E. Hammer-Lahav, TOC

Network Working Group Ed

Internet-Draft Yahoo!

Intended status: Standards

July 06, 2009
Track y

Expires: January 7, 2010

The OAuth Protocol: Authentication
draft-ietf-oauth-authentication-01

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 7, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This document specifies the OAuth protocol authentication method. OAuth
allows clients to access server resources on behalf of another party
(such a different client or an end user). This document defines an HTTP
authentication method which supports the ability to include two sets of
credential with each request, one identifying the client and another
identifying the resource owner on whose behalf the request is made.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

Introduction

1.1. Terminology

Notational Conventions

Authenticated Requests

Protocol Parameters

Nonce and Timestamp

Signature

6.1. Signature Base String

.1.1. Collect Request Parameters

6.1.2. Normalize Request Parameters

6.1.3. Construct Base String URI

6.1.4. Concatenate Base String Elements
6.2. HMAC-SHA1

6.3 RSA-SHA1

6.4. PLAINTEXT

Parameter Transmission
7.1. Authorization Header
7.2. Form-Encoded Body
7.3. Request URI Query
Server Response

Percent Encoding

IANA Considerations

Security Considerations

11.1. RSA-SHA1 Signature Method

11.2. PLAINTEXT Signature Method

11.3. Confidentiality of Requests

11.4. Spoofing by Counterfeit Servers
11.5. Proxying and Caching of Authenticated Content
11.6. Plaintext Storage of Credentials
11.7. Secrecy of the Client Credentials
11.8. Cryptographic Attacks

11.9. Signature Base String Limitations
Appendix A. Examples
Appendix B. Acknowledgments
Appendix C. Document History
12. References

12.1. Normative References
12.2. Informative References

8§ Author's Address

e EEE R

(0]

™

R o |
FlePF

TOC

1. Introduction

The OAuth protocol provides a method for servers to allow third-party
access to protected resources, without forcing their end users to share
their credentials. This pattern is common among services that allow
third-party developers to extend the service functionality, by building
applications using an open API.

For example, a web user (resource owner) can grant a printing service
(client) access to its private photos stored at a photo sharing service
(server), without sharing its credentials with the printing service.
Instead, the user authenticates directly with the photo sharing service
and issue the printing service delegation-specific credentials.

OAuth introduces a third role to the traditional client-server
authentication model: the resource owner. In the OAuth model, the
client requests access to resources hosted by the server but not
controlled by the client, but by the resource owner. In addition, OAuth
allows the server to verify not only the resource owner's credentials,
but also those of the client making the request.

In order for the client to access resources, it first has to obtain
permission from the resource owner. This permission is expressed in the
form of a token and matching shared-secret. The purpose of the token is
to substitute the need for the resource owner to share its server
credentials (usually a username and password pair) with the client.
Unlike server credentials, tokens can be issued with a restricted scope
and limited lifetime.

This specification consists of two parts. This document defines a
method for making authenticated HTTP requests using two sets of
credentials, one identifying the client making the request, and a
second identifying the resource owner on whose behalf the request is
being made.

[draft-ietf-oauth-web-delegation] (Hammer-Lahav, E., Ed., “The OAuth
Protocol: Web Delegation,” .) defines a redirection-based user agent
process for end users to authorize client access to their resources, by
authenticating directly with the server and provisioning tokens to the
client for use with the authentication method.

1.1. Terminology TOC

client An HTTP client (per [RFC2616] (Fielding, R., Gettys, J.,
Moqul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-
Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.))
capable of making OAuth-authenticated requests.

server An HTTP server (per [RFC2616] (Fielding, R., Gettys, J.,
Moqul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-

Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.))
capable of accepting OAuth-authenticated requests.

protected resource An access-restricted resource (per [RFC2616]
(Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol --
HTTP/1.4,” June 1999.)) which can be obtained from the server
using an OAuth-authenticated request.

resource owner An entity capable of accessing and controlling
protected resources by using credentials to authenticate with the
server.

token An unique identifier issued by the server and used by the
client to associate authenticated requests with the resource
owner whose authorization is requested or has been obtained by
the client. Tokens have a matching shared-secret that is used by
the client to establish its ownership of the token, and its
authority to represent the resource owner.

2. Notational Conventions TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY'", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

3. Authenticated Requests TOC

The HTTP authentication methods defined by [RFC2617] (Franks, J.,
Hallam-Baker, P., Hostetler, J., lLawrence, S., Leach, P., Luotonen, A.,
and L. Stewart, “HTTP Authentication: Basic and Digest Access
Authentication,” June 1999.), enable clients to make authenticated HTTP
requests. Clients using these methods gain access to protected resource
by using their server credentials (typically a username and password
pair), which allows the server to verify their authenticity. Using
these methods for delegation requires the client to pretend it was the
resource owner.

OAuth provides a method designed to include two sets of credentials
with each request, one to identify the client, and another to identify
the resource owner. Before a client can make authenticated requests on
behalf of the resource owner, it must obtain a token authorized by the

resource owner. [draft-ietf-oauth-web-delegation] (Hammer-Lahav, E.,
Ed., “The OAuth Protocol: Web Delegation,” .) provides one such method
in which the client can obtain a token authorized by the resource
owner .

The client credentials take the form of a unique identifier, and an
associated share-secret or RSA key pair. Prior to making authenticated
requests, the client establishes a set of credentials with the server.
The process and requirements for provisioning these are outside the
scope of this specification. Implementers are urged to consider the
security ramification of using client credentials, some of which are
described in Section 11.7 (Secrecy of the Client Credentials).

Making authenticated requests requires prior knowledge of the server's
configuration. OAuth provides multiple methods for including protocol
parameters in requests (Section 7 (Parameter Transmission)), as well as
multiple methods for the client to prove its rightful ownership of the
credentials used (Section 6 (Signature)). The way in which clients
discovery the required configuration is outside the scope of this
specification.

4. Protocol Parameters TOC

An OAuth-authenticated request includes several protocol parameters.
Each parameter name begins with the oauth_ prefix, and the parameter
names and values are case sensitive. Protocol parameters MUST NOT
appear more than once per request. The parameters are:

oauth_consumer_key The identifier portion of the client credentials
(equivalent to a username). The parameter name reflects a
deprecated term (Consumer Key) used in previous revisions of the
specification, and has been retained to maintain backward
compatibility.

oauth_token The token value used to associate the request with the
resource owner. If the request is not associated with a resource
owner (no token), clients MAY omit the parameter.

oauth_signature_method The name of the signature method used by the
client to sign the request, as defined in Section 6 (Signature).

oauth_signature The signature value as defined in Section 6

(Signature).

oauth_timestamp The timestamp value as defined in Section 5 (Nonce
and Timestamp).

oauth_nonce The nonce value as defined in Section 5 (Nonce and

Timestamp).

oauth_version
The protocol version. If omitted, the protocol
version defaults to 1.0.

Server-specific request parameters MUST NOT begin with the oauth_
prefix.

5. Nonce and Timestamp TOC

Unless otherwise specified by the server, the timestamp is expressed in
the number of seconds since January 1, 1970 00:00:00 GMT. The timestamp
value MUST be a positive integer and MUST be equal or greater than the
timestamp used in previous requests with the same client credentials
and token credentials combination.

A nonce is a random string, uniquely generated to allows the server to
verify that a request has never been made before and helps prevent
replay attacks when requests are made over a non-secure channel. The
nonce value MUST be unique across all requests with the same timestamp,
client credentials, and token combinations.

To avoid the need to retain an infinite number of nonce values for
future checks, servers MAY choose to restrict the time period after
which a request with an old timestamp is rejected. Server applying such
restriction SHOULD provide a way for the client to sync its clock with
the server's clock.

6. Signature TOC

OAuth-authenticated requests can have two sets of credentials included
via the oauth_consumer_key parameter and the oauth_token parameter. In
order for the server to verify the authenticity of the request and
prevent unauthorized access, the client needs to prove it is the
rightful owner of the credentials. This is accomplished using the
shared-secret (or RSA key) part of each set of credentials.

OAuth provides three methods for the client to prove its rightful
ownership of the credentials: HMAC-SHA1l, RSA-SHA1l, and PLAINTEXT. These
methods are generally referred to as signature methods, even though
PLAINTEXT does not involve a signature. In addition, RSA-SHAl utilizes
an RSA key instead of the shared-secrets associated with the client
credentials.

OAuth does not mandate a particular signature method, as each
implementation can have its own unique requirements. Servers are free
to implement and document their own custom methods. Recommending any
particular method is beyond the scope of this specification.

The client declares which signature method is used via the
oauth_signature_method parameter. It then generates a signature (or a
sting of an equivalent value), and includes it in the oauth_signature
parameter. The server verifies the signature as specified for each
method.

The signature process does not change the request or its parameter,
with the exception of the oauth_signature parameter.

6.1. Signature Base String TOC

The signature base string is a consistent, reproducible concatenation
of several request elements into a single string. The string is used as
an input to the HMAC-SHA1l and RSA-SHAl signature methods, or potential
future extension.

The signature base string does not cover the entire HTTP request. Most
notably, it does not include the entity-body in most requests, nor does
it include most HTTP entity-headers. The importance of the signature
base string scope is that the authenticity of the excluded components
cannot be verified using the signature.

6.1.1. Collect Request Parameters TOC
The signature base string includes a specific set of request
parameters. In order for the parameter to be included in the signature
base string, they MUST be used in their unencoded form.

For example, the URI:

http://example.com/request?b5=%3D%253D&a3=a&c%40=&a2=r%20b&c2&a3=2q

contains the following raw-form parameters:

Name Value

b5 =%3D
a3 a
c@
a2 rb
c2
a3 2q
Note that the value of b5 is =%3D and not ==. Both c@ and c2 have empty

values.

The request parameters, which include both protocol parameters and
request-specific parameters, are extracted and restored to their
original unencoded form, from the following sources:

*The OAuth HTTP Authorization header (Authorization Header). The
realm parameter MUST be excluded if present.

*The HTTP request entity-body, but only if:
-The entity-body is single-part.

-The entity-body follows the encoding requirements of the
application/x-www-form-urlencoded content-type as defined by
[W3C.REC-htm140-19980424] (Hors, A., Jacobs, I., and D.
Raggett, “HTML 4.0 Specification,” April 1998.).

-The HTTP request entity-header includes the Content-Type
header set to application/x-www-form-urlencoded.

*The query component of the HTTP request URI as defined by
[RFC3986] (Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.) section 3.

The oauth_signature parameter MUST be excluded if present.

In many cases, clients have direct access to the parameters in their
original, unencoded form. In such cases, clients SHOULD use the
unencoded values instead of extracting them. This option is not
available for servers when validating incoming requests. Even though
the parameters are encoded again in the process, they are decoded
because each of the three sources uses a different encoding algorithm.
The output of this step is a list of unencoded parameter name / value
pairs.

6.1.2. Normalize Request Parameters TOC

The parameter collected in Section 6.1.1 (Collect Request Parameters)
are normalized into a single string as follows:

1. First, the name and value of each parameter are encoded
(Percent Encoding).

2. The parameters are sorted by name, using lexicographical byte
value ordering. If two or more parameters share the same name,
they are sorted by their value.

3. The name of each parameter is concatenated to its corresponding
value using an = character (ASCII code 61) as separator, even
if the value is empty.

4. The sorted name / value pairs are concatenated together into a
single string by using an & character (ASCII code 38) as
separator.

For example, the list of parameters from the previous section would be
normalized as follows:
Encoded:

Name Value
b5 %3D%253D

a3 a
Cc%40
a2 r%20b
c2
a3 2q
Sorted:

Name Value

a2 r%20b

a3 2q

a3 a

b5 %3D%253D
Cc%40

c2

Concatenated Pairs:

Name=Value
a2=r%20b
a3=2q
a3=a
b5=%3D%253D
C%40=
c2=

And concatenated together into a single string:

a2=r%20b&a3=2(&a3=a&b5=%3D%253D&CH4O=8C2=

6.1.3. Construct Base String URI TOC

The signature base string incorporates the scheme, authority, and path
of the request URI as defined by [RFC3986] (Berners-Lee, T., Fielding,
R., and L. Masinter, “Uniform Resource Identifier (URI): Generic
Syntax,” January 2005.) section 3. The request URI query component is
included through the normalized parameters string (Normalize Request
Parameters), and the fragment component is excluded.

This is done by constructing a base string URI representing the request
without the query or fragment components. The base string URI is
constructed as follows:

1. The scheme and host MUST be in lowercase.

2. The host and port values MUST match the content of the HTTP
request Host header, if present. If the Host header is not
present, the client MUST use the hostname and port used to make
the request. Servers SHOULD remove potential ambiguity in such
cases by specifying the expected host value.

3. The port MUST be included if it is not the default port for the
scheme, and MUST be excluded if it is the default.
Specifically, the port MUST be excluded when an http request
uses port 80 or when an https request uses port 443. All other
non-default port numbers MUST be included.

4. If the URI includes an empty path, it MUST be included as /.

For example:

The request URI Is included in base string as
HTTP://EXAMPLE.com:80/r/x?1d=123 http://example.com/r/x
https://example.net:80807q=1#top https://example.net:8080/

TOC

6.1.4. Concatenate Base String Elements

Finally, the signature base string is put together by concatenating its
elements together. The elements MUST be concatenated in the following
order:

1. The HTTP request method in uppercase. For example: HEAD, GET,
POST, etc. If the request uses a custom HTTP method, it MUST
be encoded (Percent Encoding).

2. An & character (ASCII code 38).

3. The base string URI from Section 6.1.3 (Construct Base String
URI), after being encoded (Percent Encoding).

4. An & character (ASCII code 38).

5. The normalized request parameters string from Section 6.1.2
(Normalize Request Parameters), after being encoded (Percent

Encoding).

6.2. HMAC-SHA1 T0C

The HMAC-SHA1 signature method uses the HMAC-SHA1l signature algorithm
as defined in [RFC2104] (Krawczyk, H., Bellare, M., and R. Canetti,
“HMAC: Keyed-Hashing for Message Authentication,” February 1997.):

digest = HMAC-SHA1 (key, text)
The HMAC-SHA1 function variables are used in following way:

text 1is set to the value of the signature base string from
Section 6.1.4 (Concatenate Base String Elements).

key 1is set to the concatenated values of:

1. The client shared-secret, after being encoded (Percent

Encoding).

2. An & character (ASCII code 38), which MUST be included
even when either secret is empty.

3. The token shared-secret, after being encoded (Percent

Encoding).

digest 1is used to set the value of the oauth_signature protocol
parameter, after the result octet string is base64-encoded per

[RFC2045] (Freed, N. and N. Borenstein, “Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet Message
Bodies,” November 1996.) section 6.8.

6.3. RSA-SHA1 TOC

The RSA-SHA1l signature method uses the RSASSA-PKCS1-v1_5 signature
algorithm as defined in [RFC3447] (Jonsson, J. and B. Kaliski, “Public-
Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1,” February 2003.) section 8.2 (also known as PKCS#1), using
SHA-1 as the hash function for EMSA-PKCS1-v1_5. To use this method, the
client MUST have established client credentials with the server which
included its RSA public key (in a manner which is beyond the scope of
this specification).

The signature base string is signed using the client's RSA private key
per [RFC3447] (Jonsson, J. and B. Kaliski, “Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1,”
February 2003.) section 8.2.1:

S = RSASSA-PKCS1-V1_5-SIGN (K, M)
Where:
K 1is set to the client's RSA private key,

M 1is set to the value of the signature base string from
Section 6.1.4 (Concatenate Base String Elements), and

S 1is the result signature used to set the value of the
oauth_signature protocol parameter, after the result octet string
is base64-encoded per [RFC2045] (Freed, N. and N. Borenstein,
“Multipurpose Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies,” November 1996.) section 6.8.

The server verifies the signature per [RFC3447] (Jonsson, J. and B.
Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1,” February 2003.) section 8.2.2:

RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)
Where:
(n, e) 1is set to the client's RSA public key,

M 1is set to the value of the signature base string from
Section 6.1.4 (Concatenate Base String Elements), and

is set to the octet string value of the oauth_signature protocol
parameter received from the client.

6.4. PLAINTEXT TOC

The PLAINTEXT method does not employ a signature algorithm and does not
provide any security as it transmits secrets in the clear. It SHOULD
only be used with a transport-layer mechanisms such as TLS or SSL. It
does not use the signature base string.

The oauth_signature protocol parameter is set to the concatenated value
of:

1. The client shared-secret, after being encoded (Percent

Encoding).

2. An & character (ASCII code 38), which MUST be included even
when either secret is empty.

3. The token shared-secret, after being encoded (Percent

Encoding).

7. Parameter Transmission TOC

When making an OAuth-authenticated request, protocol parameters SHALL
be included in the request using one and only one of the following
locations, listed in order of decreasing preference:

1. The HTTP Authorization header as described in Section 7.1
(Authorization Header).

2. The HTTP request entity-body as described in Section 7.2 (Form-
Encoded Body).

3. The HTTP request URI query as described in Section 7.3 (Request
URI Query).

In addition to these three methods, future extensions may provide other
methods for including protocol parameters in the request.

T0C

7.1. Authorization Header

Protocol parameters can be transmitted using the HTTP Authorization
header as defined by [RFC2617] (Franks, J., Hallam-Baker, P.,
Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., and L. Stewart,
“HTTP Authentication: Basic and Digest Access Authentication,”

June 1999.) with the auth-scheme name set to OAuth (case-insensitive).
For example:

Authorization: OAuth realm="http://server.example.com/",
oauth_consumer_key="0685bd9184jfhqg22",
oauth_token="ad180jjd733klru7",
oauth_signature_method="HMAC-SHA1",
oauth_signature="w0JI09A2W5mFwDgiDVvZbTSMK%2FPY%3D",
oauth_timestamp="1371312600",
oauth_nonce="4572616e48616d6d65724c61686176",
oauth_version="1.0"

Protocol parameters SHALL be included in the Authorization header as
follows:

1. Parameter names and values are encoded per Parameter Encoding
(Percent Encoding).

2. Each parameter's name is immediately followed by an = character
(ASCII code 61), a " character (ASCII code 34), the parameter
value (MAY be empty), and another " character (ASCII code 34).

3. Parameters are separated by a , character (ASCII code 44) and
OPTIONAL linear whitespace per [RFC2617] (Franks, J., Hallam-
Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen,
A., and L. Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” June 1999.).

4. The OPTIONAL realm parameter MAY be added and interpreted per
[RFC2617] (Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L. Stewart, “HTTP
Authentication: Basic and Digest Access Authentication,”

June 1999.), section 1.2.

Servers MAY indicate their support for the OAuth auth-scheme by
returning the HTTP Www-Authenticate response header upon client
requests for protected resources. As per [RFC2617] (Franks, J., Hallam-
Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., and L.
Stewart, “HTTP Authentication: Basic and Digest Access Authentication,”
June 1999.) such a response MAY include additional HTTP Www-
Authenticate headers:

For example:

WwWW-Authenticate: OAuth realm="http://server.example.com/"

The realm parameter defines a protection realm per [RFC2617] (Franks,
J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen,

A., and L. Stewart, “HTTP Authentication: Basic and Digest Access
Authentication,” June 1999.), section 1.2.

7.2. Form-Encoded Body TOC

Protocol parameters can be transmitted in the HTTP request entity-body,
but only if the following REQUIRED conditions are met:

*The entity-body is single-part.

*The entity-body follows the encoding requirements of the
application/x-www-form-urlencoded content-type as defined by
[W3C.REC-htm140-19980424] (Hors, A., Jacobs, I., and D. Raggett,
“HTML 4.0 Specification,” April 1998.).

*The HTTP request entity-header includes the Content-Type header
set to application/x-www-form-urlencoded.

For example (line breaks are for display purposes only):

oauth_consumer_key=0685bd9184jfhq22&oauth_token=ad180jjd733kl1lr
u7&oauth_signature_method=HMAC-SHAl&oauth_signature=w0JI09A2W5
mMFwDgiDvZbTSMK%2FPY%3D&oauth_timestamp=137131200&oauth_nonce=4
572616e48616d6d65724c61686176&o0auth_version=1.0

The entity-body MAY include other request-specific parameters, in which
case, the protocol parameters SHOULD be appended following the request-
specific parameters, properly separated by an & character (ASCII code
38).

7.3. Request URI Query TOC

Protocol parameters can be transmitted by being added to the HTTP
request URI as a query parameter as defined by [RFC3986] (Berners-Lee,
T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” January 2005.) section 3.

For example (line breaks are for display purposes only):

GET /example/path?oauth_consumer_key=0685bd9184jfhq22&
oauth_token=ad180jjd733klru7&oauth_signature_method=HM
AC-SHAl1&oauth_signature=w0JI09A2W5mFwDgiDVvZbTSMK%2FPY%
3D&oauth_timestamp=137131200&oauth_nonce=4572616e48616
d6d65724c61686176&0auth_version=1.0 HTTP/1.1

The request URI MAY include other request-specific query parameters, in
which case, the protocol parameters SHOULD be appended following the
request-specific parameters, properly separated by an & character
(ASCII code 38).

8. Server Response TOC

Servers receiving an authenticated request MUST:

*Recalculate the request signature independently and compare it to
the value received from the client.

*Ensure that the nonce / timestamp / token combination has not
been used before, and MAY reject requests with stale timestamps.

*If a token is present, verify the scope and status of the client
authorization by using the token, and MAY choose to restrict
token usage to the client to which it was issued.

*Ensure that the protocol version used is 1.0.

If the request fails verification, the server SHOULD respond with the
appropriate HTTP response status code. The server MAY include further
details about why the request was rejected in the response body. The
following status codes SHOULD be used:

*400 (Bad Request)

-Unsupported parameters

-Unsupported signature method

-Missing parameters

-Duplicated protocol parameters
*401 (Unauthorized)

-Invalid client credentials

-Invalid or expired token

-Invalid signature

-Invalid or used nonce

9. Percent Encoding TOC
OAuth uses the following percent-encoding rules:

1. Text values are first encoded as UTF-8 octets per [RFC3629
(Yergeau, F., “UTF-8, a transformation format of ISO 10646,"
November 2003.) if they are not already. This does not include
binary values which are not intended for human consumption.

2. The values are then escaped using the [RFC3986] (Berners-Lee,
T., Fielding, R., and L. Masinter, “Uniform Resource Identifier

(URI): Generic Syntax,” January 2005.) percent-encoding (%XX)
mechanism as follows:

*Characters in the unreserved character set as defined by
[REC3986] (Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.) section 2.3 (ALPHA, DIGIT, "-", ".", "_",
"~'") MUST NOT be encoded.

*All other characters MUST be encoded.

*The two hexadecimal characters use to represent encoded
characters MUST be upper case.

10. IANA Considerations TOC

This memo includes no request to IANA.

11. Security Considerations TOC

As stated in [RFC2617] (Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L. Stewart, “HTTP
Authentication: Basic and Digest Access Authentication,” June 1999.),
the greatest sources of risks are usually found not in the core
protocol itself but in policies and procedures surrounding its use.

Implementers are strongly encouraged to assess how this protocol
addresses their security requirements.

11.1. RSA-SHA1 Signature Method TOC

When used with RSA-SHA1l signatures, the OAuth protocol does not use the
token shared-secret, or any provisioned client shared-secret. This
means the protocol relies completely on the secrecy of the private key
used by the client to sign requests.

11.2. PLAINTEXT Signature Method TOC

When used with the PLAINTEXT method, the protocol makes no attempts to
protect credentials from eavesdroppers or man-in-the-middle attacks.
The PLAINTEXT method is only intended to be used in conjunction with a
transport-layer security mechanism such as TLS or SSL which does
provide such protection.

11.3. Confidentiality of Requests TOC

While OAuth provides a mechanism for verifying the integrity of
requests, it provides no guarantee of request confidentiality. Unless
further precautions are taken, eavesdroppers will have full access to
request content. Servers should carefully consider the kinds of data
likely to be sent as part of such requests, and should employ
transport-layer security mechanisms to protect sensitive resources.

11.4. Spoofing by Counterfeit Servers TOC

OAuth makes no attempt to verify the authenticity of the server. A
hostile party could take advantage of this by intercepting the client's
requests and returning misleading or otherwise incorrect responses.
Service providers should consider such attacks when developing services
based on OAuth, and should require transport-layer security for any
requests where the authenticity of the server or of request responses
is an issue.

11.5. Proxying and Caching of Authenticated Content TOC

The HTTP Authorization scheme (Authorization Header) is optional.
However, [RFC2616] (Fielding, R., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext Transfer
Protocol -- HTTP/1.1,” June 1999.) relies on the Authorization and Www-
Authenticate headers to distinguish authenticated content so that it
can be protected. Proxies and caches, in particular, may fail to
adequately protect requests not using these headers.

For example, private authenticated content may be stored in (and thus
retrievable from) publicly-accessible caches. Servers not using the
HTTP Authorization header (Authorization Header) should take care to
use other mechanisms, such as the Cache-Control header, to ensure that
authenticated content is protected.

11.6. Plaintext Storage of Credentials TOC

The client shared-secret and token shared-secret function the same way
passwords do in traditional authentication systems. In order to compute
the signatures used in methods other than RSA-SHAl, the server must
have access to these secrets in plaintext form. This is in contrast,
for example, to modern operating systems, which store only a one-way
hash of user credentials.

If an attacker were to gain access to these secrets - or worse, to the
server's database of all such secrets - he or she would be able to
perform any action on behalf of any resource owner. Accordingly, it is
critical that servers protect these secrets from unauthorized access.

11.7. Secrecy of the Client Credentials TOC

In many cases, the client application will be under the control of
potentially untrusted parties. For example, if the client is a freely
available desktop application, an attacker may be able to download a
copy for analysis. In such cases, attackers will be able to recover the
client credentials.

Accordingly, servers should not use the client credentials alone to
verify the identity of the client. Where possible, other factors such
as IP address should be used as well.

TOC

11.8. Cryptographic Attacks

SHA-1, the hash algorithm used in HMAC-SHAl signatures, has been shown
(De Canniere, C. and C. Rechberger, “Finding SHA-1 Characteristics:
General Results and Applications,” .) [SHA1-CHARACTERISTICS] to have a
number of cryptographic weaknesses that significantly reduce its
resistance to collision attacks. Practically speaking, these weaknesses
are difficult to exploit, and by themselves do not pose a significant
risk to users of OAuth. They may, however, make more efficient attacks
possible, and NIST has announced (National Institute of Standards and
Technology, NIST., “NIST Brief Comments on Recent Cryptanalytic Attacks

on Secure Hashing Functions and the Continued Security Provided by
SHA-1, August, 2004.,” .) [SHA-COMMENTS] that it will phase out use of
SHA-1 by 2010. Servers should take this into account when considering
whether SHA-1 provides an adequate level of security for their
applications.

11.9. Signature Base String Limitations TOC

The signature base string has been designed to support the signature
methods defined in this specification. When designing additional
signature methods, the signature base string should be evaluated to
ensure compatibility with the algorithms used.

Since the signature base string does not cover the entire HTTP request,
such as most request entity-body, most entity-headers, and the order in
which parameters are sent, servers should employ additional mechanisms
to protect such elements.

Appendix A. Examples TOC
[[ToDO 1]
Appendix B. Acknowledgments TOC

This specification is directly based on the [OAuth Core 1.0 Revision A]

(OAuth, OCW., “OAuth Core 1.0,” .) community specification which was
the product of the OAuth community. OAuth was modeled after existing
proprietary protocols and best practices that have been independently
implemented by various web sites. This specification was orignially
authored by: Mark Atwood, Dirk Balfanz, Darren Bounds, Richard M.
Conlan, Blaine Cook, Leah Culver, Breno de Medeiros, Brian Eaton,

Kellan Elliott-McCrea, Larry Halff, Eran Hammer-Lahav, Ben Laurie,
Chris Messina, John Panzer, Sam Quigley, David Recordon, Eran Sandler,
Jonathan Sergent, Todd Sieling, Brian Slesinsky, and Andy Smith.

Appendix C. Document History TOC

[[To be removed by the RFC editor before publication as an RFC.]]
-01

*Moved all subsection from section 3 to the document root.

*Synced acknoledgments section with web-delegation draft.

-00

*Transitioned from the individual submission draft-hammer-oauth-02
to working group draft.

*Split draft-hammer-oauth-02 into two drafts, one dealing with
authentication (this draft) and another dealing with web
delegation draft-ietf-oauth-web-delegation.

12. References TOC

12.1. Normative References
TOC

[RFC2045] Freed, N. and N. Borenstein, “Multipurpose
Internet Mail Extensions (MIME) Part One: Format

of Internet Message Bodies,” RFC 2045,
November 1996 (TXT).

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti,
“HMAC: Keyed-Hashing for Message
Authentication,” RFC 2104, February 1997 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to
Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk,
H., Masinter, L., Leach, P., and T. Berners-Leeg,
“Hypertext Transfer Protocol -- HTTP/1.1,”
RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).

mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://www.rfc-editor.org/rfc/rfc2045.txt
mailto:hugo@watson.ibm.com
mailto:mihir@cs.ucsd.edu
mailto:canetti@watson.ibm.com
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://www.rfc-editor.org/rfc/rfc2104.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml

[RFC2617]

[RFC3447]

[RFC3629]

[RFC3986]

[W3C.REC-
htm140-19980424]

[draft-ietf-oauth-
web-delegation]

Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L.
Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” RFC 2617, June 1999
(TXT, HTML, XML).

Jonsson, J. and B. Kaliski, “Public-Key
Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1,”

RFC 3447, February 2003 (TXT).

Yergeau, F., “UTF-8, a transformation format of
ISO 10646,"” STD 63, RFC 3629, November 2003
(TXT).

Berners-lLee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT,
HTML, XML).

Hors, A., Jacobs, I., and D. Raggett, “HTML 4.0
Specification,” World Wide Web Consortium
Recommendation REC-html40-19980424, April 1998
(HTML) .

Hammer-Lahav, E., Ed., “The OAuth Protocol: Web
Delegation.”

12.2. Informative References

[OAuth Core 1.0
Revision A]
[SHA-COMMENTS]

[SHAL-
CHARACTERISTICS]

Author's Address

T0C

OAuth, OCW., “OAuth Core 1.0.”"

National Institute of Standards and Technology,
NIST., “NIST Brief Comments on Recent
Cryptanalytic Attacks on Secure Hashing
Functions and the Continued Security Provided by
SHA-1, August, 2004.."

De Canniere, C. and C. Rechberger, “Finding
SHA-1 Characteristics: General Results and

Applications.”

i

TOC
Eran Hammer-Lahav (editor)
Yahoo!

Email: eran@hueniverse.com

URI: http://hueniverse.com

mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://www.rfc-editor.org/rfc/rfc3447.txt
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/1998/REC-html40-19980424
mailto:eran@hueniverse.com
http://www.ietf.org/internet-drafts/draft-ietf-oauth-web-delegation-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-web-delegation-01.txt
http://oauth.net/core/1.0a
http://csrc.nist.gov/hash_standards_comments.pdf
http://csrc.nist.gov/hash_standards_comments.pdf
http://csrc.nist.gov/hash_standards_comments.pdf
http://csrc.nist.gov/hash_standards_comments.pdf
http://dx.doi.org/10.1007/11935230_1
http://dx.doi.org/10.1007/11935230_1
http://dx.doi.org/10.1007/11935230_1
mailto:eran@hueniverse.com
http://hueniverse.com

	The OAuth Protocol: Authenticationdraft-ietf-oauth-authentication-01
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction
	1.1. Terminology
	2. Notational Conventions
	3. Authenticated Requests
	4. Protocol Parameters
	5. Nonce and Timestamp
	6. Signature
	6.1. Signature Base String
	6.1.1. Collect Request Parameters
	6.1.2. Normalize Request Parameters
	6.1.3. Construct Base String URI
	6.1.4. Concatenate Base String Elements
	6.2. HMAC-SHA1
	6.3. RSA-SHA1
	6.4. PLAINTEXT
	7. Parameter Transmission
	7.1. Authorization Header
	7.2. Form-Encoded Body
	7.3. Request URI Query
	8. Server Response
	9. Percent Encoding
	10. IANA Considerations
	11. Security Considerations
	11.1. RSA-SHA1 Signature Method
	11.2. PLAINTEXT Signature Method
	11.3. Confidentiality of Requests
	11.4. Spoofing by Counterfeit Servers
	11.5. Proxying and Caching of Authenticated Content
	11.6. Plaintext Storage of Credentials
	11.7. Secrecy of the Client Credentials
	11.8. Cryptographic Attacks
	11.9. Signature Base String Limitations
	Appendix A. Examples
	Appendix B. Acknowledgments
	Appendix C. Document History
	12. References
	12.1. Normative References
	12.2. Informative References
	Author's Address

