
Workgroup: Internet Engineering Task Force

Internet-Draft:

draft-ietf-ntp-interleaved-modes-07

Updates: 5905 (if approved)

Published: 18 October 2021

Intended Status: Standards Track

Expires: 21 April 2022

Authors: M. Lichvar

Red Hat

A. Malhotra

Boston University

NTP Interleaved Modes

Abstract

This document extends the specification of Network Time Protocol

(NTP) version 4 in RFC 5905 with special modes called the NTP

interleaved modes, that enable NTP servers to provide their clients

and peers with more accurate transmit timestamps that are available

only after transmitting NTP packets. More specifically, this

document describes three modes: interleaved client/server,

interleaved symmetric, and interleaved broadcast.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc5905
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Interleaved Client/server mode

3. Interleaved Symmetric mode

4. Interleaved Broadcast mode

5. Protocol Failures

6. Security Considerations

7. IANA Considerations

8. Acknowledgements

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

RFC 5905 [RFC5905] describes the operations of NTPv4 in a client/

server, symmetric, and broadcast mode. The transmit and receive

timestamps are two of the four timestamps included in every NTPv4

packet used for time synchronization.

For a highly accurate and stable synchronization, the transmit and

receive timestamp should be captured close to the beginning of the

actual transmission and the end of the reception respectively. An

asymmetry in the timestamping causes the offset measured by NTP to

have an error.

There are at least four options where a timestamp of an NTP packet

may be captured with a software NTP implementation running on a

general-purpose operating system:

User space (software)

Network device driver or kernel (software)

Data link layer (hardware - MAC chip)

Physical layer (hardware - PHY chip)

Software timestamps captured in user space in the NTP implementation

itself are least accurate. They do not include system calls used for

sending and receiving packets, processing and queuing delays in the

system, network device drivers, and hardware. Hardware timestamps

captured at the physical layer are most accurate.

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

¶

A transmit timestamp captured in the driver or hardware is more

accurate than the user-space timestamp, but it is available to the

NTP implementation only after it sent the packet using a system

call. The timestamp cannot be included in the packet itself unless

the driver or hardware supports NTP and can modify the packet before

or during the actual transmission.

The protocol described in RFC 5905 does not specify any mechanism

for a server to provide its clients and peers with a more accurate

transmit timestamp that is known only after the transmission. A

packet that strictly follows RFC 5905, i.e. it contains a transmit

timestamp corresponding to the packet itself, is said to be in basic

mode.

Different mechanisms could be used to exchange timestamps known

after the transmission. The server could respond to each request

with two packets. The second packet would contain the transmit

timestamp corresponding to the first packet. However, such a

protocol would enable a traffic amplification attack, or it would

use packets with an asymmetric length, which would cause an

asymmetry in the network delay and an error in the measured offset.

This document describes an interleaved client/server, interleaved

symmetric, and interleaved broadcast mode. In these modes, the

server sends a packet which contains a transmit timestamp

corresponding to the transmission of the previous packet that was

sent to the client or peer. This transmit timestamp can be captured

in any software or hardware component involved in the transmission

of the packet. Both servers and clients/peers are required to keep

some state specific to the interleaved mode.

An NTPv4 implementation that supports the client/server and

broadcast interleaved modes interoperates with NTPv4 implementations

without this capability. A peer using the symmetric interleaved mode

does not fully interoperate with a peer which does not support it.

The mode needs to be configured specifically for each symmetric

association.

The interleaved modes do not change the NTP packet header format and

do not use new extension fields. The negotiation is implicit. The

protocol is extended with new values that can be assigned to the

origin and transmit timestamp. Servers and peers check the origin

timestamp to detect requests conforming to the interleaved mode. A

response can be valid only in one mode. If a client or peer that

does not support interleaved mode received a response conforming to

the interleaved mode, it would be rejected as bogus.

An explicit negotiation would require a new extension field. RFC

5905 does not specify how servers should handle requests with an

¶

¶

¶

¶

¶

¶

unknown extension field. The original use of extension fields was

authentication with Autokey [RFC5906], which cannot be negotiated.

Some existing implementations do not respond to requests with

unknown extension fields. This behavior would prevent clients from

reliably detecting support for the interleaved mode.

Requests and responses cannot always be formed in interleaved mode.

It cannot be used exclusively. Servers, clients, and peers that

support the interleaved mode need to support also the basic mode.

This document assumes familiarity with RFC 5905.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Interleaved Client/server mode

The interleaved client/server mode is similar to the basic client/

server mode. The difference between the two modes is in the values

saved to the origin and transmit timestamp fields.

The origin timestamp is a cookie which is used to detect that a

received packet is a response to the last packet sent in the other

direction of the association. It is a copy of one of the timestamps

from the packet to which it is responding, or zero if it is not a

response. Servers following RFC 5905 ignore the origin timestamp in

client requests. A server response which does not have a matching

origin timestamp is called bogus.

A client request in the basic mode has an origin timestamp equal to

the transmit timestamp from the last valid server response, or is

zero (which indicates the first request of the association). A

server response in the basic mode has an origin timestamp equal to

the transmit timestamp from the client request. The transmit

timestamp in the response corresponds to the transmission of the

response in which the timestamp is contained.

A client request in the interleaved mode has an origin timestamp

equal to the receive timestamp from the last valid server response.

A server response in the interleaved mode has an origin timestamp

equal to the receive timestamp from the client request. The transmit

timestamp in the response corresponds to the transmission of the

previous response which had the receive timestamp equal to the

origin timestamp from the request.

¶

¶

¶

¶

¶

¶

¶

¶

A server which supports the interleaved mode needs to save pairs of

local receive and transmit timestamps. The server SHOULD discard old

timestamps to limit the amount of memory needed to support clients

using the interleaved mode. The server MAY separate the timestamps

by IP addresses, but it SHOULD NOT separate them by port numbers to

support clients that change their port between requests, as

recommended in RFC 9109 [RFC9109].

The server MAY restrict the interleaved mode to specific IP

addresses and/or authenticated clients.

Both servers and clients that support the interleaved mode MUST NOT

send a packet that has a transmit timestamp equal to the receive

timestamp in order to reliably detect whether received packets

conform to the interleaved mode. One way to ensure that is to

increment the transmit timestamp by 1 unit (i.e. about 1/4 of a

nanosecond) if the two timestamps are equal, or a new timestamp can

be generated.

The transmit and receive timestamps in server responses need to be

unique to prevent two different clients from sending requests with

the same origin timestamp and the server responding in the

interleaved mode with an incorrect transmit timestamp. If the

timestamps are not guaranteed to be monotonically increasing, the

server SHOULD check that the transmit and receive timestamps are not

already saved as a receive timestamp of a previous request (from the

same IP address if the server separates timestamps by addresses),

and generate a new timestamp if necessary.

When the server receives a request from a client, it SHOULD respond

in the interleaved mode if the following conditions are met:

The request does not have a receive timestamp equal to the

transmit timestamp.

The origin timestamp from the request matches the local receive

timestamp of a previous request that the server has saved (for

the IP address if it separates timestamps by addresses).

A response in the interleaved mode MUST contain the transmit

timestamp of the response which contained the receive timestamp

matching the origin timestamp from the request. The server SHOULD

drop the timestamps after sending the response. The receive

timestamp MUST NOT be used again to detect a request conforming to

the interleaved mode.

If the conditions are not met (i.e. the request is not detected to

conform to the interleaved mode), the server MUST NOT respond in the

interleaved mode. The server MAY always respond in the basic mode.

¶

¶

¶

¶

¶

1.

¶

2.

¶

¶

In any case, the server SHOULD save the new receive and transmit

timestamps.

The first request from a client is always in the basic mode and so

is the server response. It has a zero origin timestamp and zero

receive timestamp. Only when the client receives a valid response

from the server, it will be able to send a request in the

interleaved mode.

The protocol recovers from packet loss. When a client request or

server response is lost, the client will use the same origin

timestamp in the next request. The server can respond in the

interleaved mode if it still has the timestamps corresponding to the

origin timestamp. If the server already responded to the timestamp

in the interleaved mode, or it had to drop the timestamps for other

reasons, it will respond in the basic mode and save new timestamps,

which will enable an interleaved response to the subsequent request.

The client SHOULD limit the number of requests in the interleaved

mode between server responses to prevent processing of very old

timestamps in case a large number of consecutive requests is lost.

An example of packets in a client/server exchange using the

interleaved mode is shown in Figure 1. The packets in the basic and

interleaved mode are indicated with B and I respectively. The

timestamps t1~, t3~ and t11~ point to the same transmissions as t1,

t3 and t11, but they may be less accurate. The first exchange is in

the basic mode followed by a second exchange in the interleaved

mode. For the third exchange, the client request is in the

interleaved mode, but the server response is in the basic mode,

because the server did not have the pair of timestamps t6 and t7

(e.g. they were dropped to save timestamps for other clients using

the interleaved mode).

Figure 1: Packet timestamps in interleaved client/server mode

¶

¶

¶

¶

Server t2 t3 t6 t7 t10 t11

 -----+----+----------------+----+----------------+----+-----

 / \ / \ / \

Client / \ / \ / \

 --+----------+----------+----------+----------+----------+--

 t1 t4 t5 t8 t9 t12

Mode: B B I I I B

 +----+ +----+ +----+ +----+ +----+ +----+

Org | 0 | | t1~| | t2 | | t4 | | t6 | | t5 |

Rx | 0 | | t2 | | t4 | | t6 | | t8 | |t10 |

Tx | t1~| | t3~| | t1 | | t3 | | t5 | |t11~|

 +----+ +----+ +----+ +----+ +----+ +----+

When the client receives a response from the server, it performs the

tests described in RFC 5905. Two of the tests are modified for the

interleaved mode:

The check for duplicate packets SHOULD compare both receive and

transmit timestamps in order to not drop a valid response in

the interleaved mode if it follows a response in the basic mode

and they contain the same transmit timestamp.

The check for bogus packets SHOULD compare the origin timestamp

with both transmit and receive timestamps from the request. If

the origin timestamp is equal to the transmit timestamp, the

response is in the basic mode. If the origin timestamp is equal

to the receive timestamp, the response is in the interleaved

mode.

The client SHOULD NOT update its NTP state when an invalid response

is received, to not lose the timestamps which will be needed to

complete a measurement when the subsequent response in the

interleaved mode is received.

If the packet passed the tests and conforms to the interleaved mode,

the client can compute the offset and delay using the formulas from

RFC 5905 and one of two different sets of timestamps. The first set

is RECOMMENDED for clients that filter measurements based on the

delay. The corresponding timestamps from Figure 1 are written in

parentheses.

T1 - local transmit timestamp of the previous request (t1)

T2 - remote receive timestamp from the previous response (t2)

T3 - remote transmit timestamp from the latest response (t3)

T4 - local receive timestamp of the previous response (t4)

The second set gives a more accurate measurement of the current

offset, but the delay is much more sensitive to a frequency error

between the server and client due to a much longer interval between

T1 and T4.

T1 - local transmit timestamp of the latest request (t5)

T2 - remote receive timestamp from the latest response (t6)

T3 - remote transmit timestamp from the latest response (t3)

T4 - local receive timestamp of the previous response (t4)

¶

1.

¶

2.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Clients MAY filter measurements based on the mode. The maximum

number of dropped measurements in the basic mode SHOULD be limited

in case the server does not support or is not able to respond in the

interleaved mode. Clients that filter measurements based on the

delay will implicitly prefer measurements in the interleaved mode

over the basic mode, because they have a shorter delay due to a more

accurate transmit timestamp (T3).

The server MAY limit saving of the receive and transmit timestamps

to requests which have an origin timestamp specific to the

interleaved mode in order to not waste resources on clients using

the basic mode. Such an optimization will delay the first

interleaved response of the server to a client by one exchange.

A check for a non-zero origin timestamp works with SNTP clients that

always set the timestamp to zero and clients that implement NTP data

minimization [I-D.ietf-ntp-data-minimization]. From the server's

point of view, such clients start a new association with each

request.

To avoid searching the saved receive timestamps for non-zero origin

timestamps from requests conforming to the basic mode, the server

can encode in low-order bits of the receive and transmit timestamps

below precision of the clock a flag indicating whether the timestamp

is a receive timestamp. If the server receives a request with a non-

zero origin timestamp which does not indicate it is a receive

timestamp of the server, the request does not conform to the

interleaved mode and it is not necessary to perform the search and/

or save the new receive and transmit timestamp.

3. Interleaved Symmetric mode

The interleaved symmetric mode uses the same principles as the

interleaved client/server mode. A packet in the interleaved

symmetric mode has a transmit timestamp which corresponds to the

transmission of the previous packet sent to the peer and an origin

timestamp equal to the receive timestamp from the last packet

received from the peer.

To enable synchronization in both directions of a symmetric

association, both peers need to support the interleaved mode. For

this reason, it SHOULD be disabled by default and enabled with an

option in the configuration of the active side of the association.

In order to prevent the peer from matching the transmit timestamp

with an incorrect packet when the peers' transmissions do not

alternate (e.g. they use different polling intervals) and a previous

packet was lost, the use of the interleaved mode in symmetric

associations requires additional restrictions.

¶

¶

¶

¶

¶

¶

¶

Peers which have an association need to count valid packets received

between their transmissions to determine in which mode a packet

should be formed. A valid packet in this context is a packet which

passed all NTP tests for duplicate, replayed, bogus, and

unauthenticated packets. Other received packets may update the NTP

state to allow the (re)initialization of the association, but they

do not change the selection of the mode.

A peer A SHOULD send a peer B a packet in the interleaved mode only

when all of the following conditions are met:

The peer A has an active association with the peer B which was

specified with the option enabling the interleaved mode, OR the

peer A received at least one valid packet in the interleaved

mode from the peer B.

The peer A did not send a packet to the peer B since it

received the last valid packet from the peer B.

The previous packet that the peer A sent to the peer B was the

only response to a packet received from the peer B.

The first condition is needed for compatibility with implementations

that do not support or are not configured for the interleaved mode.

The other conditions prevent a missing response from causing a

mismatch between the remote transmit (T2) and local receive

timestamp (T3), which would cause a large error in the measured

offset and delay.

An example of packets exchanged in a symmetric association is shown

in Figure 2. The minimum polling interval of the peer A is twice as

long as the maximum polling interval of the peer B. The first

packets sent by the peers are in the basic mode. The second and

third packet sent by the peer A is in the interleaved mode. The

second packet sent by the peer B is in the interleaved mode, but the

following packets sent by the peer B are in the basic mode, because

multiple responses are sent per request.

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

Figure 2: Packet timestamps in interleaved symmetric mode

If the peer A has no association with the peer B and it responds

with symmetric passive packets, it does not need to count the

packets in order to meet the restrictions, because each request has

at most one response. The peer SHOULD process the requests in the

same way as a server which supports the interleaved client/server

mode. It MUST NOT respond in the interleaved mode if the request was

not in the interleaved mode.

The peers SHOULD compute the offset and delay using one of the two

sets of timestamps specified in the client/server section. They MAY

switch between them to minimize the interval between T1 and T4 in

order to reduce the error in the measured delay.

4. Interleaved Broadcast mode

A packet in the interleaved broadcast mode contains two transmit

timestamps. One corresponds to the packet itself and is saved in the

transmit timestamp field. The other corresponds to the previous

packet and is saved in the origin timestamp field. The packet is

compatible with the basic mode, which uses a zero origin timestamp.

An example of packets sent in the broadcast mode is shown in Figure

3.

Peer A t2 t3 t6 t8 t9 t12 t14 t15

 -----+--+--------+-----------+--+--------+-----------+--+-----

 / \ / / \ / / \

Peer B / \ / / \ / / \

 --+--------+--+-----------+--------+--+-----------+--------+--

 t1 t4 t5 t7 t10 t11 t13 t16

Mode: B B I B I B B I

 +----+ +----+ +----+ +----+ +----+ +----+ +----+ +----+

Org | 0 | | t1~| | t2 | | t3~| | t4 | | t3 | | t3 | |t10 |

Rx | 0 | | t2 | | t4 | | t4 | | t8 | |t10 | |t10 | |t14 |

Tx | t1~| | t3~| | t1 | | t7~| | t3 | |t11~| |t13~| | t9 |

 +----+ +----+ +----+ +----+ +----+ +----+ +----+ +----+

¶

¶

¶

¶

Figure 3: Packet timestamps in interleaved broadcast mode

A client which does not support the interleaved mode ignores the

origin timestamp and processes all packets as if they were in the

basic mode.

A client which supports the interleaved mode SHOULD check if the

origin timestamp is not zero to detect packets in the interleaved

mode. The client SHOULD also compare the origin timestamp with the

transmit timestamp from the previous packet to detect lost packets.

If the difference is larger than a specified maximum (e.g. 1

second), the packet SHOULD NOT be used for synchronization in the

interleaved mode.

The client SHOULD compute the offset using the origin timestamp from

the received packet and the local receive timestamp of the previous

packet. If the client needs to measure the network delay, it SHOULD

use the interleaved client/server mode.

5. Protocol Failures

An incorrect client implementation of the basic mode (RFC 5905) can

work reliably with servers that implement only the basic mode, but

the protocol can fail intermittently with servers that implement the

interleaved mode.

If the client sets the origin timestamp to other values than the

transmit timestamp from the last valid server response, or zero, the

origin timestamp can match a receive timestamp of a previous server

response (possibly to a different client), causing an unexpected

interleaved response. The client is expected to drop the response as

bogus. If it did not check for bogus packets, it would be vulnerable

to off-path attacks.

If the client set the origin timestamp to a constant non-zero value,

this mismatch would be expected to happen once per the NTP era

Server t1 t3 t5 t7

 ------+------------+------------+------------+---------

 \ \ \ \

Client \ \ \ \

 ---------+------------+------------+------------+------

 t2 t4 t6 t8

Mode: B I I I

 +----+ +----+ +----+ +----+

Org | 0 | | t1 | | t3 | | t5 |

Rx | 0 | | 0 | | 0 | | 0 |

Tx | t1~| | t3~| | t5~| | t7~|

 +----+ +----+ +----+ +----+

¶

¶

¶

¶

¶

(about 136 years) if the NTP server was responding at the maximum

rate needed to go through all timestamp values (about 2 billion

responses per second). With lower rates of requests the chance of

hitting a server timestamp decreases proportionally.

The worst case of this failure would be a client that specifically

sets the origin timestamp to the server's receive timestamp, i.e.

the client accidentally implemented the interleaved mode, but it

does not accept interleaved responses. This client would still be

able to synchronize its clock. It would drop interleaved responses

as bogus and set the origin timestamp to the receive timestamp from

the last valid response in the basic mode. As servers are required

to not respond twice to the same origin timestamp in the interleaved

mode, at least every other response would be in the basic mode and

accepted by the client.

Intermittent protocol failures can be caused also by an incorrect

server implementation of the interleaved mode. A server which does

not ensure the receive and transmit timestamps in its responses are

unique in a sufficiently long interval can misinterpret requests

formed correctly in the basic mode as interleaved and respond in the

interleaved mode. The response would be dropped by the client as

bogus.

A duplicated server receive timestamp can cause an expected

interleaved response to contain a transmit timestamp which does not

correspond to the transmission of the previous response from which

the client copied the receive timestamp to the origin timestamp in

the request, but a different response which contained the same

receive timestamp. The response would be accepted by the client with

a small error in the transmit timestamp equal to the difference

between the transmit timestamps of the two different responses. As

the two requests to which the responses responded were received at

the same time (according to the server's clock), the two

transmissions would be expected to be close to each other and the

difference between them would be comparable to the error a basic

response normally has in its transmit timestamp.

One reason for a duplicated server timestamp can be a large backward

step of the server's clock. If the timestamps the server has saved

do not fully cover the second pass of the clock over the repeated

interval, two requests received in different passes of the clock can

get the same receive timestamp. The client which made the first

request can get the transmit timestamp corresponding to the

transmission of the second response. From the server's point of

view, the error of the transmit timestamp would be still small, but

from the client's point of view the server already failed when it

made the step as it was serving wrong time before or after the step

¶

¶

¶

¶

with a much larger error than the error caused by the protocol

failure.

6. Security Considerations

The security considerations of time protocols in general are

discussed in RFC 7384 [RFC7384], and specifically the security

considerations of NTP are discussed in RFC 5905.

Security issues that apply to the basic modes apply also to the

interleaved modes. They are described in The Security of NTP's

Datagram Protocol [SECNTP].

Clients and peers SHOULD NOT leak the receive timestamp in packets

sent to other peers or clients (e.g. as a reference timestamp) to

prevent off-path attackers from easily getting the origin timestamp

needed to make a valid response in the interleaved mode.

Clients using the interleaved mode SHOULD randomize all bits of both

receive and transmit timestamps, as recommended for the transmit

timestamp in the NTP client data minimization [I-D.ietf-ntp-data-

minimization], to make it more difficult for off-path attackers to

guess the origin timestamp in the server response.

The client data minimization cannot be fully implemented in the

interleaved mode. The origin timestamp cannot be zeroed out, which

makes the clients more vulnerable to tracking as they move between

networks.

Attackers can force the server to drop its timestamps in order to

prevent clients from getting an interleaved response. They can send

a large number of requests, send requests with a spoofed source

address, or replay an authenticated request if the interleaved mode

is enabled only for authenticated clients. Clients SHOULD NOT rely

on servers to be able to respond in the interleaved mode.

Protecting symmetric associations in the interleaved mode against

replay attacks is even more difficult than in the basic mode. In

both modes, the NTP state needs to be protected between the

reception of the last non-replayed response and transmission of the

next request in order for the request to contain the origin

timestamp expected by the peer. The difference is in the timestamps

needed to complete a measurement. In the basic mode only one valid

response is needed at a time and it is used as soon as it is

received, but the interleaved mode needs two consecutive valid

responses. The NTP state needs to be protected all the time to not

lose the timestamps which are needed to complete the measurement

when the second response is received.

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-ntp-data-minimization]

[RFC2119]

[RFC5905]

[RFC8174]

[RFC5906]

7. IANA Considerations

This memo includes no request to IANA.

8. Acknowledgements

The interleaved modes described in this document are based on the

implementation written by David Mills in the NTP project. The

specification of the broadcast mode is based purely on this

implementation. The specification of the symmetric mode has some

modifications. The client/server mode is specified as a new mode

compatible with the symmetric mode, similarly to the basic symmetric

and client/server modes.

The authors would like to thank Theresa Enghardt, Daniel Franke,

Benjamin Kaduk, Erik Kline, Tal Mizrahi, Steven Sommars, Harlan

Stenn, and Kristof Teichel for their useful comments.

9. References

9.1. Normative References

Franke, D. F. and A. Malhotra, "NTP

Client Data Minimization", Work in Progress, Internet-

Draft, draft-ietf-ntp-data-minimization-04, 25 March

2019, <https://www.ietf.org/archive/id/draft-ietf-ntp-

data-minimization-04.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/info/rfc5905>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

Haberman, B., Ed. and D. Mills, "Network Time Protocol

Version 4: Autokey Specification", RFC 5906, DOI

¶

¶

¶

http://www.ntp.org
https://www.ietf.org/archive/id/draft-ietf-ntp-data-minimization-04.txt
https://www.ietf.org/archive/id/draft-ietf-ntp-data-minimization-04.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc8174

[RFC7384]

[RFC9109]

[SECNTP]

10.17487/RFC5906, June 2010, <https://www.rfc-editor.org/

info/rfc5906>.

Mizrahi, T., "Security Requirements of Time Protocols in

Packet Switched Networks", RFC 7384, DOI 10.17487/

RFC7384, October 2014, <https://www.rfc-editor.org/info/

rfc7384>.

Gont, F., Gont, G., and M. Lichvar, "Network Time

Protocol Version 4: Port Randomization", RFC 9109, DOI

10.17487/RFC9109, August 2021, <https://www.rfc-

editor.org/info/rfc9109>.

Malhotra, A., Gundy, M. V., Varia, M., Kennedy, H.,

Gardner, J., and S. Goldberg, "The Security of NTP's

Datagram Protocol", 2016, <http://eprint.iacr.org/

2016/1006>.

Authors' Addresses

Miroslav Lichvar

Red Hat

Purkynova 115

612 00 Brno

Czech Republic

Email: mlichvar@redhat.com

Aanchal Malhotra

Boston University

111 Cummington St

Boston, 02215

United States of America

Email: aanchal4@bu.edu

https://www.rfc-editor.org/info/rfc5906
https://www.rfc-editor.org/info/rfc5906
https://www.rfc-editor.org/info/rfc7384
https://www.rfc-editor.org/info/rfc7384
https://www.rfc-editor.org/info/rfc9109
https://www.rfc-editor.org/info/rfc9109
http://eprint.iacr.org/2016/1006
http://eprint.iacr.org/2016/1006
mailto:mlichvar@redhat.com
mailto:aanchal4@bu.edu

	NTP Interleaved Modes
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Interleaved Client/server mode
	3. Interleaved Symmetric mode
	4. Interleaved Broadcast mode
	5. Protocol Failures
	6. Security Considerations
	7. IANA Considerations
	8. Acknowledgements
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

