
IETF Next Steps in Signaling C. Shen
Internet-Draft H. Schulzrinne
Intended status: Experimental Columbia U.
Expires: December 5, 2010 S. Lee
 J. Bang
 Samsung AIT
 June 3, 2010

NSIS Operation Over IP Tunnels
draft-ietf-nsis-tunnel-11.txt

Abstract

 NSIS Quality of Service (QoS) signaling enables applications to
 perform QoS reservation along a data flow path. When the data flow
 path contains IP tunnel segments, NSIS QoS signaling has no effect
 within those tunnel segments and the resulting QoS-untended tunnel
 segments could become the weakest QoS link which may invalidate the
 QoS efforts in the rest of the end-to-end path. The problem with
 NSIS signaling within the tunnel is caused by the tunnel
 encapsulation which masks packets' original IP header fields. Those
 original IP header fields are needed to intercept NSIS signaling
 messages and classify QoS data packets. This document defines a
 solution to this problem by mapping end-to-end QoS session requests
 to corresponding QoS sessions in the tunnel, thus extending the end-
 to-end QoS signaling into the IP tunnel segments.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 5, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the

Shen, et al. Expires December 5, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft NSIS Operation over IP Tunnels June 2010

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Shen, et al. Expires December 5, 2010 [Page 2]

Internet-Draft NSIS Operation over IP Tunnels June 2010

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Problem Statement . 6
3.1. IP Tunneling Protocols 6
3.2. NSIS QoS Signaling in the Presence of IP Tunnels 8

4. Design Overview . 10
4.1. Design Requirements 10
4.2. Overall Design Approach 11
4.3. Tunnel Flow ID for Different IP Tunneling Protocols . . . 13

 5. NSIS Operation over Tunnels with Pre-configured QoS
 Sessions . 14

5.1. Sender-initiated Reservation 14
5.2. Receiver-initiated Reservation 15

 6. NSIS Operation over Tunnels with Dynamically Created QoS
 Sessions . 16

6.1. Sender-initiated Reservation 16
6.2. Receiver-initiated Reservation 19

7. NSIS-Tunnel Signaling Capability Discovery 22
8. IANA Considerations . 23
9. Security Considerations 23
10. Acknowledgements . 23
11. References . 24
11.1. Normative References 24
11.2. Informative References 24

 Authors' Addresses . 25

Shen, et al. Expires December 5, 2010 [Page 3]

Internet-Draft NSIS Operation over IP Tunnels June 2010

1. Introduction

 IP tunneling is a technique that allows a packet to be encapsulated
 and carried as payload within an IP packet. The resulting
 encapsulated packet is called an IP tunnel packet, and the packet
 being tunneled is called the original packet. In typical scenarios,
 IP tunneling is used to exert explicit forwarding path control (e.g.,
 in Mobile IP [RFC3344]), facilitate the secure IP delivery
 architecture (e.g., in IPSEC [RFC4301]), and help packet routing in
 IP networks of different characteristics (e.g., between IPv6 and IPv4
 networks [RFC4213]).

 This document considers the situation when the packet being tunneled
 contains a Next Step In Signaling (NSIS) [RFC4080] message. NSIS is
 an IP network layer signaling architecture consisting of a Generic
 Internet Signaling Transport (GIST) [I-D.ietf-nsis-ntlp] sub-layer
 for signaling transport, and an NSIS Signaling Layer Protocol (NSLP)
 sub-layer customizable for different applications. We focus on the
 Quality of Service (QoS) NSLP [I-D.ietf-nsis-qos-nslp] which provides
 functionalities that extend those of the earlier RSVP [RFC2205]
 signaling. In this document the term "NSIS" and "NSIS QoS" are used
 interchangeably.

 Without additional efforts, NSIS signaling does not work within IP
 tunnel segments of a signaling path. The reason is that tunnel
 encapsulation masks the original packet including its header and
 payload. However, information from the original packet is required
 both for NSIS peer node discovery and for QoS data flow packet
 classification. Without access to information from the original
 packet, an IP tunnel acts as an NSIS-unaware virtual link in the end-
 to-end NSIS signaling path.

 This document defines a mechanism to extend end-to-end NSIS signaling
 for QoS reservation into IP tunnels. The NSIS-aware IP tunnel end-
 points that support this mechanism are called NSIS-tunnel-aware end-
 points. There are two main operation modes. On one hand, if the
 tunnel already has pre-configured QoS sessions, the NSIS-tunnel-aware
 end-points map end-to-end QoS signaling requests directly to existing
 tunnel sessions as long as there are enough tunnel session resources;
 on the other hand, if no pre-configured tunnel QoS sessions are
 available, the NSIS-tunnel-aware end-points dynamically initiate and
 maintain tunnel QoS sessions that are then associated with the
 corresponding end-to-end QoS sessions. Note that whether the tunnel
 pre-configures QoS sessions or not, and which pre-configured tunnel
 QoS sessions a particular end-to-end QoS signaling request should be
 mapped to are policy issues out of scope of this document.

 The rest of this document is organized as follows. Section 2 defines

https://datatracker.ietf.org/doc/html/rfc3344
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4080
https://datatracker.ietf.org/doc/html/rfc2205

Shen, et al. Expires December 5, 2010 [Page 4]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 terminology. Section 3 presents the problem statement including
 common IP tunneling protocols and existing behavior of NSIS QoS
 signaling operating over IP tunnels. Section 4 introduces the design
 requirements and overall approach of our mechanism. More details
 about how NSIS QoS signaling operates with tunnels that use pre-
 configured QoS and dynamic QoS signaling are provided in Section 5
 and Section 6. Section 7 describes a method to automatically
 discover whether a tunnel end-point node supports the NSIS-tunnel
 interoperation mechanism defined in this document. Section 8
 discusses IANA considerations and Section 9 considers security.

2. Terminology

 This document uses terminology defined in [RFC2473],
 [I-D.ietf-nsis-ntlp], and [I-D.ietf-nsis-qos-nslp]. In addition, the
 following terms are used:

 IP Tunnel: A tunnel configured as a virtual link between two IP
 nodes, on which the encapsulating protocol is IP.

 Tunnel IP Header: The IP header prepended to the original packet
 during encapsulation. It specifies the tunnel end-points as
 source and destination.

 Tunnel Specific Header: The header fields inserted by the
 encapsulation mechanism after the tunnel IP header and before the
 original packet. These headers may or may not exist depending on
 the specific tunnel mechanism used.

 Tunnel Intermediate Node (Tmid): A node which resides in the middle
 of the forwarding path between the tunnel entry-point node and the
 tunnel exit-point node.

 Flow Identifier (Flow ID): The set of header fields which is used to
 identify a [data] flow. For example, it may include flow sender
 and receiver addresses, protocol and port numbers.

 End-to-end [QoS] Signaling: The signaling process that manipulates
 the QoS control information in the end-to-end path from the flow
 sender to the flow receiver. When the end-to-end flow path
 contains tunnel segments, this document uses end-to-end [QoS]
 signaling to refer specially to the [QoS] signaling outside the
 tunnel segments.

 Tunnel [QoS] Signaling: The signaling process that manipulates the
 QoS control information in the path inside a tunnel, between the
 tunnel entry-point and the tunnel exit-point nodes.

https://datatracker.ietf.org/doc/html/rfc2473

Shen, et al. Expires December 5, 2010 [Page 5]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 NSIS-aware Node: A node that supports NSIS signaling.

 NSIS-aware Tunnel End-point Node: A tunnel end-point node which is
 also an NSIS node.

 NSIS-tunnel-aware [Tunnel] End-point Node: An NSIS-aware Tunnel End-
 point node which also supports the mechanism for NSIS operating
 over IP tunnels defined in this document.

3. Problem Statement

3.1. IP Tunneling Protocols

 Tunnel from node B to node D
 <---------------------->
 Tunnel Tunnel Tunnel
 Entry-Point Intermediate Exit-Point
 Node Node Node
 +-+ +-+ +-+ +-+ +-+
 |A|-->--//-->--|B|=====>====|C|===//==>===|D|-->--//-->--|E|
 +-+ +-+ +-+ +-+ +-+
 Original Original
 Packet Packet
 Source Destination
 Node Node

 Figure 1: IP Tunnel

 The following definition of IP tunneling is derived from [RFC2473]
 and adapted for both IPv4 and IPv6.

 IP tunneling (Figure 1) is a technique for establishing a "virtual
 link" between two IP nodes for transmitting data packets as payloads
 of IP packets. From the point of view of the two nodes, this
 "virtual link", called an IP tunnel, appears as a point-to-point link
 on which IP acts like a link-layer protocol. The two IP nodes play
 specific roles. One node encapsulates original packets received from
 other nodes or from itself and forwards the resulting tunnel packets
 through the tunnel. The other node decapsulates the received tunnel
 packets and forwards the resulting original packets towards their
 destinations, possibly itself. The encapsulating node is called the
 tunnel entry-point node (Tentry), and it is the source of the tunnel
 packets. The decapsulating node is called the tunnel exit-point node
 (Texit), and it is the destination of the tunnel packets.

https://datatracker.ietf.org/doc/html/rfc2473

Shen, et al. Expires December 5, 2010 [Page 6]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 An IP tunnel is a unidirectional mechanism - tunnel packet flow takes
 place in one direction between the IP tunnel entry-point and exit-
 point nodes. Bi-directional tunneling is achieved by combining two
 unidirectional mechanisms, that is, configuring two tunnels, each in
 opposite direction to the other - the entry-point node of one tunnel
 is the exit-point node of the other tunnel.

 Figure 2 illustrates the original packet and the resulting tunnel
 packet. In a tunnel packet, the original packet is encapsulated
 within the tunnel header. The tunnel header contains two components,
 the tunnel IP header and other tunnel specific headers. The tunnel
 IP header specifies tunnel entry-point node as IP source address and
 tunnel exit-point node as IP destination address, causing the tunnel
 packet to be forwarded in the tunnel. The tunnel specific header
 between the tunnel IP header and the original packet is optional,
 depending on the tunneling protocol in use.

 +----------------------------------//-----+
 | Original | |
 | | Original Packet Payload |
 | Header | |
 +----------------------------------//-----+
 < Original Packet >
 |
 v
 < Tunnel Headers > < Original Packet >
 +---------+-----------+-------------------------//--------------+
Tunnel	Tunnel	
IP	Specific	Original Packet
Header	Header	
 +---------+-----------+-------------------------//--------------+
 < Tunnel IP Packet >

 Figure 2: IP Tunnel Encapsulation

 Commonly used IP tunneling protocols include Generic Routing
 Encapsulation (GRE) [RFC1701][RFC2784], Generic Routing Encapsulation
 over IPv4 Networks (GREIPv4) [RFC1702] and IP Encapsulation within IP
 (IPv4INIPv4) [RFC1853][RFC2003], Minimal Encapsulation within IP
 (MINENC) [RFC2004], IPv6 over IPv4 Tunneling (IPv6INIPv4) [RFC4213],
 Generic Packet Tunneling in IPv6 Specification (IPv6GEN) [RFC2473]
 and IPSEC tunneling mode (IPSEC) [RFC4301][RFC4303]. Among these
 tunneling protocols, the tunnel headers in IPv4INIPv4, IPv6INIPv4 and
 IPv6GEN contain only a tunnel IP header, and no tunnel specific
 header. All the other tunneling protocols have a tunnel header

https://datatracker.ietf.org/doc/html/rfc1701
https://datatracker.ietf.org/doc/html/rfc1702
https://datatracker.ietf.org/doc/html/rfc1853
https://datatracker.ietf.org/doc/html/rfc2004
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc4301

Shen, et al. Expires December 5, 2010 [Page 7]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 consisting of both a tunnel IP header and a tunnel specific header.
 The tunnel specific header is the GRE header for GRE and GREIPv4, the
 minimum encapsulation header for MINENC and the Encapsulation
 Security Payload (ESP) header for IPSEC tunneling mode. As will be
 discussed in Section 4.3, some of the tunnel specific headers may be
 used to identify a flow in the tunnel and facilitate NSIS operating
 over IP tunnels.

3.2. NSIS QoS Signaling in the Presence of IP Tunnels

 Typically, applications use NSIS QoS signaling to reserve resources
 for a flow along the flow path. NSIS QoS signaling can be initiated
 by either the flow sender or flow receiver. Figure 3 shows an
 example scenario with five NSIS nodes, including flow sender node A,
 flow receiver node E, and intermediate NSIS nodes B, C and D. Nodes
 which are not NSIS QoS capable are not shown.

 NSIS QoS NSIS QoS NSIS QoS NSIS QoS NSIS QoS
 Node Node Node Node Node
 +-+ +-+ +-+ +-+ +-+
 |A|-->--//-->--|B|----->----|C|---//-->---|D|-->--//-->--|E|
 +-+ +-+ +-+ +-+ +-+
 Flow Flow
 Sender Receiver
 Node Node

 Figure 3: Example Scenario of NSIS QoS Signaling

 Figure 4 illustrates a sender-initiated signaling sequence in the
 scenario of Figure 3. Sender node A sends a RESERVE message towards
 receiver node E. The RESERVE message gets forwarded by intermediate
 NSIS Nodes B, C, and D and finally reaches receiver node E. Receiver
 node E then sends back a RESPONSE message confirming the QoS
 reservation, again through the previous intermediate NSIS nodes in
 the flow path.

 There are two important aspects in the above signaling process that
 are worth mentioning. First, the flow sender does not initially know
 exactly which intermediate nodes are NSIS-aware and should be
 involved in the signaling process for a flow from node A to node E.
 Discovery of those nodes, namely node B, C and D is accomplished by a
 separate NSIS peer discovery process (not shown above, see
 [I-D.ietf-nsis-ntlp]). The NSIS peer discovery messages contain
 special IP header and payload format or include a Router Alert Option
 (RAO) [RFC2113] [RFC2711]. The special formats of NSIS discovery
 messages allow node B, C and D to intercept them and subsequently
 insert themselves into the signaling path for the flow in question.
 After formation of the signaling path, all signaling messages

https://datatracker.ietf.org/doc/html/rfc2113
https://datatracker.ietf.org/doc/html/rfc2711

Shen, et al. Expires December 5, 2010 [Page 8]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 corresponding to this flow will be passed to these nodes for
 processing. Other nodes which are not NSIS-aware simply forward all
 signaling messages like any other IP packets without additional
 handling.

 Node A Node B Node C Node D Node E
 | | | | |
 | RESERVE | | | |
 +------------->| | | |
 | | RESERVE | | |
 | +------------->| | |
 | | | RESERVE | |
 | | +------------->| |
 | | | | RESERVE |
 | | | +------------->|
 | | | | RESPONSE |
 | | | |<-------------+
 | | | RESPONSE | |
 | | |<-------------+ |
 | | RESPONSE | | |
 | |<-------------+ | |
 | RESPONSE | | | |
 |<-------------+ | | |
 | | | | |
 | | | | |

 Figure 4: Sender-initiated NSIS QoS Signaling

 Second, the goal of QoS signaling is to install control information
 to give QoS treatment for the flow being signaled. Basic QoS control
 information includes the data Flow ID for packet classification and
 the type of QoS treatment those packets are entitled to. The Flow ID
 contains a set of header fields such as flow sender and receiver
 addresses, protocol and port numbers.

 Now consider Figure 5 where nodes B, C and D are end-points and
 intermediate nodes of an IP tunnel. During the signaling path
 discovery process, node B can still intercept and process NSIS peer
 discovery messages if it recognizes them before performing tunnel
 encapsulation; node D can identify NSIS peer discovery messages after
 performing tunnel decapsulation. A tunnel intermediate node such as
 node C, however, only sees the tunnel header of the packets and will
 not be able to identify the original NSIS peer discovery message or
 insert itself in the flow signaling path. Furthermore, the Flow ID
 of the original flow is based on IP header fields of the original
 packet. Those fields are also hidden in the payload of the tunnel
 packet. So there is no way node C can classify packets belonging to
 that flow in the tunnel. In summary, the problem is that tunnel

Shen, et al. Expires December 5, 2010 [Page 9]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 intermediate nodes are unable to intercept original NSIS signaling
 messages and unable to classify original data flow packets as a
 result of tunnel encapsulation. An IP tunnel segment appears just
 like a QoS-unaware virtual link. Since the best QoS of an end-to-end
 path is judged based on its weakest segment, leaving the tunnel path
 "untended" risks voiding other efforts to provide QoS in the rest of
 the path.

 Tunnel from node B to node D
 <---------------------->
 Tunnel Tunnel Tunnel
 Entry-Point Intermediate Exit-Point
 NSIS QoS NSIS QoS NSIS QoS NSIS QoS NSIS QoS
 Node Node Node Node Node
 +-+ +-+ +-+ +-+ +-+
 |A|-->--//-->--|B|=====>====|C|===//==>===|D|-->--//-->--|E|
 +-+ +-+ +-+ +-+ +-+
 Flow Flow
 Sender Receiver
 Node Node

 Figure 5: Example Scenario of NSIS QoS Signaling with IP Tunnel

4. Design Overview

4.1. Design Requirements

 We identify the following design requirements for NSIS operating over
 IP tunnels.

 o The mechanism should work with all common IP tunneling protocols
 listed in Section 3.1.
 o Some IP tunnels maintain pre-configured QoS sessions inside the
 tunnel. The mechanism should work for IP tunnels both with and
 without pre-configured tunnel QoS sessions.
 o The mechanism should minimize the required upgrade to existing
 infrastructure in order to facilitate its deployment.
 Specifically, we should limit the necessary upgrade to the tunnel
 end-points.
 o The mechanism should provide a method for one NSIS-tunnel-aware
 end-point to discover whether the other end-point is also NSIS-
 tunnel-aware, when necessary.
 o The mechanism should learn from design experience of previous work
 on RSVP over IP tunnels (RSVP-TUNNEL) [RFC2746], while also
 addressing the following major differences of NSIS from RSVP.
 First, NSIS is designed as a generic framework to accommodate

https://datatracker.ietf.org/doc/html/rfc2746

Shen, et al. Expires December 5, 2010 [Page 10]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 various signaling application needs, and therefore is split into a
 signaling transport layer and a signaling application layer; RSVP
 does not have a layer split and is designed only for QoS
 signaling. Second, NSIS QoS NSLP allows both sender-initiated and
 receiver-initiated reservations; RSVP only supports receiver-
 initiated reservations. Third, NSIS deals only with unicast; RSVP
 also supports multicast. Fourth, NSIS integrates a new Session ID
 feature which is different from the session identification concept
 in RSVP.

4.2. Overall Design Approach

 The overall design of this NSIS signaling and IP tunnel interworking
 mechanism draws similar concepts from RSVP-TUNNEL [RFC2746], but is
 tailored and extended for NSIS operation.

 Since a flow is considered unidirectional, to accommodate flows in
 both directions of a tunnel, we require both tunnel entry-point and
 tunnel exit-point to be NSIS-tunnel-aware. An NSIS-tunnel-aware end-
 point knows whether the other tunnel end-point is NSIS-tunnel-aware
 either through pre-configuration or through an NSIS-tunnel capability
 discovery mechanism defined in Section 7.

 Tunnel end-points need to always intercept NSIS peer discovery
 messages and insert themselves into the NSIS signaling path so they
 can receive all NSIS signaling messages and coordinate their
 interaction with tunnel QoS.

 To facilitate QoS handling in the tunnel, an end-to-end QoS session
 is mapped to a tunnel QoS session, either pre-configured or
 dynamically created. The tunnel session uses a tunnel Flow ID based
 on information available in the tunnel headers, thus allowing tunnel-
 intermediate nodes to classify flow packets correctly.

 For tunnels that maintain pre-configured QoS sessions, upon receiving
 a request to reserve resources for an end-to-end session, the tunnel
 end-point maps the end-to-end QoS session to an existing tunnel
 session. To simplify the design, the mapping decision is always made
 by the tunnel entry-point regardless of whether the end-to-end
 session uses sender-initiated or receiver-initiated NSIS signaling
 mode. The details about which end-to-end session can be mapped to
 which pre-configured tunnel session depend on policy mechanisms
 outside the scope of this document.

 For tunnels that do not maintain pre-configured QoS sessions, the
 NSIS-tunnel-aware end-points dynamically create and manage a
 corresponding tunnel QoS session for the end-to-end session. Since
 the initiation mode of both QoS sessions can be sender-initiated or

https://datatracker.ietf.org/doc/html/rfc2746

Shen, et al. Expires December 5, 2010 [Page 11]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 receiver-initiated, to simplify the design, we require that the
 initiation mode of the tunnel QoS session follow that of the end-to-
 end QoS session. In other words, the end-to-end QoS session and its
 corresponding tunnel QoS session are either both sender-initiated or
 both receiver-initiated. To keep the handling mechanism consistent
 with the case for tunnels with pre-configured QoS sessions, the
 tunnel entry-point always initiates the mapping between the tunnel
 session and the end-to-end session.

 As the mapping initiator, the tunnel entry-point records the
 association between the end-to-end session and its corresponding
 tunnel session, both in tunnels with and without pre-configured QoS
 sessions. This association serves two purposes, one at the signaling
 plane and the other at the data plane. At the signaling plane, the
 association enables the tunnel entry-point to coordinate necessary
 interaction, such as QoS adjustment in sender-initiated reservations,
 between the end-to-end and the tunnel QoS sessions. At the data
 plane, the association allows the tunnel entry-point to correctly
 encapsulate data flow packets according to the chosen tunnel Flow ID.
 Since the tunnel Flow ID uses header fields that are visible inside
 the tunnel, the tunnel intermediate nodes can classify the data flow
 packets and apply appropriate QoS treatment.

 In addition to the tunnel entry-point recording the association
 between the end-to-end session and its corresponding tunnel session,
 the tunnel exit-point also needs to maintain the same association for
 similar reasons. At the signaling plane, this association at the
 tunnel exit-point enables the interaction of the end-to-end and the
 tunnel QoS session such as QoS adjustment in receiver-initiated
 reservations. At the data plane, this association tells the tunnel
 exit-point that the relevant data flow packets need to be
 decapsulated according to the corresponding tunnel Flow ID.

 In tunnels with pre-configured QoS sessions, the tunnel exit-point
 may learn about the mapping information between the corresponding
 tunnel and end-to-end QoS sessions through pre-configuration as well.
 In tunnels without pre-configured QoS sessions, the tunnel exit-point
 knows the mapping between the corresponding tunnel and end-to-end QoS
 sessions through the NSIS signaling process that creates the tunnel
 QoS sessions inside the tunnel, with the help of appropriate QoS NSLP
 session binding and message binding mechanisms.

 One problem for NSIS operating over IP tunnels which dynamically
 create QoS sessions is that it involves two signaling sequences. The
 outcome of the tunnel signaling session directly affects the outcome
 of the end-to-end signaling session. Since the two signaling
 sessions overlap in time, there are circumstances when a tunnel end-
 point has to decide whether it should proceed with the end-to-end

Shen, et al. Expires December 5, 2010 [Page 12]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 signaling session while it is still waiting for results of the tunnel
 session. Sequential mode and parallel mode are two basic options for
 this problem. In sequential mode, end-to-end signaling pauses when
 it is waiting for results of tunnel signaling, and resumes upon
 receipt of the tunnel signaling outcome. In parallel mode, end-to-
 end signaling continues outside the tunnel while tunnel signaling is
 still in process and its outcome is unknown. The parallel mode may
 lead to reduced signaling delays if the QoS resources in the tunnel
 path are sufficient compared to the rest of the end-to-end path. If
 the QoS resources in the tunnel path are more constraint than the
 rest of the end-to-end path, however, the parallel mode may lead to
 wasted end-to-end signaling or necessitates re-negotiation after the
 tunnel signaling outcome becomes available. In those cases, the
 signaling flow of the parallel mode also tends to be complicated.
 This document adopts a sequential mode approach for the two signaling
 sequences.

4.3. Tunnel Flow ID for Different IP Tunneling Protocols

 A tunnel Flow ID identifies the end-to-end flow for packet
 classification within the tunnel. The tunnel Flow ID is based on a
 set of tunnel header fields. Different tunnel Flow ID can be chosen
 for different tunneling mechanisms in order to minimize the
 classification overhead. This document specifies the following Flow
 ID formats for the respective tunneling protocols.

 o For IPv6 tunneling protocols (IPv6GEN), the tunnel Flow ID
 consists of the tunnel entry-point IPv6 address and the tunnel
 exit-point IPv6 address plus a unique IPv6 flow label [RFC3697].
 o For IPSEC tunnel mode (IPSEC), the tunnel Flow ID contains the
 tunnel entry-point IP address and the tunnel exit-point IP address
 plus the Security Parameter Index (SPI).
 o For all other tunneling protocols (GRE, GREIPv4, IPv4INIPv4,
 MINENC, IPv6INIPv4), the tunnel entry-point inserts an additional
 UDP header between the tunnel header and the original packet. The
 Flow ID consists of the tunnel entry-point and tunnel exit-point
 IP addresses and the source port number in the additional UDP
 header. In these cases, it is especially important that the
 tunnel exit-point also understands the additional UDP
 encapsulation, and therefore can correctly decapsulate both the
 normal tunnel header and the additional UDP header. In other
 words, both tunnel end-points need to be NSIS-tunnel-aware.

 The above recommendations about choosing tunnel Flow ID apply to
 dynamically created QoS tunnel sessions. For pre-configured QoS
 tunnel sessions, the corresponding Flow ID is determined by the
 configuration mechanism itself. For example, if the tunnel QoS is
 DiffServ based, the DiffServ Code Point (DSCP) field value may be

https://datatracker.ietf.org/doc/html/rfc3697

Shen, et al. Expires December 5, 2010 [Page 13]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 used to identify the corresponding tunnel session.

5. NSIS Operation over Tunnels with Pre-configured QoS Sessions

 When tunnel QoS is managed by pre-configured QoS sessions, both the
 tunnel entry-point and tunnel exit-point need to be configured with
 information about the Flow ID of the tunnel QoS session. This is to
 enable the tunnel end-points to correctly perform matching
 encapsulating and decapsulating operations. The procedures of NSIS
 operating over tunnels with pre-configured QoS sessions depend on
 whether the end-to-end NSIS signaling is sender-initiated or
 receiver-initiated. But in both cases, it is the tunnel entry-point
 that first creates the mapping between a tunnel session and an end-
 to-end session.

5.1. Sender-initiated Reservation

 Sender Tentry Tmid Texit Receiver

 | | | | |
 | RESERVE | | | |
 +------------->| | | |
 | | RESERVE | | |
 | +---------------------------->| |
 | | | | RESERVE |
 | | | +------------->|
 | | | | RESPONSE |
 | | | |<-------------+
 | | RESPONSE | | |
 | |<----------------------------+ |
 | RESPONSE | | | |
 |<-------------+ | | |
 | | | | |
 | | | | |

 Figure 6: Sender-initiated End-to-end Session with Pre-configured
 Tunnel QoS Sessions

 Figure 6 illustrates the signaling sequence when end-to-end signaling
 outside the tunnel is sender-initiated. Upon receiving a RESERVE
 message from the sender, Tentry checks tunnel QoS configuration,
 determines whether and how this end-to-end session can be mapped to a
 pre-configured tunnel session. The mapping criteria are part of the
 pre-configuration and outside the scope of this document. Tentry
 then tunnels the RESERVE message to Texit. Texit forwards the
 RESERVE message to the receiver. The receiver replies with a
 RESPONSE message which arrives at Texit, Tentry and finally the

Shen, et al. Expires December 5, 2010 [Page 14]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 sender. If the RESPONSE message that Tentry receives confirms that
 the overall signaling is successful, Tentry starts to encapsulate all
 incoming packets of the data flow using the tunnel Flow ID
 corresponding to the mapped tunnel session. Texit knows how to
 decapsulate the tunnel packets because it recognizes the mapped
 tunnel Flow ID based on information supplied during tunnel session
 pre-configuration.

5.2. Receiver-initiated Reservation

 Sender Tentry Tmid Texit Receiver

 | | | | |
 | QUERY | | | |
 +------------->| | | |
 | | QUERY | | |
 | +---------------------------->| |
 | | | | QUERY |
 | | | +------------->|
 | | | | RESERVE |
 | | | |<-------------+
 | | RESERVE | | |
 | |<----------------------------+ |
 | RESERVE | | | |
 |<-------------+ | | |
 | RESPONSE | | | |
 +------------->| | | |
 | | RESPONSE | | |
 | +---------------------------->| |
 | | | | RESPONSE |
 | | | +------------->|
 | | | | |
 | | | | |

 Figure 7: Receiver-initiated End-to-end Session with Pre-configured
 Tunnel QoS Sessions

 Figure 7 shows the signaling sequence when end-to-end signaling
 outside the tunnel is receiver-initiated. Upon receiving the first
 end-to-end Query message, Tentry examines the tunnel QoS
 configuration, updates and tunnels the Query message to Texit. Texit
 decapsulates the QUERY message, processes it and forwards it toward
 the receiver. The receiver sends back a RESERVE message passing
 through Texit and arriving at Tentry. Tentry decides on whether and
 how the QoS request for this end-to-end session can be mapped to a
 pre-configured tunnel session based on criteria outside the scope of
 this document. Then Tentry forwards the RESERVE message towards the
 sender. The signaling continues until a RESPONSE message arrives at

Shen, et al. Expires December 5, 2010 [Page 15]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 Tentry, Texit and finally the receiver. If the RESPONSE message that
 Tentry receives confirms that the overall signaling is successful,
 Tentry starts to encapsulate all incoming packets of the data flow
 using the tunnel Flow ID corresponding to the mapped tunnel session.
 Similarly, Texit knows how to decapsulate the tunnel packets because
 it recognizes the mapped tunnel Flow ID based on information supplied
 during tunnel session pre-configuration.

 Since separate tunnel QoS signaling is not involved in pre-configured
 QoS tunnels, Figure 6 and Figure 7 look as if the tunnel is a single
 virtual link. The signaling path simply skips all tunnel
 intermediate nodes. However, both Tentry and Texit need to deploy
 NSIS-tunnel related functionalities described above, including acting
 on the end-to-end NSIS signaling messages based on tunnel QoS status,
 mapping end-to-end and tunnel QoS sessions, and correctly
 encapsulating and decapsulating tunnel packets according to the
 tunnel protocol and the configured tunnel Flow ID.

6. NSIS Operation over Tunnels with Dynamically Created QoS Sessions

 When there are no pre-configured tunnel QoS sessions, a tunnel can
 apply the same NSIS QoS signaling mechanism used for the end-to-end
 path to manage the QoS inside the tunnel. The tunnel NSIS signaling
 involves only those NSIS nodes in the tunnel forwarding path. The
 Flow IDs for the tunnel signaling are based on tunnel header fields.
 NSIS peer discovery messages inside the tunnel distinguish themselves
 using the tunnel header fields, which solves the problem for tunnel
 intermediate NSIS nodes to intercept signaling messages.

 When tunnel end-points dynamically create tunnel QoS sessions, the
 initiation mode of the tunnel session always follows the initiation
 mode of the end-to-end session. Specifically, when the end-to-end
 session is sender-initiated, the tunnel session should also be
 sender-initiated; when the end-to-end session is receiver-initiated,
 the tunnel session should also be receiver-initiated.

 The tunnel entry-point conveys the corresponding tunnel Flow ID
 associated with an end-to-end session to the tunnel exit-point during
 the tunnel signaling process. The tunnel entry-point also informs
 the exit-point of the binding between the corresponding tunnel
 session and end-to-end session through the BOUND_SESSION_ID QoS NSLP
 message object. The reservation message dependencies between the
 tunnel session and end-to-end session is resolved using the MSG_ID
 and BOUND_MSG_ID objects of the QoS NSLP message binding mechanism.

6.1. Sender-initiated Reservation

Shen, et al. Expires December 5, 2010 [Page 16]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 Sender Tentry Tmid Texit Receiver

 | | | | |
 | RESERVE(1) | | | |
 +------------->| | | |
 | | RESERVE'(2) | | |
 | +=============>| | |
 | | | RESERVE'(2) | |
 | | +=============>| |
 | | RESERVE(3) | |
 | +---------------------------->| |
 | | | RESPONSE'(4) | |
 | | |<=============+ |
 | | RESPONSE'(4) | | |
 | |<=============+ | |
 | | | | RESERVE(5) |
 | | | +------------->|
 | | | | RESPONSE(6) |
 | | | |<-------------+
 | | RESPONSE(6) | | |
 | |<----------------------------+ |
 | RESPONSE(6) | | | |
 |<-------------+ | | |
 | | | | |
 | | | | |

 (1,5): RESERVE w/o BOUND_MSG_ID and BOUND_SESSION_ID
 (2): RESERVE' w/ MSG_ID
 (3): RESERVE w/ BOUND_MSG_ID and BOUND_SESSION_ID

 Figure 8: Sender-initiated Reservation for Both End-to-end and Tunnel
 Signaling

 Figure 8 shows the typical messaging sequence of how NSIS operates
 over IP tunnels when both end-to-end session and tunnel session are
 sender-initiated. Tunnel signaling messages are distinguished from
 end-to-end messages by a prime symbol after the message name. The
 sender first sends an end-to-end RESERVE message (1) which arrives at
 Tentry. Tentry chooses the tunnel Flow ID, creates the tunnel
 session and associates the end-to-end session with the tunnel
 session. Tentry then sends a tunnel RESERVE' message (2) matching
 the request of the end-to-end session towards Texit to reserve tunnel
 resources. This RESERVE' message (2) includes a MSG_ID object which
 contains a randomly generated 128-bit MSG_ID. Meanwhile, Tentry
 inserts a BOUND_MSG_ID object containing the same MSG_ID as well as a
 BOUND_SESSION_ID object containing the Session ID of the tunnel
 session into the original RESERVE message, and sends this RESERVE

Shen, et al. Expires December 5, 2010 [Page 17]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 message (3) towards Texit using normal tunnel encapsulation. The
 Message_Binding_Type flags of both the MSG_ID and BOUND_MSG_ID
 objects in the RESERVE' and RESERVE messages (2, 3) are SET,
 indicating a bidirectional binding. The tunnel RESERVE' message (2)
 is processed hop-by-hop inside the tunnel for the flow identified by
 the chosen tunnel Flow ID, while the end-to-end RESERVE message (3)
 passes through the tunnel intermediate nodes (Tmid) just like other
 tunneled packets. These two messages could arrive at Texit in
 different orders, and the reaction of Texit in these different
 situations should combine the tunnel QoS message processing rules
 with the QoS NSLP processing principles for message binding
 [I-D.ietf-nsis-qos-nslp], as illustrated below.

 The first possibility is shown in the example messaging flow of
 Figure 8, where the tunnel RESERVE' message (2), aka the triggering
 message in QoS NSLP message binding terms, arrives first. Since the
 message binding is bidirectional, Texit records the MSG_ID of the
 RESERVE' message (2), enqueues it and starts a MsgIDWait timer
 waiting for the end-to-end RESERVE message (3), aka the bound
 signaling message in QoS NSLP message binding terms. The timer value
 is set to the default retransmission timeout period
 QOSNSLP_REQUEST_RETRY. When the end-to-end RESERVE message (3)
 arrives, Texit notices that there is an existing stored MSG_ID which
 matches the MSG_ID in the BOUND_MSG_ID object of the incoming RESERVE
 message (3). Therefore the message binding condition has been
 satisfied. Texit resumes processing of the tunnel RESERVE' message
 (2), creates the reservation state for the tunnel session, and sends
 a tunnel RESPONSE' message (4) to Tentry. At the same time, Texit
 checks the BOUND_SESSION_ID object of the end-to-end RESERVE message
 (3) and records the binding of the corresponding tunnel session with
 the end-to-end session. Texit also updates the end-to-end RESERVE
 message based on the result of the tunnel session reservation,
 removes its tunnel BOUND_SESSION_ID and BOUND_MSG_ID object and
 forwards the end-to-end RESERVE message (5) along the path towards
 the receiver. When the receiver receives the end-to-end RESERVE
 message (5), it sends an end-to-end RESPONSE message (6) back to the
 sender.

 The second possibility is that the end-to-end RESERVE message arrives
 before the tunnel RESERVE' message at Texit. In that case, Texit
 notices a BOUND_SESSION_ID object and a BOUND_MSG_ID object in the
 end-to-end RESERVE message, but realizes that the tunnel session does
 not exist yet. So Texit enqueues the RESERVE message and starts a
 MsgIDWait timer. The timer value is set to the default
 retransmission timeout period QOSNSLP_REQUEST_RETRY. When the
 corresponding tunnel RESERVE' message arrives with a MSG_ID matching
 that of the outstanding BOUND_MSG_ID object, the message binding
 condition is satisfied. Texit sends a tunnel RESPONSE' message back

Shen, et al. Expires December 5, 2010 [Page 18]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 to Tentry and updates the end-to-end RESERVE message by incorporating
 the result of the tunnel session reservation, as well as removing the
 tunnel BOUND_SESSION_ID and BOUND_MSG_ID objects. Texit then
 forwards the end-to-end RESERVE message along the path towards the
 receiver. When the receiver receives the end-to-end RESERVE message,
 it sends an end-to-end RESPONSE message back to the sender.

 Yet another possibility is that the tunnel RESERVE' message arrives
 at Texit first but the end-to-end RESERVE message never arrives. In
 that case, the MsgIDWait timer for the queued tunnel RESERVE' message
 will expire. Texit should then send a tunnel RESPONSE' message back
 to Tentry indicating a reservation error has occurred, and discard
 the tunnel RESERVE' message. The last possibility is that the end-
 to-end RESERVE message arrives at Texit first but the tunnel RESERVE'
 message never arrives. In that case, the MsgIDWait timer for the
 queued end-to-end RESERVE message will expire. Texit should then
 treat this situation as a local reservation failure, and according to
 [I-D.ietf-nsis-qos-nslp], Texit as a stateful QoS NSLP should
 generate an end-to-end RESPONSE message indicating RESERVE error to
 the sender.

 Once the end-to-end and the tunnel QoS session have both been
 successfully created and associated, the tunnel end-points Tentry and
 Texit coordinate the signaling between the two sessions and make sure
 that adjustment or teardown of either session may trigger similar
 actions for the other session as necessary, by invoking appropriate
 signaling messages.

6.2. Receiver-initiated Reservation

 Figure 9 shows the typical messaging sequence of how NSIS signaling
 operates over IP tunnels when both end-to-end and tunnel sessions are
 receiver-initiated. Upon receiving an end-to-end QUERY message (1)
 from the sender, Tentry chooses the tunnel Flow ID and sends a tunnel
 QUERY' message (2) matching the request of the end-to-end session
 towards Texit. This tunnel QUERY' message (2) is meant to discover
 QoS characteristics of the tunnel path, rather than initiating an
 actual reservation. Therefore, it includes a Request Identification
 Information (RII) object but does not set the RESERVE-INIT flag. The
 tunnel QUERY' message (2) is processed hop-by-hop inside the tunnel
 for the flow identified by the tunnel Flow ID. When Texit receives
 this tunnel QUERY' message (2), it replies with a corresponding
 tunnel RESPONSE' message (3) containing the tunnel path
 characteristics. After receiving the tunnel RESPONSE' message (3),
 Tentry creates the tunnel session, generates an outgoing end-to-end

 Sender Tentry Tmid Texit Receiver

Shen, et al. Expires December 5, 2010 [Page 19]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 | | | | |
 | QUERY(1) | | | |
 +------------->| | | |
 | | QUERY'(2) | | |
 | +=============>| | |
 | | | QUERY'(2) | |
 | | +=============>| |
 | | | RESPONSE'(3) | |
 | | |<=============+ |
 | | RESPONSE'(3) | | |
 | |<=============+ | |
 | | QUERY(4) | |
 | +---------------------------->| |
 | | | | QUERY(5) |
 | | | +------------->|
 | | | | RESERVE(6) |
 | | | |<-------------+
 | | | RESERVE'(7) | |
 | | |<=============+ |
 | | RESERVE'(7) | | |
 | |<=============+ | |
 | | RESERVE(8) | |
 | |<----------------------------+ |
 | | RESPONSE'(9) | | |
 | +=============>| | |
 | | | RESPONSE'(9) | |
 | | +=============>| |
 | RESERVE(10) | | | |
 |<-------------+ | | |
 | RESPONSE(11) | | | |
 +------------->| | | |
 | | RESPONSE(11) | | |
 | +---------------------------->| |
 | | | | RESPONSE(11) |
 | | | +------------->|
 | | | | |
 | | | | |

 (1,5): QUERY w/ RESERVE-INIT (2): QUERY' w/ RII
 (4): QUERY w/ RESERVE-INIT and BOUND_SESSION_ID
 (6,10): RESERVE w/o BOUND_SESSION_ID (7): RESERVE' w/ MSG_ID
 (8): RESERVE w/ BOUND_MSG_ID and BOUND_SESSION_ID

 Figure 9: Receiver-initiated Reservation for Both End-to-end and
 Tunnel Signaling

 QUERY message (4) considering the tunnel path characteristics,

Shen, et al. Expires December 5, 2010 [Page 20]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 appends a tunnel BOUND_SESSION_ID object containing the tunnel
 Session ID, and sends it toward Texit using normal tunnel
 encapsulation. The end-to-end QUERY message (4) passes along tunnel
 intermediate nodes like other tunneled packets. Upon receiving this
 end-to-end QUERY message (4), Texit notices the tunnel session
 binding and creates the tunnel session state, removes the tunnel
 BOUND_SESSION_ID object and forwards the end-to-end QUERY message (5)
 further along the path.

 The end-to-end QUERY message (5) arrives at the receiver and triggers
 a RESERVE message (6). When Texit receives the RESERVE message (6),
 it notices that the session is bound to a receiver-initiated tunnel
 session. Therefore, Texit triggers a RESERVE' message (7) toward
 Tentry for the tunnel session reservation. This tunnel RESERVE'
 message (7) includes a randomly generated 128-bit MSG_ID. Meanwhile,
 Texit inserts a BOUND_MSG_ID object containing the same MSG_ID and a
 BOUND_SESSION_ID object containing the tunnel Session ID into the
 end-to-end RESERVE message (8), and sends it towards Tentry using
 normal tunnel encapsulation. The Message_Binding_Type flags of the
 MSG_ID and BOUND_MSG_ID objects in the RESERVE' and RESERVE messages
 (7,8) are SET, indicating a bidirectional binding.

 At Tentry, the tunnel RESERVE' message (7) and the end-to-end RESERVE
 message (8) could arrive in different orders. In a typical case
 shown in Figure 9, the tunnel RESERVE' message (7) arrives first.
 Tentry then records the MSG_ID of the tunnel RESERVE' message (7) and
 starts a MsgIDWait timer. When the end-to-end RESERVE message (8)
 with the BOUND_MSG_ID object containing the same MSG_ID arrives, the
 message binding condition is satisfied. Tentry resumes processing of
 the tunnel RESERVE' message (7), creates the reservation state for
 the tunnel session, and sends a tunnel RESPONSE' message (9) to
 Texit. At the same time, Tentry creates the outgoing end-to-end
 RESERVE message (10) by incorporating results of the tunnel session
 reservation and removing the BOUND_SESSION_ID and BOUND_MSG_ID
 objects, and forwards it along the path towards the sender. When the
 sender receives the end-to-end RESERVE message (10), it sends an end-
 to-end RESPONSE message (11) back to the receiver.

 If the end-to-end RESERVE message arrives before the tunnel RESERVE'
 message at Tentry, or either of the two messages fails to arrive at
 Tentry, the processing rules at Tentry is similar to those of Texit
 in the same situation discussed in Section 6.1.

 Once the end-to-end and the tunnel QoS session have both been
 successfully created and associated, the tunnel end-points Tentry and
 Texit coordinate the signaling between the two sessions and make sure
 that adjustment or teardown of either session can trigger similar
 actions for the other session as necessary, by invoking appropriate

Shen, et al. Expires December 5, 2010 [Page 21]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 signaling messages.

7. NSIS-Tunnel Signaling Capability Discovery

 The mechanism of NSIS operating over IP tunnels requires the
 coordination of both tunnel end-points in tasks such as special
 encapsulation and decapsulation of data flow packets according to the
 chosen tunnel Flow ID, as well as the possible creation and
 adjustment of the end-to-end and tunnel QoS sessions. Therefore, one
 NSIS-tunnel-aware end-point needs to know that the other tunnel end-
 point is also NSIS-tunnel-aware before initiating this NSIS operating
 over IP tunnel mechanism. In some cases, especially for IP tunnels
 with pre-configured QoS sessions, an NSIS-tunnel-aware end-point can
 learn about whether the other tunnel end-point is also NSIS-tunnel-
 aware through pre-configuration. In other cases where such pre-
 configuration is not available, the initiating NSIS-tunnel-aware end-
 point may dynamically discover the other tunnel end-point's
 capability through a QoS NSLP NODE_CAPABILITY_TUNNEL object defined
 in this section.

 The NODE_CAPABILITY_TUNNEL object is a zero-length object with a
 standard NSLP object header as shown in Figure 10.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |A|B|r|r| Type |r|r|r|r| Length |
 +-+

 Figure 10: NODE_CAPABILITY_TUNNEL Object Format

 Type: TBD from the shared NSLP object type space

 Length: 0

 The bits marked 'A' and 'B' define the desired behavior for objects
 whose Type field is not recognized. If a node does not recognize the
 NODE_CAPABILITY_TUNNEL object, the desired behavior is "Forward".
 That is, the object must be retained unchanged and forwarded as a
 result of message processing. This is satisfied by setting 'AB' to
 '10'.

 The NODE_CAPABILITY_TUNNEL object is included in a tunnel QUERY' or
 RESERVE' message by a tunnel end-point that needs to learn about the
 other end-point's NSIS tunnel handling capability. If the receiving

Shen, et al. Expires December 5, 2010 [Page 22]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 tunnel end-point is indeed NSIS-tunnel-aware, it recognizes this
 object and knows that the sending end-point is NSIS-tunnel-aware.
 The receiving tunnel end-point places the same object in a tunnel
 RESPONSE' message to inform the sending end-point that it is also
 NSIS-tunnel-aware. The use of the NODE_CAPABILITY_TUNNEL object in
 the cases of sender-initiated reservation and receiver-initiated
 reservation are as follows.

 First, assume that the end-to-end session is sender-initiated as in
 Figure 8, and the NSIS-tunnel-aware Tentry wants to discover the
 NSIS-tunnel capability of Texit. After receiving the first end-to-
 end RESERVE message (1), Tentry inserts an RII object and a
 NODE_CAPABILITY_TUNNEL object into the tunnel RESERVE' message (2)
 and sends it to Texit. If Texit is NSIS-tunnel-aware, it learns from
 the NODE_CAPABILITY_TUNNEL object that Tentry is also NSIS-tunnel-
 aware and includes the same object into the tunnel RESPONSE' message
 (4) sent back to Tentry.

 Second, assume that the end-to-end session is receiver-initiated as
 in Figure 9, and the NSIS-tunnel-aware Tentry wants to discover the
 NSIS-tunnel capability of Texit. Upon receiving the first end-to-end
 QUERY message (1), Tentry inserts an RII object and a
 NODE_CAPABILITY_TUNNEL object in the tunnel QUERY' message (2) and
 sends it toward Texit. If Texit is NSIS-tunnel-aware, it learns from
 the NODE_CAPABILITY_TUNNEL object that Tentry is also NSIS-tunnel-
 aware and includes the same object tunnel RESPONSE' message (3) sent
 to Tentry.

8. IANA Considerations

 This document defines a new object type called NODE_CAPABILITY_TUNNEL
 for QoS NSLP. Its Type value needs to be assigned by IANA. The
 object format and the setting of the extensibility bits are defined
 in Section 7.

9. Security Considerations

 This draft does not raise new security threats. Security
 considerations for NSIS NTLP and QoS NSLP are discussed in
 [I-D.ietf-nsis-ntlp] and [I-D.ietf-nsis-qos-nslp], respectively.
 General threats for NSIS can be found in [RFC4081].

10. Acknowledgements

 The authors would like to thank Roland Bless, Georgios Karagiannis,

https://datatracker.ietf.org/doc/html/rfc4081

Shen, et al. Expires December 5, 2010 [Page 23]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 Jukka Manner, Martin Rohricht, Martin Stiemerling, Hannes Tschofenig,
 and other members of the NSIS working group for comments to this
 work.

11. References

11.1. Normative References

 [I-D.ietf-nsis-ntlp]
 Schulzrinne, H. and M. Stiemerling, "GIST: General
 Internet Signalling Transport", draft-ietf-nsis-ntlp-20
 (work in progress), June 2009.

 [I-D.ietf-nsis-qos-nslp]
 Manner, J., Karagiannis, G., and A. McDonald, "NSLP for
 Quality-of-Service Signaling", draft-ietf-nsis-qos-nslp-18
 (work in progress), January 2010.

11.2. Informative References

 [RFC1701] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
 Routing Encapsulation (GRE)", RFC 1701, October 1994.

 [RFC1702] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
 Routing Encapsulation over IPv4 networks", RFC 1702,
 October 1994.

 [RFC1853] Simpson, W., "IP in IP Tunneling", RFC 1853, October 1995.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

 [RFC2004] Perkins, C., "Minimal Encapsulation within IP", RFC 2004,
 October 1996.

 [RFC2113] Katz, D., "IP Router Alert Option", RFC 2113,
 February 1997.

 [RFC2205] Braden, B., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, September 1997.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC2711] Partridge, C. and A. Jackson, "IPv6 Router Alert Option",
RFC 2711, October 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-nsis-ntlp-20
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-qos-nslp-18
https://datatracker.ietf.org/doc/html/rfc1701
https://datatracker.ietf.org/doc/html/rfc1702
https://datatracker.ietf.org/doc/html/rfc1853
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2004
https://datatracker.ietf.org/doc/html/rfc2113
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc2711

Shen, et al. Expires December 5, 2010 [Page 24]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 [RFC2746] Terzis, A., Krawczyk, J., Wroclawski, J., and L. Zhang,
 "RSVP Operation Over IP Tunnels", RFC 2746, January 2000.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 March 2000.

 [RFC3344] Perkins, C., "IP Mobility Support for IPv4", RFC 3344,
 August 2002.

 [RFC3697] Rajahalme, J., Conta, A., Carpenter, B., and S. Deering,
 "IPv6 Flow Label Specification", RFC 3697, March 2004.

 [RFC4080] Hancock, R., Karagiannis, G., Loughney, J., and S. Van den
 Bosch, "Next Steps in Signaling (NSIS): Framework",

RFC 4080, June 2005.

 [RFC4081] Tschofenig, H. and D. Kroeselberg, "Security Threats for
 Next Steps in Signaling (NSIS)", RFC 4081, June 2005.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, December 2005.

Authors' Addresses

 Charles Shen
 Columbia University
 Department of Computer Science
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027
 USA

 Phone: +1 212 854 3109
 Email: charles@cs.columbia.edu

 Henning Schulzrinne
 Columbia University
 Department of Computer Science
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027

https://datatracker.ietf.org/doc/html/rfc2746
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc3344
https://datatracker.ietf.org/doc/html/rfc3697
https://datatracker.ietf.org/doc/html/rfc4080
https://datatracker.ietf.org/doc/html/rfc4081
https://datatracker.ietf.org/doc/html/rfc4213
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4303

Shen, et al. Expires December 5, 2010 [Page 25]

Internet-Draft NSIS Operation over IP Tunnels June 2010

 USA

 Phone: +1 212 939 7004
 Email: hgs@cs.columbia.edu

 Sung-Hyuck Lee
 SAMSUNG Advanced Institute of Technology
 San 14-1, Nongseo-ri, Giheung-eup
 Yongin-si, Gyeonggi-do 449-712
 KOREA

 Phone: +82 31 280 9552
 Email: starsu.lee@samsung.com

 Jong Ho Bang
 SAMSUNG Advanced Institute of Technology
 San 14-1, Nongseo-ri, Giheung-eup
 Yongin-si, Gyeonggi-do 449-712
 KOREA

 Phone: +82 31 280 9585
 Email: jh0278.bang@samsung.com

Shen, et al. Expires December 5, 2010 [Page 26]

