
Network Working Group C. Mortimore, Ed.

Internet-Draft Salesforce

Intended status: Standards Track M. Jones

Expires: January 05, 2012 MSFT

B. Campbell

Ping

Y. Goland

MSFT

July 04, 2011

OAuth 2.0 Assertion Profile

draft-ietf-oauth-assertions-00

Abstract

This specification provides a general framework for the use of

assertions as client credentials and/or authorization grants with OAuth

2.0. It includes a generic mechanism for transporting assertions during

interactions with a token endpoint, as wells as rules for the content

and processing of those assertions. The intent is to provide an

enhanced security profile by using derived values such as signatures or

HMACs, as well as facilitate the use of OAuth 2.0 in client-server

integration scenarios where the end-user may not be present.

This specification only defines abstract messsage flow and assertion

content. Actual use requires implementation of a companion protocol

binding specification. Additional profile documents provide standard

representations in formats such as SAML and JWT.

The IETF has been notified of intellectual property rights claimed in

regard to some or all of the specification contained in this document.

For more information consult the online list of claimed rights.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on January 05, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Requirements Notation and Conventions

2. Overview

3. Authentication vs Authorization

4. Transporting Assertions

4.1. Using Assertions for Client Authentication

4.2. Using Assertions as Authorization Grants

5. Assertion Content and Proccessing

5.1. Assertion Metamodel

5.2. General Assertion Format and Processing Rules

6. Specific Assertion Format and Processing Rules

6.1. Client authentication

6.2. Client acting on behalf of itself

6.3. Client acting on behalf of a user

6.4. Client acting on behalf of an anonymous user

7. Error Responses

8. Security Considerations

9. Acknowledgements

10. References

Authors' Addresses

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Requirements Notation and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119] .

Throughout this document, values are quoted to indicate that they are

to be taken literally. When using these values in protocol messages,

the quotes MUST NOT be used as part of the value.

2. Overview

The OAuth 2.0 Authorization Protocol [I-D.ietf.oauth-v2] provides a

method for making authenticated HTTP requests to a resource using an

access token. Access tokens are issued to clients by an authorization

server with the (sometimes implicit) approval of the resource owner.

These access tokens are typically obtained by exchanging an

authorization grant representing authorization by the resource owner or

privliged administrator. Several authorization grant types are defined

to support a wide range of client types and user experiences. OAuth

also allows for the definition of new extension grant types to support

additional clients or to provide a bridge between OAuth and other trust

frameworks. Finally, OAuth allows the definition of additional

authentication mechanisms to be used by clients when interacting with

the authorization server.

In scenarios where security is at a premium one wants to avoid sending

secrets across the Internet, even on encrypted connections. Instead one

wants to send values derived from the secret that prove to the receiver

that the sender is in possession of the secret without actually sending

the secret. Typically the way derived values are created is by

generating an assertion that is then either HMAC’d or digitally signed

using an agreed upon secret. By validating the HMAC or digital

signature on the assertion, the receiver can prove to themselves that

the entity that generated the assertion was in possession of the secret

without actually communicating the secret directly.

This specification provides a general framework for the use of

assertions as client credentials and/or authorization grants with OAuth

2.0. It includes a generic mechanism for transporting assertions during

interactions with a token endpoint, as wells as rules for the content

and processing of those assertions. The intent is to provide an

enhanced security profile by using derived values such as signatures or

HMACs, as well as facilitate the use of OAuth 2.0 in client-server

integration scenarios where the end-user may not be present.

This specification only defines abstract messsage flow and assertion

content. Actual use requires implementation of a companion protocol

binding specification. Additional profile documents provide standard

representations in formats such as SAML and JWT.

client_id

client_assertion_type

client_assertion

3. Authentication vs Authorization

This specification provides a model for using assertions for

authentication of an OAuth client during interactions with an

Authorization Server, as well as the use of assertions as authorization

grants. It is important to note that the use of assertions for client

authentication is orthogonal and separable from using assertions as an

authorization grant and can be used either in combination or in

isolation. In addition, in scenarios when assertion based

authentication and authorization are used in combination, the assertion

format and processing may be redundant; under such circumstances, the

protocol may be optimized to present a single assertion.

4. Transporting Assertions

This section defines generic HTTP parameters for transporting

assertions during interactions with a token endpoint.

4.1. Using Assertions for Client Authentication

In scenarios where one wants to avoid sending secrets, one wants to

send values derived from the secret that prove to the receiver that the

sender is in possession of the secret without actually sending the

secret.

For example, a client can establish a secret using an out-of-band

mechanism with a resource server. As part of this out-of-band

communication the client and resource server agree that the client will

authenticate itself using an assertion with agreed upon parameters that

will be signed by the provisioned secret. Later on, the client might

send an access token request to the token endpoint for the resource

server that includes an authorization code, as well as a

client_assertion that is signed with the previously agreed key and

parameters. The client_assertion proves to the token endpoint the

identity of the client and the authorization code provides the link to

the end-user authorization.

The following section defines the use of assertions as client

credentials as an extension of Section 3.2 of OAuth 2.0 [I-

D.ietf.oauth-v2]. When using assertions as client credentials, the

client MUST include the assertion using the following HTTP request

parameters:

REQUIRED. The client identifier as described in Section 3 of

OAuth 2.0 [I-D.ietf.oauth-v2].

REQUIRED. The format of the assertion as defined

by the authorization server. The value MUST be an absolute URI.

REQUIRED. The assertion being used to authenticate

the client. Specific serialization of the assertion is defined by

client_id

grant_type

assertion

profile documents. The serialization MUST be encoded for transport

within HTTP forms. It is RECOMMENDED that base64url be used.

The following non-normative example demonstrates a client

authenticating using an assertion during a Authorization Code Access

Token Request as defined in Section 4.1.3 of OAuth 2.0 [I-D.ietf.oauth-

v2]. (line breaks are for display purposes only):

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&

code=i1WsRn1uB1&

client_id=s6BhdRkqt3&

client_assertion_type=urn%3Aoasis%3Anames%sAtc%3ASAML%3A2.0%3Aassertion&

client_assertion=PHNhbWxwOl...[omitted for brevity]...ZT

The client MUST NOT include the client_credential using more than one

mechanism. Token endpoints can differentiate between client assertion

credentials and other client credential types by looking for the

presence of the client_assertion and client_assertion_type attributes

which will only be present with client assertion credentials. See

section 7 for more details

4.2. Using Assertions as Authorization Grants

An assertion can be used to request an access token when a client

wishes to utilize an existing trust relationship. This may be done

through the semantics of (and a digital signature/HMAC calculated over)

the assertion, without direct user approval at the authorization

server, and expressed through an extension authorization grant type.

The processes by which authorization is previously granted, and by

which the client obtains the assertion prior to exchanging it with the

authorization server, are out of scope.

The following defines the use of assertions as authorization grants as

an extension of OAuth 2.0 [I-D.ietf.oauth-v2], section 4.5. When using

assertions as authorization grants, the client MUST include the

assertion using the following HTTP request parameters:

REQUIRED. The client identifier as described in Section 3 of

OAuth 2.0 [I-D.ietf.oauth-v2].

REQUIRED. The format of the assertion as defined by the

authorization server. The value MUST be an absolute URI.

REQUIRED. The assertion being used as an authorization

grant. Specific serialization of the assertion is defined by profile

documents. The serialization MUST be encoded for transport within

HTTP forms. It is RECOMMENDED that base64url be used.

scope

Issuer

Principal

OPTIONAL. The request MAY contain a "scope" parameter. The scope

of the access request is expressed as a list of space-delimited

strings. The value is defined by the authorization server. If the

value contains multiple space- delimited strings, their order does

not matter, and each string adds an additional access range to the

requested scope. When exchanging assertions for access_tokens, the

authorization for the token has been previously granted through some

other mechanism. As such, the requested scope SHOULD be equal or

lesser than the scope originally granted to the authorized accessor.

If the scope parameter and/or value is omitted, the scope SHOULD be

treated as equal to the scope originally granted to the authorized

accessor. The Authorization Server SHOULD limit the scope of the

issued access token to be equal or lesser than the scope originally

granted to the authorized accessor.

The following non-normative example demonstrates an assertion being

used as an authorization grant. (line breaks are for display purposes

only):

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

client_id=s6BhdRkqt3&

grant_type=urn%3Aoasis%3Anames%sAtc%3ASAML%3A2.0%3Aassertion&

assertion=PHNhbWxwOl...[omitted for brevity]...ZT4

5. Assertion Content and Proccessing

This section provides a general content and processing model for the

use of assertions in OAuth 2.0 [I-D.ietf.oauth-v2].

5.1. Assertion Metamodel

The following are entities and metadata involved in the issuance,

exchange and processing of assertions in OAuth 2.0. These are general

terms, abstract from any particular assertion format. Mappings of these

terms into specific representations are provided by profiles of this

specification.

The unique identifier for the entity that issued the assertion.

Generally this is the entity that holds the keying material used to

generate the assertion. In some use-cases Issuers may be either

OAuth Clients (when assertions are self-asserted) or a Security

Token Service (an entity capable of issuing, renewing, transforming

and validating of security tokens).

A unique identifier for the subject of the assertion. When

using assertions for client authentication, the Principal SHOULD be

Audience

Issued At

Expires At

Assertion ID

the client_id of the OAuth client. When using assertions as an

authorization grant, the Principal MUST identify an authorized

accessor for whom the access token is being requested (typically the

resource owner, or an authorized delegate).

A URI that identifies the Authorization Server as the

intended audience. The audience SHOULD be the URL of the Token

Endpoint as defined in section 2.2 of OAuth 2.0 [I-D.ietf.oauth-v2].

The time at which the assertion was issued. While the

serialization may differ by assertion format, this is always

expressed in UTC with no time zone component.

The time at which the assertion expires. While the

serialization may differ by assertion format, this is always

expressed in UTC with no time zone component.

A nonce or unique identifier for the assertion. The

Assertion ID may be used by implementations requiring message de-

duplication for one-time use assertions. Any entity that assigns an

identifier MUST ensure that there is negligible probability that

that entity or any other entity will accidentally assign the same

identifier to a different data object.

5.2. General Assertion Format and Processing Rules

The following are general format and processing rules for the use of

assertions in OAuth:

The assertion MUST contain an Issuer. The Issuer MUST identify

the entity that issued the assertion as recognized by the

Authorization Server. If an assertion is self-asserted, the

Issuer SHOULD be the client_id.

The assertion SHOULD contain a Principal. The Principal MUST

identify an authorized accessor for whom the access token is

being requested (typically the resource owner, or an authorized

delegate) When the client is acting on behalf of itself, the

Principal SHOULD be the client_id.

The assertion MUST contain an Audience that identifies the

Authorization Server as the intended audience. The Authorization

Server MUST verify that it is an intended audience for the

assertion. The Audience SHOULD be the URL of the Authorization

Server's Token Endpoint.

The assertion MUST contain an Expires At entity that limits the

time window during which the assertion can be used. The

authorization server MUST verify that the expiration time has not

passed, subject to allowable clock skew between systems. The

*

*

*

*

authorization server SHOULD reject assertions with an Expires At

attribute value that is unreasonably far in the future.

The assertion MAY contain an Issued At entity containing the UTC

time at which the assertion was issued.

The assertion MAY contain a Assertion ID. An Authorization Server

MAY dictate that Assertion ID is mandatory.

The Authorization Server MUST validate the assertion in order to

establish a mapping between the Issuer and the secret used to

generate the assertion. The algortihm used to validate the

assertion, and the mechanism for designating the secret used to

generate assertion is out-of-scope for this specification.

6. Specific Assertion Format and Processing Rules

The following clarifies the format and processing rules defined in

section 4 and section 5 for a number of common use-cases:

6.1. Client authentication

When a client authenticates to a token service using an assertion, it

SHOULD do so according to section 4.1. The following format and

processing rules SHOULD be applied:

The client_id HTTP parameter MUST identify the client to the

authorization server.

The client_assertion_type HTTP parameter MUST identify the

assertion format being used for authentication.

The client_assertion HTTP parameter MUST contain the serialized

assertion as in a format indicated by the client_assertion_type

parameter.

The Issuer of the assertion MUST identify the entity that issued

the assertion as recognized by the Authorization Server. If the

assertion is self-asserted, the Issuer SHOULD be the client_id.

The Principal MUST identify an authorized accessor. If the

assertion is self-issued, the Principal SHOULD be the client_id.

The Audience of the assertion MUST identify the Authorization

Server and SHOULD be the URL of the Token Endpoint.

The Authorization Server MUST validate the assertion in order to

establish a mapping between the Issuer and the secret used to

generate the assertion.

*

*

*

*

*

*

*

*

*

*

The following non-normative example demonstrates the use of a client

authenticating using an assertion during a Authorization Code Access

Token Request as defined in Section 4.1.3 of OAuth 2.0 [I-D.ietf.oauth-

v2]. (line breaks are for display purposes only):

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&

code=i1WsRn1uB1&

client_id=s6BhdRkqt3&

client_assertion_type=urn%3Aoasis%3Anames%sAtc%3ASAML%3A2.0%3Aassertion&

client_assertion=PHNhbWxwOl...[omitted for brevity]...ZT4

6.2. Client acting on behalf of itself

When a client is accessing resources on behalf of itself, it SHOULD do

so in a manner analagous to the Client Credentials flow defined in

Section 4.4 of OAuth 2.0 [I-D.ietf.oauth-v2]. This is a special case

that combines both the authentication and authorization grant usage

patterns. In this case, the interactions with the authorization server

SHOULD be treated as using an assertion for Client Authentication

according to section 4.1, with the addition of a grant_type parameter.

The following format and processing rules SHOULD be applied.

The client_id HTTP parameter MUST identify the client to the

authorization server.

The grant_type HTTP request parameter MUST be

"client_credentials".

The client_assertion_type HTTP parameter MUST identify the

assertion format.

The client_assertion HTTP parameter MUST contain the serialized

assertion as in a format indicated by the client_assertion_type

parameter.

The Issuer of the assertion MUST identify the entity that issued

the assertion as recognized by the Authorization Server. If the

assertion is self-asserted, the Issuer SHOULD be the client_id.

If the assertion was issued by a Security Token Service, the

Issuer SHOULD identify the STS as recognized by the Authorization

Server.

The Principal SHOULD be the client_id.

The Audience of the assertion MUST identify the Authorization

Server and SHOULD be the URL of the Token Endpoint.

*

*

*

*

*

*

*

The Authorization Server MUST validate the assertion in order to

establish a mapping between the Issuer and the secret used to

generate the assertion.

The following non-normative example demonstrates the use of a sample

assertion being used for a Client Credentials Access Token Request as

defined in Section 4.4.2 of OAuth 2.0 [I-D.ietf.oauth-v2]. (line breaks

are for display purposes only):

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

client_id=s6BhdRkqt3&

grant_type=client_credentials&

client_assertion_type=urn%3Aoasis%3Anames%sAtc%3ASAML%3A2.0%3Aassertion&

client_assertion=PHNhbWxwOl...[omitted for brevity]...ZT4%3D

6.3. Client acting on behalf of a user

When a client is accessing resources on behalf of a user, it SHOULD be

treated as using an assertion as an Authorization Grant according to

section 4.2. The following format and processing rules SHOULD be

applied:

The client_id HTTP parameter MUST identify the client to the

authorization server.

The grant_type HTTP request parameter MUST indicate the assertion

format.

The assertion HTTP parameter MUST contain the serialized

assertion as in a format indicated by the grant_type parameter.

The Issuer of the assertion MUST identify the entity that issued

the assertion as recognized by the Authorization Server. If the

assertion is self-asserted, the Issuer SHOULD be the client_id.

If the assertion was issued by a STS, the Issuer SHOULD identify

the STS as recognized by the Authorization Server.

The Principal MUST identify an authorized accessor for whom the

access token is being requested (typically the resource owner, or

an authorized delegate).

The Audience of the assertion MUST identify the Authorization

Server and MAY be the URL of the Token Endpoint.

The Authorization Server MUST validate the assertion in order to

establish a mapping between the Issuer and the secret used to

generate the assertion.

*

*

*

*

*

*

*

*

The following non-normative example demonstrates the use of a client

authenticating using an assertion during a Authorization Code Access

Token Request as defined in Section 4.1.3 of OAuth 2.0 [I-D.ietf.oauth-

v2]. (line breaks are for display purposes only):

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

client_id=s6BhdRkqt3&

grant_type=urn%3Aoasis%3Anames%sAtc%3ASAML%3A2.0%3Aassertion&

assertion=PHNhbWxwOl...[omitted for brevity]...ZT4%3D

6.4. Client acting on behalf of an anonymous user

When a client is accessing resources on behalf of an anonymous user,

the following format and processing rules SHOULD be applied:

The client_id HTTP parameter MUST identify the client to the

authorization server.

The grant_type HTTP request parameter MUST indicate the assertion

format.

The assertion HTTP parameter MUST contain the serialized

assertion as in a format indicated by the grant_type parameter.

The Issuer of the assertion MUST identify the entity that issued

the assertion as recognized by the Authorization Server. If the

assertion is self-asserted, the Issuer SHOULD be the client_id.

If the assertion was issued by a Security Token Service, the

Issuer SHOULD identify the STS as recognized by the Authorization

Server.

The Principal SHOULD indicate to the Authorization Server that

the client is acting on-behalf of an anonymous user as defined by

the Authorization Server. It is implied that authorizaion is

based upon additional criteria, such as additional attributes or

claims provided in the assertion. For example, a client may

present an assertion from a trusted issuer asserting that the

bearer is over 18 via an included claim. In this case, no

additional information about the user's identity is included yet

all the data needed to issue an access token is present.

The Audience of the assertion MUST identify the Authorization

Server and MAY be the URL of the Token Endpoint.

The Authorization Server MUST validate the assertion in order to

establish a mapping between the Issuer and the secret used to

generate the assertion.

*

*

*

*

*

*

*

7. Error Responses

If an assertion is not valid or has expired, the Authorization Server

MUST construct an error response as defined in OAuth 2.0 [I-

D.ietf.oauth-v2]. The value of the error parameter MUST be the

"invalid_grant" error code. The authorization server MAY include

additional information regarding the reasons the assertion was

considered invalid using the "error_description" or "error_uri"

parameters.

For example:

HTTP/1.1 400 Bad Request

Content-Type: application/json

Cache-Control: no-store

{

"error":"invalid_grant",

"error_description":"Audience validation failed"

}

A client MUST NOT include client credentials using more than one

mechanism. Token endpoints can differentiate between assertion based

credentials and other client credential types by looking for the

presence of the client_assertion and client_assertion_type attributes

which will only be present when using assertions for client

authentication. If more than one mechanism is used, the Authorization

Server MUST construct an error response as defined in OAuth 2.0 [I-

D.ietf.oauth-v2]. The value of the error parameter MUST be the

“invalid_client” error code. The authorization server MAY include

additional information regarding the reasons the client was considered

invalid using the "error_description" or "error_uri" parameters.

For example:

HTTP/1.1 400 Bad Request

Content-Type: application/json

Cache-Control: no-store

{

"error":"invalid_client"

"error_description":"Multiple Credentials Not Allowed"

}

8. Security Considerations

No additional considerations beyond those described within the OAuth

2.0 Protocol Framework [I-D.ietf.oauth-v2].

9. Acknowledgements

The authors wish to thank the following people that have influenced or

contributed this specification: Paul Madsen, Eric Sachs, Jian Cai, Tony

Nadlin, the authors of OAuth WRAP, and those in the OAuth 2 working

group.

10. References

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997.

[I-

D.ietf.oauth-

v2]

Hammer-Lahav, E., "The OAuth 2.0 Authorization

Protocol", April 2011.

Authors' Addresses

Chuck Mortimore editor Mortimore Salesforce.com EMail:

cmortimore@salesforce.com

Michael B. Jones Jones Microsoft EMail: mbj@microsoft.com

Brian Campbell Campbell Ping Identity EMail:

bcampbell@pingidentity.com

Yaron Goland Goland Microsoft EMail: yarong@microsoft.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:cmortimore@salesforce.com
mailto:mbj@microsoft.com
mailto:bcampbell@pingidentity.com
mailto:yarong@microsoft.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Requirements Notation and Conventions
	2. Overview
	3. Authentication vs Authorization
	4. Transporting Assertions
	4.1. Using Assertions for Client Authentication
	4.2. Using Assertions as Authorization Grants
	5. Assertion Content and Proccessing
	5.1. Assertion Metamodel
	5.2. General Assertion Format and Processing Rules
	6. Specific Assertion Format and Processing Rules
	6.1. Client authentication
	6.2. Client acting on behalf of itself
	6.3. Client acting on behalf of a user
	6.4. Client acting on behalf of an anonymous user
	7. Error Responses
	8. Security Considerations
	9. Acknowledgements
	10. References
	Authors' Addresses

