
NTP Working Group D. Franke
Internet-Draft
Intended status: Standards Track D. Sibold
Expires: January 2, 2019 K. Teichel
 PTB
 July 01, 2018

Network Time Security for the Network Time Protocol
draft-ietf-ntp-using-nts-for-ntp-12

Abstract

 This memo specifies Network Time Security (NTS), a mechanism for
 using Transport Layer Security (TLS) and Authenticated Encryption
 with Associated Data (AEAD) to provide cryptographic security for the
 Network Time Protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 2, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Franke, et al. Expires January 2, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft NTS4NTP July 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Objectives . 3
1.2. Protocol overview . 4

2. Requirements Language . 5
3. TLS profile for Network Time Security 5
4. The NTS Key Establishment protocol 6
4.1. NTS-KE Record Types 8
4.1.1. End of Message 8
4.1.2. NTS Next Protocol Negotiation 9
4.1.3. Error . 9
4.1.4. Warning . 10
4.1.5. AEAD Algorithm Negotiation 10
4.1.6. New Cookie for NTPv4 11

4.2. Key Extraction (generally) 11
5. NTS Extension Fields for NTPv4 11
5.1. Key Extraction (for NTPv4) 11
5.2. Packet structure overview 12
5.3. The Unique Identifier extension field 12
5.4. The NTS Cookie extension field 13
5.5. The NTS Cookie Placeholder extension field 13

 5.6. The NTS Authenticator and Encrypted Extension Fields
 extension field . 13

6. Protocol details . 15
7. Suggested format for NTS cookies 18
8. IANA Considerations . 20
9. Implementation Status . 24
9.1. Implementation PoC 1 24
9.1.1. Coverage . 24
9.1.2. Licensing . 24
9.1.3. Contact Information 25
9.1.4. Last Update . 25

9.2. Implementation PoC 2 25
9.2.1. Coverage . 25
9.2.2. Licensing . 25
9.2.3. Contact Information 25
9.2.4. Last Update . 25

9.3. Interoperability . 25
10. Security considerations 26
10.1. Avoiding DDoS amplification 26
10.2. Initial verification of server certificates 26
10.3. Usage of NTP pools 27
10.4. Delay attacks . 27
10.5. Random number generation 28

Franke, et al. Expires January 2, 2019 [Page 2]

Internet-Draft NTS4NTP July 2018

11. Privacy Considerations 28
11.1. Unlinkability . 28
11.2. Confidentiality . 29

12. Acknowledgements . 29
13. References . 29
13.1. Normative References 29
13.2. Informative References 31

Appendix A. Terms and Abbreviations 32
 Authors' Addresses . 32

1. Introduction

 This memo specifies Network Time Security (NTS), a cryptographic
 security mechanism for network time synchronization. A complete
 specification is provided for application of NTS to the client-server
 mode of the Network Time Protocol (NTP) [RFC5905].

1.1. Objectives

 The objectives of NTS are as follows:

 o Identity: Through the use of the X.509 PKI, implementations may
 cryptographically establish the identity of the parties they are
 communicating with.

 o Authentication: Implementations may cryptographically verify that
 any time synchronization packets are authentic, i.e., that they
 were produced by an identified party and have not been modified in
 transit.

 o Confidentiality: Although basic time synchronization data is
 considered non-confidential and sent in the clear, NTS includes
 support for encrypting NTP extension fields.

 o Replay prevention: Client implementations may detect when a
 received time synchronization packet is a replay of a previous
 packet.

 o Request-response consistency: Client implementations may verify
 that a time synchronization packet received from a server was sent
 in response to a particular request from the client.

 o Unlinkability: For mobile clients, NTS will not leak any
 information additional to NTP which would permit a passive
 adversary to determine that two packets sent over different
 networks came from the same client.

https://datatracker.ietf.org/doc/html/rfc5905

Franke, et al. Expires January 2, 2019 [Page 3]

Internet-Draft NTS4NTP July 2018

 o Non-amplification: Implementations (especially server
 implementations) may avoid acting as DDoS amplifiers by never
 responding to a request with a packet larger than the request
 packet.

 o Scalability: Server implementations may serve large numbers of
 clients without having to retain any client-specific state.

1.2. Protocol overview

 The Network Time Protocol includes many different operating modes to
 support various network topologies. In addition to its best-known
 and most-widely-used client-server mode, it also includes modes for
 synchronization between symmetric peers, a control mode for server
 monitoring and administration and a broadcast mode. These various
 modes have differing and partly contradictory requirements for
 security and performance. Symmetric and control modes demand mutual
 authentication and mutual replay protection, and for certain message
 types control mode may require confidentiality as well as
 authentication. Client-server mode places more stringent
 requirements on resource utilization than other modes, because
 servers may have vast number of clients and be unable to afford to
 maintain per-client state. However, client-server mode also has more
 relaxed security needs, because only the client requires replay
 protection: it is harmless for stateless servers to process replayed
 packets. The security demands of symmetric and control modes, on the
 other hand, are in conflict with the resource-utilization demands of
 client-server mode: any scheme which provides replay protection
 inherently involves maintaining some state to keep track of what
 messages have already been seen.

 This memo specifies NTS exclusively for the client-server mode of
 NTP. To this end, NTS is structured as a suite of two protocols:

 The "NTS Extension Fields for NTPv4" are a collection of NTP
 extension fields for cryptographically securing NTPv4 using
 previously-established key material. They are suitable for
 securing client-server mode because the server can implement them
 without retaining per-client state, but on the other hand are
 suitable *only* for client-server mode because only the client,
 and not the server, is protected from replay.

 The "NTS Key Establishment" protocol (NTS-KE) is a mechanism for
 establishing key material for use with the NTS Extension Fields
 for NTPv4. It uses TLS to exchange keys and negotiate some
 additional protocol options, but then quickly closes the TLS
 channel and permits the server to discard all associated state.

Franke, et al. Expires January 2, 2019 [Page 4]

Internet-Draft NTS4NTP July 2018

 The typical protocol flow is as follows. The client connects to the
 server on the NTS TCP port and the two parties perform a TLS
 handshake. Via the TLS channel, the parties negotiate some
 additional protocol parameters and the server sends the client a
 supply of cookies. The parties use TLS key export [RFC5705] to
 extract key material which will be used in the next phase of the
 protocol. This negotiation takes only a single round trip, after
 which the server closes the connection and discards all associated
 state. At this point the NTS-KE phase of the protocol is complete.

 Time synchronization proceeds over the NTP UDP port. The client
 sends the server an NTP client packet which includes several
 extension fields. Included among these fields are a cookie
 (previously provided by the server), and an authentication tag,
 computed using key material extracted from the NTS-KE handshake. The
 server uses the cookie to recover this key material (previously
 discarded to avoid maintaining state) and sends back an authenticated
 response. The response includes a fresh, encrypted cookie which the
 client then sends back in the clear with its next request. (This
 constant refreshing of cookies is necessary in order to achieve NTS's
 unlinkability goal.)

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. TLS profile for Network Time Security

 Network Time Security makes use of TLS for NTS key establishment.

 Since securing time protocols is (as of 2017) a novel application of
 TLS, no backward-compatibility concerns exist to justify using
 obsolete, insecure, or otherwise broken TLS features or versions. We
 therefore put forward the following requirements and guidelines,
 roughly representing 2017's best practices.

 Implementations MUST NOT negotiate TLS versions earlier than 1.2.

 Implementations willing to negotiate more than one possible version
 of TLS SHOULD NOT respond to handshake failures by retrying with a
 downgraded protocol version. If they do, they MUST implement
 [RFC7507].

 TLS clients MUST NOT offer, and TLS servers MUST NOT select, RC4
 cipher suites. [RFC7465]

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7507
https://datatracker.ietf.org/doc/html/rfc7465

Franke, et al. Expires January 2, 2019 [Page 5]

Internet-Draft NTS4NTP July 2018

 TLS 1.2 clients SHOULD offer, and TLS servers SHOULD accept, the TLS
 Renegotiation Indication Extension [RFC5746]. Regardless, they MUST
 NOT initiate or permit insecure renegotiation.

 TLS 1.2 clients SHOULD offer, and TLS 1.2 servers SHOULD accept, the
 TLS Session Hash and Extended Master Secret Extension [RFC7627].

 Use of the Application-Layer Protocol Negotiation Extension [RFC7301]
 is integral to NTS and support for it is REQUIRED for
 interoperability.

4. The NTS Key Establishment protocol

 The NTS key establishment protocol is conducted via TCP port
 [[TBD1]]. The two endpoints carry out a TLS handshake in conformance
 with Section 3, with the client offering (via an ALPN [RFC7301]
 extension), and the server accepting, an application-layer protocol
 of "ntske/1". Immediately following a successful handshake, the
 client SHALL send a single request (as Application Data encapsulated
 in the TLS-protected channel), then the server SHALL send a single
 response followed by a TLS "Close notify" alert and then discard the
 channel state.

 The client's request and the server's response each SHALL consist of
 a sequence of records formatted according to Figure 1. The sequence
 SHALL be terminated by a "End of Message" record, which has a Record
 Type of zero and a zero-length body. Furthermore, requests and non-
 error responses each SHALL include exactly one NTS Next Protocol
 Negotiation record.

 Clients and servers MAY enforce length limits on requests and
 responses, however servers MUST accept requests of at least 1024
 octets, and clients SHOULD accept responses of at least 65536 octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |C| Record Type | Body Length |
 +-+
 | |
 . .
 . Record Body .
 . .
 | |
 +-+

 Figure 1

https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc7301

Franke, et al. Expires January 2, 2019 [Page 6]

Internet-Draft NTS4NTP July 2018

 The requirement that all NTS-KE messages be terminated by an End of
 Message record makes them self-delimiting.

 The fields of an NTS-KE record are defined as follows:

 C (Critical Bit): Determines the disposition of unrecognized
 Record Types. Implementations which receive a record with an
 unrecognized Record Type MUST ignore the record if the Critical
 Bit is 0, and MUST treat it as an error if the Critical Bit is 1.

 Record Type: A 15-bit integer in network byte order. The
 semantics of record types 0-5 are specified in this memo;
 additional type numbers SHALL be tracked through the IANA Network
 Time Security Key Establishment Record Types registry.

 Body Length: The length of the Record Body field, in octets, as a
 16-bit integer in network byte order. Record bodies MAY have any
 representable length and need not be aligned to a word boundary.

 Record Body: The syntax and semantics of this field SHALL be
 determined by the Record Type.

 For clarity regarding bit-endianness: the Critical Bit is the most-
 significant bit of the first octet. In C, given a network buffer
 `unsigned char b[]` containing an NTS-KE record, the critical bit is
 `b[0] >> 7` while the record type is `((b[0] & 0x7f) << 8) + b[1]`.

 Figure 2 provides a schematic overview of the key exchange. It
 displays the protocol steps to be performed by the NTS client and
 server and record types to be exchanged.

Franke, et al. Expires January 2, 2019 [Page 7]

Internet-Draft NTS4NTP July 2018

 +---------------------------------------+
 | - verify client request message |
 | - extract TLS key material |
 | - generate KE response message |
 | - included Record Types: |
 | - NTS Next Protocol Negotiation |
 | - AEAD Alg. Negotiation |
 | - New Cookie for NTPv4 |
 | - <New Cookie for NTPv4> |
 | - End of Message |
 +-----------------+---------------------+
 |
 |
 Server -----------+---------------+-----+----------------------->
 ^ \
 / \
 / TLS application \
 / data \
 / \
 / V
 Client -----+---------------------------------+---------------->
 | |
 | |
 | |
 +-----------+----------------------+ +------+-----------------+
- generate KE request message		- verify server response
- include Record Types:		message
o NTS Next Protocol Negotiation		- extract cookie(s)
o AEAD Alg. Negotiation		
o End of Message		
 +----------------------------------+ +------------------------+

 Figure 2: NTS Key Exchange messages

4.1. NTS-KE Record Types

 The following NTS-KE Record Types are defined.

4.1.1. End of Message

 The End of Message record has a Record Type number of 0 and an zero-
 length body. It MUST occur exactly once as the final record of every
 NTS-KE request and response. The Critical Bit MUST be set.

Franke, et al. Expires January 2, 2019 [Page 8]

Internet-Draft NTS4NTP July 2018

4.1.2. NTS Next Protocol Negotiation

 The NTS Next Protocol Negotiation record has a Record Type of 1. It
 MUST occur exactly once in every NTS-KE request and response. Its
 body consists of a sequence of 16-bit unsigned integers in network
 byte order. Each integer represents a Protocol ID from the IANA
 Network Time Security Next Protocols registry. The Critical Bit MUST
 be set.

 The Protocol IDs listed in the client's NTS Next Protocol Negotiation
 record denote those protocols which the client wishes to speak using
 the key material established through this NTS-KE session. The
 Protocol IDs listed in the server's response MUST comprise a subset
 of those listed in the request, and denote those protocols which the
 server is willing and able to speak using the key material
 established through this NTS-KE session. The client MAY proceed with
 one or more of them. The request MUST list at least one protocol,
 but the response MAY be empty.

4.1.3. Error

 The Error record has a Record Type number of 2. Its body is exactly
 two octets long, consisting of an unsigned 16-bit integer in network
 byte order, denoting an error code. The Critical Bit MUST be set.

 Clients MUST NOT include Error records in their request. If clients
 receive a server response which includes an Error record, they MUST
 discard any negotiated key material and MUST NOT proceed to the Next
 Protocol.

 The following error codes are defined.

 Error code 0 means "Unrecognized Critical Record". The server
 MUST respond with this error code if the request included a record
 which the server did not understand and which had its Critical Bit
 set. The client SHOULD NOT retry its request without
 modification.

 Error code 1 means "Bad Request". The server MUST respond with
 this error if, upon the expiration of an implementation-defined
 timeout, it has not yet received a complete and syntactically
 well-formed request from the client. This error is likely to be
 the result of a dropped packet, so the client SHOULD start over
 with a new TLS handshake and retry its request.

Franke, et al. Expires January 2, 2019 [Page 9]

Internet-Draft NTS4NTP July 2018

4.1.4. Warning

 The Warning record has a Record Type number of 3. Its body is
 exactly two octets long, consisting of an unsigned 16-bit integer in
 network byte order, denoting a warning code. The Critical Bit MUST
 be set.

 Clients MUST NOT include Warning records in their request. If
 clients receive a server response which includes a Warning record,
 they MAY discard any negotiated key material and abort without
 proceeding to the Next Protocol. Unrecognized warning codes MUST be
 treated as errors.

 This memo defines no warning codes.

4.1.5. AEAD Algorithm Negotiation

 The AEAD Algorithm Negotiation record has a Record Type number of 4.
 Its body consists of a sequence of unsigned 16-bit integers in
 network byte order, denoting Numeric Identifiers from the IANA AEAD
 registry [RFC5116]. The Critical Bit MAY be set.

 If the NTS Next Protocol Negotiation record offers Protocol ID 0 (for
 NTPv4), then this record MUST be included exactly once. Other
 protocols MAY require it as well.

 When included in a request, this record denotes which AEAD algorithms
 the client is willing to use to secure the Next Protocol, in
 decreasing preference order. When included in a response, this
 record denotes which algorithm the server chooses to use, or is empty
 if the server supports none of the algorithms offered. In requests,
 the list MUST include at least one algorithm. In responses, it MUST
 include at most one. Honoring the client's preference order is
 OPTIONAL: servers may select among any of the client's offered
 choices, even if they are able to support some other algorithm which
 the client prefers more.

 Server implementations of NTS extension fields for NTPv4 (Section 5)
 MUST support AEAD_AES_SIV_CMAC_256 [RFC5297] (Numeric Identifier 15).
 That is, if the client includes AEAD_AES_SIV_CMAC_256 in its AEAD
 Algorithm Negotiation record, and the server accepts Protocol ID 0
 (NTPv4) in its NTS Next Protocol Negotiation record, then the
 server's AEAD Algorithm Negotiation record MUST NOT be empty.

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5297

Franke, et al. Expires January 2, 2019 [Page 10]

Internet-Draft NTS4NTP July 2018

4.1.6. New Cookie for NTPv4

 The New Cookie for NTPv4 record has a Record Type number of 5. The
 contents of its body SHALL be implementation-defined and clients MUST
 NOT attempt to interpret them. See Section 7 for a suggested
 construction.

 Clients MUST NOT send records of this type. Servers MUST send at
 least one record of this type, and SHOULD send eight of them, if they
 accept Protocol ID 0 (NTPv4) as a Next Protocol. The Critical Bit
 SHOULD NOT be set.

4.2. Key Extraction (generally)

 Following a successful run of the NTS-KE protocol, key material SHALL
 be extracted according to RFC 5705 [RFC5705]. Inputs to the exporter
 function are to be constructed in a manner specific to the negotiated
 Next Protocol. However, all protocols which utilize NTS-KE MUST
 conform to the following two rules:

 The disambiguating label string MUST be "EXPORTER-network-time-
 security/1".

 The per-association context value MUST be provided, and MUST begin
 with the two-octet Protocol ID which was negotiated as a Next
 Protocol.

5. NTS Extension Fields for NTPv4

5.1. Key Extraction (for NTPv4)

 Following a successful run of the NTS-KE protocol wherein Protocol ID
 0 (NTPv4) is selected as a Next Protocol, two AEAD keys SHALL be
 extracted: a client-to-server (C2S) key and a server-to-client (S2C)
 key. These keys SHALL be computed according to RFC 5705 [RFC5705],
 using the following inputs.

 The disambiguating label string SHALL be "EXPORTER-network-time-
 security/1".

 The per-association context value SHALL consist of the following
 five octets:

 The first two octets SHALL be zero (the Protocol ID for NTPv4).

 The next two octets SHALL be the Numeric Identifier of the
 negotiated AEAD Algorithm, in network byte order.

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705

Franke, et al. Expires January 2, 2019 [Page 11]

Internet-Draft NTS4NTP July 2018

 The final octet SHALL be 0x00 for the C2S key and 0x01 for the
 S2C key.

 Implementations wishing to derive additional keys for private or
 experimental use MUST NOT do so by extending the above-specified
 syntax for per-association context values. Instead, they SHOULD use
 their own disambiguating label string. Note that RFC 5705 provides
 that disambiguating label strings beginning with "EXPERIMENTAL" MAY
 be used without IANA registration.

5.2. Packet structure overview

 In general, an NTS-protected NTPv4 packet consists of:

 The usual 48-octet NTP header, which is authenticated but not
 encrypted.

 Some extension fields which are authenticated but not encrypted.

 An extension field which contains AEAD output (i.e., an
 authentication tag and possible ciphertext). The corresponding
 plaintext, if non-empty, consists of some extension fields which
 benefit from both encryption and authentication.

 Possibly, some additional extension fields which are neither
 encrypted nor authenticated. These are discarded by the receiver.

 Always included among the authenticated or authenticated-and-
 encrypted extension fields are a cookie extension field and a unique-
 identifier extension field. The purpose of the cookie extension
 field is to enable the server to offload storage of session state
 onto the client. The purpose of the unique-identifier extension
 field is to protect the client from replay attacks.

5.3. The Unique Identifier extension field

 The Unique Identifier extension field has a Field Type of [[TBD2]].
 When the extension field is included in a client packet (mode 3), its
 body SHALL consist of a string of octets generated uniformly at
 random. The string MUST be at least 32 octets long. When the
 extension field is included in a server packet (mode 4), its body
 SHALL contain the same octet string as was provided in the client
 packet to which the server is responding. Its use in modes other
 than client-server is not defined.

 The Unique Identifier extension field provides the client with a
 cryptographically strong means of detecting replayed packets. It MAY
 also be used standalone, without NTS, in which case it provides the

https://datatracker.ietf.org/doc/html/rfc5705

Franke, et al. Expires January 2, 2019 [Page 12]

Internet-Draft NTS4NTP July 2018

 client with a means of detecting spoofed packets from off-path
 attackers. Historically, NTP's origin timestamp field has played
 both these roles, but for cryptographic purposes this is suboptimal
 because it is only 64 bits long and, depending on implementation
 details, most of those bits may be predictable. In contrast, the
 Unique Identifier extension field enables a degree of
 unpredictability and collision-resistance more consistent with
 cryptographic best practice.

5.4. The NTS Cookie extension field

 The NTS Cookie extension field has a Field Type of [[TBD3]]. Its
 purpose is to carry information which enables the server to recompute
 keys and other session state without having to store any per-client
 state. The contents of its body SHALL be implementation-defined and
 clients MUST NOT attempt to interpret them. See Section 7 for a
 suggested construction. The NTS Cookie extension field MUST NOT be
 included in NTP packets whose mode is other than 3 (client) or 4
 (server).

5.5. The NTS Cookie Placeholder extension field

 The NTS Cookie Placeholder extension field has a Field Type of
 [[TBD4]]. When this extension field is included in a client packet
 (mode 3), it communicates to the server that the client wishes it to
 send additional cookies in its response. This extension field MUST
 NOT be included in NTP packets whose mode is other than 3.

 Whenever an NTS Cookie Placeholder extension field is present, it
 MUST be accompanied by an NTS Cookie extension field, and the body
 length of the NTS Cookie Placeholder extension field MUST be the same
 as the body length of the NTS Cookie extension field. (This length
 requirement serves to ensure that the response will not be larger
 than the request, in order to improve timekeeping precision and
 prevent DDoS amplification). The contents of the NTS Cookie
 Placeholder extension field's body are undefined and, aside from
 checking its length, MUST be ignored by the server.

5.6. The NTS Authenticator and Encrypted Extension Fields extension
 field

 The NTS Authenticator and Encrypted Extension Fields extension field
 is the central cryptographic element of an NTS-protected NTP packet.
 Its Field Type is [[TBD5]] and the format of its body SHALL be as
 follows:

 Nonce length: Two octets in network byte order, giving the length
 of the Nonce field and interpreted as an unsigned integer.

Franke, et al. Expires January 2, 2019 [Page 13]

Internet-Draft NTS4NTP July 2018

 Nonce: A nonce as required by the negotiated AEAD Algorithm.

 Ciphertext: The output of the negotiated AEAD Algorithm. The
 structure of this field is determined by the negotiated algorithm,
 but it typically contains an authentication tag in addition to the
 actual ciphertext.

 Padding: several octets of padding, with every octet set to the
 number of padding octets included, e.g., "01", "02 02", or "03 03
 03". Constraints on the number of padding octets included are
 enumerated below.

 The Ciphertext field SHALL be formed by providing the following
 inputs to the negotiated AEAD Algorithm:

 K: For packets sent from the client to the server, the C2S key
 SHALL be used. For packets sent from the server to the client,
 the S2C key SHALL be used.

 A: The associated data SHALL consist of the portion of the NTP
 packet beginning from the start of the NTP header and ending at
 the end of the last extension field which precedes the NTS
 Authenticator and Encrypted Extension Fields extension field.

 P: The plaintext SHALL consist of all (if any) NTP extension
 fields to be encrypted. The format of any such fields SHALL be in
 accordance with RFC 7822 [RFC7822], and if multiple extension
 fields are present they SHALL be joined by concatenation.

 N: The nonce SHALL be formed however required by the negotiated
 AEAD Algorithm.

 The number of padding octets included SHALL conform to the following
 constraints:

 The number MUST be at least 1, so that the final octet of the
 extension field always gives the padding length.

 The number MUST NOT be greater than 255, since high numbers are
 unrepresentable in a single octet

 The number MUST result in an extension field length which is legal
 per [RFC7822]. That is, the number of padding octets must be
 chosen so that the total length of the extension field (including
 the Field Type and Length subfields) is a multiple of 4 greater
 than or equal to 16, and greater than or equal to 28 if the
 extension field is the last one in the packet.

https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc7822

Franke, et al. Expires January 2, 2019 [Page 14]

Internet-Draft NTS4NTP July 2018

 For mode 3 (client) packets only, the number MUST be at least
 MAX(MIN(N_MAX, 16) - N_len, 0) + 4, where `N_len` represents the
 actual length of the nonce and N_MAX is, per [RFC5116], the
 maximum permitted nonce length for the AEAD algorithm in use.
 This constraint ensures that servers can always use an adequately
 long nonce without causing the size of their response packet to
 exceed the size of the request packet. Servers SHOULD enforce
 this constraint by dropping client packets that do not conform to
 it. Clients MUST NOT enforce it since it is not binding on mode 4
 (server) packets to begin with.

 The NTS Authenticator and Encrypted Extension Fields extension field
 MUST NOT be included in NTP packets whose mode is other than 3
 (client) or 4 (server).

6. Protocol details

 A client sending an NTS-protected request SHALL include the following
 extension fields as displayed in Figure 3:

 Exactly one Unique Identifier extension field, which MUST be
 authenticated, MUST NOT be encrypted, and whose contents MUST NOT
 duplicate those of any previous request.

 Exactly one NTS Cookie extension field, which MUST be
 authenticated and MUST NOT be encrypted. The cookie MUST be one
 which the server previously provided the client; it may have been
 provided during the NTS-KE handshake or in response to a previous
 NTS-protected NTP request. To protect client's privacy, the same
 cookie SHOULD NOT be included in multiple requests. If the client
 does not have any cookies that it has not already sent, it SHOULD
 re-run the NTS-KE protocol before continuing.

 Exactly one NTS Authenticator and Encrypted Extension Fields
 extension field, generated using an AEAD Algorithm and C2S key
 established through NTS-KE.

 The client MAY include one or more NTS Cookie Placeholder extension
 field, which MUST be authenticated and MAY be encrypted. The number
 of NTS Cookie Placeholder extension fields that the client includes
 SHOULD be such that if the client includes N placeholders and the
 server sends back N+1 cookies, the number of unused cookies stored by
 the client will come to eight. When both the client and server
 adhere to all cookie-management guidance provided in this memo, the
 number of placeholder extension fields will equal the number of
 dropped packets since the last successful volley.

https://datatracker.ietf.org/doc/html/rfc5116

Franke, et al. Expires January 2, 2019 [Page 15]

Internet-Draft NTS4NTP July 2018

 The client MAY include additional (non-NTS-related) extension fields,
 which MAY appear prior to the NTS Authenticator and Encrypted
 Extension Fields extension fields (therefore authenticated but not
 encrypted), within it (therefore encrypted and authenticated), or
 after it (therefore neither encrypted nor authenticated). In
 general, however, the server MUST discard any unauthenticated
 extension fields and process the packet as though they were not
 present. Servers MAY implement exceptions to this requirement for
 particular extension fields if their specification explicitly
 provides for such.

 Upon receiving an NTS-protected request, the server SHALL (through
 some implementation-defined mechanism) use the cookie to recover the
 AEAD Algorithm, C2S key, and S2C key associated with the request, and
 then use the C2S key to authenticate the packet and decrypt the
 ciphertext. If the cookie is valid and authentication and decryption
 succeed, then the server SHALL include the following extension fields
 in its response:

 Exactly one Unique Identifier extension field, which MUST be
 authenticated, MUST NOT be encrypted, and whose contents SHALL
 echo those provided by the client.

 Exactly one NTS Authenticator and Encrypted Extension Fields
 extension field, generated using the AEAD algorithm and S2C key
 recovered from the cookie provided by the client.

 One or more NTS Cookie extension fields, which MUST be encrypted
 and authenticated. The number of NTS Cookie extension fields
 included SHOULD be equal to, and MUST NOT exceed, one plus the
 number of valid NTS Cookie Placeholder extension fields included
 in the request.

 We emphasize the contrast that NTS Cookie extension fields MUST NOT
 be encrypted when sent from client to server, but MUST be encrypted
 from sent from server to client. The former is necessary in order
 for the server to be able to recover the C2S and S2C keys, while the
 latter is necessary to satisfy the unlinkability goals discussed in

Section 11.1. We emphasize also that " encrypted" means encapsulated
 within the the NTS Authenticator and Encrypted Extensions extension
 field. While the body of a NTS Cookie extension field will generally
 consist of some sort of AEAD output (regardless of whether the
 recommendations of Section 7 are precisely followed), this is not
 sufficient to make the extension field "encrypted".

 The server MAY include additional (non-NTS-related) extension fields,
 which MAY appear prior to the NTS Authenticator and Encrypted
 Extension Fields extension field (therefore authenticated but not

Franke, et al. Expires January 2, 2019 [Page 16]

Internet-Draft NTS4NTP July 2018

 encrypted), within it (therefore encrypted and authenticated), or
 after it (therefore neither encrypted nor authenticated). In
 general, however, the client MUST discard any unauthenticated
 extension fields and process the packet as though they were not
 present. Clients MAY implement exceptions to this requirement for
 particular extension fields if their specification explicitly
 provides for such.

 If the server is unable to validate the cookie or authenticate the
 request, it SHOULD respond with a Kiss-o'-Death packet (see RFC 5905,
 Section 7.4) [RFC5905]) with kiss code "NTSN" (meaning "NTS NAK").
 Such a response MUST include exactly one Unique Identifier extension
 field whose contents SHALL echo those provided by the client. It
 MUST NOT include any NTS Cookie or NTS Authenticator and Encrypted
 Extension Fields extension fields.

 Upon receiving an NTS-protected response, the client MUST verify that
 the Unique Identifier matches that of an outstanding request, and
 that the packet is authentic under the S2C key associated with that
 request. If either of these checks fails, the packet MUST be
 discarded without further processing.

 Upon receiving an NTS NAK, the client MUST verify that the Unique
 Identifier matches that of an outstanding request. If this check
 fails, the packet MUST be discarded without further processing. If
 this check passes, the client SHOULD wait until the next poll for a
 valid NTS-protected response and if none is received, discard all
 cookies and AEAD keys associated with the server which sent the NAK
 and initiate a fresh NTS-KE handshake.

https://datatracker.ietf.org/doc/html/rfc5905#section-7.4
https://datatracker.ietf.org/doc/html/rfc5905#section-7.4
https://datatracker.ietf.org/doc/html/rfc5905

Franke, et al. Expires January 2, 2019 [Page 17]

Internet-Draft NTS4NTP July 2018

 +---------------------------------------+
 | - verify time request message |
 | - generate time response message |
 | - included NTPv4 extension fields |
 | o Unique Identifier EF |
 | o NTS Authentication and |
 | Encrypted Extension Fields EF |
 | - NTS Cookie EF |
 | - <NTS Cookie EF> |
 | - transmit time request packet |
 +-----------------+---------------------+
 |
 |
 Server -------- --+---------------+-----+----------------------->
 ^ \
 / \
 time request / \ time response
 (mode 3) / \ (mode 4)
 / \
 / V
 Client -----+---------------------------------+---------------->
 | |
 | |
 | |
 +-----------+----------------------+ +------+-----------------+
- generate time request message		- verify time response
- include NTPv4 Extension fields		message
o Unique Identifier EF		- extract cookie(s)
o NTS Cookie EF		- time synchronization
o <NTS Cookie Placeholder EF>		processing
	+------------------------+	
- generate AEAD tag of NTP message		
- add NTS Authentication and		
Encrypted Extension Fields EF		
- transmit time request packet		
 +----------------------------------+

 Figure 3: NTS Time Synchronization Message

7. Suggested format for NTS cookies

 This section is non-normative. It gives a suggested way for servers
 to construct NTS cookies. All normative requirements are stated in

Section 4.1.6 and Section 5.4.

 The role of cookies in NTS is closely analogous to that of session
 cookies in TLS. Accordingly, the thematic resemblance of this

Franke, et al. Expires January 2, 2019 [Page 18]

Internet-Draft NTS4NTP July 2018

 section to RFC 5077 [RFC5077] is deliberate, and the reader should
 likewise take heed of its security considerations.

 Servers should select an AEAD algorithm which they will use to
 encrypt and authenticate cookies. The chosen algorithm should be one
 such as AEAD_AES_SIV_CMAC_256 [RFC5297] which resists accidental
 nonce reuse, and it need not be the same as the one that was
 negotiated with the client. Servers should randomly generate and
 store a master AEAD key `K`. Servers should additionally choose a
 non-secret, unique value `I` as key-identifier for `K`.

 Servers should periodically (e.g., once daily) generate a new pair
 (I,K) and immediately switch to using these values for all newly-
 generated cookies. Immediately following each such key rotation,
 servers should securely erase any keys generated two or more rotation
 periods prior. Servers should continue to accept any cookie
 generated using keys that they have not yet erased, even if those
 keys are no longer current. Erasing old keys provides for forward
 secrecy, limiting the scope of what old information can be stolen if
 a master key is somehow compromised. Holding on to a limited number
 of old keys allows clients to seamlessly transition from one
 generation to the next without having to perform a new NTS-KE
 handshake.

 The need to keep keys synchronized across load-balanced clusters can
 make automatic key rotation challenging. However, the task can be
 accomplished without the need for central key-management
 infrastructure by using a ratchet, i.e., making each new key a
 deterministic, cryptographically pseudo-random function of its
 predecessor. A recommended concrete implementation of this approach
 is to use HKDF [RFC5869] to derive new keys, using the key's
 predecessor as Input Keying Material and its key identifier as a
 salt.

 To form a cookie, servers should first form a plaintext `P`
 consisting of the following fields:

 The AEAD algorithm negotiated during NTS-KE

 The S2C key

 The C2S key

 Servers should then generate a nonce `N` uniformly at random, and
 form AEAD output `C` by encrypting `P` under key `K` with nonce `N`
 and no associated data.

 The cookie should consist of the tuple `(I,N,C)`.

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5297
https://datatracker.ietf.org/doc/html/rfc5869

Franke, et al. Expires January 2, 2019 [Page 19]

Internet-Draft NTS4NTP July 2018

 To verify and decrypt a cookie provided by the client, first parse it
 into its components `I`, `N`, and `C`. Use `I` to look up its
 decryption key `K`. If the key whose identifier is `I` has been
 erased or never existed, decryption fails; reply with an NTS NAK.
 Otherwise, attempt to decrypt and verify ciphertext `C` using key `K`
 and nonce `N` with no associated data. If decryption or verification
 fails, reply with an NTS NAK. Otherwise, parse out the contents of
 the resulting plaintext `P` to obtain the negotiated AEAD algorithm,
 S2C key, and C2S key.

8. IANA Considerations

 IANA is requested to allocate two entries, identical except for the
 Transport Protocol, in the Service Name and Transport Protocol Port
 Number Registry as follows:

 Service Name: nts

 Transport Protocol: tcp, udp

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Network Time Security

 Reference: [[this memo]]

 Port Number: [[TBD1]], selected by IANA from the user port range

 IANA is requested to allocate the following entry in the Application-
 Layer Protocol Negotation (ALPN) Protocol IDs registry:

 Protocol: Network Time Security Key Establishment, version 1

 Identification Sequence:
 0x6E 0x74 0x73 0x6B 0x65 0x2F 0x31 ("ntske/1")

 Reference: [[this memo]]

 IANA is requested to allocate the following entry in the TLS Exporter
 Label Registry:

 +----------------------------------+---------+---------------+------+
 | Value | DTLS-OK | Reference | Note |
 +----------------------------------+---------+---------------+------+
 | EXPORTER-network-time-security/1 | Y | [[this memo]] | |
 +----------------------------------+---------+---------------+------+

Franke, et al. Expires January 2, 2019 [Page 20]

Internet-Draft NTS4NTP July 2018

 IANA is requested to allocate the following entry in the registry of
 NTP Kiss-o'-Death codes:

 +------+---------+
 | Code | Meaning |
 +------+---------+
 | NTSN | NTS NAK |
 +------+---------+

 IANA is requested to allocate the following entries in the NTP
 Extensions Field Types registry:

 +-----------+---+-------------+
 | Field | Meaning | Reference |
 | Type | | |
 +-----------+---+-------------+
[[TBD2]]	Unique Identifier	[[this
		memo]]
[[TBD3]]	NTS Cookie	[[this
		memo]]
[[TBD4]]	NTS Cookie Placeholder	[[this
		memo]]
[[TBD5]]	NTS Authenticator and Encrypted	[[this
	Extension Fields	memo]]
 +-----------+---+-------------+

 IANA is requested to create a new registry entitled "Network Time
 Security Key Establishment Record Types". Entries SHALL have the
 following fields:

 Type Number (REQUIRED): An integer in the range 0-32767 inclusive.

 Description (REQUIRED): A short text description of the purpose of
 the field.

 Set Critical Bit (REQUIRED): One of "MUST", "SHOULD", "MAY",
 "SHOULD NOT", or "MUST NOT".

 Reference (REQUIRED): A reference to a document specifying the
 semantics of the record.

 The policy for allocation of new entries in this registry SHALL vary
 by the Type Number, as follows:

 0-1023: IETF Review

 1024-16383: Specification Required

Franke, et al. Expires January 2, 2019 [Page 21]

Internet-Draft NTS4NTP July 2018

 16384-32767: Private and Experimental Use

 Applications for new entries SHALL specify the contents of the
 Description, Set Critical Bit and Reference fields and which of the
 above ranges the Type Number should be allocated from. Applicants
 MAY request a specific Type Number, and such requests MAY be granted
 at the registrar's discretion.

 The initial contents of this registry SHALL be as follows:

 +-------------+-----------------------------+----------+------------+
 | Field | Description | Critical | Reference |
 | Number | | | |
 +-------------+-----------------------------+----------+------------+
0	End of message	MUST	[[this
			memo]]
1	NTS next protocol	MUST	[[this
	negotiation		memo]]
2	Error	MUST	[[this
			memo]]
3	Warning	MUST	[[this
			memo]]
4	AEAD algorithm negotiation	MAY	[[this
			memo]]
5	New cookie for NTPv4	SHOULD	[[this
		NOT	memo]]
16384-32767	Reserved for Private &	MAY	[[this
	Experimental Use		memo]]
 +-------------+-----------------------------+----------+------------+

 IANA is requested to create a new registry entitled "Network Time
 Security Next Protocols". Entries SHALL have the following fields:

 Protocol ID (REQUIRED): An integer in the range 0-65535 inclusive,
 functioning as an identifier.

 Protocol Name (REQUIRED): A short text string naming the protocol
 being identified.

 Reference (RECOMMENDED): A reference to a relevant specification
 document. If no relevant document exists, a point-of-contact for
 questions regarding the entry SHOULD be listed here in lieu.

 Applications for new entries in this registry SHALL specify all
 desired fields, and SHALL be granted upon approval by a Designated
 Expert. Protocol IDs 32768-65535 SHALL be reserved for Private or
 Experimental Use, and SHALL NOT be registered.

Franke, et al. Expires January 2, 2019 [Page 22]

Internet-Draft NTS4NTP July 2018

 The initial contents of this registry SHALL be as follows:

 +-------------+-------------------------------+---------------------+
 | Protocol ID | Human-Readable Name | Reference |
 +-------------+-------------------------------+---------------------+
0	Network Time Protocol version	[[this memo]]
	4 (NTPv4)	
32768-65535	Reserved for Private or	Reserved by [[this
	Experimental Use	memo]]
 +-------------+-------------------------------+---------------------+

 IANA is requested to create two new registries entitled "Network Time
 Security Error Codes" and "Network Time Security Warning Codes".
 Entries in each SHALL have the following fields:

 Number (REQUIRED): An integer in the range 0-65535 inclusive.

 Description (REQUIRED): A short text description of the condition.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries in these registries SHALL
 vary by their Number, as follows:

 0-1023: IETF Review

 1024-32767: Specification Required

 32768-65535: Private and Experimental Use

 The initial contents of the Network Time Security Error Codes
 Registry SHALL be as follows:

 +--------+---------------------------------+---------------+
 | Number | Description | Reference |
 +--------+---------------------------------+---------------+
 | 0 | Unrecognized Critical Extension | [[this memo]] |
 | 1 | Bad Request | [[this memo]] |
 +--------+---------------------------------+---------------+

 The Network Time Security Warning Codes Registry SHALL initially be
 empty.

Franke, et al. Expires January 2, 2019 [Page 23]

Internet-Draft NTS4NTP July 2018

9. Implementation Status

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in RFC 7942.
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to RFC 7942, "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

9.1. Implementation PoC 1

 Organization: Ostfalia University of Applied Science

 Implementor: Martin Langer

 Maturity: Proof-of-Concept Prototype

 This implementation was used to verify consistency and to ensure
 completeness of this specification. It also demonstrate
 interoperability with NTP's client-server mode messages.

9.1.1. Coverage

 This implementation covers the complete specification.

9.1.2. Licensing

 The code is released under a Apache License 2.0 license.

 The source code is available at: https://gitlab.com/MLanger/nts/

https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942
https://gitlab.com/MLanger/nts/

Franke, et al. Expires January 2, 2019 [Page 24]

Internet-Draft NTS4NTP July 2018

9.1.3. Contact Information

 Contact Martin Langer: mart.langer@ostfalia.de

9.1.4. Last Update

 The implementation was updated 3rd May 2018.

9.2. Implementation PoC 2

 Organization: tbd

 Implementor: Daniel Fox Franke

 Maturity: Proof-of-Concept Prototype

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

9.2.1. Coverage

 This implementation provides the client and the server for the
 initial TLS handshake and NTS key exchange. It provides the the
 client part of the NTS protected NTP messages.

9.2.2. Licensing

 Public domain.

 The source code is available at: https://github.com/dfoxfranke/nts-
hackathon

9.2.3. Contact Information

 Contact Daniel Fox Franke: dfoxfranke@gmail.com

9.2.4. Last Update

 The implementation was updated 16th March 2018.

9.3. Interoperability

 The Interoperability tests distinguished between NTS key exchange and
 NTS time exchange messages. For the NTS key exchange,
 interoperability between the two implementations has been verified
 successfully. Interoperability of NTS time exchange messages has
 been verified successfully for the case that PoC 1 represents the
 server and PoC 2 the client.

https://github.com/dfoxfranke/nts-hackathon
https://github.com/dfoxfranke/nts-hackathon

Franke, et al. Expires January 2, 2019 [Page 25]

Internet-Draft NTS4NTP July 2018

 These tests successfully demonstrate that there are at least two
 running implementations of this draft which are able to interoperate.

10. Security considerations

10.1. Avoiding DDoS amplification

 Certain non-standard and/or deprecated features of the Network Time
 Protocol enable clients to send a request to a server which causes
 the server to send a response much larger than the request. Servers
 which enable these features can be abused in order to amplify traffic
 volume in distributed denial-of-service (DDoS) attacks by sending
 them a request with a spoofed source IP. In recent years, attacks of
 this nature have become an endemic nuisance.

 NTS is designed to avoid contributing any further to this problem by
 ensuring that NTS-related extension fields included in server
 responses will be the same size as the NTS-related extension fields
 sent by the client. In particular, this is why the client is
 required to send a separate and appropriately padded-out NTS Cookie
 Placeholder extension field for every cookie it wants to get back,
 rather than being permitted simply to specify a desired quantity.

 Due to the [RFC7822] requirement that extensions be padded and
 aligned to four-octet boundaries, response size may still in some
 cases exceed request size by up to three octets. This is
 sufficiently inconsequential that we have declined to address it.

10.2. Initial verification of server certificates

 NTS's security goals are undermined if the client fails to verify
 that the X.509 certificate chain presented by the server is valid and
 rooted in a trusted certificate authority. [RFC5280] and [RFC6125]
 specify how such verification is to be performed in general.
 However, the expectation that the client does not yet have a
 correctly-set system clock at the time of certificate verification
 presents difficulties with verifying that the certificate is within
 its validity period, i.e., that the current time lies between the
 times specified in the certificate's notBefore and notAfter fields,
 and it may be operationally necessary in some cases for a client to
 accept a certificate which appears to be expired or not yet valid.
 While there is no perfect solution to this problem, there are several
 mitigations the client can implement to make it more difficult for an
 adversary to successfully present an expired certificate:

 Check whether the system time is in fact unreliable. If the
 system clock has previously been synchronized since last boot,
 then on operating systems which implement a kernel-based phase-

https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125

Franke, et al. Expires January 2, 2019 [Page 26]

Internet-Draft NTS4NTP July 2018

 locked-loop API, a call to ntp_gettime() should show a maximum
 error less than NTP_PHASE_MAX. In this case, the clock SHOULD be
 considered reliable and certificates can be strictly validated.

 Allow the system administrator to specify that certificates should
 always be strictly validated. Such a configuration is
 appropriate on systems which have a battery-backed clock and which
 can reasonably prompt the user to manually set an approximately-
 correct time if it appears to be needed.

 Once the clock has been synchronized, periodically write the
 current system time to persistent storage. Do not accept any
 certificate whose notAfter field is earlier than the last recorded
 time.

 Do not process time packets from servers if the time computed from
 them falls outside the validity period of the server's
 certificate.

 Use multiple time sources. The ability to pass off an expired
 certificate is only useful to an adversary who has compromised the
 corresponding private key. If the adversary has compromised only
 a minority of servers, NTP's selection algorithm ([RFC5905]
 section 11.2.1) will protect the client from accepting bad time
 from the adversary-controlled servers.

10.3. Usage of NTP pools

 Additional standardization work and infrastructure development is
 necessary before NTS can be used with public NTP server pools.
 First, a scheme will need to be specified for determining what
 constitutes an acceptable certificate for a pool server, such as
 establishing a value required to be contained in its Extended Key
 Usage attribute, and how to determine, given the DNS name of a pool,
 what Subject Alternative Name to expect in the certificates of its
 members. Implementing any such specification will necessitate
 infrastructure work: pool organizers will need to act as certificate
 authorities, regularly monitor the behavior of servers to which
 certificates have been issued, and promptly revoke the certificate of
 any server found to be serving incorrect time.

10.4. Delay attacks

 In a packet delay attack, an adversary with the ability to act as a
 man-in-the-middle delays time synchronization packets between client
 and server asymmetrically [RFC7384]. Since NTP's formula for
 computing time offset relies on the assumption that network latency
 is roughly symmetrical, this leads to the client to compute an

https://datatracker.ietf.org/doc/html/rfc5905#section-11.2.1
https://datatracker.ietf.org/doc/html/rfc5905#section-11.2.1
https://datatracker.ietf.org/doc/html/rfc7384

Franke, et al. Expires January 2, 2019 [Page 27]

Internet-Draft NTS4NTP July 2018

 inaccurate value [Mizrahi]. The delay attack does not reorder or
 modify the content of the exchanged synchronization packets.
 Therefore, cryptographic means do not provide a feasible way to
 mitigate this attack. However, the maximum error that an adversary
 can introduce is bounded by half of the round trip delay.

 [RFC5905] specifies a parameter called MAXDIST which denotes the
 maximum round-trip latency (including not only the immediate round
 trip between client and server but the whole distance back to the
 reference clock as reported in the Root Delay field) that a client
 will tolerate before concluding that the server is unsuitable for
 synchronization. The standard value for MAXDIST is one second,
 although some implementations use larger values. Whatever value a
 client chooses, the maximum error which can be introduced by a delay
 attack is MAXDIST/2.

 Usage of multiple time sources, or multiple network paths to a given
 time source [Shpiner], may also serve to mitigate delay attacks if
 the adversary is in control of only some of the paths.

10.5. Random number generation

 At various points in NTS, the generation of cryptographically secure
 random numbers is required. Whenever this draft specifies the use of
 random numbers, then cryptographically secure random number
 generation MUST be used. See [RFC4086] for guidelines concerning
 this topic.

11. Privacy Considerations

11.1. Unlinkability

 Unlinkability prevents a device from being tracked when it changes
 network addresses (e.g. because said device moved between different
 networks). In other words, unlinkability thwarts an attacker that
 seeks to link a new network address used by a device with a network
 address that it was formerly using, because of recognizable data that
 the device persistently sends as part of an NTS-secured NTP
 association. This is the justification for continually supplying the
 client with fresh cookies, so that a cookie never represents
 recognizable data in the sense outlined above.

 NTS's unlinkability objective is merely to not leak any additional
 data that could be used to link a device's network address. NTS does
 not rectify legacy linkability issues that are already present in
 NTP. Thus, a client that requires unlinkability must also minimize
 information transmitted in a client query (mode 3) packet as
 described in the draft [I-D.ietf-ntp-data-minimization].

https://datatracker.ietf.org/doc/html/rfc4086

Franke, et al. Expires January 2, 2019 [Page 28]

Internet-Draft NTS4NTP July 2018

 The unlinkability objective only holds for time synchronization
 traffic, as opposed to key exchange traffic. This implies that it
 cannot be guaranteed for devices that function not only as time
 clients, but also as time servers (because the latter can be
 externally triggered to send authentication data).

 It should also be noted that it could be possible to link devices
 that operate as time servers from their time synchronization traffic,
 using information exposed in (mode 4) server response packets (e.g.
 reference ID, reference time, stratum, poll). Also, devices that
 respond to NTP control queries could be linked using the information
 revealed by control queries.

11.2. Confidentiality

 NTS does not protect the confidentiality of information in NTP's
 header fields. When clients implement
 [I-D.ietf-ntp-data-minimization], client packet headers do not
 contain any information which the client could conceivably wish to
 keep secret: one field is random, and all others are fixed.
 Information in server packet headers is likewise public: the origin
 timestamp is copied from the client's (random) transmit timestamp,
 and all other fields are set the same regardless of the identity of
 the client making the request.

 Future extension fields could hypothetically contain sensitive
 information, in which case NTS provides a mechanism for encrypting
 them.

12. Acknowledgements

 The authors would like to thank Richard Barnes, Steven Bellovin,
 Scott Fluhrer, Sharon Goldberg, Russ Housley, Martin Langer, Miroslav
 Lichvar, Aanchal Malhotra, Dave Mills, Danny Mayer, Karen O'Donoghue,
 Eric K. Rescorla, Stephen Roettger, Kurt Roeckx, Kyle Rose, Rich
 Salz, Brian Sniffen, Susan Sons, Douglas Stebila, Harlan Stenn,
 Martin Thomson, and Richard Welty for contributions to this document
 and comments on the design of NTS.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Franke, et al. Expires January 2, 2019 [Page 29]

Internet-Draft NTS4NTP July 2018

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5297] Harkins, D., "Synthetic Initialization Vector (SIV)
 Authenticated Encryption Using the Advanced Encryption
 Standard (AES)", RFC 5297, DOI 10.17487/RFC5297, October
 2008, <https://www.rfc-editor.org/info/rfc5297>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <https://www.rfc-editor.org/info/rfc5746>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7465] Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465,
 DOI 10.17487/RFC7465, February 2015,
 <https://www.rfc-editor.org/info/rfc7465>.

 [RFC7507] Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", RFC 7507, DOI 10.17487/RFC7507, April 2015,
 <https://www.rfc-editor.org/info/rfc7507>.

https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5297
https://www.rfc-editor.org/info/rfc5297
https://datatracker.ietf.org/doc/html/rfc5705
https://www.rfc-editor.org/info/rfc5705
https://datatracker.ietf.org/doc/html/rfc5746
https://www.rfc-editor.org/info/rfc5746
https://datatracker.ietf.org/doc/html/rfc5905
https://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7465
https://www.rfc-editor.org/info/rfc7465
https://datatracker.ietf.org/doc/html/rfc7507
https://www.rfc-editor.org/info/rfc7507

Franke, et al. Expires January 2, 2019 [Page 30]

Internet-Draft NTS4NTP July 2018

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <https://www.rfc-editor.org/info/rfc7627>.

 [RFC7822] Mizrahi, T. and D. Mayer, "Network Time Protocol Version 4
 (NTPv4) Extension Fields", RFC 7822, DOI 10.17487/RFC7822,
 March 2016, <https://www.rfc-editor.org/info/rfc7822>.

13.2. Informative References

 [I-D.ietf-ntp-data-minimization]
 Franke, D. and A. Malhotra, "NTP Client Data
 Minimization", draft-ietf-ntp-data-minimization-00 (work
 in progress), May 2017.

 [Mizrahi] Mizrahi, T., "A game theoretic analysis of delay attacks
 against time synchronization protocols", in Proceedings
 of Precision Clock Synchronization for Measurement Control
 and Communication, ISPCS 2012, pp. 1-6, September 2012.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/info/rfc5077>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

https://datatracker.ietf.org/doc/html/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://datatracker.ietf.org/doc/html/rfc7822
https://www.rfc-editor.org/info/rfc7822
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-data-minimization-00
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc5077
https://www.rfc-editor.org/info/rfc5077
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7384
https://www.rfc-editor.org/info/rfc7384

Franke, et al. Expires January 2, 2019 [Page 31]

Internet-Draft NTS4NTP July 2018

 [Shpiner] "Multi-path Time Protocols", in Proceedings of IEEE
 International Symposium on Precision Clock Synchronization
 for Measurement, Control and Communication (ISPCS),
 September 2013.

Appendix A. Terms and Abbreviations

 AEAD Authenticated Encryption with Associated Data [RFC5116]

 DDoS Distributed Denial of Service

 NTP Network Time Protocol [RFC5905]

 NTS Network Time Security

 TLS Transport Layer Security

Authors' Addresses

 Daniel Fox Franke

 Email: dfoxfranke@gmail.com
 URI: https://www.dfranke.us

 Dieter Sibold
 Physikalisch-Technische Bundesanstalt
 Bundesallee 100
 Braunschweig D-38116
 Germany

 Phone: +49-(0)531-592-8420
 Fax: +49-531-592-698420
 Email: dieter.sibold@ptb.de

 Kristof Teichel
 Physikalisch-Technische Bundesanstalt
 Bundesallee 100
 Braunschweig D-38116
 Germany

 Phone: +49-(0)531-592-4471
 Email: kristof.teichel@ptb.de

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5905
https://www.dfranke.us

Franke, et al. Expires January 2, 2019 [Page 32]

