Abstract

This document defines a YANG data model for Network Time Protocol (NTP) version 4 implementations. It can also be used to configure version 3. The data model includes configuration data and state data.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 September 2022.
Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction .. 3
 1.1. Operational State 3
 1.2. Terminology ... 3
 1.3. Tree Diagrams ... 3
 1.4. Prefixes in Data Node Names 3
 1.5. References in the Model 4
2. NTP data model .. 5
3. Relationship with NTPv4-MIB 7
4. Relationship with RFC 7317 9
5. Access Rules ... 9
6. Key Management ... 10
7. NTP Version .. 10
8. NTP YANG Module .. 11
9. Usage Example .. 41
 9.1. Unicast association 41
 9.2. Refclock master 44
 9.3. Authentication configuration 44
 9.4. Access configuration 45
 9.5. Multicast configuration 46
 9.6. Manycast configuration 50
 9.7. Clock state .. 53
 9.8. Get all association 53
 9.9. Global statistic 55
10. IANA Considerations .. 55
 10.1. IETF XML Registry 55
 10.2. YANG Module Names 55
11. Security Considerations 56
1. Introduction

This document defines a YANG [RFC7950] data model for Network Time Protocol [RFC5905] implementations. Note that the model could also be used to configure NTPv3 [RFC1305] (see Section 7).

The data model covers configuration of system parameters of NTP, such as access rules, authentication and VPN Routing and Forwarding (VRF) binding, and also various modes of NTP and per-interface parameters. It also provides access to information about running state of NTP implementations.

1.1. Operational State

NTP Operational State is included in the same tree as NTP configuration, consistent with Network Management Datastore Architecture (NMDA) [RFC8342]. NTP current state and statistics are also maintained in the operational state. The operational state also includes the NTP association state.

1.2. Terminology

The terminology used in this document is aligned to [RFC5905] and [RFC1305].

1.3. Tree Diagrams

A simplified graphical representation of the data model is used in this document. This document uses the graphical representation of data models defined in [RFC8340].

1.4. Prefixes in Data Node Names

In this document, names of data nodes and other data model objects
are often used without a prefix, as long as it is clear from the context in which YANG module each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>YANG module</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>yang</td>
<td>ietf-yang-types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>inet</td>
<td>ietf-inet-types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>if</td>
<td>ietf-interfaces</td>
<td>[RFC8343]</td>
</tr>
<tr>
<td>sys</td>
<td>ietf-system</td>
<td>[RFC7317]</td>
</tr>
<tr>
<td>acl</td>
<td>ietf-access-control-list</td>
<td>[RFC8519]</td>
</tr>
<tr>
<td>rt-types</td>
<td>ietf-routing-types</td>
<td>[RFC8294]</td>
</tr>
<tr>
<td>nacm</td>
<td>ietf-netconf-acm</td>
<td>[RFC8341]</td>
</tr>
</tbody>
</table>

Table 1: Prefixes and corresponding YANG modules

1.5. References in the Model

Following documents are referenced in the model defined in this document -
<table>
<thead>
<tr>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common YANG Data Types</td>
<td>[RFC6991]</td>
</tr>
<tr>
<td>A YANG Data Model for System Management</td>
<td>[RFC7317]</td>
</tr>
<tr>
<td>Common YANG Data Types for the Routing Area</td>
<td>[RFC8294]</td>
</tr>
<tr>
<td>Network Configuration Access Control Model</td>
<td>[RFC8341]</td>
</tr>
<tr>
<td>A YANG Data Model for Interface Management</td>
<td>[RFC8343]</td>
</tr>
<tr>
<td>YANG Data Model for Network Access Control Lists (ACLs)</td>
<td>[RFC8519]</td>
</tr>
</tbody>
</table>
Table 2: References in the YANG modules

2. NTP data model

This document defines the YANG module "ietf-ntp", which has the following condensed structure:

```yang
module: ietf-ntp
  +--rw ntp
    +--rw port?               inet:port-number {ntp-port}?
    +--rw refclock-master!
      |  +--rw master-stratum?   ntp-stratum
    +--rw authentication {authentication}?
      |  +--rw auth-enabled?      boolean
      |  +--rw authentication-keys* [key-id]
      |    +--rw key-id           uint32
      |    +--...
    +--rw access-rules {access-rules}?
      |  +--rw access-rule* [access-mode]
      |      +--rw access-mode     identityref
      |      +--rw acl?            -> /acl:acls/acl/name
  +--ro clock-state
```
---ro system-status
 +--ro clock-state identityref
 +--ro clock-stratum ntp-stratum
 +--ro clock-refid refid
 +--...
---rw unicast-configuration* [address type]
 {unicast-configuration}?
 +--rw address inet:ip-address
 +--rw type identityref
 +--...
---rw associations
 +--ro association* [address local-mode isconfigured]
 +--ro address inet:ip-address
 +--ro local-mode identityref
 +--ro isconfigured boolean
 +--...
 +--ro ntp-statistics
 +--...
---rw interfaces
 +--rw interface* [name]
 +--rw name if:interface-ref
 +--rw broadcast-server! {broadcast-server}?
 | +--...
 +--rw broadcast-client! {broadcast-client}?
 +--rw multicast-server* [address] {multicast-server}?
 | +--rw address
 | | rt-types:ip-multicast-group-address
 | +--...
 +--rw multicast-client* [address] {multicast-client}?
 | +--rw address rt-types:ip-multicast-group-address
 +--rw manycast-server* [address] {manycast-server}?
 | +--rw address rt-types:ip-multicast-group-address
 +--rw manycast-client* [address] {manycast-client}?
 +--rw address rt-types:ip-multicast-group-address
 +--...
 +--ro ntp-statistics
 +--...

rpcs:
 +---x statistics-reset
The full data model tree for the YANG module "ietf-ntp" is in Appendix A.

This data model defines one top-level container which includes both the NTP configuration and the NTP running state including access rules, authentication, associations, unicast configurations, interfaces, system status and associations.

3. Relationship with NTPv4-MIB

If the device implements the NTPv4-MIB [RFC5907], data nodes from YANG module can be mapped to table entries in NTPv4-MIB.

The following tables list the YANG data nodes with corresponding objects in the NTPv4-MIB.

YANG NTP Configuration Data Nodes and Related NTPv4-MIB Objects

+-----------------------------------+---------------------------------+
| YANG data nodes in /ntp/ | NTPv4-MIB objects |
| clock-state/system-status | |
+-----------------------------------+---------------------------------+
clock-state	ntpEntStatusCurrentMode
clock-stratum	ntpEntStatusStratum
clock-refid	ntpEntStatusActiveRefSourceId
	ntpEntStatusActiveRefSourceName
+-----------------------------------+---------------------------------+
<table>
<thead>
<tr>
<th>YANG data nodes in /ntp/associations/</th>
<th>NTPv4-MIB objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>ntpAssocAddressType</td>
</tr>
<tr>
<td></td>
<td>ntpAssocAddress</td>
</tr>
<tr>
<td>stratum</td>
<td>ntpAssocStratum</td>
</tr>
<tr>
<td>refid</td>
<td>ntpAssocRefId</td>
</tr>
<tr>
<td>offset</td>
<td>ntpAssocOffset</td>
</tr>
<tr>
<td>delay</td>
<td>ntpAssocStatusDelay</td>
</tr>
<tr>
<td>dispersion</td>
<td>ntpAssocStatusDispersion</td>
</tr>
<tr>
<td>ntp-statistics/packet-sent</td>
<td>ntpAssocStatOutPkts</td>
</tr>
<tr>
<td>ntp-statistics/packet-received</td>
<td>ntpAssocStatInPkts</td>
</tr>
<tr>
<td>ntp-statistics/packet-dropped</td>
<td>ntpAssocStatProtocolError</td>
</tr>
</tbody>
</table>

Table 3

Table 4

YANG NTP State Data Nodes and Related NTPv4-MIB Objects
4. Relationship with RFC 7317

This section describes the relationship with NTP definition in Section 3.2 System Time Management of [RFC7317]. YANG data nodes in /ntp/ also support per-interface configuration which is not supported in /system/ntp. If the yang model defined in this document is implemented, then /system/ntp SHOULD NOT be used and MUST be ignored.

<table>
<thead>
<tr>
<th>YANG data nodes in /ntp/</th>
<th>YANG data nodes in /system/ntp</th>
</tr>
</thead>
<tbody>
<tr>
<td>ntp!</td>
<td>enabled</td>
</tr>
<tr>
<td>unicast-configuration</td>
<td>server</td>
</tr>
<tr>
<td></td>
<td>server/name</td>
</tr>
<tr>
<td>unicast-configuration/address</td>
<td>server/transport/udp/address</td>
</tr>
<tr>
<td>unicast-configuration/port</td>
<td>server/transport/udp/port</td>
</tr>
<tr>
<td>unicast-configuration/type</td>
<td>server/association-type</td>
</tr>
<tr>
<td>unicast-configuration/iburst</td>
<td>server/iburst</td>
</tr>
<tr>
<td>unicast-configuration/prefer</td>
<td>server/prefer</td>
</tr>
</tbody>
</table>

Table 5

YANG NTP Configuration Data Nodes and counterparts in RFC 7317

5. Access Rules

The access rules in this section refers to the on-the-wire access control to the NTP service and completely independent of any management API access control, e.g., NETCONF Access Control Model (NACM) ([RFC8341]).

An Access Control List (ACL) is one of the basic elements used to configure device-forwarding behavior. An ACL is a user-ordered set of rules that is used to filter traffic on a networking device.

As per [RFC1305] (for NTPv3) and [RFC5905] (for NTPv4), NTP could include an access-control feature that prevents unauthorized access
and controls which peers are allowed to update the local clock. Further it is useful to differentiate between the various kinds of access and attach a different acl-rule to each. For this, the YANG module allows such configuration via /ntp/access-rules. The access-rule itself is configured via [RFC8519].

Following access modes are supported -

* Peer: Permit others to synchronize their time with the NTP entity or it can synchronize its time with others. NTP control queries are also accepted.

* Server: Permit others to synchronize their time with the NTP entity, but vice versa is not supported. NTP control queries are accepted.

* Server-only: Permit others to synchronize their time with NTP entity, but vice versa is not supported. NTP control queries are not accepted.

* Query-only: Only control queries are accepted.

Query-only is the most restricted where as the peer is the full access authority. The ability to give different ACL rules for different access modes allows for a greater control by the operator.

6. Key Management

As per [RFC1305] (for NTPv3) and [RFC5905] (for NTPv4), when authentication is enabled, NTP employs a crypto-checksum, computed by the sender and checked by the receiver, together with a set of predistributed algorithms, and cryptographic keys indexed by a key identifier included in the NTP message. This key-id is a 32-bit unsigned integer that MUST be configured on the NTP peers before the authentication could be used. For this reason, this YANG module allows such configuration via /ntp/authentication/authentication-keys/. Further at the time of configuration of NTP association (for example unicast-server), the key-id is specified.

The 'nacm:default-deny-all' is used to prevent retrieval of the actual key information after it is set.
7. NTP Version

This YANG model allow a version to be configured for the NTP association i.e. an operator can control the use of NTPv3 [RFC1305] or NTPv4 [RFC5905] for each association it forms. This allows backward compatibility with a legacy system. Note that the version 3 of NTP [RFC1305] is obsoleted by NTPv4 [RFC5905].

8. NTP YANG Module

```yang
<CODE BEGINS> file "ietf-ntp@2022-03-21.yang"
module ietf-ntp {
    yang-version 1.1;
    namespace "urn:ietf:params:xml:ns:yang:ietf-ntp";
    prefix ntp;

    import ietf-yang-types {
        prefix yang;
        reference  "RFC 6991": Common YANG Data Types";
    }
    import ietf-inet-types {
        prefix inet;
        reference  "RFC 6991": Common YANG Data Types";
    }
    import ietf-interfaces {
        prefix if;
        reference  "RFC 8343": A YANG Data Model for Interface Management";
    }
    import ietf-system {
        prefix sys;
        reference  "RFC 7317": A YANG Data Model for System Management";
    }
    import ietf-access-control-list {
        prefix acl;
        reference  "RFC 8519": YANG Data Model for Network Access Control
```
Lists (ACLs);

import ietf-routing-types {
 prefix rt-types;
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
}

import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Protocol (NETCONF) Access
 Control Model";
}

organization
 "IETF NTP (Network Time Protocol) Working Group";

description
 "This document defines a YANG data model for Network Time Protocol
 (NTP) implementations. The data model includes configuration data
 and state data.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions..."
typedef ntp-stratum {
 type uint8 {
 range "1..16";
 }
 description
 "The level of each server in the hierarchy is defined by
 a stratum. Primary servers are assigned with stratum
 one; secondary servers at each lower level are assigned with
 one stratum greater than the preceding level";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3";
}

typedef ntp-version {
 type uint8 {
 range "3..max";
 }
 default "4";
 description
 "The current NTP version supported by corresponding
 association.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
typedef refid {
 type union {
 type inet:ipv4-address;
 type uint32;
 type string {
 length "4";
 }
 }
} description
"A code identifying the particular server or reference clock. The interpretation depends upon stratum. It could be an IPv4 address or first 32 bits of the MD5 hash of the IPv6 address or a string for the Reference Identifier and KISS codes. Some examples:
-- a refclock ID like '127.127.1.0' for local clock sync
-- uni/multi/broadcast associations for IPv4 will look like '203.0.113.1' and '0x4321FEDC' for IPv6
-- sync with primary source will look like 'DCN', 'NIST', 'ATOM'
-- KISS codes will look like 'AUTH', 'DROP', 'RATE'
Note that the use of MD5 hash for IPv6 address is not for cryptographic purposes ";
reference

typedef ntp-date-and-time {
 type union {
 type yang:date-and-time;
 type uint8;
 }
} description
"Follows the date-and-time format when valid value exist, otherwise allows for setting special value such as zero."
reference
"RFC 6991: Common YANG Data Types";
typedef log2seconds {
 type int8;
 description
 "An 8-bit signed integer that represents signed log2
 seconds."
};

/* features */

feature ntp-port {
 description
 "Support for NTP port configuration"
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.2"
};

feature authentication {
 description
 "Support for NTP symmetric key authentication"
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.3"
};

feature deprecated {
 description
 "Support deprecated MD5-based authentication (RFC 8573) or
 SHA-1 or any other deprecated authentication mechanism.
 It is enabled to support legacy compatibility when secure
 cryptographic algorithms are not available to use.
 It is also used to configure keystrings in ASCII format."
 reference
 "RFC 1321: The MD5 Message-Digest Algorithm
 RFC 3174: US Secure Hash Algorithm 1 (SHA1)
 FIPS 180-4: Secure Hash Standard (SHS)"
};

feature hex-key-string {
description
 "Support hexadecimal key string."
}

feature access-rules {
 description
 "Support for NTP access control"
 reference
}

feature unicast-configuration {
 description
 "Support for NTP client/server or active/passive in unicast"
 reference
}

feature broadcast-server {
 description
 "Support for broadcast server"
 reference
}

feature broadcast-client {
 description
 "Support for broadcast client"
 reference
}

feature multicast-server {
 description
 "Support for multicast server"
 reference
}
feature multicast-client {
 description "Support for multicast client";
 reference
}

feature manycast-server {
 description "Support for manycast server";
 reference
}

feature manycast-client {
 description "Support for manycast client";
 reference
}

/* Identity */
/* unicast-configurations types */

identity unicast-configuration-type {
 if-feature "unicast-configuration";
 description "This defines NTP unicast mode of operation as used for unicast-configurations."
}

identity uc-server {
 if-feature "unicast-configuration";
 base unicast-configuration-type;
 description "Use client association mode where the unicast server address is configured."
}

identity uc-peer {
 if-feature "unicast-configuration";
 base unicast-configuration-type;
 description "Use symmetric active association mode where the peer
address is configured;
This device will provide synchronization to NTP clients.

identity broadcast-server {
 base association-mode;
 description
 "Use broadcast server mode (mode 5).

This mode defines that its either working as broadcast-server or multicast-server."
}

identity broadcast-client {
 base association-mode;
 description
 "This mode defines that its either working as broadcast-client (mode 6) or multicast-client."
}

/* access-mode */

identity access-mode {
 if-feature "access-rules";
 description
 "This defines NTP access modes. These identify how the ACL is applied with NTP."
 reference
}

identity peer-access-mode {
 if-feature "access-rules";
 base access-mode;
 description
 "Permit others to synchronize their time with this NTP entity or it can synchronize its time with others. NTP control queries are also accepted. This enables full access authority.";
}
identity server-access-mode {
 if-feature "access-rules";
 base access-mode;
 description
 "Permit others to synchronize their time with this NTP entity, but vice versa is not supported. NTP control queries are accepted."
}

identity server-only-access-mode {
 if-feature "access-rules";
 base access-mode;
 description
 "Permit others to synchronize their time with this NTP entity, but vice versa is not supported. NTP control queries are not accepted."
}

identity query-only-access-mode {
 if-feature "access-rules";
 base access-mode;
 description
 "Only control queries are accepted."
}

/* clock-state */

identity clock-state {
 description
 "This defines NTP clock status at a high level."
}

identity synchronized {
 base clock-state;
 description
 "Indicates that the local clock has been synchronized with an NTP server or the reference clock."
}

identity unsynchronized {
 base clock-state;
}
description
 "Indicates that the local clock has not been synchronized
 with any NTP server."
};

/* ntp-sync-state */

identity ntp-sync-state {
 description
 "This defines NTP clock sync state at a more granular
 level. Referred as 'Clock state definitions' in RFC 5905";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Appendix A.1.1";
};

identity clock-never-set {
 base ntp-sync-state;
 description
 "Indicates the clock was never set.";
}

identity freq-set-by-cfg {
 base ntp-sync-state;
 description
 "Indicates the clock frequency is set by
 NTP configuration or file.";
}

identity spike {
 base ntp-sync-state;
 description
 "Indicates a spike is detected.";
}

identity freq {
 base ntp-sync-state;
 description
 "Indicates the frequency mode.";
}
identity clock-synchronized {
 base ntp-sync-state;
 description
 "Indicates that the clock is synchronized";
}

/* crypto-algorithm */

identity crypto-algorithm {
 description
 "Base identity of cryptographic algorithm options.";
}

identity md5 {
 if-feature "deprecated";
 base crypto-algorithm;
 description
 "The MD5 algorithm. Note that RFC 8573
deprecates the use of MD5-based authentication.";
 reference
 "RFC 1321: The MD5 Message-Digest Algorithm";
}

identity sha-1 {
 if-feature "deprecated";
 base crypto-algorithm;
 description
 "The SHA-1 algorithm.";
 reference
 "RFC 3174: US Secure Hash Algorithm 1 (SHA1)";
}

identity hmac-sha-1 {
 if-feature "deprecated";
 base crypto-algorithm;
 description
 "HMAC-SHA-1 authentication algorithm.";
 reference
 "FIPS 180-4: Secure Hash Standard (SHS)";
}
identity hmac-sha1-12 {
 if-feature "deprecated";
 base crypto-algorithm;
 description
 "The HMAC-SHA1-12 algorithm."
}

identity hmac-sha-256 {
 description
 "HMAC-SHA-256 authentication algorithm.";
 reference
 "FIPS 180-4: Secure Hash Standard (SHS)"
}

identity hmac-sha-384 {
 description
 "HMAC-SHA-384 authentication algorithm.";
 reference
 "FIPS 180-4: Secure Hash Standard (SHS)"
}

identity hmac-sha-512 {
 description
 "HMAC-SHA-512 authentication algorithm.";
 reference
 "FIPS 180-4: Secure Hash Standard (SHS)"
}

identity aes-cmac {
 base crypto-algorithm;
 description
 "The AES-CMAC algorithm - required by
 RFC 8573 for MAC for the NTP";
 reference
 "RFC 4493: The AES-CMAC Algorithm
 RFC 8573: Message Authentication Code for the Network"
grouping key {
 description
 "The key."
 nacm:default-deny-all;
 choice key-string-style {
 description
 "Key string styles"
 case keystring {
 leaf keystring {
 if-feature "deprecated";
 type string;
 description
 "Key string in ASCII format."
 }
 }
 case hexadecimal {
 if-feature "hex-key-string";
 leaf hexadecimal-string {
 type yang:hex-string
 description
 "Key in hexadecimal string format. When compared to ASCII, specification in hexadecimal affords greater key entropy with the same number of internal key-string octets. Additionally, it discourages usage of well-known words or numbers."
 }
 }
 }
}

grouping authentication-key {
 description
 "To define an authentication key for a Network Time Protocol (NTP) time source."
 leaf key-id {
 type uint32 {
 range "1..max"
 }
 description
 "Authentication key identifier."
 }
 leaf algorithm {
type identityref {
 base crypto-algorithm;
}

description
"Authentication algorithm. Note that RFC 8573
deprecates the use of MD5-based authentication
and recommends AES-CMAC."
}

container key {
 uses key;
 description
"The key. Note that RFC 8573 deprecates the use
of MD5-based authentication."
}

leaf istrusted {
 type boolean;
 description
"Key-id is trusted or not"
}

reference
"RFC 5905: Network Time Protocol Version 4: Protocol and
Algorithms Specification, Section 7.3 and 7.4"
}

grouping authentication {
 description
"Authentication."
 choice authentication-type {
 description
"Type of authentication."
 case symmetric-key {
 leaf key-id {
 type leafref {
 path "/ntp:ntp/ntp:authentication/
 + "ntp:authentication-keys/ntp:key-id";
 }
 description
"Authentication key id referenced in this
association."
 }
 }
 }
}

grouping statistics {
 description
"NTP packet statistic."
 leaf discontinuity-time {

type ntp-date-and-time;

description "The time on the most recent occasion at which any one or
more of this NTP counters suffered a discontinuity. If no such discontinuities have occurred, then this node contains the time the NTP association was (re-)initialized.";
}
leaf packet-sent {

type yang:counter32;

description "The total number of NTP packets delivered to the
transport service by this NTP entity for this association.
Discontinuities in the value of this counter can occur upon cold start or reinitialization of the NTP entity, the management system and at other times.";
}
leaf packet-sent-fail {

type yang:counter32;

description "The number of times NTP packets sending failed.";
}
leaf packet-received {

type yang:counter32;

description "The total number of NTP packets delivered to the NTP entity from this association.
Discontinuities in the value of this counter can occur upon cold start or reinitialization of the NTP entity, the management system and at other times.";
}
leaf packet-dropped {

type yang:counter32;

description "The total number of NTP packets that were delivered to this NTP entity from this association and this entity was not able to process due to an NTP protocol error. Discontinuities in the value of this counter can occur upon cold start or reinitialization of the NTP entity, the management system and at other times.";
}
grouping common-attributes {
 description
 "NTP common attributes for configuration.";
 leaf minpoll {
 type log2seconds;
 default "6";
 description
 "The minimum poll interval used in this association.";
 reference
 }
 leaf maxpoll {
 type log2seconds;
 default "10";
 description
 "The maximum poll interval used in this association.";
 reference
 }
 leaf port {
 if-feature "ntp-port";
 type inet:port-number {
 range "123 | 1024..max";
 }
 default "123";
 description
 "Specify the port used to send NTP packets.";
 reference
 }
 leaf version {
 type ntp-version;
 description
 "NTP version.";
 }
}
grouping association-ref {
 description
 "Reference to NTP association mode";
 leaf associations-address {
 type leafref {
 path "/ntp:ntp/ntp:associations/ntp:association
 + "/ntp:address";
 }
 description
 "Indicates the association's address
 which result in clock synchronization.";
 }
 leaf associations-local-mode {
 type leafref {
 path "/ntp:ntp/ntp:associations/ntp:association
 + "/ntp:local-mode";
 }
 description
 "Indicates the association's local-mode
 which result in clock synchronization.";
 }
 leaf associations-isconfigured {
 type leafref {
 path "/ntp:ntp/ntp:associations/ntp:association/
 + "ntp:isconfigured";
 }
 description
 "Indicates if the association (that resulted in the
 clock synchronization) is explicitly configured.";
 }
}

container ntp {
 when 'false() = boolean(/sys:system/sys:ntp)' {
 description
 "Applicable when the system /sys/ntp/ is not used.";
 }
}
presence "NTP is enabled and system should attempt to synchronize the system clock with an NTP server from the 'ntp/associations' list."

description
"Configuration parameters for NTP."
leaf port {
 if-feature "ntp-port";
 type inet:port-number {
 range "123 | 1024..max";
 }
 default "123";
 description
"Specify the port used to send and receive NTP packets.";
 reference
}
container refclock-master {
 presence "NTP master clock is enabled.";
 description
"Configures the local clock of this device as NTP server.";
 leaf master-stratum {
 type ntp-stratum;
 default "16";
 description
"Stratum level from which NTP clients get their time synchronized.";
 }
}
container authentication {
 if-feature "authentication";
 description
"Configuration of authentication.";
 leaf auth-enabled {
 type boolean;
 default "false";
 description
"Controls whether NTP authentication is enabled or disabled on this device.";
 }
 list authentication-keys {

key "key-id";
uses authentication-key;
description
 "List of authentication keys."
}
}

container access-rules {
 if-feature "access-rules";
 description
 "Configuration to control access to NTP service by using NTP access-group feature. The access-mode identifies how the ACL is applied with NTP."
 list access-rule {
 key "access-mode";
 description
 "List of access rules."
 leaf access-mode {
 type identityref {
 base access-mode;
 }
 description
 "The NTP access mode. Some of the possible value includes peer, server, synchronization, query etc.";
 }
 leaf acl {
 type leafref {
 path "/acl:acls/acl:acl/acl:name";
 }
 description
 "Control access configuration to be used.";
 }
 reference
 }
}

container clock-state {
 config false;
 description
"Clock operational state of the NTP."
container system-status {
 description "System status of NTP."
 leaf clock-state {
 type identityref {
 base clock-state;
 }
 mandatory true;
 description "The state of system clock. Some of the possible value includes synchronized and unsynchronized";
 }
 leaf clock-stratum {
 type ntp-stratum;
 mandatory true;
 description "The NTP entity's own stratum value. Should be one greater than preceeding level. 16 if unsyncronized."
 }
 leaf clock-refid {
 type refid;
 mandatory true;
 description "A code identifying the particular server or reference clock. The interpretation depends upon stratum. It could be an IPv4 address or first 32 bits of the MD5 hash of the IPv6 address or a string for the Reference Identifier and KISS codes. Some examples:
 -- a refclock ID like '127.127.1.0' for local clock sync
 -- uni/multi/broadcast associations for IPv4 will look like '203.0.113.1' and '0x4321FEDC' for IPv6
 -- sync with primary source will look like 'DCN', 'NIST', 'ATOM'
 -- KISS codes will look like 'AUTH', 'DROP', 'RATE'
 Note that the use of MD5 hash for IPv6 address is not for cryptographic purposes ";
 reference
 }
}
uses association-ref {
 description
 "Reference to Association.";
}

leaf nominal-freq {
 type decimal64 {
 fraction-digits 4;
 }
 units "Hz";
 mandatory true;
 description
 "The nominal frequency of the local clock. An ideal
 frequency with zero uncertainty.";
}

leaf actual-freq {
 type decimal64 {
 fraction-digits 4;
 }
 units "Hz";
 mandatory true;
 description
 "The actual frequency of the local clock.";
}

leaf clock-precision {
 type log2seconds;
 mandatory true;
 description
 "Clock precision of this system in signed integer format,
 in log 2 seconds - \((\text{prec}=2^{(-n)}) \). A value of 5 would
 mean \(2^{-5} = 0.03125 \) seconds = 31.25 ms.";
 reference
 "RFC 5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 7.3";
}

leaf clock-offset {
 type decimal64 {
 fraction-digits 3;
 }
}
units "milliseconds";
description
"The signed time offset to the current selected reference
time source e.g., '0.032ms' or '1.232ms'. The negative
value Indicates that the local clock is behind the
current selected reference time source."
reference
"RFC 5905: Network Time Protocol Version 4: Protocol and
Algorithms Specification, Section 9.1";
}
leaf root-delay {
 type decimal64 {
 fraction-digits 3;
 }
 units "milliseconds";
description
"Total delay along the path to root clock."
reference
"RFC 5905: Network Time Protocol Version 4: Protocol and
Algorithms Specification, Section 4 and 7.3";
}
leaf root-dispersion {
 type decimal64 {
 fraction-digits 3;
 }
 units "milliseconds";
description
"The dispersion between the local clock
and the root clock, e.g., '6.927ms'."
reference
"RFC 5905: Network Time Protocol Version 4: Protocol and
Algorithms Specification, Section 4, 7.3 and 10.";
}
leaf reference-time {
 type ntp-date-and-time;
description
"The reference timestamp. Time when the system clock was
last set or corrected"
reference
"RFC 5905: Network Time Protocol Version 4: Protocol and
Algorithms Specification, Section 7.3";
}
leaf sync-state {
 type identityref {
 base ntp-sync-state;
 }
 mandatory true;
description
"The synchronization status of the local clock. Referred to as 'Clock state definitions' in RFC 5905";
reference
}
}
}
list unicast-configuration {
 if-feature "unicast-configuration";
 key "address type";
 description
 "List of NTP unicast-configurations.";
 leaf address {
 type inet:ip-address;
 description
 "Address of this association.";
 }
 leaf type {
 type identityref {
 base unicast-configuration-type;
 }
 description
 "The unicast configuration type, for example unicast-server";
 }
 container authentication {
 if-feature "authentication";
 description
 "Authentication used for this association.";
 uses authentication;
 }
 leaf prefer {
 type boolean;
 default "false";
 description
 "Whether this association is preferred or not.";
 }
 leaf burst {
 type boolean;
 default "false";
 description
 "If set, a series of packets are sent instead of a single
packet within each synchronization interval to achieve faster synchronization.

reference

leaf iburst {
 type boolean;
 default "false";
 description
 "If set, a series of packets are sent instead of a single packet within the initial synchronization interval to achieve faster initial synchronization.";
 reference
}

leaf source {
 type if:interface-ref;
 description
 "The interface whose IP address is used by this association as the source address."
}

uses common-attributes {
 description
 "Common attributes like port, version, min and max poll."
}

container associations {
 description
 "Association parameters"
 list association {
 key "address local-mode isconfigured";
 config false;
 description
 "List of NTP associations. Here address, local-mode and isconfigured are required to uniquely identify a particular association. Lets take following examples -

1) If RT1 acting as broadcast server,
and RT2 acting as broadcast client, then RT2
will form dynamic association with address as RT1,
local-mode as client and isconfigured as false.

2) When RT2 is configured
with unicast-server RT1, then RT2 will form
association with address as RT1, local-mode as client
and isconfigured as true.

Thus all 3 leaves are needed as key to unique identify
the association.

leaf address {

type inet:ip-address;
description
"The remote address of this association. Represents the
IP address of a unicast/multicast/broadcast address.";
}
leaf local-mode {

type identityref {
 base association-mode;
}
description
"Local mode of this NTP association.";
}
leaf isconfigured {

type boolean;
description
"Indicates if this association is configured (true) or
dynamically learned (false).";
}
leaf stratum {

type ntp-stratum;
description
"The association stratum value.";
reference
"RFC 5905: Network Time Protocol Version 4: Protocol and
Algorithms Specification, Section 3";
}
leaf refid {

type refid;
description
"A code identifying the particular server or reference clock. The interpretation depends upon stratum. It could be an IPv4 address or first 32 bits of the MD5 hash of the IPv6 address or a string for the Reference Identifier and KISS codes. Some examples:
-- a refclock ID like '127.127.1.0' for local clock sync
-- uni/multi/broadcast associations for IPv4 will look like '203.0.113.1' and '0x4321FEDC' for IPv6
-- sync with primary source will look like 'DCN', 'NIST', 'ATOM'
-- KISS codes will look like 'AUTH', 'DROP', 'RATE'
Note that the use of MD5 hash for IPv6 address is not for cryptographic purposes;
reference
}
leaf authentication {
 if-feature "authentication";
}
leaf prefer {
 type boolean;
 default "false";
 description
 "Indicates if this association is preferred.";
}
leaf peer-interface {
 type if:interface-ref;
 description
 "The interface which is used for communication.";
}
uses common-attributes {
 description
 "Common attributes like port, version, min and max poll.";
It is an 8-bit shift register that tracks packet generation and receipt. It is used to determine whether the server is reachable and the data are fresh.

It is a count of how long in second the server has been unreachable i.e. the reach value has been zero.

The polling interval for current association in signed

The time since the last NTP packet was received or last synchronized.

units "milliseconds";

description
 "The signed offset between the local clock
 and the peer clock, e.g., '0.032ms' or '1.232ms'. The
 negative value indicates that the local clock is behind
 the peer."

reference
 "RFC_5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 8"
}

leaf delay {
 type decimal64 {
 fraction-digits 3;
 }
 units "milliseconds";
 description
 "The network delay between the local clock
 and the peer clock."
 reference
 "RFC_5905: Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 8"
}

leaf dispersion {
 type decimal64 {
 fraction-digits 3;
 }
 units "milliseconds";
 description
 "The root dispersion between the local clock
 and the peer clock."
 reference
 "RFC_5905: Network Time Protocol Version 4: Protocol and
leaf receive-time {
 type ntp-date-and-time;
 description "This is the local time, in timestamp format, when latest NTP packet arrived at peer (called T2). If the peer becomes unreachable the value is set to zero.";
}

leaf transmit-time {
 type ntp-date-and-time;
 description "This is the local time, in timestamp format, at which the NTP packet departed the peer (called T3). If the peer becomes unreachable the value is set to zero.";
}

leaf input-time {
 type ntp-date-and-time;
 description "This is the local time, in timestamp format, when the latest NTP message from the peer arrived (called T4). If the peer becomes unreachable the value is set to zero.";
}

container ntp-statistics {
 description "Per Peer packet send and receive statistics.";
 uses statistics {
 description "NTP send and receive packet statistics.";
 }
}
container interfaces {
 description
 "Configuration parameters for NTP interfaces.";
list interface {
 key "name";
 description
 "List of interfaces.";
 leaf name {
 type if:interface-ref;
 description
 "The interface name.";
 }
 container broadcast-server {
 if-feature "broadcast-server";
 presence "NTP broadcast-server is configured on this interface";
 description
 "Configuration of broadcast server.";
 leaf ttl {
 type uint8;
 description
 "Specifies the time to live (TTL) for a broadcast packet.";
 reference
 }
 }
 container authentication {
 if-feature "authentication";
 description
 "Authentication used on this interface.";
 uses authentication;
 }
 uses common-attributes {
 description
 "Common attributes such as port, version, min and max poll."
 }
 reference
}
container broadcast-client {
 if-feature "broadcast-client";
presence "NTP broadcast-client is configured on this interface.";

description
 "Configuration of broadcast-client."

reference
}

list multicast-server {
 if-feature "multicast-server";
 key "address";
 description
 "Configuration of multicast server.";

 leaf address {
 type rt-types:ip-multicast-group-address;
 description
 "The IP address to send NTP multicast packets.";
 }

 leaf ttl {
 type uint8;
 description
 "Specifies the time to live (TTL) for a multicast packet.";

 reference
 }

 container authentication {
 if-feature "authentication";
 description
 "Authentication used on this interface.";

 uses authentication;
 }

 uses common-attributes {
 description
 "Common attributes such as port, version, min and max poll.";
 }

 reference
}

list multicast-client {
 if-feature "multicast-client";
 key "address";
 description

"Configuration of multicast-client."
leaf address {

type rt-types:ip-multicast-group-address;
description
 "The IP address of the multicast group to join."
}
reference
}
list manycast-server {
 if-feature "manycast-server";
 key "address";
 description
 "Configuration of manycast server."
 leaf address {
 type rt-types:ip-multicast-group-address;
 description
 "The multicast group IP address to receive manycast client messages."
 }
 reference
}
list manycast-client {
 if-feature "manycast-client";
 key "address";
 description
 "Configuration of manycast-client."
 leaf address {
 type rt-types:ip-multicast-group-address;
 description
 "The group IP address that the manycast client broadcasts the request message to."
 }
 container authentication {
 if-feature "authentication";
 description
 "Authentication used on this interface.";
 }
uses authentication;
}
leaf ttl {
 type uint8;
 description
 "Specifies the maximum time to live (TTL) for
 the expanding ring search."
 reference
 "RFC 5905": Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 3.1"
}
leaf minclock {
 type uint8;
 description
 "The minimum manycast survivors in this
 association."
 reference
 "RFC 5905": Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 13.2"
}
leaf maxclock {
 type uint8;
 description
 "The maximum manycast candidates in this
 association."
 reference
 "RFC 5905": Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 13.2"
}
leaf beacon {
 type log2seconds;
 description
 "The beacon is the upper limit of poll interval. When the
 ttl reaches its limit without finding the minimum number
 of manycast servers, the poll interval increases until
 reaching the beacon value, when it starts over from the
 beginning."
 reference
 "RFC 5905": Network Time Protocol Version 4: Protocol and
 Algorithms Specification, Section 13.2"
uses common-attributes {
 description
 "Common attributes like port, version, min and max poll."
}
reference
}
}
}
}
}
container ntp-statistics {
 config false;
 description
 "Total NTP packet statistics."
 uses statistics {

 rpc statistics-reset {
 description
 "Reset statistics collected."
 input {
 choice association-or-all {
 description
 "Resets statistics for a particular association or all";
 case association {
 uses association-ref;
 description
 "This resets all the statistics collected for the association."
 }
 case all {
 description
 "This resets all the statistics collected."
 }
 }
 }
 }
 }
}
9. Usage Example

This section include examples for illustration purposes.

Note: '\' line wrapping per [RFC8792].

9.1. Unicast association

This example describes how to configure a preferred unicast server present at 192.0.2.1 running at port 1025 with authentication-key 10 and version 4 (default).

```xml
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <target>
    <running/>
  </target>
  <config>
    <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
      <unicast-configuration>
        <address>192.0.2.1</address>
        <type>uc-server</type>
        <prefer>true</prefer>
        <port>1025</port>
        <authentication>
          <symmetric-key>
            <key-id>10</key-id>
          </symmetric-key>
        </authentication>
      </unicast-configuration>
    </ntp>
  </config>
</edit-config>
```
An example with IPv6 would use an IPv6 address (say 2001:db8::1) in the "address" leaf with no change in any other data tree.

<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <unicast-configuration>
 <address>2001:db8::1</address>
 <type>uc-server</type>
 <prefer>true</prefer>
 <port>1025</port>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 </unicast-configuration>
 </ntp>
 </config>
</edit-config>

This example is for retrieving unicast configurations -

<get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <unicast-configuration/>
 </ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <unicast-configuration/>
 </ntp>
</data>
<unicast-configuration>
 <address>192.0.2.1</address>
 <type>uc-server</type>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 <prefer>true</prefer>
 <burst>false</burst>
 <iburst>true</iburst>
 <source/>
 <minpoll>6</minpoll>
 <maxpoll>10</maxpoll>
 <port>1025</port>
 <stratum>9</stratum>
 <refid>203.0.113.1</refid>
 <reach>255</reach>
 <unreach>0</unreach>
 <poll>128</poll>
 <now>10</now>
 <offset>0.025</offset>
 <delay>0.5</delay>
 <dispersion>0.6</dispersion>
 <originate-time>10-10-2017 07:33:55.253 Z+05:30</originate-time>
 <receive-time>10-10-2017 07:33:55.258 Z+05:30</receive-time>
 <transmit-time>10-10-2017 07:33:55.300 Z+05:30</transmit-time>
 <input-time>10-10-2017 07:33:55.305 Z+05:30</input-time>
 <ntp-statistics>
 <packet-sent>20</packet-sent>
 <packet-sent-fail>0</packet-sent-fail>
 <packet-received>20</packet-received>
 <packet-dropped>0</packet-dropped>
 </ntp-statistics>
</unicast-configuration>
9.2. Refclock master

This example describes how to configure reference clock with stratum 8 -

<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <refclock-master>
 <master-stratum>8</master-stratum>
 </refclock-master>
 </ntp>
 </config>
</edit-config>

This example describes how to get reference clock configuration -

<get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <refclock-master>
 <master-stratum>8</master-stratum>
 </refclock-master>
 </ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <refclock-master>
 <master-stratum>8</master-stratum>
 </refclock-master>
 </ntp>
</data>

9.3. Authentication configuration

This example describes how to enable authentication and configure trusted authentication key 10 with mode as AES-CMAC and an hexadecimal string key -
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <authentication>
 <auth-enabled>true</auth-enabled>
 <authentication-keys>
 <key-id>10</key-id>
 <algorithm>aes-cmac</algorithm>
 <key>
 <hexadecimal-string>bb1d6929e95937287fa37d129b756746</hexadecimal-string>
 </key>
 <istrusted>true</istrusted>
 </authentication-keys>
 </authentication>
 </ntp>
 </config>
</edit-config>

9.4. Access configuration

This example describes how to configure access mode "peer" associated with ACL 2000 -

<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <access-rules>
 <access-rule>
 <access-mode>peer-access-mode</access-mode>
 <acl>2000</acl>
 </access-rule>
 </access-rules>
 </ntp>
 </config>
</edit-config>

This example describes how to get access related configuration -
9.5. Multicast configuration

This example describes how to configure multicast-server with address as "224.0.1.1", port as 1025, and version as 3 and authentication keyid as 10 -
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-server>
 <address>224.0.1.1</address>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 <port>1025</port>
 <version>3</version>
 </multicast-server>
 </interface>
 </interfaces>
 </ntp>
 </config>
</edit-config>

This example describes how to get multicast-server related configuration -
<get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <multicast-server />
 </interface>
 </interfaces>
 </ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-server>
 <address>224.0.1.1</address>
 <ttl>8</ttl>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 </multicast-server>
 </interface>
 </interfaces>
 </ntp>
</data>
<minpoll>6</minpoll>
<maxpoll>10</maxpoll>
<port>1025</port>
<version>3</version>
</multicast-server>
</interface>
</interfaces>
</ntp>
</data>

This example describes how to configure multicast-client with address as "224.0.1.1" -

Internet-Draft YANG for NTP March 2022

<edit-config xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
<target>
<running/>
</target>
<config>
<ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
<interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-client>
 <address>224.0.1.1</address>
 </multicast-client>
 </interface>
 </interfaces>
</ntp>
</config>
</edit-config>

This example describes how to get multicast-client related
configuration -

<get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <multicast-client>
 </multicast-client>
 </interface>
 </interfaces>
 </ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <multicast-client>
 <address>224.0.1.1</address>
 </multicast-client>
 </interface>
 </interfaces>
 </ntp>
</data>

9.6. Manycast configuration

This example describes how to configure manycast-client with address as "224.0.1.1", port as 1025 and authentication keyid as 10 -

<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <target>
 <running/>
 </target>
 <config>
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
This example describes how to get manycast-client related configuration -

<get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <manycast-client>
 <address>224.0.1.1</address>
 <authentication>
 <symmetric-key>
 <key-id>10</key-id>
 </symmetric-key>
 </authentication>
 <port>1025</port>
 </manycast-client>
 </interface>
 </interfaces>
 </ntp>
 </filter>
</get>
This example describes how to configure manycast-server with address as "224.0.1.1" -
This example describes how to get manycast-server related configuration -

<get>
 <filter type="subtree">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <manycast-server>
 <address>224.0.1.1</address>
 </manycast-server>
 </interface>
 </interfaces>
 </ntp>
 </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
 <interfaces>
 <interface>
 <name>Ethernet3/0/0</name>
 <manycast-server>
 <address>224.0.1.1</address>
 </manycast-server>
 </interface>
 </interfaces>
 </ntp>
</data>
9.7. Clock state

This example describes how to get clock current state -

```xml
<get>
  <filter type="subtree">
    <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
      <clock-state/>
    </ntp>
  </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
    <clock-state>
      <system-status>
        <clock-state>synchronized</clock-state>
        <clock-stratum>7</clock-stratum>
        <clock-refid>192.0.2.1</clock-refid>
        <associations-address>192.0.2.1</associations-address>
        <associations-local-mode>client</associations-local-mode>
        <associations-isconfigured>yes</associations-isconfigured>
        <nominal-freq>100.0</nominal-freq>
        <actual-freq>100.0</actual-freq>
        <clock-precision>18</clock-precision>
        <clock-offset>0.025</clock-offset>
        <root-delay>0.5</root-delay>
        <root-dispersion>0.8</root-dispersion>
        <reference-time>10-10-2017 07:33:55.258 Z+05:30</reference-time>
      </system-status>
    </clock-state>
  </ntp>
</data>
```

9.8. Get all association
This example describes how to get all association present in the system -

```
<get>
  <filter type="subtree">
    <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
      <associations>
      </associations>
    </ntp>
  </filter>
</get>

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
    <associations>
      <association>
        <address>192.0.2.1</address>
        <stratum>9</stratum>
        <refid>203.0.113.1</refid>
        <local-mode>client</local-mode>
        <isconfigured>true</isconfigured>
        <authentication-key>10</authentication-key>
        <prefer>true</prefer>
        <peer-interface>Ethernet3/0/0</peer-interface>
        <minpoll>6</minpoll>
        <maxpoll>10</maxpoll>
        <port>1025</port>
        <version>4</version>
        <reach>255</reach>
        <unreach>0</unreach>
        <poll>128</poll>
        <now>10</now>
        <offset>0.025</offset>
        <delay>0.5</delay>
        <dispersion>0.6</dispersion>
        <originate-time>10-10-2017 07:33:55.253 Z+05:30\</originate-time>
        <receive-time>10-10-2017 07:33:55.258 Z+05:30\n
```

9.9. Global statistic

This example describes how to get global statistics -

```xml
<get>
  <filter type="subtree">
    <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
      <ntp-statistics/>
    </ntp>
  </filter>
</get>
```

```xml
<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <ntp xmlns="urn:ietf:params:xml:ns:yang:ietf-ntp">
    <ntp-statistics>
      <packet-sent>30</packet-sent>
      <packet-sent-fail>5</packet-sent-fail>
      <packet-received>20</packet-received>
      <packet-dropped>2</packet-dropped>
    </ntp-statistics>
  </ntp>
</data>
```

10. IANA Considerations
10.1. IETF XML Registry

This document registers a URI in the "IETF XML Registry" [RFC3688]. Following the format in RFC 3688, the following registration has been made.

Registrant Contact: The IESG.

XML: N/A; the requested URI is an XML namespace.

10.2. YANG Module Names

This document registers a YANG module in the "YANG Module Names" registry [RFC6020].

Name: ietf-ntp

Prefix: ntp
Reference: RFC XXXX

Note: The RFC Editor will replace XXXX with the number assigned to this document once it becomes an RFC.

11. Security Considerations

The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].

The NETCONF Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a
preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. The 'nacm:default-deny-all' is used to prevent retrieval of the key information.

There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

/ntp/port - This data node specify the port number to be used to send NTP packets. Unexpected changes could lead to disruption and/or network misbehavior.

/ntp/authentication and /ntp/access-rules - The entries in the list include the authentication and access control configurations. Care should be taken while setting these parameters.

/ntp/unicast-configuration - The entries in the list include all unicast configurations (server or peer mode), and indirectly creates or modify the NTP associations. Unexpected changes could lead to disruption and/or network misbehavior. It could also lead to syncronization over untrusted source over trusted ones.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:

/ntp/authentication/authentication-keys - The entries in the list include all per-interface configurations related to broadcast, multicast and manycast mode, and indirectly creates or modify the NTP associations. Unexpected changes could lead to disruption and/or network misbehavior.
includes all the NTP authentication keys. Unauthorized access to the keys can be easily exploited to permit unauthorized access to the NTP service. This information is sensitive and thus unauthorized access to this needs to be curtailed.

/ntp/associations/association/ - The entries in the list includes all active NTP associations of all modes. Exposure of these nodes could reveal network topology or trust relationship. Unauthorized access to this also needs to be curtailed.

/ntp/authentication and /ntp/access-rules - The entries in the list include the authentication and access control configurations. Exposure of these nodes could reveal network topology or trust relationship.

Some of the RPC operations in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control access to these operations. These are the operations and their sensitivity/vulnerability:

statistics-reset - The RPC is used to reset statistics. Unauthorized reset could impact monitoring.

The leaf /ntp/authentication/authentication-keys/algorithm can be set to cryptographic algorithms that are no longer considered to be secure. As per [RFC8573], AES-CMAC is the recommended algorithm.

12. Acknowledgments

The authors would like to express their thanks to Sladjana Zoric, Danny Mayer, Harlan Stenn, Ulrich Windl, Miroslav Lichvar, Maurice Angermann, Watson Ladd, and Rich Salz for their review and suggestions.
A special thanks to Tom Petch for a very detailed YANG review and providing great suggestions for improvements.

Thanks for the IESG review from Benjamin Kaduk, Francesca Palombini, Eric Vyncke, Murray Kucherawy, Robert Wilton, Roman Danyliw, and Zaheduzzaman Sarker.

13. References

13.1. Normative References

13.2. Informative References

13.2. Informative References

Appendix A. Full YANG Tree

The full tree for ietf-ntp YANG model is -

module: ietf-ntp
 +++rw ntp!
 +++rw port? inet:port-number {ntp-port}?
 +++rw refclock-master!
 | +++rw master-stratum? ntp-stratum
 +++rw authentication {authentication}?
 | +++rw auth-enabled? boolean
 | +++rw authentication-keys* [key-id]
 | +++rw key-id uint32
 | +++rw algorithm? identityref
 | +++rw key
 | | +++rw (key-string-style)?
 | | | +++:(keystring)
 | | | | +++rw keystring? string {deprecated}?
 | | | | +++:(hexadecimal) {hex-key-string}?
 | | | | | +++rw hexadecimal-string? yang:hex-string
 | | +++rw istrusted? boolean
 +++rw access-rules {access-rules}?
 | +++rw access-rule* [access-mode]
 | +++ rw access-mode identityref
 | +++rw acl? -> /acl:acls/acl/name
 +++ro clock-state
 | +++ro system-status
 | +++ro clock-state identityref
 | +++ro clock-stratum ntp-stratum
 | +++ro clock-refid refid
 | +++ro associations-address?
 | | -> /ntp/associations/association/address
 | | +++ro associations-local-mode?
 | | | -> /ntp/associations/association/local-mode
 | | +++ro associations-isconfigured?
 | | | -> /ntp/associations/association/isconfigured
 | | +++ro nominal-freq decimal64
 | | +++ro actual-freq decimal64
 | | +++ro clock-precision log2seconds
 | | +++ro clock-offset? decimal64
---ro root-delay? decimal64
---ro root-dispersion? decimal64
---ro reference-time? ntp-date-and-time
---ro sync-state identityref

---rw unicast-configuration* [address type]
 {unicast-configuration}?
 ---rw address inet:ip-address
 ---rw type identityref
 ---rw authentication {authentication}?
 ---rw (authentication-type)?
 ---:(symmetric-key)
 ---rw key-id? leafref

---rw prefer? boolean
---rw burst? boolean
---rw iburst? boolean
---rw source? if:interface-ref
---rw minpoll? log2seconds
---rw maxpoll? log2seconds
---rw port? inet:port-number {ntp-port}?
---rw version? ntp-version

---rw associations
 ---ro association* [address local-mode isconfigured]
 ---ro address inet:ip-address
 ---ro local-mode identityref
 ---ro isconfigured boolean
 ---ro stratum? ntp-stratum
 ---ro refid? refid
 ---ro authentication?
 -> /ntp/authentication/authentication-keys/key-id
 {authentication}?
 ---ro prefer? boolean
 ---ro peer-interface? if:interface-ref
 ---ro minpoll? log2seconds
 ---ro maxpoll? log2seconds
 ---ro port? inet:port-number {ntp-port}?
 ---ro version? ntp-version
 ---ro reach? uint8
 ---ro unreach? uint8
 ---ro poll? log2seconds
 ---ro now? uint32
 ---ro offset? decimal64
---ro delay? decimal64
---ro dispersion? decimal64
---ro originate-time? ntp-date-and-time
---ro receive-time? ntp-date-and-time
---ro transmit-time? ntp-date-and-time
---ro input-time? ntp-date-and-time
---ro ntp-statistics
 ---ro discontinuity-time? ntp-date-and-time
 ---ro packet-sent? yang:counter32
 ---ro packet-sent-fail? yang:counter32
 ---ro packet-received? yang:counter32
 ---ro packet-dropped? yang:counter32
---rw interfaces
 ---rw interface* [name]
 ---rw name if:interface-ref
 ---rw broadcast-server! {broadcast-server}?
 | ---rw ttl? uint8
 | ---rw authentication {authentication}?
 | | ---rw (authentication-type)?
 ---rw broadcast-client! {broadcast-client}?
 ---rw multicast-server* [address] {multicast-server}?
 | ---rw address rt-types:ip-multicast-group-address
 | | ---rw ttl? uint8
 | ---rw authentication {authentication}?
 | | ---rw (authentication-type)?
 | | ---:(symmetric-key)
 | | | ---rw key-id? leafref
 | ---rw minpoll? log2seconds
 | ---rw maxpoll? log2seconds
 | ---rw port? inet:port-number {ntp-port}?
 | ---rw version? ntp-version
 ---rw multicast-client* [address] {multicast-client}?
 ---rw manycast-server* [address] {manycast-server}?
```yang
++-rw address  rt-types:ip-multicast-group-address
++-rw manycast-client* [address] {manycast-client}?
   +--rw address
      |  rt-types:ip-multicast-group-address
      +--rw authentication {authentication}?
         |  +--rw (authentication-type)?
         |     +--:(symmetric-key)
         |         +--rw key-id?  leafref
         +--rw ttl?    uint8
         +--rw minclock? uint8
         +--rw maxclock? uint8
         +--rw beacon? log2seconds
         +--rw minpoll? log2seconds
         +--rw maxpoll? log2seconds
         +--rw port?   inet:port-number {ntp-port}?
         +--rw version? ntp-version
++-ro ntp-statistics
   +--ro discontinuity-time? ntp-date-and-time
   +--ro packet-sent? yang:counter32
   +--ro packet-sent-fail? yang:counter32
   +--ro packet-received? yang:counter32
   +--ro packet-dropped? yang:counter32

rpcs:
   +---x statistics-reset
   +---w input
```

Authors' Addresses

Nan Wu
Huawei