
Open Authentication Protocol A. Parecki
Internet-Draft Okta
Intended status: Best Current Practice D. Waite
Expires: August 2, 2019 Ping Identity
 January 29, 2019

OAuth 2.0 for Browser-Based Apps
draft-ietf-oauth-browser-based-apps-00

Abstract

 OAuth 2.0 authorization requests from apps running entirely in a
 browser are unable to use a Client Secret during the process, since
 they have no way to keep a secret confidential. This specification
 details the security considerations that must be taken into account
 when developing browser-based applications, as well as best practices
 for how they can securely implement OAuth 2.0.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 2, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Parecki & Waite Expires August 2, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Notational Conventions 3
3. Terminology . 3
4. Overview . 3
5. First-Party Applications 4
6. Architectural Considerations 5
6.1. Apps Served from the Same Domain as the API 5
6.2. Browser-Based App with a Backend Component 5

7. Authorization Code Flow 6
 7.1. Initiating the Authorization Request from a Browser-Based
 Application . 6

7.2. Handling the Authorization Code Redirect 6
8. Refresh Tokens . 7
9. Security Considerations 7
9.1. Registration of Browser-Based Apps 7
9.2. Client Authentication 7
9.3. Client Impersonation 8
9.4. Cross-Site Request Forgery Protections 8
9.5. Authorization Server Mix-Up Mitigation 8
9.6. Cross-Domain Requests 9
9.7. Content-Security Policy 9
9.8. OAuth Implicit Grant Authorization Flow 9
9.8.1. Threat: Interception of the Redirect URI 10
9.8.2. Threat: Access Token Leak in Browser History 10
9.8.3. Threat: Manipulation of Scripts 10
9.8.4. Threat: Access Token Leak to Third Party Scripts . . 10
9.8.5. Countermeasures 11
9.8.6. Disadvantages of the Implicit Flow 11
9.8.7. Historic Note . 12

9.9. Additional Security Considerations 12
10. IANA Considerations . 12
11. References . 12
11.1. Normative References 12
11.2. Informative References 13

Appendix A. Server Support Checklist 13
Appendix B. Acknowledgements 13

 Authors' Addresses . 14

1. Introduction

 This specification describes the current best practices for
 implementing OAuth 2.0 authorization flows in applications running
 entirely in a browser.

Parecki & Waite Expires August 2, 2019 [Page 2]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

 For native application developers using OAuth 2.0 and OpenID Connect,
 an IETF BCP (best current practice) was published that guides
 integration of these technologies. This document is formally known
 as [RFC8252] or BCP 212, but nicknamed "AppAuth" after the OpenID
 Foundation-sponsored set of libraries that assist developers in
 adopting these practices.

 AppAuth steers developers away from performing user authorization via
 embedding user agents such as browser controls into native apps,
 instead insisting that an external agent (such as the system browser)
 be used. The RFC continues on to promote capabilities and
 supplemental specifications beyond the base OAuth 2.0 and OpenID
 Connect specifications to improve baseline security, such as
 [RFC7636], also known as PKCE.

 OAuth 2.0 for Browser-Based Apps addresses the similarities between
 implementing OAuth for native apps as well as browser-based apps, and
 includes additional considerations when running in a browser. This
 is primarily focused on OAuth, except where OpenID Connect provides
 additional considerations.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

3. Terminology

 In addition to the terms defined in referenced specifications, this
 document uses the following terms:

 "OAuth": In this document, "OAuth" refers to OAuth 2.0, [RFC6749].

 "Browser-based application": An application that runs entirely in a
 web browser, usually written in JavaScript, where the source code
 is downloaded from a domain prior to execution. Also sometimes
 referred to as a "single-page application", or "SPA".

4. Overview

 For authorizing users within a browser-based application, the best
 current practice is to

 o Use the OAuth 2.0 authorization code flow with the PKCE extension

 o Require the OAuth 2.0 state parameter

https://datatracker.ietf.org/doc/html/rfc8252
https://datatracker.ietf.org/doc/html/bcp212
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749

Parecki & Waite Expires August 2, 2019 [Page 3]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

 o Recommend exact matching of redirect URIs, and require the
 hostname of the redirect URI match the hostname of the URL the app
 was served from

 o Do not return access tokens in the front channel

 Previously it was recommended that browser-based applications use the
 OAuth 2.0 Implicit flow. That approach has several drawbacks,
 including the fact that access tokens are returned in the front-
 channel via the fragment part of the redirect URI, and as such are
 vulnerable to a variety of attacks where the access token can be
 intercepted or stolen. See Section 9.8 for a deeper analysis of
 these attacks and the drawbacks of using the Implicit flow in
 browsers, many of which are described by [oauth-security-topics].

 Instead, browser-based apps can perform the OAuth 2.0 authorization
 code flow and make a POST request to the token endpoint to exchange
 an authorization code for an access token, just like other OAuth
 clients. This ensures that access tokens are not sent via the less
 secure front-channel, and are only returned over an HTTPS connection
 initiated from the application. Combined with PKCE, this enables the
 authorization server to ensure that authorization codes are useless
 even if intercepted in transport.

5. First-Party Applications

 While OAuth and OpenID Connect were initially created to allow third-
 party applications to access an API on behalf of a user, they have
 both proven to be useful in a first-party scenario as well. First-
 party apps are applications created by the same organization that
 provides the API being accessed by the application.

 For example, a web email client provided by the operator of the email
 account, or a mobile banking application created by bank itself.
 (Note that there is no requirement that the application actually be
 developed by the same company; a mobile banking application developed
 by a contractor that is branded as the bank's application is still
 considered a first-party application.) The first-party app
 consideration is about the user's relationship to the application and
 the service.

 To conform to this best practice, first-party applications using
 OAuth or OpenID Connect MUST use an OAuth Authorization Code flow as
 described later in this document or use the OAuth Password grant.

 It is strongly RECOMMENDED that applications use the Authorization
 Code flow over the Password grant for several reasons. By
 redirecting to the authorization server, this provides the

Parecki & Waite Expires August 2, 2019 [Page 4]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

 authorization server the opportunity to prompt the user for multi-
 factor authentication options, take advantage of single-sign-on
 sessions, or use third-party identity providers. In contrast, the
 Password grant does not provide any built-in mechanism for these, and
 must be extended with custom code.

6. Architectural Considerations

 In some cases, it may make sense to avoid the use of a strictly
 browser-based OAuth application entirely, instead using an
 architecture that can provide better security.

6.1. Apps Served from the Same Domain as the API

 For simple system architectures, such as when the JavaScript
 application is served from the same domain as the API (resource
 server) being accessed, it is likely a better decision to avoid using
 OAuth entirely, and just use session authentication to communicate
 with the API.

 OAuth and OpenID Connect provide very little benefit in this
 deployment scenario, so it is recommended to reconsider whether you
 need OAuth or OpenID Connect at all in this case. Session
 authentication has the benefit of having fewer moving parts and fewer
 attack vectors. OAuth and OpenID Connect were created primarily for
 third-party or federated access to APIs, so may not be the best
 solution in a same-domain scenario.

6.2. Browser-Based App with a Backend Component

 To avoid the risks inherent in handling OAuth access tokens from a
 purely browser-based application, implementations may wish to move
 the authorization code exchange and handling of access and refresh
 tokens into a backend component.

 The backend component essentially becomes a new authorization server
 for the code running in the browser, issuing its own tokens (e.g. a
 session cookie). Security of the connection between code running in
 the browser and this backend component is assumed to utilize browser-
 level protection mechanisms. Details are out of scope of this
 document, but many recommendations can be found at the OWASP
 Foundation (https://www.owasp.org/).

 In this scenario, the backend component may be a confidential client
 which is issued its own client secret. Despite this, there are still
 some ways in which this application is effectively a public client,
 as the end result is the application's code is still running in the
 browser and visible to the user. Some authorization servers may have

https://www.owasp.org/

Parecki & Waite Expires August 2, 2019 [Page 5]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

 different policies for public and confidential clients, and this type
 of hybrid approach does not provide all the assurances of
 confidential clients that an authorization server is expecting.
 Authorization servers may wish to treat this type of deployment as a
 public client.

7. Authorization Code Flow

 Public browser-based apps needing user authorization create an
 authorization request URI with the authorization code grant type per

Section 4.1 of OAuth 2.0 [RFC6749], using a redirect URI capable of
 being received by the app.

7.1. Initiating the Authorization Request from a Browser-Based
 Application

 Public browser-based apps MUST implement the Proof Key for Code
 Exchange (PKCE [RFC7636]) extension to OAuth, and authorization
 servers MUST support PKCE for such clients.

 The PKCE extension prevents an attack where the authorization code is
 intercepted and exchanged for an access token by a malicious client,
 by providing the authorization server with a way to verify the same
 client instance that exchanges the authorization code is the same one
 that initiated the flow.

 Browser-based apps MUST use the OAuth 2.0 "state" parameter to
 protect themselves against Cross-Site Request Forgery and
 authorization code swap attacks and MUST use a unique value for each
 authorization request, and MUST verify the returned state in the
 authorization response matches the original state the app created.

7.2. Handling the Authorization Code Redirect

 Authorization servers SHOULD require an exact match of a registered
 redirect URI.

 If an authorization server wishes to provide some flexibility in
 redirect URI usage to clients, it MAY require that only the hostname
 component of the redirect URI match the hostname of the URL the
 application is served from.

 Authorization servers MUST support one of the two redirect URI
 validation mechanisms as described above.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7636

Parecki & Waite Expires August 2, 2019 [Page 6]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

8. Refresh Tokens

 Refresh tokens provide a way for applications to obtain a new access
 token when the initial access token expires. [oauth-security-topics]
 describes some additional requirements around refresh tokens on top
 of the recommendations of [RFC6749].

 For public clients, the risk of a leaked refresh token is much
 greater than leaked access tokens, since an attacker can potentially
 continue using the stoken refresh token to obtain new access without
 being detectable by the authorization server. Additionally, browser-
 based applications provide many attack vectors by which a refresh
 token can be leaked. As such, these applications are considered a
 higher risk for handling refresh tokens.

 Authorization servers SHOULD NOT issue refresh tokens to browser-
 based applications.

 If an authorization server does choose to issue refresh tokens to
 browser-based applications, then it MUST issue a new refresh token
 with every access token refresh response. Doing this mitigates the
 risk of a leaked refresh token, as a leaked refresh token can be
 detected if both the attacker and the legitimate client attempt to
 use the same refresh token. Authorization servers MUST follow the
 additional refresh token replay mitigation techniques described in
 [oauth-security-topics].

9. Security Considerations

9.1. Registration of Browser-Based Apps

 Browser-based applications are considered public clients as defined
 by section 2.1 of OAuth 2.0 [RFC6749], and MUST be registered with
 the authorization server as such. Authorization servers MUST record
 the client type in the client registration details in order to
 identify and process requests accordingly.

 Authorization servers MUST require that browser-based applications
 register one or more redirect URIs.

9.2. Client Authentication

 Since a browser-based application's source code is delivered to the
 end-user's browser, it cannot contain provisioned secrets. As such,
 a browser-based app with native OAuth support is considered a public
 client as defined by Section 2.1 of OAuth 2.0 [RFC6749].

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Parecki & Waite Expires August 2, 2019 [Page 7]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

 Secrets that are statically included as part of an app distributed to
 multiple users should not be treated as confidential secrets, as one
 user may inspect their copy and learn the shared secret. For this
 reason, and those stated in Section 5.3.1 of [RFC6819], it is NOT
 RECOMMENDED for authorization servers to require client
 authentication of browser-based applications using a shared secret,
 as this serves little value beyond client identification which is
 already provided by the client_id request parameter.

 Authorization servers that still require a statically included shared
 secret for SPA clients MUST treat the client as a public client, and
 not accept the secret as proof of the client's identity. Without
 additional measures, such clients are subject to client impersonation
 (see Section 9.3 below).

9.3. Client Impersonation

 As stated in Section 10.2 of OAuth 2.0 [RFC6749], the authorization
 server SHOULD NOT process authorization requests automatically
 without user consent or interaction, except when the identity of the
 client can be assured. Even when the user has previously approved an
 authorization request for a given client_id, the request SHOULD be
 processed as if no previous request had been approved, unless the
 identity of the client can be proven.

 If authorization servers restrict redirect URIs to a fixed set of
 absolute HTTPS URIs without wildcard domains, paths, or query string
 components, this exact match of registered absolute HTTPS URIs MAY be
 accepted by authorization servers as proof of identity of the client
 for the purpose of deciding whether to automatically process an
 authorization request when a previous request for the client_id has
 already been approved.

9.4. Cross-Site Request Forgery Protections

Section 5.3.5 of [RFC6819] recommends using the "state" parameter to
 link client requests and responses to prevent CSRF (Cross-Site
 Request Forgery) attacks. To conform to this best practice, use of
 the "state" parameter is REQUIRED, as described in Section 7.1.

9.5. Authorization Server Mix-Up Mitigation

 The security considerations around the authorization server mix-up
 that are referenced in Section 8.10 of [RFC8252] also apply to
 browser-based apps.

 Clients MUST use a unique redirect URI for each authorization server
 used by the application. The client MUST store the redirect URI

https://datatracker.ietf.org/doc/html/rfc6819#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819#section-5.3.5
https://datatracker.ietf.org/doc/html/rfc8252#section-8.10

Parecki & Waite Expires August 2, 2019 [Page 8]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

 along with the session data (e.g. along with "state") and MUST verify
 that the URI on which the authorization response was received exactly
 matches.

9.6. Cross-Domain Requests

 To complete the authorization code flow, the browser-based
 application will need to exchange the authorization code for an
 access token at the token endpoint. If the authorization server
 provides additional endpoints to the application, such as metadata
 URLs, dynamic client registration, revocation, introspection,
 discovery or user info endpoints, these endpoints may also be
 accessed by the browser-based app. Since these requests will be made
 from a browser, authorization servers MUST support the necessary CORS
 headers (defined in [Fetch]) to allow the browser to make the
 request.

 This specification does not include guidelines for deciding whether a
 CORS policy for the token endpoint should be a wildcard origin or
 more restrictive. Note, however, that the browser will attempt to
 GET or POST to the API endpoint before knowing any CORS policy; it
 simply hides the succeeding or failing result from JavaScript if the
 policy does not allow sharing. If POSTs in particular from
 unsupported single-page applications are to be rejected as errors per
 authorization server security policy, such rejection is typically
 done based on the Origin request header.

9.7. Content-Security Policy

 A browser-based application that wishes to use either long-lived
 refresh tokens or privileged scopes SHOULD restrict its JavaScript
 execution to a set of statically hosted scripts via a Content
 Security Policy ([CSP2]) or similar mechanism. A strong Content
 Security Policy can limit the potential attack vectors for malicious
 JavaScript to be executed on the page.

9.8. OAuth Implicit Grant Authorization Flow

 The OAuth 2.0 Implicit grant authorization flow (defined in
Section 4.2 of OAuth 2.0 [RFC6749]) works by receiving an access

 token in the HTTP redirect (front-channel) immediately without the
 code exchange step. In this case, the access token is returned in
 the fragment part of the redirect URI, providing an attacker with
 several opportunities to intercept and steal the access token.
 Several attacks on the implicit flow are described by [RFC6819] and
 [oauth-security-topics], not all of which have sufficient mitigation
 strategies.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819

Parecki & Waite Expires August 2, 2019 [Page 9]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

9.8.1. Threat: Interception of the Redirect URI

 If an attacker is able to cause the authorization response to be sent
 to a URI under his control, he will directly get access to the
 fragment carrying the access token. A method of performing this
 attack is described in detail in [oauth-security-topics].

9.8.2. Threat: Access Token Leak in Browser History

 An attacker could obtain the access token from the browser's history.
 The countermeasures recommended by [RFC6819] are limited to using
 short expiration times for tokens, and indicating that browsers
 should not cache the response. Neither of these fully prevent this
 attack, they only reduce the potential damage.

 Additionally, many browsers now also sync browser history to cloud
 services and to multiple devices, providing an even wider attack
 surface to extract access tokens out of the URL.

9.8.3. Threat: Manipulation of Scripts

 An attacker could modify the page or inject scripts into the browser
 via various means, including when the browser's HTTPS connection is
 being man-in-the-middled by for example a corporate network. While
 this type of attack is typically out of scope of basic security
 recommendations to prevent, in the case of browser-based apps it is
 much easier to perform this kind of attack, where an injected script
 can suddenly have access to everything on the page.

 The risk of a malicious script running on the page is far greater
 when the application uses a known standard way of obtaining access
 tokens, namely that the attacker can always look at the
 window.location to find an access token. This threat profile is very
 different compared to an attacker specifically targeting an
 individual application by knowing where or how an access token
 obtained via the authorization code flow may end up being stored.

9.8.4. Threat: Access Token Leak to Third Party Scripts

 It is relatively common to use third-party scripts in browser-based
 apps, such as analytics tools, crash reporting, and even things like
 a Facebook or Twitter "like" button. In these situations, the author
 of the application may not be able to be fully aware of the entirety
 of the code running in the application. When an access token is
 returned in the fragment, it is visible to any third-party scripts on
 the page.

https://datatracker.ietf.org/doc/html/rfc6819

Parecki & Waite Expires August 2, 2019 [Page 10]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

9.8.5. Countermeasures

 In addition to the countermeasures described by [RFC6819] and
 [oauth-security-topics], using the authorization code with PKCE
 avoids these attacks.

 When PKCE is used, if an authorization code is stolen in transport,
 the attacker is unable to do anything with the authorization code.

9.8.6. Disadvantages of the Implicit Flow

 There are several additional reasons the Implicit flow is
 disadvantageous compared to using the standard Authorization Code
 flow.

 o OAuth 2.0 provides no mechanism for a client to verify that an
 access token was issued to it, which could lead to misuse and
 possible impersonation attacks if a malicious party hands off an
 access token it retrieved through some other means to the client.

 o Returning an access token in the front channel redirect gives the
 authorization server little assurance that the access token will
 actually end up at the application, since there are many ways this
 redirect may fail or be intercepted.

 o Supporting the implicit flow requires additional code, more upkeep
 and understanding of the related security considerations, while
 limiting the authorization server to just the authorization code
 flow reduces the attack surface of the implementation.

 o If the JavaScript application gets wrapped into a native app, then
 [RFC8252] also requires the use of the authorization code flow
 with PKCE anyway.

 In OpenID Connect, the id_token is sent in a known format (as a JWT),
 and digitally signed. Performing OpenID Connect using the
 authorization code flow also provides the additional benefit of the
 client not needing to verify the JWT signature, as the token will
 have been fetched over an HTTPS connection directly from the
 authorization server. However, returning an id_token using the
 Implicit flow requires the client validate the JWT signature, as
 malicious parties could otherwise craft and supply fraudulent
 id_tokens.

https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc8252

Parecki & Waite Expires August 2, 2019 [Page 11]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

9.8.7. Historic Note

 Historically, the Implicit flow provided an advantage to single-page
 apps since JavaScript could always arbitrarily read and manipulate
 the fragment portion of the URL without triggering a page reload.
 Now with the Session History API (described in "Session history and
 navigation" of [HTML]), browsers have a mechanism to modify the path
 component of the URL without triggering a page reload, so this
 overloaded use of the fragment portion is no longer needed.

9.9. Additional Security Considerations

 The OWASP Foundation (https://www.owasp.org/) maintains a set of
 security recommendations and best practices for web applications, and
 it is RECOMMENDED to follow these best practices when creating an
 OAuth 2.0 Browser-Based application.

10. IANA Considerations

 This document does not require any IANA actions.

11. References

11.1. Normative References

 [CSP2] West, M., Barth, A., and D. Veditz, "Content Security
 Policy", December 2016.

 [Fetch] whatwg, "Fetch", 2018.

 [oauth-security-topics]
 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", November 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

https://www.owasp.org/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819
https://www.rfc-editor.org/info/rfc6819

Parecki & Waite Expires August 2, 2019 [Page 12]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,

 <https://www.rfc-editor.org/info/rfc8252>.

11.2. Informative References

 [HTML] whatwg, "HTML", 2018.

Appendix A. Server Support Checklist

 OAuth servers that support browser-based apps MUST:

 1. Require "https" scheme redirect URIs.

 2. Require exact matching on redirect URIs or matching the hostname
 the application is served from.

 3. Support PKCE [RFC7636]. Required to protect authorization code
 grants sent to public clients. See Section 7.1

 4. Support cross-domain requests at the token endpoint in order to
 allow browsers to make the authorization code exchange request.
 See Section 9.6

 5. Not assume that browser-based clients can keep a secret, and
 SHOULD NOT issue secrets to applications of this type.

Appendix B. Acknowledgements

 The authors would like to acknowledge the work of William Denniss and
 John Bradley, whose recommendation for native apps informed many of
 the best practices for browser-based applications. The authors would
 also like to thank Hannes Tschofenig and Torsten Lodderstedt, the
 attendees of the Internet Identity Workshop 27 session at which this
 BCP was originally proposed, and the following individuals who
 contributed ideas, feedback, and wording that shaped and formed the
 final specification:

 Annabelle Backman, Brian Campbell, Brock Allen, Christian Mainka,
 Daniel Fett, George Fletcher, Hannes Tschofenig, John Bradley, Joseph
 Heenan, Justin Richer, Karl McGuinness, Tomek Stojecki, Torsten
 Lodderstedt, and Vittorio Bertocci.

https://datatracker.ietf.org/doc/html/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://datatracker.ietf.org/doc/html/bcp212
https://datatracker.ietf.org/doc/html/rfc8252
https://www.rfc-editor.org/info/rfc8252
https://datatracker.ietf.org/doc/html/rfc7636

Parecki & Waite Expires August 2, 2019 [Page 13]

Internet-Draft OAuth 2.0 for Browser-Based Apps January 2019

Authors' Addresses

 Aaron Parecki
 Okta

 Email: aaron@parecki.com
 URI: https://aaronparecki.com

 David Waite
 Ping Identity

 Email: david@alkaline-solutions.com

Parecki & Waite Expires August 2, 2019 [Page 14]

https://aaronparecki.com

