
Workgroup: Internet Engineering Task Force

Internet-Draft: draft-ietf-ntp-roughtime-06

Published: 7 June 2022

Intended Status: Informational

Expires: 9 December 2022

Authors: A. Malhotra

Boston University

A. Langley

Google

W. Ladd

Sealance, Inc.

M. Dansarie

Roughtime

Abstract

This document specifies Roughtime - a protocol that aims to achieve

rough time synchronization while detecting servers that provide

inaccurate time and providing cryptographic proof of their

malfeasance.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Requirements Language

3. Protocol Overview

4. The Guarantee

5. Message Format

5.1. Data Types

5.1.1. int32

5.1.2. uint32

5.1.3. uint64

5.1.4. Tag

5.1.5. Timestamp

5.2. Header

6. Protocol Details

6.1. Requests

6.1.1. VER

6.1.2. NONC

6.2. Responses

6.2.1. SIG

6.2.2. VER

6.2.3. NONC

6.2.4. PATH

6.2.5. SREP

6.2.6. CERT

6.2.7. INDX

6.3. The Merkle Tree

6.3.1. Root Value Validity Check Algorithm

6.4. Validity of Response

7. Integration Into NTP

8. Grease

9. Roughtime Servers

10. Acknowledgements

11. IANA Considerations

11.1. Service Name and Transport Protocol Port Number Registry

11.2. Roughtime Version Registry

11.3. Roughtime Tag Registry

12. Security Considerations

13. Privacy Considerations

14. References

14.1. Normative References

14.2. Informative References

Appendix A. Terms and Abbreviations

Authors' Addresses

1. Introduction

Time synchronization is essential to Internet security as many

security protocols and other applications require synchronization

[RFC7384] [MCBG]. Unfortunately widely deployed protocols such as

the Network Time Protocol (NTP) [RFC5905] lack essential security

features, and even newer protocols like Network Time Security (NTS)

[RFC8915] lack mechanisms to ensure that the servers behave

correctly. Authenticating time servers prevents network adversaries

from modifying time packets, but an authenticated time server still

has full control over the contents of the time packet and may

transmit incorrect time. The Roughtime protocol provides

cryptographic proof of malfeasance, enabling clients to detect and

prove to a third party a server's attempts to influence the time a

client computes.

Protocol Authenticated Server Server Malfeasance Evidence

NTP, Chronos N N

NTP-MAC Y* N

NTP-Autokey Y** N

NTS Y N

Roughtime Y Y

Table 1: Security Properties of current protocols.

Y* For security issues with symmetric-key based NTP-MAC

authentication, please refer to RFC 8573 [RFC8573].

Y** For security issues with Autokey Public Key Authentication,

refer to [Autokey].

If a server's timestamps do not fit into the time context of

other servers' responses, then a Roughtime client can

cryptographically prove this misbehavior to third parties. This

helps detect dishonest or malfunctioning servers.

A Roughtime client can roughly detect (with no absolute

guarantee) a delay attack [DelayAttacks] but can not

cryptographically prove this to a third party. However such

attacks expand the round trip time between request and response.

Note that delay attacks cannot be detected/stopped by any

protocol. Delay attacks can not, however, undermine the security

guarantees provided by Roughtime.

Although delay attacks cannot be prevented, they can be limited

to a predetermined upper bound. This can be done by defining a

maximal tolerable Round Trip Time (RTT) value, MAX-RTT, that a

Roughtime client is willing to accept. A Roughtime client can

measure the RTT of every request-response handshake and compare

it to MAX-RTT. If the RTT exceeds MAX-RTT, the corresponding

measurement is discarded. When this approach is used, the maximal

time error that can be caused by a delay attack is MAX-RTT/2. It

¶

¶

¶

*

¶

*

¶

*

¶

*

should be noted that this approach assumes that the nature of the

system is known to the client, including reasonable upper bounds

on the RTT value.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Protocol Overview

Roughtime is a protocol for rough time synchronization that enables

clients to provide cryptographic proof of server malfeasance. It

does so by having responses from servers include a signature over a

value derived from a nonce in the client request. This provides

cryptographic proof that the timestamp was issued after the server

received the client's request. The derived value included in the

server's response is the root of a Merkle tree which includes the

hash of the client's nonce as the value of one of its leaf nodes.

This enables the server to amortize the relatively costly signing

operation over a number of client requests.

Single server mode: At its most basic level, Roughtime is a one

round protocol in which a completely fresh client requests the

current time and the server sends a signed response. The response

includes a timestamp and a radius used to indicate the server's

certainty about the reported time. For example, a radius of

1,000,000 microseconds means the server is absolutely confident that

the true time is within one second of the reported time.

The server proves freshness of its response as follows. The client's

request contains a nonce which the server incorporates into its

signed response. The client can verify the server's signatures and -

provided that the nonce has sufficient entropy - this proves that

the signed response could only have been generated after the nonce.

4. The Guarantee

A Roughtime server guarantees that a response to a query sent at t ,

received at t , and with timestamp t has been created between the

transmission of the query and its reception. If t is not within that

interval, a server inconsistency may be detected and used to impeach

the server. The propagation of such a guarantee and its use of type

synchronization is discussed in Section 7. No delay attacker may

affect this: they may only expand the interval between t and t , or

of course stop the measurement in the first place.

¶

¶

¶

¶

¶

1

2 3

3

1 2

¶

5. Message Format

Roughtime messages are maps consisting of one or more (tag, value)

pairs. They start with a header, which contains the number of pairs,

the tags, and value offsets. The header is followed by a message

values section which contains the values associated with the tags in

the header. Messages MUST be formatted according to Figure 1 as

described in the following sections.

Messages MAY be recursive, i.e. the value of a tag can itself be a

Roughtime message.

Figure 1: Roughtime Message Format

5.1. Data Types

5.1.1. int32

An int32 is a 32 bit signed integer. It is serialized least

significant byte first in sign-magnitude representation with the

sign bit in the most significant bit. The negative zero value

(0x80000000) MUST NOT be used and any message with it is

syntactically invalid and MUST be ignored.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Number of pairs (uint32) |

+-+

| |

. .

. N-1 offsets (uint32) .

. .

| |

+-+

| |

. .

. N tags (uint32) .

. .

| |

+-+

| |

. .

. Values .

. .

| |

+-+

¶

5.1.2. uint32

A uint32 is a 32 bit unsigned integer. It is serialized with the

least significant byte first.

5.1.3. uint64

A uint64 is a 64 bit unsigned integer. It is serialized with the

least significant byte first.

5.1.4. Tag

Tags are used to identify values in Roughtime messages. A tag is a

uint32 but may also be listed in this document as a sequence of up

to four ASCII characters [RFC0020]. ASCII strings shorter than four

characters can be unambiguously converted to tags by padding them

with zero bytes. For example, the ASCII string "NONC" would

correspond to the tag 0x434e4f4e and "PAD" would correspond to

0x00444150. Note that when encoded into a message the ASCII values

will be in the corresponding order.

5.1.5. Timestamp

A timestamp is a uint64 interpreted in the following way. The most

significant 3 bytes contain the integer part of a Modified Julian

Date (MJD). The least significant 5 bytes is a count of the number

of microseconds since midnight on that day.

The MJD is the number of UTC days since 17 November 1858 [ITU-R_TF.

457-2]. It is useful to note that 1 January 1970 is 40,587 days

after 17 November 1858.

Note that, unlike NTP, this representation does not use the full

number of bits in the fractional part and that days with leap

seconds will have more or fewer than the nominal 86,400,000,000

microseconds.

5.2. Header

All Roughtime messages start with a header. The first four bytes of

the header is the uint32 number of tags N, and hence of (tag, value)

pairs. The following 4*(N-1) bytes are offsets, each a uint32. The

last 4*N bytes in the header are tags.

Offsets refer to the positions of the values in the message values

section. All offsets MUST be multiples of four and placed in

increasing order. The first post-header byte is at offset 0. The

offset array is considered to have a not explicitly encoded value of

0 as its zeroth entry. The value associated with the ith tag begins

at offset[i] and ends at offset[i+1]-1, with the exception of the

¶

¶

¶

¶

¶

¶

¶

last value which ends at the end of the message. Values may have

zero length.

Tags MUST be listed in the same order as the offsets of their values

and MUST also be sorted in ascending order by numeric value. A tag

MUST NOT appear more than once in a header.

6. Protocol Details

As described in Section 3, clients initiate time synchronization by

sending requests containing a nonce to servers who send signed time

responses in return. Roughtime packets can be sent between clients

and servers either as UDP datagrams or via TCP streams. Servers

SHOULD support the UDP transport mode, while TCP transport is

OPTIONAL.

A Roughtime packet MUST be formatted according to Figure 2 and as

described here. The first field is a uint64 with the value

0x4d49544847554f52 ("ROUGHTIM" in ASCII). The second field is a

uint32 and contains the length of the third field. The third and

last field contains a Roughtime message as specified in Section 5.1.

Figure 2: Roughtime Packet Format

Roughtime request and response packets MUST be transmitted in a

single datagram when the UDP transport mode is used. Setting the

packet's don't fragment bit [RFC0791] is OPTIONAL in IPv4 networks.

Multiple requests and responses can be exchanged over an established

TCP connection. Clients MAY send multiple requests at once and

servers MAY send responses out of order. The connection SHOULD be

closed by the client when it has no more requests to send and has

received all expected responses. Either side SHOULD close the

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 0x4d49544847554f52 (uint64) |

| ("ROUGHTIM") |

+-+

| Message length (uint32) |

+-+

| |

. .

. Roughtime message .

. .

| |

+-+

¶

connection in response to synchronization, format, implementation-

defined timeouts, or other errors.

All requests and responses MUST contain the VER tag. It contains a

list of one or more uint32 version numbers. The version of Roughtime

specified by this memo has version number 1.

NOTE TO RFC EDITOR: remove this paragraph before publication. For

testing drafts of this memo, a version number of 0x80000000 plus the

draft number is used.

6.1. Requests

A request MUST contain the tags VER and NONC. Tags other than NONC

and VER SHOULD be ignored by the server. A future version of this

protocol may mandate additional tags in the message and asign them

semantic meaning.

The size of the request message SHOULD be at least 1024 bytes when

the UDP transport mode is used. To attain this size the PAD tag

SHOULD be added to the message. Its value SHOULD be all zeros.

Responding to requests shorter than 1024 bytes is OPTIONAL and

servers MUST NOT send responses larger than the requests they are

replying to.

6.1.1. VER

In a request, the VER tag contains a list of versions. The VER tag

MUST include at least one Roughtime version supported by the client.

The client MUST ensure that the version numbers and tags included in

the request are not incompatible with each other or the packet

contents.

6.1.2. NONC

The value of the NONC tag is a 32 byte nonce. It SHOULD be generated

in a manner indistinguishable from random. BCP 106 contains specific

guidelines regarding this [RFC4086].

6.2. Responses

A response MUST contain the tags SIG, VER, NONC, PATH, SREP, CERT,

and INDX.

6.2.1. SIG

In general, a SIG tag value is a 64 byte Ed25519 signature [RFC8032]

over a concatenation of a signature context ASCII string and the

entire value of a tag. All context strings MUST include a

terminating zero byte.

¶

¶

¶

¶

¶

¶

¶

¶

¶

The SIG tag in the root of a response MUST be a signature over the

SREP value using the public key contained in CERT. The context

string MUST be "RoughTime v1 response signature".

6.2.2. VER

In a response, the VER tag MUST contain a single version number. It

SHOULD be one of the version numbers supplied by the client in its

request. The server MUST ensure that the version number corresponds

with the rest of the packet contents.

6.2.3. NONC

The NONC tag MUST contain the nonce of the message being responded

to.

6.2.4. PATH

The PATH tag value MUST be a multiple of 32 bytes long and represent

a path of 32 byte hash values in the Merkle tree used to generate

the ROOT value as described in Section 6.3. In the case where a

response is prepared for a single request and the Merkle tree

contains only the root node, the size of PATH MUST be zero.

6.2.5. SREP

The SREP tag contains a time response. Its value MUST be a Roughtime

message with the tags ROOT, MIDP, and RADI. The server MAY include

any of the tags DUT1, DTAI, and LEAP in the contents of the SREP

tag.

The ROOT tag MUST contain a 32 byte value of a Merkle tree root as

described in Section 6.3.

The MIDP tag value MUST be timestamp of the moment of processing.

The RADI tag value MUST be a uint32 representing the server's

estimate of the accuracy of MIDP in microseconds. Servers MUST

ensure that the true time is within (MIDP-RADI, MIDP+RADI) at the

time they transmit the response message.

The DUT1 tag value MUST be an int32 indicating the predicted

difference between UT1 and UTC (UT1 - UTC) in milliseconds as given

by the International Earth Rotation and Reference Systems Service

(IERS).

The DTAI tag value MUST be an int32 indicating the current

difference between International Atomic Time (TAI) and UTC (TAI -

UTC) in milliseconds as published in the International Bureau of

Weights and Measures' (BIPM) Circular T.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The LEAP tag MUST contain zero or more int32 values, each

representing a past or future leap second event. Positive values

represent the addition of a second and negative values represent the

removal of a second. The absolute value represents the MJD of the

day that begins immediately after the leap second event.

By way of illustration, there was a leap second 31 December 2016

23:59:60. This event would be represented by the tag with numeric

value 57754. The positive sign represents that there was an

additional second inserted, the numeric value indicates 1 January

2017, the following day that began at midnight after the addition.

The leap second events MUST be sorted in reverse chronological order

and the first item MUST be the last (past or future) leap second

event that the server knows about. A LEAP tag with zero int32 values

indicates that the server does not hold any updated leap second

information.

6.2.6. CERT

The CERT tag contains a public-key certificate signed with the

server's long-term key. Its value is a Roughtime message with the

tags DELE and SIG, where SIG is a signature over the DELE value. The

context string used to generate SIG MUST be "RoughTime v1 delegation

signature--".

The DELE tag contains a delegated public-key certificate used by the

server to sign the SREP tag. Its value is a Roughtime message with

the tags MINT, MAXT, and PUBK. The purpose of the DELE tag is to

enable separation of a long-term public key from keys on devices

exposed to the public Internet.

The MINT tag is the minimum timestamp for which the key in PUBK is

trusted to sign responses. MIDP MUST be more than or equal to MINT

for a response to be considered valid.

The MAXT tag is the maximum timestamp for which the key in PUBK is

trusted to sign responses. MIDP MUST be less than or equal to MAXT

for a response to be considered valid.

The PUBK tag contains a temporary 32 byte Ed25519 public key which

is used to sign the SREP tag.

6.2.7. INDX

The INDX tag value is a uint32 determining the position of NONC in

the Merkle tree used to generate the ROOT value as described in

Section 6.3.

¶

¶

¶

¶

¶

¶

¶

¶

¶

6.3. The Merkle Tree

A Merkle tree is a binary tree where the value of each non-leaf node

is a hash value derived from its two children. The root of the tree

is thus dependent on all leaf nodes.

In Roughtime, each leaf node in the Merkle tree represents the nonce

in one request. Leaf nodes are indexed left to right, beginning with

zero.

The values of all nodes are calculated from the leaf nodes and up

towards the root node using the first 32 bytes of the output of the

SHA-512 hash algorithm [SHS]. For leaf nodes, the byte 0x00 is

prepended to the nonce before applying the hash function. For all

other nodes, the byte 0x01 is concatenated with first the left and

then the right child node value before applying the hash function.

The value of the Merkle tree's root node is included in the ROOT tag

of the response.

The index of a request's nonce node is included in the INDX tag of

the response.

The values of all sibling nodes in the path between a request's

nonce node and the root node is stored in the PATH tag so that the

client can reconstruct and validate the value in the ROOT tag using

its nonce. These values are each 32 bytes and are stored one after

the other with no additional padding or structure. The order in

which they are stored is described in Section 6.3.1

6.3.1. Root Value Validity Check Algorithm

We describe how to compute the hash of the Merkel tree from the

values in the tags PATH, INDX, and NONC. Our algorithm maintains a

current hash value. The bits of INDX are ordered from least to most

significant in this algorithm.

At initialization hash is set to H(0x00 || nonce).

If no more entries remain in PATH the current hash is the hash of

the Merkel tree. All remaining bits of INDX must be zero.

Otherwise let node be the next 32 bytes in PATH. If the current bit

in INDX is 0 then hash = H(0x01 || node || hash), else hash = H(0x01

|| hash || node).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

6.4. Validity of Response

A client MUST check the following properties when it receives a

response. We assume the long-term server public key is known to the

client through other means.

The signature in CERT was made with the long-term key of the

server.

The DELE timestamps and the MIDP value are consistent.

The INDX and PATH values prove NONC was included in the Merkle

tree with value ROOT using the algorithm in Section 6.3.1.

The signature of SREP in SIG validates with the public key in

DELE.

A response that passes these checks is said to be valid. Validity of

a response does not prove the time is correct, but merely that the

server signed it, and thus promises that it began to compute the

signature at a time in the interval (MIDP-RADI, MIDP+RADI).

7. Integration Into NTP

We assume that there is a bound PHI on the frequency error in the

clock on the machine. Given a measurement taken at a local time t,

we know the true time is in (t-delta-sigma, t-delta+sigma). After d

seconds have elapsed we know the true time is within (t-delta-sigma-

d*PHI, t-delta+sigma+d*PHI). A simple and effective way to mix with

NTP or PTP discipline of the clock is to trim the observed intervals

in NTP to fit entirely within this window or reject measurements

that fall to far outside. This assumes time has not been stepped. If

the NTP process decides to step the time, it MUST use Roughtime to

ensure the new truetime estimate that will be stepped to is

consistent with the true time.

Should this window become too large, another Roughtime measurement

is called for. The definition of "too large" is implementation

defined.

Implementations MAY use other, more sophisticated means of adjusting

the clock respecting Roughtime information. Other applications such

as X.509 verification may wish to

8. Grease

Servers MAY send back a fraction of responses that are syntactically

invalid or contain invalid signatures as well as incorrect times.

Clients MUST properly reject such responses. Servers MUST NOT send

¶

*

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

back responses with incorrect times and valid signatures. Either

signature MAY be invalid for this application.

9. Roughtime Servers

NOTE TO RFC EDITOR: remove this section before publication.

The below list contains a list of servers with their public keys in

Base64 format. These servers may implement older versions of this

specification.

10. Acknowledgements

Thomas Peterson corrected multiple nits. Peter Loethberg, Tal

Mizrahi, Ragnar Sundblad, Kristof Teichel, and the other members of

the NTP working group contributed comments and suggestions.

11. IANA Considerations

11.1. Service Name and Transport Protocol Port Number Registry

IANA is requested to allocate the following entry in the Service

Name and Transport Protocol Port Number Registry [RFC6335]:

Service Name: Roughtime

Transport Protocol: tcp,udp

Assignee: IESG <iesg@ietf.org>

Contact: IETF Chair <chair@ietf.org>

Description: Roughtime time synchronization

¶

¶

¶

address: roughtime.cloudflare.com

port: 2002

long-term key: gD63hSj3ScS+wuOeGrubXlq35N1c5Lby/S+T7MNTjxo=

address: roughtime.int08h.com

port: 2002

long-term key: AW5uAoTSTDfG5NfY1bTh08GUnOqlRb+HVhbJ3ODJvsE=

address: roughtime.sandbox.google.com

port: 2002

long-term key: etPaaIxcBMY1oUeGpwvPMCJMwlRVNxv51KK/tktoJTQ=

address: roughtime.se

port: 2002

long-term key: S3AzfZJ5CjSdkJ21ZJGbxqdYP/SoE8fXKY0+aicsehI=

¶

¶

¶

¶

¶

¶

¶

¶

Reference: [[this memo]]

Port Number: [[TBD1]], selected by IANA from the User Port range

11.2. Roughtime Version Registry

IANA is requested to create a new registry entitled "Roughtime

Version Registry". Entries shall have the following fields:

Version ID (REQUIRED): a 32-bit unsigned integer

Version name (REQUIRED): A short text string naming the version

being identified.

Reference (REQUIRED): A reference to a relevant specification

document.

The policy for allocation of new entries SHOULD be: IETF Review.

The initial contents of this registry shall be as follows:

Version ID Version name Reference

0x0 Reserved
[[this

memo]]

0x1 Roughtime version 1
[[this

memo]]

0x2-0x7fffffff Unassigned

0x80000000-0xffffffff
Reserved for Private or

Experimental use

[[this

memo]]

Table 2: Roughtime version assignments.

11.3. Roughtime Tag Registry

IANA is requested to create a new registry entitled "Roughtime Tag

Registry". Entries SHALL have the following fields:

Tag (REQUIRED): A 32-bit unsigned integer in hexadecimal format.

ASCII Representation (OPTIONAL): The ASCII representation of the

tag in accordance with Section 5.1.4 of this memo, if applicable.

Reference (REQUIRED): A reference to a relevant specification

document.

The policy for allocation of new entries in this registry SHOULD be:

Specification Required.

The initial contents of this registry SHALL be as follows:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Tag ASCII Representation Reference

0x00444150 PAD [[this memo]]

0x00474953 SIG [[this memo]]

0x00524556 VER [[this memo]]

0x31545544 DUT1 [[this memo]]

0x434e4f4e NONC [[this memo]]

0x454c4544 DELE [[this memo]]

0x48544150 PATH [[this memo]]

0x49415444 DTAI [[this memo]]

0x49444152 RADI [[this memo]]

0x4b425550 PUBK [[this memo]]

0x5041454c LEAP [[this memo]]

0x5044494d MIDP [[this memo]]

0x50455253 SREP [[this memo]]

0x544e494d MINT [[this memo]]

0x544f4f52 ROOT [[this memo]]

0x54524543 CERT [[this memo]]

0x5458414d MAXT [[this memo]]

0x58444e49 INDX [[this memo]]

Table 3: Roughtime tags.

12. Security Considerations

Since the only supported signature scheme, Ed25519, is not quantum

resistant, the Roughtime version described in this memo will not

survive the advent of quantum computers.

Maintaining a list of trusted servers and adjudicating violations of

the rules by servers is not discussed in this document and is

essential for security. Roughtime clients MUST regularly update

their view of which servers are trustworthy in order to benefit from

the detection of misbehavior.

Validating timestamps made on different dates requires knowledge of

leap seconds in order to calculate time intervals correctly.

Servers carry out a significant amount of computation in response to

clients, and thus may experience vulnerability to denial of service

attacks.

This protocol does not provide any confidentiality. Given the nature

of timestamps such impact is minor.

The compromise of a PUBK's private key, even past MAXT, is a problem

as the private key can be used to sign invalid times that are in the

range MINT to MAXT, and thus violate the good behavior guarantee of

the server.

¶

¶

¶

¶

¶

¶

[ITU-R_TF.457-2]

[ITU-R_TF.460-6]

[RFC0020]

[RFC6335]

[RFC8032]

[RFC8259]

[SHS]

Servers MUST NOT send response packets larger than the request

packets sent by clients, in order to prevent amplification attacks.

13. Privacy Considerations

This protocol is designed to obscure all client identifiers. Servers

necessarily have persistent long-term identities essential to

enforcing correct behavior.

Generating nonces in a nonrandom manner can cause leaks of private

data or enable tracking of clients as they move between networks.

14. References

14.1. Normative References

ITU-R, "Use of the Modified Julian Date by the

Standard-Frequency and Time-Signal Services", ITU-R

Recommendation TF.457-2, October 1997.

ITU-R, "Standard-Frequency and Time-Signal

Emissions", ITU-R Recommendation TF.460-6, February 2002.

Cerf, V., "ASCII format for network interchange", STD 80,

RFC 20, DOI 10.17487/RFC0020, October 1969, <https://

www.rfc-editor.org/info/rfc20>.

Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.

Cheshire, "Internet Assigned Numbers Authority (IANA)

Procedures for the Management of the Service Name and

Transport Protocol Port Number Registry", BCP 165, RFC

6335, DOI 10.17487/RFC6335, August 2011, <https://

www.rfc-editor.org/info/rfc6335>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

National Institute of Standards and Technology, "Secure

Hash Standard", DOI 10.6028/NIST.FIPS.180-4, FIPS 180-4,

August 2015, <https://doi.org/10.6028/NIST.FIPS.180-4>.

14.2. Informative References

¶

¶

¶

https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc6335
https://www.rfc-editor.org/info/rfc6335
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://doi.org/10.6028/NIST.FIPS.180-4

[Autokey]

[DelayAttacks]

[MCBG]

[RFC0768]

[RFC0791]

[RFC0793]

[RFC2119]

[RFC4086]

[RFC5905]

[RFC7384]

Rottger, S., "Analysis of the NTP Autokey Procedures",

2012, <https://zero-entropy.de/autokey_analysis.pdf>.

Mizrahi, T., "A Game Theoretic Analysis of Delay

Attacks Against Time Synchronization Protocols", DOI

10.1109/ISPCS.2012.6336612, 2012, <https://

ieeexplore.ieee.org/document/6336612>.

Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,

"Attacking the Network Time Protocol", 2015, <https://

eprint.iacr.org/2015/1020>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/info/rfc768>.

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,

"Randomness Requirements for Security", BCP 106, RFC

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/info/rfc4086>.

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/info/rfc5905>.

Mizrahi, T., "Security Requirements of Time Protocols in

Packet Switched Networks", RFC 7384, DOI 10.17487/

https://zero-entropy.de/autokey_analysis.pdf
https://ieeexplore.ieee.org/document/6336612
https://ieeexplore.ieee.org/document/6336612
https://eprint.iacr.org/2015/1020
https://eprint.iacr.org/2015/1020
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc5905

[RFC8174]

[RFC8573]

[RFC8915]

ASCII

IANA

JSON

MJD

NTP

NTS

TAI

TCP

UDP

UT

UTC

RFC7384, October 2014, <https://www.rfc-editor.org/info/

rfc7384>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Malhotra, A. and S. Goldberg, "Message Authentication

Code for the Network Time Protocol", RFC 8573, DOI

10.17487/RFC8573, June 2019, <https://www.rfc-editor.org/

info/rfc8573>.

Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.

Sundblad, "Network Time Security for the Network Time

Protocol", RFC 8915, DOI 10.17487/RFC8915, September

2020, <https://www.rfc-editor.org/info/rfc8915>.

Appendix A. Terms and Abbreviations

American Standard Code for Information Interchange

Internet Assigned Numbers Authority

JavaScript Object Notation [RFC8259]

Modified Julian Date

Network Time Protocol [RFC5905]

Network Time Security [RFC8915]

International Atomic Time (Temps Atomique International) [ITU-

R_TF.460-6]

Transmission Control Protocol [RFC0793]

User Datagram Protocol [RFC0768]

Universal Time [ITU-R_TF.460-6]

Coordinated Universal Time [ITU-R_TF.460-6]

Authors' Addresses

Aanchal Malhotra

Boston University

111 Cummington Mall

Boston, MA 02215

United States of America

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc7384
https://www.rfc-editor.org/info/rfc7384
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8573
https://www.rfc-editor.org/info/rfc8573
https://www.rfc-editor.org/info/rfc8915

Email: aanchal4@bu.edu

Adam Langley

Google

Email: agl@google.com

Watson Ladd

Sealance, Inc.

Email: watsonbladd@gmail.com

Marcus Dansarie

Email: marcus@dansarie.se

URI: https://orcid.org/0000-0001-9246-0263

mailto:aanchal4@bu.edu
mailto:agl@google.com
mailto:watsonbladd@gmail.com
mailto:marcus@dansarie.se
https://orcid.org/0000-0001-9246-0263

	Roughtime
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. Protocol Overview
	4. The Guarantee
	5. Message Format
	5.1. Data Types
	5.1.1. int32
	5.1.2. uint32
	5.1.3. uint64
	5.1.4. Tag
	5.1.5. Timestamp

	5.2. Header

	6. Protocol Details
	6.1. Requests
	6.1.1. VER
	6.1.2. NONC

	6.2. Responses
	6.2.1. SIG
	6.2.2. VER
	6.2.3. NONC
	6.2.4. PATH
	6.2.5. SREP
	6.2.6. CERT
	6.2.7. INDX

	6.3. The Merkle Tree
	6.3.1. Root Value Validity Check Algorithm

	6.4. Validity of Response

	7. Integration Into NTP
	8. Grease
	9. Roughtime Servers
	10. Acknowledgements
	11. IANA Considerations
	11.1. Service Name and Transport Protocol Port Number Registry
	11.2. Roughtime Version Registry
	11.3. Roughtime Tag Registry

	12. Security Considerations
	13. Privacy Considerations
	14. References
	14.1. Normative References
	14.2. Informative References

	Appendix A. Terms and Abbreviations
	Authors' Addresses

