
NTP Working Group D. Franke
Internet-Draft Akamai
Intended status: Standards Track D. Sibold
Expires: August 2, 2020 K. Teichel
 PTB
 M. Dansarie

 R. Sundblad
 Netnod
 January 30, 2020

Network Time Security for the Network Time Protocol
draft-ietf-ntp-using-nts-for-ntp-21

Abstract

 This memo specifies Network Time Security (NTS), a mechanism for
 using Transport Layer Security (TLS) and Authenticated Encryption
 with Associated Data (AEAD) to provide cryptographic security for the
 client-server mode of the Network Time Protocol (NTP).

 NTS is structured as a suite of two loosely coupled sub-protocols.
 The first (NTS-KE) handles initial authentication and key
 establishment over TLS. The second handles encryption and
 authentication during NTP time synchronization via extension fields
 in the NTP packets, and holds all required state only on the client
 via opaque cookies.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 2, 2020.

Franke, et al. Expires August 2, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft NTS4NTP January 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Objectives . 4
1.2. Protocol Overview . 5

2. Requirements Language . 7
3. TLS profile for Network Time Security 7
4. The NTS Key Establishment Protocol 8
4.1. NTS-KE Record Types 10
4.1.1. End of Message 10
4.1.2. NTS Next Protocol Negotiation 11
4.1.3. Error . 11
4.1.4. Warning . 12
4.1.5. AEAD Algorithm Negotiation 12
4.1.6. New Cookie for NTPv4 13
4.1.7. NTPv4 Server Negotiation 13
4.1.8. NTPv4 Port Negotiation 13

4.2. Key Extraction (generally) 14
5. NTS Extension Fields for NTPv4 14
5.1. Key Extraction (for NTPv4) 14
5.2. Packet Structure Overview 15
5.3. The Unique Identifier Extension Field 15
5.4. The NTS Cookie Extension Field 16
5.5. The NTS Cookie Placeholder Extension Field 16

 5.6. The NTS Authenticator and Encrypted Extension Fields
 Extension Field . 17

5.7. Protocol Details . 19
6. Suggested Format for NTS Cookies 24
7. IANA Considerations . 25

 7.1. Service Name and Transport Protocol Port Number Registry 25
 7.2. TLS Application-Layer Protocol Negotiation (ALPN)
 Protocol IDs Registry 25

7.3. TLS Exporter Labels Registry 26

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Franke, et al. Expires August 2, 2020 [Page 2]

Internet-Draft NTS4NTP January 2020

7.4. NTP Kiss-o'-Death Codes Registry 26
7.5. NTP Extension Field Types Registry 26

 7.6. Network Time Security Key Establishment Record Types
 Registry . 27

7.7. Network Time Security Next Protocols Registry 28
 7.8. Network Time Security Error and Warning Codes Registries 29
 8. Implementation Status - RFC EDITOR: REMOVE BEFORE PUBLICATION 30

8.1. Implementation 1 . 30
8.1.1. Coverage . 30
8.1.2. Licensing . 31
8.1.3. Contact Information 31
8.1.4. Last Update . 31

8.2. Implementation 2 . 31
8.2.1. Coverage . 31
8.2.2. Licensing . 31
8.2.3. Contact Information 31
8.2.4. Last Update . 31

8.3. Implementation 3 . 32
8.3.1. Coverage . 32
8.3.2. Licensing . 32
8.3.3. Contact Information 32
8.3.4. Last Update . 32

8.4. Implementation 4 . 32
8.4.1. Coverage . 32
8.4.2. Licensing . 33
8.4.3. Contact Information 33
8.4.4. Last Update . 33

8.5. Implementation 5 . 33
8.5.1. Coverage . 33
8.5.2. Licensing . 33
8.5.3. Contact Information 33
8.5.4. Last Update . 33

8.6. Implementation 6 . 33
8.6.1. Coverage . 34
8.6.2. Licensing . 34
8.6.3. Contact Information 34
8.6.4. Last Update . 34

8.7. Interoperability . 34
9. Security Considerations 34
9.1. Sensitivity to DDoS attacks 34
9.2. Avoiding DDoS Amplification 35
9.3. Initial Verification of Server Certificates 35
9.4. Delay Attacks . 37
9.5. Random Number Generation 37
9.6. NTS Stripping . 37

10. Privacy Considerations 38
10.1. Unlinkability . 38
10.2. Confidentiality . 38

Franke, et al. Expires August 2, 2020 [Page 3]

Internet-Draft NTS4NTP January 2020

11. Acknowledgements . 39
12. References . 39
12.1. Normative References 39
12.2. Informative References 41

Appendix A. Terms and Abbreviations 42
 Authors' Addresses . 43

1. Introduction

 This memo specifies Network Time Security (NTS), a cryptographic
 security mechanism for network time synchronization. A complete
 specification is provided for application of NTS to the client-server
 mode of the Network Time Protocol (NTP) [RFC5905].

1.1. Objectives

 The objectives of NTS are as follows:

 o Identity: Through the use of the X.509 public key infrastructure,
 implementations may cryptographically establish the identity of
 the parties they are communicating with.

 o Authentication: Implementations may cryptographically verify that
 any time synchronization packets are authentic, i.e., that they
 were produced by an identified party and have not been modified in
 transit.

 o Confidentiality: Although basic time synchronization data is
 considered non-confidential and sent in the clear, NTS includes
 support for encrypting NTP extension fields.

 o Replay prevention: Client implementations may detect when a
 received time synchronization packet is a replay of a previous
 packet.

 o Request-response consistency: Client implementations may verify
 that a time synchronization packet received from a server was sent
 in response to a particular request from the client.

 o Unlinkability: For mobile clients, NTS will not leak any
 information additional to NTP which would permit a passive
 adversary to determine that two packets sent over different
 networks came from the same client.

 o Non-amplification: Implementations (especially server
 implementations) may avoid acting as distributed denial-of-service
 (DDoS) amplifiers by never responding to a request with a packet
 larger than the request packet.

https://datatracker.ietf.org/doc/html/rfc5905

Franke, et al. Expires August 2, 2020 [Page 4]

Internet-Draft NTS4NTP January 2020

 o Scalability: Server implementations may serve large numbers of
 clients without having to retain any client-specific state.

1.2. Protocol Overview

 The Network Time Protocol includes many different operating modes to
 support various network topologies. In addition to its best-known
 and most-widely-used client-server mode, it also includes modes for
 synchronization between symmetric peers, a control mode for server
 monitoring and administration, and a broadcast mode. These various
 modes have differing and partly contradictory requirements for
 security and performance. Symmetric and control modes demand mutual
 authentication and mutual replay protection. Additionally, for
 certain message types control mode may require confidentiality as
 well as authentication. Client-server mode places more stringent
 requirements on resource utilization than other modes, because
 servers may have vast number of clients and be unable to afford to
 maintain per-client state. However, client-server mode also has more
 relaxed security needs, because only the client requires replay
 protection: it is harmless for stateless servers to process replayed
 packets. The security demands of symmetric and control modes, on the
 other hand, are in conflict with the resource-utilization demands of
 client-server mode: any scheme which provides replay protection
 inherently involves maintaining some state to keep track of what
 messages have already been seen.

 This memo specifies NTS exclusively for the client-server mode of
 NTP. To this end, NTS is structured as a suite of two protocols:

 The "NTS Extensions for NTPv4" define a collection of NTP
 extension fields for cryptographically securing NTPv4 using
 previously-established key material. They are suitable for
 securing client-server mode because the server can implement them
 without retaining per-client state. All state is kept by the
 client and provided to the server in the form of an encrypted
 cookie supplied with each request. On the other hand, the NTS
 Extension Fields are suitable *only* for client-server mode
 because only the client, and not the server, is protected from
 replay.

 The "NTS Key Establishment" protocol (NTS-KE) is a mechanism for
 establishing key material for use with the NTS Extension Fields
 for NTPv4. It uses TLS to exchange keys, provide the client with
 an initial supply of cookies, and negotiate some additional
 protocol options. After this exchange, the TLS channel is closed
 with no per-client state remaining on the server side.

Franke, et al. Expires August 2, 2020 [Page 5]

Internet-Draft NTS4NTP January 2020

 The typical protocol flow is as follows: The client connects to an
 NTS-KE server on the NTS TCP port and the two parties perform a TLS
 handshake. Via the TLS channel, the parties negotiate some
 additional protocol parameters and the server sends the client a
 supply of cookies along with an IP address to the NTP server for
 which the cookies are valid. The parties use TLS key export
 [RFC5705] to extract key material which will be used in the next
 phase of the protocol. This negotiation takes only a single round
 trip, after which the server closes the connection and discards all
 associated state. At this point the NTS-KE phase of the protocol is
 complete. Ideally, the client never needs to connect to the NTS-KE
 server again.

 Time synchronization proceeds with one of the indicated NTP servers
 over the NTP UDP port. The client sends the server an NTP client
 packet which includes several extension fields. Included among these
 fields are a cookie (previously provided by the key exchange server)
 and an authentication tag, computed using key material extracted from
 the NTS-KE handshake. The NTP server uses the cookie to recover this
 key material and send back an authenticated response. The response
 includes a fresh, encrypted cookie which the client then sends back
 in the clear in a subsequent request. (This constant refreshing of
 cookies is necessary in order to achieve NTS's unlinkability goal.)

 Figure 1 provides an overview of the high-level interaction between
 the client, the NTS-KE server, and the NTP server. Note that the
 cookies' data format and the exchange of secrets between NTS-KE and
 NTP servers are not part of this specification and are implementation
 dependent. However, a suggested format for NTS cookies is provided
 in Section 6.

https://datatracker.ietf.org/doc/html/rfc5705

Franke, et al. Expires August 2, 2020 [Page 6]

Internet-Draft NTS4NTP January 2020

 +--------------+
 | |
 +-> | NTP Server 1 |
 | | |
 Shared cookie | +--------------+
 +---------------+ encryption parameters | +--------------+
	(Implementation dependent)		
NTS-KE Server	<------------------------------+->	NTP Server 2	
 +---------------+ | +--------------+
 ^ | .
 | | .
 | 1. Negotiate parameters, | .
 | receive initial cookie | +--------------+
 | supply, generate AEAD keys, | | |
 | and receive NTP server IP +-> | NTP Server N |
 | addresses using "NTS Key | |
 | Establishment" protocol. +--------------+
 | ^
 | |
 | +----------+ |
 | | | |
 +-----------> | Client | <-------------------------+
 | | 2. Perform authenticated
 +----------+ time synchronization
 and generate new
 cookies using "NTS
 Extension Fields for
 NTPv4".

 Figure 1: Overview of High-Level Interactions in NTS

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. TLS profile for Network Time Security

 Network Time Security makes use of TLS for NTS key establishment.

 Since the NTS protocol is new as of this publication, no backward-
 compatibility concerns exist to justify using obsolete, insecure, or
 otherwise broken TLS features or versions. Implementations MUST
 conform with [RFC7525] or with a later revision of BCP 195. In

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/bcp195

Franke, et al. Expires August 2, 2020 [Page 7]

Internet-Draft NTS4NTP January 2020

 particular, failure to use cipher suites that provide forward secrecy
 will make all negotiated NTS keys recoverable by anyone that gains
 access to the NTS-KE server's private certificate. Furthermore:

 Implementations MUST NOT negotiate TLS versions earlier than 1.2,
 SHOULD negotiate TLS 1.3 [RFC8446] or later when possible, and MAY
 refuse to negotiate any TLS version which has been superseded by a
 later supported version.

 Use of the Application-Layer Protocol Negotiation Extension [RFC7301]
 is integral to NTS and support for it is REQUIRED for
 interoperability.

4. The NTS Key Establishment Protocol

 The NTS key establishment protocol is conducted via TCP port
 [[TBD1]]. The two endpoints carry out a TLS handshake in conformance
 with Section 3, with the client offering (via an ALPN [RFC7301]
 extension), and the server accepting, an application-layer protocol
 of "ntske/1". Immediately following a successful handshake, the
 client SHALL send a single request as Application Data encapsulated
 in the TLS-protected channel. Then, the server SHALL send a single
 response followed by a TLS "Close notify" alert and then discard the
 channel state.

 The client's request and the server's response each SHALL consist of
 a sequence of records formatted according to Figure 2. Requests and
 non-error responses each SHALL include exactly one NTS Next Protocol
 Negotiation record. The sequence SHALL be terminated by a "End of
 Message" record. The requirement that all NTS-KE messages be
 terminated by an End of Message record makes them self-delimiting.

 Clients and servers MAY enforce length limits on requests and
 responses, however, servers MUST accept requests of at least 1024
 octets and clients SHOULD accept responses of at least 65536 octets.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc7301

Franke, et al. Expires August 2, 2020 [Page 8]

Internet-Draft NTS4NTP January 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |C| Record Type | Body Length |
 +-+
 | |
 . .
 . Record Body .
 . .
 | |
 +-+

 Figure 2: NTS-KE Record Format

 The fields of an NTS-KE record are defined as follows:

 C (Critical Bit): Determines the disposition of unrecognized
 Record Types. Implementations which receive a record with an
 unrecognized Record Type MUST ignore the record if the Critical
 Bit is 0 and MUST treat it as an error if the Critical Bit is 1.

 Record Type Number: A 15-bit integer in network byte order. The
 semantics of record types 0-7 are specified in this memo.
 Additional type numbers SHALL be tracked through the IANA Network
 Time Security Key Establishment Record Types registry.

 Body Length: The length of the Record Body field, in octets, as a
 16-bit integer in network byte order. Record bodies MAY have any
 representable length and need not be aligned to a word boundary.

 Record Body: The syntax and semantics of this field SHALL be
 determined by the Record Type.

 For clarity regarding bit-endianness: the Critical Bit is the most-
 significant bit of the first octet. In C, given a network buffer
 `unsigned char b[]` containing an NTS-KE record, the critical bit is
 `b[0] >> 7` while the record type is `((b[0] & 0x7f) << 8) + b[1]`.

 Note that, although the Type-Length-Body format of an NTS-KE record
 is similar to that of an NTP extension field, the semantics of the
 length field differ. While the length subfield of an NTP extension
 field gives the length of the entire extension field including the
 type and length subfields, the length field of an NTS-KE record gives
 just the length of the body.

 Figure 3 provides a schematic overview of the key exchange. It
 displays the protocol steps to be performed by the NTS client and
 server and record types to be exchanged.

Franke, et al. Expires August 2, 2020 [Page 9]

Internet-Draft NTS4NTP January 2020

 +---------------------------------------+
 | - Verify client request message. |
 | - Extract TLS key material. |
 | - Generate KE response message. |
 | - Include Record Types: |
 | o NTS Next Protocol Negotiation |
 | o AEAD Algorithm Negotiation |
 | o NTP Server Negotiation |
 | o New Cookie for NTPv4 |
 | o <New Cookie for NTPv4> |
 | o End of Message |
 +-----------------+---------------------+
 |
 |
 Server -----------+---------------+-----+----------------------->
 ^ \
 / \
 / TLS application \
 / data \
 / \
 / V
 Client -----+---------------------------------+----------------->
 | |
 | |
 | |
 +-----------+----------------------+ +------+-----------------+
- Generate KE request message.		- Verify server response
- Include Record Types:		message.
o NTS Next Protocol Negotiation		- Extract cookie(s).
o AEAD Algorithm Negotiation		
o <NTP Server Negotiation>		
o End of Message		
 +----------------------------------+ +------------------------+

 Figure 3: NTS Key Exchange Messages

4.1. NTS-KE Record Types

 The following NTS-KE Record Types are defined:

4.1.1. End of Message

 The End of Message record has a Record Type number of 0 and a zero-
 length body. It MUST occur exactly once as the final record of every
 NTS-KE request and response. The Critical Bit MUST be set.

Franke, et al. Expires August 2, 2020 [Page 10]

Internet-Draft NTS4NTP January 2020

4.1.2. NTS Next Protocol Negotiation

 The NTS Next Protocol Negotiation record has a Record Type number of
 1. It MUST occur exactly once in every NTS-KE request and response.
 Its body consists of a sequence of 16-bit unsigned integers in
 network byte order. Each integer represents a Protocol ID from the
 IANA Network Time Security Next Protocols registry. The Critical Bit
 MUST be set.

 The Protocol IDs listed in the client's NTS Next Protocol Negotiation
 record denote those protocols which the client wishes to speak using
 the key material established through this NTS-KE session. The
 Protocol IDs listed in the server's response MUST comprise a subset
 of those listed in the request and denote those protocols which the
 server is willing and able to speak using the key material
 established through this NTS-KE session. The client MAY proceed with
 one or more of them. The request MUST list at least one protocol,
 but the response MAY be empty.

4.1.3. Error

 The Error record has a Record Type number of 2. Its body is exactly
 two octets long, consisting of an unsigned 16-bit integer in network
 byte order, denoting an error code. The Critical Bit MUST be set.

 Clients MUST NOT include Error records in their request. If clients
 receive a server response which includes an Error record, they MUST
 discard any negotiated key material and MUST NOT proceed to the Next
 Protocol.

 The following error codes are defined:

 Error code 0 means "Unrecognized Critical Record". The server
 MUST respond with this error code if the request included a record
 which the server did not understand and which had its Critical Bit
 set. The client SHOULD NOT retry its request without
 modification.

 Error code 1 means "Bad Request". The server MUST respond with
 this error if, upon the expiration of an implementation-defined
 timeout, it has not yet received a complete and syntactically
 well-formed request from the client.

 Error code 2 means "Internal Server Error". The server MUST
 respond with this error if it is unable to respond properly due to
 an internal condition.

Franke, et al. Expires August 2, 2020 [Page 11]

Internet-Draft NTS4NTP January 2020

4.1.4. Warning

 The Warning record has a Record Type number of 3. Its body is
 exactly two octets long, consisting of an unsigned 16-bit integer in
 network byte order, denoting a warning code. The Critical Bit MUST
 be set.

 Clients MUST NOT include Warning records in their request. If
 clients receive a server response which includes a Warning record,
 they MAY discard any negotiated key material and abort without
 proceeding to the Next Protocol. Unrecognized warning codes MUST be
 treated as errors.

 This memo defines no warning codes.

4.1.5. AEAD Algorithm Negotiation

 The AEAD Algorithm Negotiation record has a Record Type number of 4.
 Its body consists of a sequence of unsigned 16-bit integers in
 network byte order, denoting Numeric Identifiers from the IANA AEAD
 registry [RFC5116]. The Critical Bit MAY be set.

 If the NTS Next Protocol Negotiation record offers Protocol ID 0 (for
 NTPv4), then this record MUST be included exactly once. Other
 protocols MAY require it as well.

 When included in a request, this record denotes which AEAD algorithms
 the client is willing to use to secure the Next Protocol, in
 decreasing preference order. When included in a response, this
 record denotes which algorithm the server chooses to use. It is
 empty if the server supports none of the algorithms offered. In
 requests, the list MUST include at least one algorithm. In
 responses, it MUST include at most one. Honoring the client's
 preference order is OPTIONAL: servers may select among any of the
 client's offered choices, even if they are able to support some other
 algorithm which the client prefers more.

 Server implementations of NTS extension fields for NTPv4 (Section 5)
 MUST support AEAD_AES_SIV_CMAC_256 [RFC5297] (Numeric Identifier 15).
 That is, if the client includes AEAD_AES_SIV_CMAC_256 in its AEAD
 Algorithm Negotiation record and the server accepts Protocol ID 0
 (NTPv4) in its NTS Next Protocol Negotiation record, then the
 server's AEAD Algorithm Negotiation record MUST NOT be empty.

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5297

Franke, et al. Expires August 2, 2020 [Page 12]

Internet-Draft NTS4NTP January 2020

4.1.6. New Cookie for NTPv4

 The New Cookie for NTPv4 record has a Record Type number of 5. The
 contents of its body SHALL be implementation-defined and clients MUST
 NOT attempt to interpret them. See Section 6 for a suggested
 construction.

 Clients MUST NOT send records of this type. Servers MUST send at
 least one record of this type, and SHOULD send eight of them, if the
 Next Protocol Negotiation response record contains Protocol ID 0
 (NTPv4) and the AEAD Algorithm Negotiation response record is not
 empty. The Critical Bit SHOULD NOT be set.

4.1.7. NTPv4 Server Negotiation

 The NTPv4 Server Negotiation record has a Record Type number of 6.
 Its body consists of an ASCII-encoded [ANSI.X3-4.1986] string. The
 contents of the string SHALL be either an IPv4 address in dotted
 decimal notation, an IPv6 address, or a fully qualified domain name
 (FQDN). IPv6 addresses MUST conform to the "Text Representation of
 Addresses" as specified in [RFC4291] and MUST NOT include zone
 identifiers [RFC6874]. If internationalized labels are needed in the
 domain name, the A-LABEL syntax specified in [RFC5891] MUST be used.

 When NTPv4 is negotiated as a Next Protocol and this record is sent
 by the server, the body specifies the hostname or IP address of the
 NTPv4 server with which the client should associate and which will
 accept the supplied cookies. If no record of this type is sent, the
 client SHALL interpret this as a directive to associate with an NTPv4
 server at the same IP address as the NTS-KE server. Servers MUST NOT
 send more than one record of this type.

 When this record is sent by the client, it indicates that the client
 wishes to associate with the specified NTP server. The NTS-KE server
 MAY incorporate this request when deciding what NTPv4 Server
 Negotiation records to respond with, but honoring the client's
 preference is OPTIONAL. The client MUST NOT send more than one
 record of this type.

 Servers MAY set the Critical Bit on records of this type; clients
 SHOULD NOT.

4.1.8. NTPv4 Port Negotiation

 The NTPv4 Port Negotiation record has a Record Type number of 7. Its
 body consists of a 16-bit unsigned integer in network byte order,
 denoting a UDP port number.

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc6874
https://datatracker.ietf.org/doc/html/rfc5891

Franke, et al. Expires August 2, 2020 [Page 13]

Internet-Draft NTS4NTP January 2020

 When NTPv4 is negotiated as a Next Protocol and this record is sent
 by the server, the body specifies the port number of the NTPv4 server
 with which the client should associate and which will accept the
 supplied cookies. If no record of this type is sent, the client
 SHALL assume a default of 123 (the registered port number for NTP).

 When this record is sent by the client in conjunction with a NTPv4
 Server Negotiation record, it indicates that the client wishes to
 associate with the NTP server at the specified port. The NTS-KE
 server MAY incorporate this request when deciding what NTPv4 Server
 Negotiation and NTPv4 Port Negotiation records to respond with, but
 honoring the client's preference is OPTIONAL.

 Servers MAY set the Critical Bit on records of this type; clients
 SHOULD NOT.

4.2. Key Extraction (generally)

 Following a successful run of the NTS-KE protocol, key material SHALL
 be extracted according to RFC 5705 [RFC5705]. Inputs to the exporter
 function are to be constructed in a manner specific to the negotiated
 Next Protocol. However, all protocols which utilize NTS-KE MUST
 conform to the following two rules:

 The disambiguating label string MUST be "EXPORTER-network-time-
 security/1".

 The per-association context value MUST be provided and MUST begin
 with the two-octet Protocol ID which was negotiated as a Next
 Protocol.

5. NTS Extension Fields for NTPv4

5.1. Key Extraction (for NTPv4)

 Following a successful run of the NTS-KE protocol wherein Protocol ID
 0 (NTPv4) is selected as a Next Protocol, two AEAD keys SHALL be
 extracted: a client-to-server (C2S) key and a server-to-client (S2C)
 key. These keys SHALL be computed according to RFC 5705 [RFC5705],
 using the following inputs.

 The disambiguating label string SHALL be "EXPORTER-network-time-
 security/1".

 The per-association context value SHALL consist of the following
 five octets:

 The first two octets SHALL be zero (the Protocol ID for NTPv4).

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705

Franke, et al. Expires August 2, 2020 [Page 14]

Internet-Draft NTS4NTP January 2020

 The next two octets SHALL be the Numeric Identifier of the
 negotiated AEAD Algorithm in network byte order.

 The final octet SHALL be 0x00 for the C2S key and 0x01 for the
 S2C key.

 Implementations wishing to derive additional keys for private or
 experimental use MUST NOT do so by extending the above-specified
 syntax for per-association context values. Instead, they SHOULD use
 their own disambiguating label string. Note that RFC 5705 [RFC5705]
 provides that disambiguating label strings beginning with
 "EXPERIMENTAL" MAY be used without IANA registration.

5.2. Packet Structure Overview

 In general, an NTS-protected NTPv4 packet consists of:

 The usual 48-octet NTP header which is authenticated but not
 encrypted.

 Some extension fields which are authenticated but not encrypted.

 An extension field which contains AEAD output (i.e., an
 authentication tag and possible ciphertext). The corresponding
 plaintext, if non-empty, consists of some extension fields which
 benefit from both encryption and authentication.

 Possibly, some additional extension fields which are neither
 encrypted nor authenticated. In general, these are discarded by
 the receiver.

 Always included among the authenticated or authenticated-and-
 encrypted extension fields are a cookie extension field and a unique
 identifier extension field. The purpose of the cookie extension
 field is to enable the server to offload storage of session state
 onto the client. The purpose of the unique identifier extension
 field is to protect the client from replay attacks.

5.3. The Unique Identifier Extension Field

 The Unique Identifier extension field provides the client with a
 cryptographically strong means of detecting replayed packets. It has
 a Field Type of [[TBD2]]. When the extension field is included in a
 client packet (mode 3), its body SHALL consist of a string of octets
 generated uniformly at random. The string MUST be at least 32 octets
 long. When the extension field is included in a server packet (mode
 4), its body SHALL contain the same octet string as was provided in
 the client packet to which the server is responding. All server

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705

Franke, et al. Expires August 2, 2020 [Page 15]

Internet-Draft NTS4NTP January 2020

 packets generated by NTS-implementing servers in response to client
 packets containing this extension field MUST also contain this field
 with the same content as in the client's request. The field's use in
 modes other than client-server is not defined.

 This extension field MAY also be used standalone, without NTS, in
 which case it provides the client with a means of detecting spoofed
 packets from off-path attackers. Historically, NTP's origin
 timestamp field has played both these roles, but for cryptographic
 purposes this is suboptimal because it is only 64 bits long and,
 depending on implementation details, most of those bits may be
 predictable. In contrast, the Unique Identifier extension field
 enables a degree of unpredictability and collision resistance more
 consistent with cryptographic best practice.

5.4. The NTS Cookie Extension Field

 The NTS Cookie extension field has a Field Type of [[TBD3]]. Its
 purpose is to carry information which enables the server to recompute
 keys and other session state without having to store any per-client
 state. The contents of its body SHALL be implementation-defined and
 clients MUST NOT attempt to interpret them. See Section 6 for a
 suggested construction. The NTS Cookie extension field MUST NOT be
 included in NTP packets whose mode is other than 3 (client) or 4
 (server).

5.5. The NTS Cookie Placeholder Extension Field

 The NTS Cookie Placeholder extension field has a Field Type of
 [[TBD4]]. When this extension field is included in a client packet
 (mode 3), it communicates to the server that the client wishes it to
 send additional cookies in its response. This extension field MUST
 NOT be included in NTP packets whose mode is other than 3.

 Whenever an NTS Cookie Placeholder extension field is present, it
 MUST be accompanied by an NTS Cookie extension field. The body
 length of the NTS Cookie Placeholder extension field MUST be the same
 as the body length of the NTS Cookie extension field. This length
 requirement serves to ensure that the response will not be larger
 than the request, in order to improve timekeeping precision and
 prevent DDoS amplification. The contents of the NTS Cookie
 Placeholder extension field's body are undefined and, aside from
 checking its length, MUST be ignored by the server.

Franke, et al. Expires August 2, 2020 [Page 16]

Internet-Draft NTS4NTP January 2020

5.6. The NTS Authenticator and Encrypted Extension Fields Extension
 Field

 The NTS Authenticator and Encrypted Extension Fields extension field
 is the central cryptographic element of an NTS-protected NTP packet.
 Its Field Type is [[TBD5]]. It SHALL be formatted according to
 Figure 4 and include the following fields:

 Nonce Length: Two octets in network byte order, giving the length
 of the Nonce field, excluding any padding, interpreted as an
 unsigned integer.

 Ciphertext Length: Two octets in network byte order, giving the
 length of the Ciphertext field, excluding any padding, interpreted
 as an unsigned integer.

 Nonce: A nonce as required by the negotiated AEAD Algorithm. The
 field is zero-padded to a word (four octets) boundary.

 Ciphertext: The output of the negotiated AEAD Algorithm. The
 structure of this field is determined by the negotiated algorithm,
 but it typically contains an authentication tag in addition to the
 actual ciphertext. The field is zero-padded to a word (four
 octets) boundary.

 Additional Padding: Clients which use a nonce length shorter than
 the maximum allowed by the negotiated AEAD algorithm may be
 required to include additional zero-padding. The necessary length
 of this field is specified below.

Franke, et al. Expires August 2, 2020 [Page 17]

Internet-Draft NTS4NTP January 2020

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Nonce Length | Ciphertext Length |
 +-+
 | |
 . .
 . Nonce, including up to 3 octets padding .
 . .
 | |
 +-+
 | |
 . .
 . Ciphertext, including up to 3 octets padding .
 . .
 | |
 +-+
 | |
 . .
 . Additional Padding .
 . .
 | |
 +-+

 Figure 4: NTS Authenticator and Encrypted Extension Fields Extension
 Field Format

 The Ciphertext field SHALL be formed by providing the following
 inputs to the negotiated AEAD Algorithm:

 K: For packets sent from the client to the server, the C2S key
 SHALL be used. For packets sent from the server to the client,
 the S2C key SHALL be used.

 A: The associated data SHALL consist of the portion of the NTP
 packet beginning from the start of the NTP header and ending at
 the end of the last extension field which precedes the NTS
 Authenticator and Encrypted Extension Fields extension field.

 P: The plaintext SHALL consist of all (if any) NTP extension
 fields to be encrypted; if multiple extension fields are present
 they SHALL be joined by concatenation. Each such field SHALL be
 formatted in accordance with RFC 7822 [RFC7822], except that,
 contrary to the RFC 7822 requirement that fields have a minimum
 length of 16 or 28 octets, encrypted extension fields MAY be
 arbitrarily short (but still MUST be a multiple of 4 octets in
 length).

https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc7822

Franke, et al. Expires August 2, 2020 [Page 18]

Internet-Draft NTS4NTP January 2020

 N: The nonce SHALL be formed however required by the negotiated
 AEAD algorithm.

 The purpose of the Additional Padding field is to ensure that servers
 can always choose a nonce whose length is adequate to ensure its
 uniqueness, even if the client chooses a shorter one, and still
 ensure that the overall length of the server's response packet does
 not exceed the length of the request. For mode 4 (server) packets,
 no Additional Padding field is ever required. For mode 3 (client)
 packets, the length of the Additional Padding field SHALL be computed
 as follows. Let `N_LEN` be the padded length of the Nonce field.
 Let `N_MAX` be, as specified by RFC 5116 [RFC5116], the maximum
 permitted nonce length for the negotiated AEAD algorithm. Let
 `N_REQ` be the lesser of 16 and N_MAX, rounded up to the nearest
 multiple of 4. If N_LEN is greater than or equal to N_REQ, then no
 Additional Padding field is required. Otherwise, the Additional
 Padding field SHALL be at least N_REQ - N_LEN octets in length.
 Servers MUST enforce this requirement by discarding any packet which
 does not conform to it.

 Senders are always free to include more Additional Padding than
 mandated by the above paragraph. Theoretically, it could be
 necessary to do so in order to bring the extension field to the
 minimum length required by [RFC7822]. This should never happen in
 practice because any reasonable AEAD algorithm will have a nonce and
 an authenticator long enough to bring the extension field to its
 required length already. Nonetheless, implementers are advised to
 explicitly handle this case and ensure that the extension field they
 emit is of legal length.

 The NTS Authenticator and Encrypted Extension Fields extension field
 MUST NOT be included in NTP packets whose mode is other than 3
 (client) or 4 (server).

5.7. Protocol Details

 A client sending an NTS-protected request SHALL include the following
 extension fields as displayed in Figure 5:

 Exactly one Unique Identifier extension field which MUST be
 authenticated, MUST NOT be encrypted, and whose contents MUST NOT
 duplicate those of any previous request.

 Exactly one NTS Cookie extension field which MUST be authenticated
 and MUST NOT be encrypted. The cookie MUST be one which has been
 previously provided to the client; either from the key exchange
 server during the NTS-KE handshake or from the NTP server in
 response to a previous NTS-protected NTP request.

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc7822

Franke, et al. Expires August 2, 2020 [Page 19]

Internet-Draft NTS4NTP January 2020

 Exactly one NTS Authenticator and Encrypted Extension Fields
 extension field, generated using an AEAD Algorithm and C2S key
 established through NTS-KE.

 To protect the client's privacy, the client SHOULD avoid reusing a
 cookie. If the client does not have any cookies that it has not
 already sent, it SHOULD initiate a re-run the NTS-KE protocol. The
 client MAY reuse cookies in order to prioritize resilience over
 unlinkability. Which of the two that should be prioritized in any
 particular case is dependent on the application and the user's
 preference. Section 10.1 describes the privacy considerations of
 this in further detail.

 The client MAY include one or more NTS Cookie Placeholder extension
 fields which MUST be authenticated and MAY be encrypted. The number
 of NTS Cookie Placeholder extension fields that the client includes
 SHOULD be such that if the client includes N placeholders and the
 server sends back N+1 cookies, the number of unused cookies stored by
 the client will come to eight. The client SHOULD NOT include more
 than seven NTS Cookie Placeholder extension fields in a request.
 When both the client and server adhere to all cookie-management
 guidance provided in this memo, the number of placeholder extension
 fields will equal the number of dropped packets since the last
 successful volley.

 In rare circumstances, it may be necessary to include fewer NTS
 Cookie Placeholder extensions than recommended above in order to
 prevent datagram fragmentation. When cookies adhere the format
 recommended in Section 6 and the AEAD in use is the mandatory-to-
 implement AEAD_AES_SIV_CMAC_256, senders can include a cookie and
 seven placeholders and still have packet size fall comfortably below
 1280 octets if no non-NTS-related extensions are used; 1280 octets is
 the minimum prescribed MTU for IPv6 and is in practice also safe for
 avoiding IPv4 fragmentation. Nonetheless, senders SHOULD include
 fewer cookies and placeholders than otherwise indicated if doing so
 is necessary to prevent fragmentation.

Franke, et al. Expires August 2, 2020 [Page 20]

Internet-Draft NTS4NTP January 2020

 +---------------------------------------+
 | - Verify time request message |
 | - Generate time response message |
 | - Included NTPv4 extension fields |
 | o Unique Identifier EF |
 | o NTS Authentication and |
 | Encrypted Extension Fields EF |
 | - NTS Cookie EF |
 | - <NTS Cookie EF> |
 | - Transmit time request packet |
 +-----------------+---------------------+
 |
 |
 Server -----------+---------------+-----+----------------------->
 ^ \
 / \
 Time request / \ Time response
 (mode 3) / \ (mode 4)
 / \
 / V
 Client -----+---------------------------------+----------------->
 | |
 | |
 | |
 +-----------+----------------------+ +------+-----------------+
- Generate time request message		- Verify time response
- Include NTPv4 Extension fields		message
o Unique Identifier EF		- Extract cookie(s)
o NTS Cookie EF		- Time synchronization
o <NTS Cookie Placeholder EF>		processing
	+------------------------+	
- Generate AEAD tag of NTP message		
- Add NTS Authentication and		
Encrypted Extension Fields EF		
- Transmit time request packet		
 +----------------------------------+

 Figure 5: NTS Time Synchronization Messages

 The client MAY include additional (non-NTS-related) extension fields
 which MAY appear prior to the NTS Authenticator and Encrypted
 Extension Fields extension fields (therefore authenticated but not
 encrypted), within it (therefore encrypted and authenticated), or
 after it (therefore neither encrypted nor authenticated). In
 general, however, the server MUST discard any unauthenticated
 extension fields and process the packet as though they were not
 present. Servers MAY implement exceptions to this requirement for

Franke, et al. Expires August 2, 2020 [Page 21]

Internet-Draft NTS4NTP January 2020

 particular extension fields if their specification explicitly
 provides for such.

 Upon receiving an NTS-protected request, the server SHALL (through
 some implementation-defined mechanism) use the cookie to recover the
 AEAD Algorithm, C2S key, and S2C key associated with the request, and
 then use the C2S key to authenticate the packet and decrypt the
 ciphertext. If the cookie is valid and authentication and decryption
 succeed, the server SHALL include the following extension fields in
 its response:

 Exactly one Unique Identifier extension field which MUST be
 authenticated, MUST NOT be encrypted, and whose contents SHALL
 echo those provided by the client.

 Exactly one NTS Authenticator and Encrypted Extension Fields
 extension field, generated using the AEAD algorithm and S2C key
 recovered from the cookie provided by the client.

 One or more NTS Cookie extension fields which MUST be
 authenticated and encrypted. The number of NTS Cookie extension
 fields included SHOULD be equal to, and MUST NOT exceed, one plus
 the number of valid NTS Cookie Placeholder extension fields
 included in the request. The cookies returned in those fields
 MUST be valid for use with the NTP server that sent them. They
 MAY be valid for other NTP servers as well, but there is no way
 for the server to indicate this.

 We emphasize the contrast that NTS Cookie extension fields MUST NOT
 be encrypted when sent from client to server, but MUST be encrypted
 when sent from server to client. The former is necessary in order
 for the server to be able to recover the C2S and S2C keys, while the
 latter is necessary to satisfy the unlinkability goals discussed in

Section 10.1. We emphasize also that "encrypted" means encapsulated
 within the NTS Authenticator and Encrypted Extensions extension
 field. While the body of an NTS Cookie extension field will
 generally consist of some sort of AEAD output (regardless of whether
 the recommendations of Section 6 are precisely followed), this is not
 sufficient to make the extension field "encrypted".

 The server MAY include additional (non-NTS-related) extension fields
 which MAY appear prior to the NTS Authenticator and Encrypted
 Extension Fields extension field (therefore authenticated but not
 encrypted), within it (therefore encrypted and authenticated), or
 after it (therefore neither encrypted nor authenticated). In
 general, however, the client MUST discard any unauthenticated
 extension fields and process the packet as though they were not
 present. Clients MAY implement exceptions to this requirement for

Franke, et al. Expires August 2, 2020 [Page 22]

Internet-Draft NTS4NTP January 2020

 particular extension fields if their specification explicitly
 provides for such.

 Upon receiving an NTS-protected response, the client MUST verify that
 the Unique Identifier matches that of an outstanding request, and
 that the packet is authentic under the S2C key associated with that
 request. If either of these checks fails, the packet MUST be
 discarded without further processing.

 If the server is unable to validate the cookie or authenticate the
 request, it SHOULD respond with a Kiss-o'-Death (KoD) packet (see RFC

5905, Section 7.4 [RFC5905]) with kiss code "NTSN", meaning "NTS
 negative-acknowledgment (NAK)". It MUST NOT include any NTS Cookie
 or NTS Authenticator and Encrypted Extension Fields extension fields.

 If the NTP server has previously responded with authentic NTS-
 protected NTP packets (i.e., packets containing the NTS Authenticator
 and Encrypted Extension Fields extension field), the client MUST
 verify that any KoD packets received from the server contain the
 Unique Identifier extension field and that the Unique Identifier
 matches that of an outstanding request. If this check fails, the
 packet MUST be discarded without further processing. If this check
 passes, the client MUST comply with RFC 5905, Section 7.4 [RFC5905]
 where required. A client MAY automatically re-run the NTS-KE
 protocol upon forced disassociation from an NTP server. In that
 case, it MUST be able to detect and stop looping between the NTS-KE
 and NTP servers by rate limiting the retries using e.g. exponential
 retry intervals.

 Upon reception of the NTS NAK kiss code, the client SHOULD wait until
 the next poll for a valid NTS-protected response and if none is
 received, initiate a fresh NTS-KE handshake to try to renegotiate new
 cookies, AEAD keys, and parameters. If the NTS-KE handshake
 succeeds, the client MUST discard all old cookies and parameters and
 use the new ones instead. As long as the NTS-KE handshake has not
 succeeded, the client SHOULD continue polling the NTP server using
 the cookies and parameters it has.

 To allow for NTP session restart when the NTS-KE server is
 unavailable and to reduce NTS-KE server load, the client SHOULD keep
 at least one unused but recent cookie, AEAD keys, negotiated AEAD
 algorithm, and other necessary parameters on persistent storage.
 This way, the client is able to resume the NTP session without
 performing renewed NTS-KE negotiation.

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905#section-7.4
https://datatracker.ietf.org/doc/html/rfc5905#section-7.4
https://datatracker.ietf.org/doc/html/rfc5905

Franke, et al. Expires August 2, 2020 [Page 23]

Internet-Draft NTS4NTP January 2020

6. Suggested Format for NTS Cookies

 This section is non-normative. It gives a suggested way for servers
 to construct NTS cookies. All normative requirements are stated in

Section 4.1.6 and Section 5.4.

 The role of cookies in NTS is closely analogous to that of session
 cookies in TLS. Accordingly, the thematic resemblance of this
 section to RFC 5077 [RFC5077] is deliberate and the reader should
 likewise take heed of its security considerations.

 Servers should select an AEAD algorithm which they will use to
 encrypt and authenticate cookies. The chosen algorithm should be one
 such as AEAD_AES_SIV_CMAC_256 [RFC5297] which resists accidental
 nonce reuse. It need not be the same as the one that was negotiated
 with the client. Servers should randomly generate and store a master
 AEAD key `K`. Servers should additionally choose a non-secret, unique
 value `I` as key-identifier for `K`.

 Servers should periodically (e.g., once daily) generate a new pair
 (I,K) and immediately switch to using these values for all newly-
 generated cookies. Immediately following each such key rotation,
 servers should securely erase any keys generated two or more rotation
 periods prior. Servers should continue to accept any cookie
 generated using keys that they have not yet erased, even if those
 keys are no longer current. Erasing old keys provides for forward
 secrecy, limiting the scope of what old information can be stolen if
 a master key is somehow compromised. Holding on to a limited number
 of old keys allows clients to seamlessly transition from one
 generation to the next without having to perform a new NTS-KE
 handshake.

 The need to keep keys synchronized between NTS-KE and NTP servers as
 well as across load-balanced clusters can make automatic key rotation
 challenging. However, the task can be accomplished without the need
 for central key-management infrastructure by using a ratchet, i.e.,
 making each new key a deterministic, cryptographically pseudo-random
 function of its predecessor. A recommended concrete implementation
 of this approach is to use HKDF [RFC5869] to derive new keys, using
 the key's predecessor as Input Keying Material and its key identifier
 as a salt.

 To form a cookie, servers should first form a plaintext `P`
 consisting of the following fields:

 The AEAD algorithm negotiated during NTS-KE.

 The S2C key.

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5297
https://datatracker.ietf.org/doc/html/rfc5869

Franke, et al. Expires August 2, 2020 [Page 24]

Internet-Draft NTS4NTP January 2020

 The C2S key.

 Servers should then generate a nonce `N` uniformly at random, and
 form AEAD output `C` by encrypting `P` under key `K` with nonce `N`
 and no associated data.

 The cookie should consist of the tuple `(I,N,C)`.

 To verify and decrypt a cookie provided by the client, first parse it
 into its components `I`, `N`, and `C`. Use `I` to look up its
 decryption key `K`. If the key whose identifier is `I` has been
 erased or never existed, decryption fails; reply with an NTS NAK.
 Otherwise, attempt to decrypt and verify ciphertext `C` using key `K`
 and nonce `N` with no associated data. If decryption or verification
 fails, reply with an NTS NAK. Otherwise, parse out the contents of
 the resulting plaintext `P` to obtain the negotiated AEAD algorithm,
 S2C key, and C2S key.

7. IANA Considerations

7.1. Service Name and Transport Protocol Port Number Registry

 IANA is requested to allocate the following entry in the Service Name
 and Transport Protocol Port Number Registry [RFC6335]:

 Service Name: ntske

 Transport Protocol: tcp

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Network Time Security Key Exchange

 Reference: [[this memo]]

 Port Number: [[TBD1]], selected by IANA from the User Port range

 [[RFC EDITOR: Replace all instances of [[TBD1]] in this document with
 the IANA port assignment.]]

7.2. TLS Application-Layer Protocol Negotiation (ALPN) Protocol IDs
 Registry

 IANA is requested to allocate the following entry in the TLS
 Application-Layer Protocol Negotiation (ALPN) Protocol IDs registry
 [RFC7301]:

https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc7301

Franke, et al. Expires August 2, 2020 [Page 25]

Internet-Draft NTS4NTP January 2020

 Protocol: Network Time Security Key Establishment, version 1

 Identification Sequence:
 0x6E 0x74 0x73 0x6B 0x65 0x2F 0x31 ("ntske/1")

 Reference: [[this memo]], Section 4

7.3. TLS Exporter Labels Registry

 IANA is requested to allocate the following entry in the TLS Exporter
 Labels Registry [RFC5705]:

 +--------------------+---------+-------------+---------------+------+
 | Value | DTLS-OK | Recommended | Reference | Note |
 +--------------------+---------+-------------+---------------+------+
EXPORTER-network-	Y	Y	[[this	
time-security/1			memo]],	
			Section 4.2	
 +--------------------+---------+-------------+---------------+------+

7.4. NTP Kiss-o'-Death Codes Registry

 IANA is requested to allocate the following entry in the registry of
 NTP Kiss-o'-Death Codes [RFC5905]:

 +------+---------------------------------------+--------------------+
 | Code | Meaning | Reference |
 +------+---------------------------------------+--------------------+
 | NTSN | Network Time Security (NTS) negative- | [[this memo]], |
 | | acknowledgment (NAK) | Section 5.7 |
 +------+---------------------------------------+--------------------+

7.5. NTP Extension Field Types Registry

 IANA is requested to allocate the following entries in the NTP
 Extension Field Types registry [RFC5905]:

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905

Franke, et al. Expires August 2, 2020 [Page 26]

Internet-Draft NTS4NTP January 2020

 +----------+-----------------------------+--------------------------+
 | Field | Meaning | Reference |
 | Type | | |
 +----------+-----------------------------+--------------------------+
[[TBD2]]	Unique Identifier	[[this memo]],
		Section 5.3
[[TBD3]]	NTS Cookie	[[this memo]], Section
		5.4
[[TBD4]]	NTS Cookie Placeholder	[[this memo]],
		Section 5.5
[[TBD5]]	NTS Authenticator and	[[this memo]], Section
	Encrypted Extension Fields	5.6
 +----------+-----------------------------+--------------------------+

 [[RFC EDITOR: Replace all instances of [[TBD2]], [[TBD3]], [[TBD4]],
 and [[TBD5]] in this document with the respective IANA assignments.

7.6. Network Time Security Key Establishment Record Types Registry

 IANA is requested to create a new registry entitled "Network Time
 Security Key Establishment Record Types". Entries SHALL have the
 following fields:

 Record Type Number (REQUIRED): An integer in the range 0-32767
 inclusive.

 Description (REQUIRED): A short text description of the purpose of
 the field.

 Reference (REQUIRED): A reference to a document specifying the
 semantics of the record.

 The policy for allocation of new entries in this registry SHALL vary
 by the Record Type Number, as follows:

 0-1023: IETF Review

 1024-16383: Specification Required

 16384-32767: Private and Experimental Use

 Applications for new entries SHALL specify the contents of the
 Description, Set Critical Bit, and Reference fields as well as which
 of the above ranges the Record Type Number should be allocated from.
 Applicants MAY request a specific Record Type Number and such
 requests MAY be granted at the registrar's discretion.

 The initial contents of this registry SHALL be as follows:

Franke, et al. Expires August 2, 2020 [Page 27]

Internet-Draft NTS4NTP January 2020

 +-------------+-------------------------+---------------------------+
 | Record Type | Description | Reference |
 | Number | | |
 +-------------+-------------------------+---------------------------+
0	End of Message	[[this memo]], Section
		4.1.1
1	NTS Next Protocol	[[this memo]],
	Negotiation	Section 4.1.2
2	Error	[[this memo]], Section
		4.1.3
3	Warning	[[this memo]], Section
		4.1.4
4	AEAD Algorithm	[[this memo]], Section
	Negotiation	4.1.5
5	New Cookie for NTPv4	[[this memo]], Section
		4.1.6
6	NTPv4 Server	[[this memo]], Section
	Negotiation	4.1.7
7	NTPv4 Port Negotiation	[[this memo]], Section
		4.1.8
16384-32767	Reserved for Private &	[[this memo]]
	Experimental Use	
 +-------------+-------------------------+---------------------------+

7.7. Network Time Security Next Protocols Registry

 IANA is requested to create a new registry entitled "Network Time
 Security Next Protocols". Entries SHALL have the following fields:

 Protocol ID (REQUIRED): An integer in the range 0-65535 inclusive,
 functioning as an identifier.

 Protocol Name (REQUIRED): A short text string naming the protocol
 being identified.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries in these registries SHALL
 vary by their Protocol ID, as follows:

 0-1023: IETF Review

 1024-32767: Specification Required

 32768-65535: Private and Experimental Use

 The initial contents of this registry SHALL be as follows:

Franke, et al. Expires August 2, 2020 [Page 28]

Internet-Draft NTS4NTP January 2020

 +-------------+-------------------------------+---------------------+
 | Protocol ID | Protocol Name | Reference |
 +-------------+-------------------------------+---------------------+
0	Network Time Protocol version	[[this memo]]
	4 (NTPv4)	
32768-65535	Reserved for Private or	Reserved by [[this
	Experimental Use	memo]]
 +-------------+-------------------------------+---------------------+

7.8. Network Time Security Error and Warning Codes Registries

 IANA is requested to create two new registries entitled "Network Time
 Security Error Codes" and "Network Time Security Warning Codes".
 Entries in each SHALL have the following fields:

 Number (REQUIRED): An integer in the range 0-65535 inclusive

 Description (REQUIRED): A short text description of the condition.

 Reference (REQUIRED): A reference to a relevant specification
 document.

 The policy for allocation of new entries in these registries SHALL
 vary by their Number, as follows:

 0-1023: IETF Review

 1024-32767: Specification Required

 32768-65535: Private and Experimental Use

 The initial contents of the Network Time Security Error Codes
 Registry SHALL be as follows:

 +-------------+------------------------------+----------------------+
 | Number | Description | Reference |
 +-------------+------------------------------+----------------------+
0	Unrecognized Critical	[[this memo]],
	Extension	Section 4.1.3
1	Bad Request	[[this memo]],
		Section 4.1.3
2	Internal Server Error	[[this memo]],
		Section 4.1.3
32768-65535	Reserved for Private or	Reserved by [[this
	Experimental Use	memo]]
 +-------------+------------------------------+----------------------+

Franke, et al. Expires August 2, 2020 [Page 29]

Internet-Draft NTS4NTP January 2020

 The Network Time Security Warning Codes Registry SHALL initially be
 empty except for the reserved range, i.e.:

 +-------------+-------------------------------+---------------------+
 | Number | Description | Reference |
 +-------------+-------------------------------+---------------------+
 | 32768-65535 | Reserved for Private or | Reserved by [[this |
 | | Experimental Use | memo]] |
 +-------------+-------------------------------+---------------------+

8. Implementation Status - RFC EDITOR: REMOVE BEFORE PUBLICATION

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in RFC 7942.
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to RFC 7942, "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

8.1. Implementation 1

 Organization: Ostfalia University of Applied Science

 Implementor: Martin Langer

 Maturity: Proof-of-Concept Prototype

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

8.1.1. Coverage

 This implementation covers the complete specification.

https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942

Franke, et al. Expires August 2, 2020 [Page 30]

Internet-Draft NTS4NTP January 2020

8.1.2. Licensing

 The code is released under a Apache License 2.0 license.

 The source code is available at: https://gitlab.com/MLanger/nts/

8.1.3. Contact Information

 Contact Martin Langer: mart.langer@ostfalia.de

8.1.4. Last Update

 The implementation was updated 25. February 2019.

8.2. Implementation 2

 Organization: Netnod

 Implementor: Christer Weinigel

 Maturity: Proof-of-Concept Prototype

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

8.2.1. Coverage

 This implementation covers the complete specification.

8.2.2. Licensing

 The source code is available at: https://github.com/Netnod/nts-poc-
python.

 See LICENSE file for details on licensing (BSD 2).

8.2.3. Contact Information

 Contact Christer Weinigel: christer@weinigel.se

8.2.4. Last Update

 The implementation was updated 31. January 2019.

https://gitlab.com/MLanger/nts/
https://github.com/Netnod/nts-poc-python
https://github.com/Netnod/nts-poc-python

Franke, et al. Expires August 2, 2020 [Page 31]

Internet-Draft NTS4NTP January 2020

8.3. Implementation 3

 Organization: Red Hat

 Implementor: Miroslav Lichvar

 Maturity: Prototype

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

8.3.1. Coverage

 This implementation covers the complete specification.

8.3.2. Licensing

 Licensing is GPLv2.

 The source code is available at: https://github.com/mlichvar/chrony-
nts

8.3.3. Contact Information

 Contact Miroslav Lichvar: mlichvar@redhat.com

8.3.4. Last Update

 The implementation was updated 28. March 2019.

8.4. Implementation 4

 Organization: NTPsec

 Implementor: Hal Murray and NTPsec team

 Maturity:Looking for testers. Servers running at
 ntp1.glypnod.com:123 and ntp2.glypnod.com:123

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

8.4.1. Coverage

 This implementation covers the complete specification.

https://github.com/mlichvar/chrony-nts
https://github.com/mlichvar/chrony-nts

Franke, et al. Expires August 2, 2020 [Page 32]

Internet-Draft NTS4NTP January 2020

8.4.2. Licensing

 The source code is available at: https://gitlab.com/NTPsec/ntpsec.
 Licensing details in LICENSE.

8.4.3. Contact Information

 Contact Hal Murray: hmurray@megapathdsl.net, devel@ntpsec.org

8.4.4. Last Update

 The implementation was updated 2019-Apr-10.

8.5. Implementation 5

 Organization: Cloudflare

 Implementor: Watson Ladd

 Maturity:

 This implementation was used to verify consistency and to ensure
 completeness of this specification.

8.5.1. Coverage

 This implementation covers the server side of the NTS specification.

8.5.2. Licensing

 The source code is available at: https://github.com/wbl/nts-rust

 Licensing is ISC (details see LICENSE.txt file).

8.5.3. Contact Information

 Contact Watson Ladd: watson@cloudflare.com

8.5.4. Last Update

 The implementation was updated 21. March 2019.

8.6. Implementation 6

 Organization: Netnod

 Implementor: Michael Cardell Widerkrantz et. al.

https://gitlab.com/NTPsec/ntpsec
https://github.com/wbl/nts-rust

Franke, et al. Expires August 2, 2020 [Page 33]

Internet-Draft NTS4NTP January 2020

 Maturity: Early proof of concept

8.6.1. Coverage

 NTS-KE client and server.

8.6.2. Licensing

 ????

 The source code is available at: https://github.com/mchackorg/gonts

8.6.3. Contact Information

 Contact Michael Cardell Widerkrantz: mc@netnod.se

8.6.4. Last Update

 The implementation was updated 24. March 2019.

8.7. Interoperability

 The Interoperability tests distinguished between NTS key
 establishment protocol and NTS time exchange messages. For the
 implementations 1, 2, 3, and 4 pairwise interoperability of the NTS
 key establishment protocol and exchange of NTS protected NTP messages
 have been verified successfully. The implementation 2 was able to
 successfully perform the key establishment protocol against the
 server side of the implementation 5.

 These tests successfully demonstrate that there are at least four
 running implementations of this draft which are able to interoperate.

9. Security Considerations

9.1. Sensitivity to DDoS attacks

 The introduction of NTS brings with it the introduction of asymmetric
 cryptography to NTP. Asymmetric cryptography is necessary for
 initial server authentication and AEAD key extraction. Asymmetric
 cryptosystems are generally orders of magnitude slower than their
 symmetric counterparts. This makes it much harder to build systems
 that can serve requests at a rate corresponding to the full line
 speed of the network connection. This, in turn, opens up a new
 possibility for DDoS attacks on NTP services.

 The main protection against these attacks in NTS lies in that the use
 of asymmetric cryptosystems is only necessary in the initial NTS-KE

https://github.com/mchackorg/gonts

Franke, et al. Expires August 2, 2020 [Page 34]

Internet-Draft NTS4NTP January 2020

 phase of the protocol. Since the protocol design enables separation
 of the NTS-KE and NTP servers, a successful DDoS attack on an NTS-KE
 server separated from the NTP service it supports will not affect NTP
 users that have already performed initial authentication, AEAD key
 extraction, and cookie exchange.

 NTS users should also consider that they are not fully protected
 against DDoS attacks by on-path adversaries. In addition to dropping
 packets and attacks such as those described in Section 9.4, an on-
 path attacker can send spoofed kiss-o'-death replies, which are not
 authenticated, in response to NTP requests. This could result in
 significantly increased load on the NTS-KE server. Implementers have
 to weigh the user's need for unlinkability against the added
 resilience that comes with cookie reuse in cases of NTS-KE server
 unavailability.

9.2. Avoiding DDoS Amplification

 Certain non-standard and/or deprecated features of the Network Time
 Protocol enable clients to send a request to a server which causes
 the server to send a response much larger than the request. Servers
 which enable these features can be abused in order to amplify traffic
 volume in DDoS attacks by sending them a request with a spoofed
 source IP. In recent years, attacks of this nature have become an
 endemic nuisance.

 NTS is designed to avoid contributing any further to this problem by
 ensuring that NTS-related extension fields included in server
 responses will be the same size as the NTS-related extension fields
 sent by the client. In particular, this is why the client is
 required to send a separate and appropriately padded-out NTS Cookie
 Placeholder extension field for every cookie it wants to get back,
 rather than being permitted simply to specify a desired quantity.

 Due to the RFC 7822 [RFC7822] requirement that extensions be padded
 and aligned to four-octet boundaries, response size may still in some
 cases exceed request size by up to three octets. This is
 sufficiently inconsequential that we have declined to address it.

9.3. Initial Verification of Server Certificates

 NTS's security goals are undermined if the client fails to verify
 that the X.509 certificate chain presented by the NTS-KE server is
 valid and rooted in a trusted certificate authority. RFC 5280
 [RFC5280] and RFC 6125 [RFC6125] specify how such verification is to
 be performed in general. However, the expectation that the client
 does not yet have a correctly-set system clock at the time of
 certificate verification presents difficulties with verifying that

https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125

Franke, et al. Expires August 2, 2020 [Page 35]

Internet-Draft NTS4NTP January 2020

 the certificate is within its validity period, i.e., that the current
 time lies between the times specified in the certificate's notBefore
 and notAfter fields. It may be operationally necessary in some cases
 for a client to accept a certificate which appears to be expired or
 not yet valid. While there is no perfect solution to this problem,
 there are several mitigations the client can implement to make it
 more difficult for an adversary to successfully present an expired
 certificate:

 Check whether the system time is in fact unreliable. If the
 system clock has previously been synchronized since last boot,
 then on operating systems which implement a kernel-based phase-
 locked-loop API, a call to ntp_gettime() should show a maximum
 error less than NTP_PHASE_MAX. In this case, the clock SHOULD be
 considered reliable and certificates can be strictly validated.

 Allow the system administrator to specify that certificates should
 always be strictly validated. Such a configuration is
 appropriate on systems which have a battery-backed clock and which
 can reasonably prompt the user to manually set an approximately-
 correct time if it appears to be needed.

 Once the clock has been synchronized, periodically write the
 current system time to persistent storage. Do not accept any
 certificate whose notAfter field is earlier than the last recorded
 time.

 NTP time replies are expected to be consistent with the NTS-KE TLS
 certificate validity period, i.e. time replies received
 immediately after an NTS-KE handshake are expected to lie within
 the certificate validity period. Implementations are recommended
 to check that this is the case. Performing a new NTS-KE handshake
 based solely on the fact that the certificate used by the NTS-KE
 server in a previous handshake has expired is normally not
 necessary. Clients that still wish to do this must take care not
 to cause an inadvertent denial-of-service attack on the NTS-KE
 server, for example by picking a random time in the week preceding
 certificate expiry to perform the new handshake.

 Use multiple time sources. The ability to pass off an expired
 certificate is only useful to an adversary who has compromised the
 corresponding private key. If the adversary has compromised only
 a minority of servers, NTP's selection algorithm (RFC 5905 section

11.2.1 [RFC5905]) will protect the client from accepting bad time
 from the adversary-controlled servers.

https://datatracker.ietf.org/doc/html/rfc5905#section-11.2.1
https://datatracker.ietf.org/doc/html/rfc5905

Franke, et al. Expires August 2, 2020 [Page 36]

Internet-Draft NTS4NTP January 2020

9.4. Delay Attacks

 In a packet delay attack, an adversary with the ability to act as a
 man-in-the-middle delays time synchronization packets between client
 and server asymmetrically [RFC7384]. Since NTP's formula for
 computing time offset relies on the assumption that network latency
 is roughly symmetrical, this leads to the client to compute an
 inaccurate value [Mizrahi]. The delay attack does not reorder or
 modify the content of the exchanged synchronization packets.
 Therefore, cryptographic means do not provide a feasible way to
 mitigate this attack. However, the maximum error that an adversary
 can introduce is bounded by half of the round trip delay.

RFC 5905 [RFC5905] specifies a parameter called MAXDIST which denotes
 the maximum round-trip latency (including not only the immediate
 round trip between client and server, but the whole distance back to
 the reference clock as reported in the Root Delay field) that a
 client will tolerate before concluding that the server is unsuitable
 for synchronization. The standard value for MAXDIST is one second,
 although some implementations use larger values. Whatever value a
 client chooses, the maximum error which can be introduced by a delay
 attack is MAXDIST/2.

 Usage of multiple time sources, or multiple network paths to a given
 time source [Shpiner], may also serve to mitigate delay attacks if
 the adversary is in control of only some of the paths.

9.5. Random Number Generation

 At various points in NTS, the generation of cryptographically secure
 random numbers is required. Whenever this draft specifies the use of
 random numbers, cryptographically secure random number generation
 MUST be used. RFC 4086 [RFC4086] contains guidelines concerning this
 topic.

9.6. NTS Stripping

 Implementers must be aware of the possibility of "NTS stripping"
 attacks, where an attacker tricks clients into reverting to plain
 NTP. Naive client implementations might, for example, revert
 automatically to plain NTP if the NTS-KE handshake fails. A man-in-
 the-middle attacker can easily cause this to happen. Even clients
 that already hold valid cookies can be vulnerable, since an attacker
 can force a client to repeat the NTS-KE handshake by sending faked
 NTP mode 4 replies with the NTS NAK kiss code. Forcing a client to
 repeat the NTS-KE handshake can also be the first step in more
 advanced attacks.

https://datatracker.ietf.org/doc/html/rfc7384
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4086

Franke, et al. Expires August 2, 2020 [Page 37]

Internet-Draft NTS4NTP January 2020

 For the reasons described here, implementations SHOULD NOT revert
 from NTS-protected to unprotected NTP with any server without
 explicit user action.

10. Privacy Considerations

10.1. Unlinkability

 Unlinkability prevents a device from being tracked when it changes
 network addresses (e.g. because said device moved between different
 networks). In other words, unlinkability thwarts an attacker that
 seeks to link a new network address used by a device with a network
 address that it was formerly using, because of recognizable data that
 the device persistently sends as part of an NTS-secured NTP
 association. This is the justification for continually supplying the
 client with fresh cookies, so that a cookie never represents
 recognizable data in the sense outlined above.

 NTS's unlinkability objective is merely to not leak any additional
 data that could be used to link a device's network address. NTS does
 not rectify legacy linkability issues that are already present in
 NTP. Thus, a client that requires unlinkability must also minimize
 information transmitted in a client query (mode 3) packet as
 described in the draft [I-D.ietf-ntp-data-minimization].

 The unlinkability objective only holds for time synchronization
 traffic, as opposed to key exchange traffic. This implies that it
 cannot be guaranteed for devices that function not only as time
 clients, but also as time servers (because the latter can be
 externally triggered to send authentication data).

 It should also be noted that it could be possible to link devices
 that operate as time servers from their time synchronization traffic,
 using information exposed in (mode 4) server response packets (e.g.
 reference ID, reference time, stratum, poll). Also, devices that
 respond to NTP control queries could be linked using the information
 revealed by control queries.

 Note that the unlinkability objective does not prevent a client
 device to be tracked by its time servers.

10.2. Confidentiality

 NTS does not protect the confidentiality of information in NTP's
 header fields. When clients implement
 [I-D.ietf-ntp-data-minimization], client packet headers do not
 contain any information which the client could conceivably wish to
 keep secret: one field is random, and all others are fixed.

Franke, et al. Expires August 2, 2020 [Page 38]

Internet-Draft NTS4NTP January 2020

 Information in server packet headers is likewise public: the origin
 timestamp is copied from the client's (random) transmit timestamp,
 and all other fields are set the same regardless of the identity of
 the client making the request.

 Future extension fields could hypothetically contain sensitive
 information, in which case NTS provides a mechanism for encrypting
 them.

11. Acknowledgements

 The authors would like to thank Richard Barnes, Steven Bellovin,
 Patrik Faeltstroem (Faltstrom), Scott Fluhrer, Sharon Goldberg, Russ
 Housley, Martin Langer, Miroslav Lichvar, Aanchal Malhotra, Dave
 Mills, Danny Mayer, Karen O'Donoghue, Eric K. Rescorla, Stephen
 Roettger, Kurt Roeckx, Kyle Rose, Rich Salz, Brian Sniffen, Susan
 Sons, Douglas Stebila, Harlan Stenn, Joachim Stroembergsson
 (Strombergsson), Martin Thomson, Richard Welty, and Christer Weinigel
 for contributions to this document and comments on the design of NTS.

12. References

12.1. Normative References

 [ANSI.X3-4.1986]
 American National Standards Institute, "Coded Character
 Set - 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5297] Harkins, D., "Synthetic Initialization Vector (SIV)
 Authenticated Encryption Using the Advanced Encryption
 Standard (AES)", RFC 5297, DOI 10.17487/RFC5297, October
 2008, <https://www.rfc-editor.org/info/rfc5297>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5297
https://www.rfc-editor.org/info/rfc5297

Franke, et al. Expires August 2, 2020 [Page 39]

Internet-Draft NTS4NTP January 2020

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <https://www.rfc-editor.org/info/rfc5891>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,

RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6874] Carpenter, B., Cheshire, S., and R. Hinden, "Representing
 IPv6 Zone Identifiers in Address Literals and Uniform
 Resource Identifiers", RFC 6874, DOI 10.17487/RFC6874,
 February 2013, <https://www.rfc-editor.org/info/rfc6874>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7507] Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", RFC 7507, DOI 10.17487/RFC7507, April 2015,
 <https://www.rfc-editor.org/info/rfc7507>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

https://datatracker.ietf.org/doc/html/rfc5705
https://www.rfc-editor.org/info/rfc5705
https://datatracker.ietf.org/doc/html/rfc5891
https://www.rfc-editor.org/info/rfc5891
https://datatracker.ietf.org/doc/html/rfc5905
https://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://datatracker.ietf.org/doc/html/bcp165
https://datatracker.ietf.org/doc/html/rfc6335
https://www.rfc-editor.org/info/rfc6335
https://datatracker.ietf.org/doc/html/rfc6874
https://www.rfc-editor.org/info/rfc6874
https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7507
https://www.rfc-editor.org/info/rfc7507
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://www.rfc-editor.org/info/rfc7525

Franke, et al. Expires August 2, 2020 [Page 40]

Internet-Draft NTS4NTP January 2020

 [RFC7822] Mizrahi, T. and D. Mayer, "Network Time Protocol Version 4
 (NTPv4) Extension Fields", RFC 7822, DOI 10.17487/RFC7822,
 March 2016, <https://www.rfc-editor.org/info/rfc7822>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

12.2. Informative References

 [I-D.ietf-ntp-data-minimization]
 Franke, D. and A. Malhotra, "NTP Client Data
 Minimization", draft-ietf-ntp-data-minimization-04 (work
 in progress), March 2019.

 [Mizrahi] Mizrahi, T., "A game theoretic analysis of delay attacks
 against time synchronization protocols", in Proceedings
 of Precision Clock Synchronization for Measurement Control
 and Communication, ISPCS 2012, pp. 1-6, September 2012.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <https://www.rfc-editor.org/info/rfc5077>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

https://datatracker.ietf.org/doc/html/rfc7822
https://www.rfc-editor.org/info/rfc7822
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-data-minimization-04
https://datatracker.ietf.org/doc/html/rfc768
https://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc5077
https://www.rfc-editor.org/info/rfc5077
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280

Franke, et al. Expires August 2, 2020 [Page 41]

Internet-Draft NTS4NTP January 2020

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [Shpiner] Shpiner, A., Revah, Y., and T. Mizrahi, "Multi-path Time
 Protocols", in Proceedings of IEEE International Symposium
 on Precision Clock Synchronization for Measurement,
 Control and Communication (ISPCS), September 2013.

Appendix A. Terms and Abbreviations

 AEAD Authenticated Encryption with Associated Data [RFC5116]

 ALPN Application-Layer Protocol Negotiation [RFC7301]

 C2S Client-to-server

 DDoS Distributed Denial-of-Service

 EF Extension Field [RFC5905]

 HKDF Hashed Message Authentication Code-based Key Derivation
 Function [RFC5869]

 IANA Internet Assigned Numbers Authority

 IP Internet Protocol

 KoD Kiss-o'-Death [RFC5905]

 NTP Network Time Protocol [RFC5905]

 NTS Network Time Security

 NTS-KE Network Time Security Key Exchange

 S2C Server-to-client

 SCSV Signaling Cipher Suite Value [RFC7507]

 TCP Transmission Control Protocol [RFC0793]

 TLS Transport Layer Security [RFC8446]

https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7384
https://www.rfc-editor.org/info/rfc7384
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc7507
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc8446

Franke, et al. Expires August 2, 2020 [Page 42]

Internet-Draft NTS4NTP January 2020

 UDP User Datagram Protocol [RFC0768]

Authors' Addresses

 Daniel Fox Franke
 Akamai Technologies
 150 Broadway
 Cambridge, MA 02142
 United States

 Email: dafranke@akamai.com
 URI: https://www.dfranke.us

 Dieter Sibold
 Physikalisch-Technische
 Bundesanstalt
 Bundesallee 100
 Braunschweig D-38116
 Germany

 Phone: +49-(0)531-592-8420
 Fax: +49-531-592-698420
 Email: dieter.sibold@ptb.de

 Kristof Teichel
 Physikalisch-Technische
 Bundesanstalt
 Bundesallee 100
 Braunschweig D-38116
 Germany

 Phone: +49-(0)531-592-4471
 Email: kristof.teichel@ptb.de

 Marcus Dansarie

 Email: marcus@dansarie.se

 Ragnar Sundblad
 Netnod

 Email: ragge@netnod.se

https://datatracker.ietf.org/doc/html/rfc0768
https://www.dfranke.us

Franke, et al. Expires August 2, 2020 [Page 43]

