------------+ request +--+-----------+
Entity	----------------->	Entity B
requesting		performing
resource	granted / rejected	QoS
A	<-----------------	reservation
 +-------------+ +--------------+

 Figure 45: Three party approach

7.3. Computing the Authorization Decision

 Whenever an authorization decision has to be made then there is the
 question which information serves as an input to the authorizing
 entity. The following information items have been mentioned in the
 past for computing the authorization decision (in addition to the
 authenticated identity):

 Price

 QoS objects

 Policy rules

 Policy rules include attributes like time of day, subscription to
 certain services, membership, etc. into consideration when computing
 an authorization decision.

 The policies used to make the authorization are outside the scope of
 this document and implementation/deployment specific.

Manner, et al. Expires August 10, 2008 [Page 87]

Internet-Draft QoS NSLP February 2008

8. Acknowledgments

 The authors would like to thank Eleanor Hepworth, Ruediger Geib,
 Roland Bless, Nemeth Krisztian, Markus Ott, Mayi Zoumaro-Djayoon,
 Martijn Swanink, and Ruud Klaver for their useful comments. Roland,
 especially, has done deep reviews of the document, making sure the
 protocol is well defined. Bob Braden provided helpful comments and
 guidance which were gratefully received.

9. Contributors

 This draft combines work from three individual drafts. The following
 authors from these drafts also contributed to this document: Robert
 Hancock (Siemens/Roke Manor Research), Hannes Tschofenig and Cornelia
 Kappler (Siemens AG), Lars Westberg and Attila Bader (Ericsson) and
 Maarten Buechli (Dante) and Eric Waegeman (Alcatel). In addition,
 Roland Bless has contributed considerable amounts of text all along
 the writing of this specification.

 Sven Van den Bosch was the first editor of the draft. Since version
 06 of the draft, Jukka Manner has taken the editorship. Yacine El
 Mghazli (Alcatel) contributed text on AAA. Charles Shen and Henning
 Schulzrinne suggested the use of the reason field in the
 BOUND_SESSION_ID.

10. References

10.1. Normative References

 [I-D.ietf-nsis-ntlp]
 Schulzrinne, H. and R. Hancock, "GIST: General Internet
 Signalling Transport", draft-ietf-nsis-ntlp-15 (work in
 progress), February 2008.

 [I-D.ietf-nsis-qspec]
 Ash, G., Bader, A., Kappler, C., and D. Oran, "QoS NSLP
 QSPEC Template", draft-ietf-nsis-qspec-18 (work in
 progress), October 2007.

 [RFC1982] Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
 August 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-nsis-ntlp-15
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-qspec-18
https://datatracker.ietf.org/doc/html/rfc1982
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Manner, et al. Expires August 10, 2008 [Page 88]

Internet-Draft QoS NSLP February 2008

10.2. Informative References

 [I-D.ietf-nsis-applicability-mobility-signaling]
 Lee, S., "Applicability Statement of NSIS Protocols in
 Mobile Environments",

draft-ietf-nsis-applicability-mobility-signaling-08 (work
 in progress), November 2007.

 [I-D.ietf-nsis-rmd]
 Bader, A., "RMD-QOSM - The Resource Management in Diffserv
 QOS Model", draft-ietf-nsis-rmd-12 (work in progress),
 November 2007.

 [I-D.manner-nsis-nslp-auth]
 Manner, J., "Authorization for NSIS Signaling Layer
 Protocols", draft-manner-nsis-nslp-auth-03 (work in
 progress), March 2007.

 [RFC1633] Braden, B., Clark, D., and S. Shenker, "Integrated
 Services in the Internet Architecture: an Overview",

RFC 1633, June 1994.

 [RFC2205] Braden, B., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, September 1997.

 [RFC2210] Wroclawski, J., "The Use of RSVP with IETF Integrated
 Services", RFC 2210, September 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [RFC2961] Berger, L., Gan, D., Swallow, G., Pan, P., Tommasi, F.,
 and S. Molendini, "RSVP Refresh Overhead Reduction
 Extensions", RFC 2961, April 2001.

 [RFC3175] Baker, F., Iturralde, C., Le Faucheur, F., and B. Davie,
 "Aggregation of RSVP for IPv4 and IPv6 Reservations",

RFC 3175, September 2001.

 [RFC3520] Hamer, L-N., Gage, B., Kosinski, B., and H. Shieh,
 "Session Authorization Policy Element", RFC 3520,
 April 2003.

 [RFC3521] Hamer, L-N., Gage, B., and H. Shieh, "Framework for
 Session Set-up with Media Authorization", RFC 3521,
 April 2003.

https://datatracker.ietf.org/doc/html/draft-ietf-nsis-applicability-mobility-signaling-08
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-rmd-12
https://datatracker.ietf.org/doc/html/draft-manner-nsis-nslp-auth-03
https://datatracker.ietf.org/doc/html/rfc1633
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2210
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2961
https://datatracker.ietf.org/doc/html/rfc3175
https://datatracker.ietf.org/doc/html/rfc3520
https://datatracker.ietf.org/doc/html/rfc3521

Manner, et al. Expires August 10, 2008 [Page 89]

Internet-Draft QoS NSLP February 2008

 [RFC3726] Brunner, M., "Requirements for Signaling Protocols",
RFC 3726, April 2004.

 [RFC4080] Hancock, R., Karagiannis, G., Loughney, J., and S. Van den
 Bosch, "Next Steps in Signaling (NSIS): Framework",

RFC 4080, June 2005.

 [RFC4081] Tschofenig, H. and D. Kroeselberg, "Security Threats for
 Next Steps in Signaling (NSIS)", RFC 4081, June 2005.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [lrsvp] Manner, J. and K. Raatikainen, "Localized QoS Management
 for Multimedia Applications in Wireless Access Networks.
 IASTED, IMSA, August, 2004, pp. 193-200.".

 [opwa95] Breslau, L., "Two Issues in Reservation Establishment,
 Proc. ACM SIGCOMM '95 , Cambridge , MA , August 1995.".

 [osp] ETSI, ""Telecommunications and Internet protocol
 harmonization over networks (tiphon); open settlement
 protocol (osp) for inter- domain pricing, authorization,
 and usage exchange", Technical Specification 101 321,
 version 2.1.0.".

 [qos-auth]
 Tschofenig, H., "QoS NSLP Authorization Issues. Work in
 Progress.".

 [shenker] Shenker, S. and et al., ""Pricing in computer networks:
 Reshaping the research agenda", Proc. of TPRC 1995,
 1995.".

Appendix A. Abstract NSLP-RMF API

 This appendix is purely informational and provides an abstract API
 between the QoS NSLP and the RMF. It should not be taken as a strict
 rule of implementors, but rather help clarify the interface between
 the NSLP and RMF.

A.1. Triggers from QOS-NSLP towards RMF

 The QoS-NSLP triggers the RMF/QOSM functionality by using the
 sendrmf() primitive:

 int sendrmf(sid, nslp_req_type, qspec, authorization_info,

https://datatracker.ietf.org/doc/html/rfc3726
https://datatracker.ietf.org/doc/html/rfc4080
https://datatracker.ietf.org/doc/html/rfc4081
https://datatracker.ietf.org/doc/html/rfc5234

Manner, et al. Expires August 10, 2008 [Page 90]

Internet-Draft QoS NSLP February 2008

 NSLP_objects, filter, features_in, GIST_API_triggers,
 incoming_interface, outgoing_interface)

 o sid: SESSION_ID - The NSIS session identifier
 o nslp_req_type: indicates type of request:
 * RESERVE
 * QUERY
 * RESPONSE
 * NOTIFY
 o qspec: the QSPEC object, if present
 o authorization_info: the AUTHO_SESSION object, if present
 o NSLP_objects: data structure that contains a list with received
 QoS-NSLP objects. This list can be used by e.g., Local
 application, Management, Policy control:
 * RII
 * RSN
 * BOUND_SESSION_ID list
 * REFRESH_PERIOD
 * SESSION_ID_LIST
 * RSN_LIST
 * INFO_SPEC
 * MSG_ID
 * BOUND_MSG_ID
 o filter: the information for packet filtering, based on the MRI and
 the PACKET_CLASSIFIER object.
 o features_in: it represents the flags included in the common header
 of the received QOS-NSLP message, but also additional
 o triggers:
 * BREAK
 * REQUEST REDUCED REFRESHES
 * RESERVE-INIT
 * TEAR
 * REPLACE
 * ACK-REQ
 * PROXY
 * SCOPING
 * synchronization_required: this attribute is set (see e.g.,

Section 4.6 and 4.7.1) when the QoS-NSLP functionality
 supported by a QNE Egress receives a non tearing RESERVE
 message that includes a MSG_ID or a BOUND_MSG_ID object and the
 BINDING_CODE value of the BOUND_SESSION_ID object is equal to
 one of the following values:
 + Tunnel and end-to-end sessions
 + Aggregate sessions
 * GIST_API_triggers: it represents the attributes that are
 provided by GIST to QoS-NSLP via the GIST API:

Manner, et al. Expires August 10, 2008 [Page 91]

Internet-Draft QoS NSLP February 2008

 + NSLPID
 + Routing-State-Check
 + SII-Handle
 + Transfer-Attributes
 + GIST-Hop-Count
 + IP-TTL
 + IP-Distance
 o incoming_interface: the ID of the incoming interface. Used only
 when the QNE reserves resources on incoming interface. Default is
 0 (no reservations on incoming interface)
 o outgoing_interface: the ID of the outgoing interface. Used only
 when the QNE reserves resources on outgoing interface. Default is
 0 (no reservations on outgoing interface)

A.2. Triggers from RMF/QOSM towards QOS-NSLP

 The RMF triggers the QoS-NSLP functionality using the "recvrmf()" and
 "config()" primitives to perform either all or a subset of the
 features listed below.

 The recvrmf() primitive represents either a response to a request
 that has been sent via the API by the QoS-NSLP or an asynchronous
 notification. Note that when the RMF/QOSM receives a request via the
 API from the QoS-NSLP function, then one or more than one "recvrmf()"
 response primitives can be sent via the API towards QoS-NSLP. In
 this way the QOS-NSLP can generate one, or more than one, QoS-NSLP
 messages that can be for example, used in the situation that the
 arrival of one end-to-end RESERVE triggers the generation of two (or
 more) RESERVE messages, an end-to-end RESERVE message and one (or
 more) intra-domain (local) RESERVE message.

 The config() primitive is used to configure certain features, such as
 QNE type, statefullness, bypassing support.

 Note that the selection of the subset of triggers is controlled by
 the QoS Model.

 int recvrmf(sid, nslp_resp_type, qspec, authorization_info, status,
 NSLP_objects, filter, features_out, GIST_API_triggers
 incoming_interface, outgoing_interface)

 o sid: SESSION_ID - The NSIS session identifier
 o nslp_resp_type: indicates type of response:
 * RESERVE
 * QUERY
 * RESPONSE

Manner, et al. Expires August 10, 2008 [Page 92]

Internet-Draft QoS NSLP February 2008

 * NOTIFY
 o qspec: the QSPEC object, if present
 o authorization_info: the AUTHO_SESSION object, if present
 o status: boolean that notifies the status of the reservation and
 can be used by QOS-NSLP to include in the INFO_SPEC object:
 * RESERVATION_SUCCESSFUL
 * TEAR_DOWN_SUCCESSFUL
 * NO RESOURCES
 * RESERVATION_FAILURE
 * RESERVATION_PREEMPTED: reservation was pre-empted
 * AUTHORIZATION_FAILED: authorizing the request failed
 * MALFORMED_QSPEC: request failed due to malformed qspec
 * SYNCHRONISATION_FAILED: Mismatch synchronization between an
 end-to-end RESERVE and an intra-domain RESERVE (see Section 4.6
 and 4.7.1)
 * CONGESTION_SITUATION: Possible congestion situation occurred on
 downstream path
 * QOS Model Error
 o NSLP_objects: data structure that contains a list with QoS-NSLP
 objects that can be used by QoS-NSLP, when the QNE is a QNI, QNR,
 QNI_Ingress, QNR_Ingress, QNI_Egress, QNR_Egress:
 * RII
 * RSN
 * BOUND_SESSION_ID list
 * REFRESH_PERIOD
 * SESSION_ID_LIST
 * RSN_LIST
 * MSG_ID
 * BOUND_MSG_ID
 o filter: it represents the MRM related PACKET CLASSIFIER
 o features_out: it represents among others the flags that can be
 used by the QOS-NSLP for new generated QoS-NSLP messages:
 * BREAK
 * REQUEST REDUCED REFRESHES
 * RESERVE-INIT
 * TEAR
 * REPLACE
 * ACK-REQ
 * PROXY
 * SCOPING
 * BYPASSING: when the outgoing message should be bypassed then it
 includes the required bypassing level. Otherwise it is empty.
 It can be set only by QNI_Ingress, QNR_Ingress, QNI_Egress,
 QNR_Egress. It can be unset only by QNI_Ingress, QNR_Ingress,
 QNI_Egress, QNR_Egress.
 * BINDING () when BINDING is required then it includes a
 BOUND_SESSION_ID list. Otherwise it is empty. It can only be
 requested by the following QNE types: QNI, QNR, QNI_Ingress,

Manner, et al. Expires August 10, 2008 [Page 93]

Internet-Draft QoS NSLP February 2008

 QNR_Ingress, QNI_Egress, QNR_Egress.
 * NEW_SID - it requests to generate a new session with a new
 SESSION_ID. If the QoS-NSLP generates a new SESSION_ID then
 the QoS-NSLP has to return the value of this new SESSION_ID to
 the RMF/QOSM. It can be requested by a QNI, QNR, QNI_Ingress,
 QNI_Egress, QNR_Ingress, QNR_Egress.
 * NEW_RSN - it requests to generate a new RSN. If the QoS-NSLP
 generates a new RSN then the QoS-NSLP has to return the value
 of this new RSN to the RMF/QOSM.
 * NEW_RII - it requests to generate a new RII. If the QoS-NSLP
 generates a new RII then the QoS-NSLP has to return the value
 of this new RII to the RMF/QOSM.
 o GIST_API_triggers: it represents the attributes that are provided
 to GIST via QoS-NSLP via the GIST API
 * NSLPID
 * SII-Handle
 * Transfer-Attributes
 * GIST-Hop-Count
 * IP-TTL
 * ROUTING-STATE-CHECK (if set it requires from GIST to create a
 routing state)
 o incoming_interface: the ID of the incoming interface. Used only
 when the QNE reserves resources on incoming interface. Default is
 0 (no reservations on incoming interface)
 o outgoing_interface: the ID of the outgoing interface. Used only
 when the QNE reserves resources on outgoing interface. Default is
 0 (no reservations on outgoing interface)

A.3. Configuration interface

 The config() function is meant for configuring per-session settings,
 from the RMF towards the NSLP.

 int config(sid, qne_type, state_type, bypassing_type)

 o sid: SESSION_ID - The NSIS session identifier
 o qne_type: it defines the type of a QNE
 * QNI
 * QNI_Ingress: the QNE is a QNI and an Ingress QNE
 * QNE: the QNE is not a QNI or QNR
 * QNE_Interior: the QNE is an Interior QNE, but it is not a QNI
 or QNR
 * QNI_Egress: the QNE is a QNI and an Egress QNE
 * QNR
 * QNR_Ingress: the QNE is a QNR and an Ingress QNE
 * QNR_Egress: the QNE is a QNR and an Egress QNE

Manner, et al. Expires August 10, 2008 [Page 94]

Internet-Draft QoS NSLP February 2008

 o state_type: it defines if the QNE keeps QoS-NSLP operational
 states
 * STATEFULL
 * STATELESS
 o bypassing_type: it defines if a QNE bypasses end-to-end messages
 or not

Appendix B. Glossary

 AAA: Authentication, Authorization and Accounting

 EAP: Extensible Authentication Protocol

 MRI: Message Routing Information (see [I-D.ietf-nsis-ntlp])

 NAT: Network Address Translator

 NSLP: NSIS Signaling Layer Protocol (see [RFC4080])

 NTLP: NSIS Transport Layer Protocol (see [RFC4080])

 OPWA: One Pass With Advertising

 OSP: Open Settlement Protocol

 PIN: Policy Ignorant Node

 QNE: an NSIS Entity (NE), which supports the QoS NSLP (see Section 2)

 QNI: the first node in the sequence of QNEs that issues a reservation
 request for a session (see Section 2)

 QNR: the last node in the sequence of QNEs that receives a
 reservation request for a session (see Section 2)

 QSPEC: Quality of Service Specification

 RII: Request Identification Information

 RMD: Resource Management for DiffServ

 RMF: Resource Management Function

 RSN: Reservation Sequence Number

 RSVP: Resource Reservation Protocol (see [RFC2205])

https://datatracker.ietf.org/doc/html/rfc4080
https://datatracker.ietf.org/doc/html/rfc4080
https://datatracker.ietf.org/doc/html/rfc2205

Manner, et al. Expires August 10, 2008 [Page 95]

Internet-Draft QoS NSLP February 2008

 SII: Source Identification Information

 SIP: Session Initiation Protocol

 SLA: Service Level Agreement

Authors' Addresses

 Jukka Manner
 Helsinki University of Technology (TKK)
 P.O. Box 3000
 Espoo FIN-02015 TKK
 Finland

 Phone: +358 9 451 2481
 Email: jukka.manner@tkk.fi

 Georgios Karagiannis
 University of Twente/Ericsson
 P.O. Box 217
 Enschede 7500 AE
 The Netherlands

 Email: karagian@cs.utwente.nl

 Andrew McDonald
 Siemens/Roke Manor Research
 Roke Manor Research Ltd.
 Romsey, Hants S051 0ZN
 UK

 Email: andrew.mcdonals@roke.co.uk

Manner, et al. Expires August 10, 2008 [Page 96]

Internet-Draft QoS NSLP February 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Manner, et al. Expires August 10, 2008 [Page 97]

