
Open Authentication Protocol A. Parecki
Internet-Draft Okta
Intended status: Best Current Practice D. Waite
Expires: March 25, 2020 Ping Identity
 September 22, 2019

OAuth 2.0 for Browser-Based Apps
draft-ietf-oauth-browser-based-apps-04

Abstract

 This specification details the security considerations and best
 practices that must be taken into account when developing browser-
 based applications that use OAuth 2.0.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 25, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Parecki & Waite Expires March 25, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

Table of Contents

1. Introduction . 2
2. Notational Conventions 3
3. Terminology . 3
4. Overview . 3
5. First-Party Applications 4
6. Application Architecture Patterns 5

 6.1. Browser-Based Apps that Can Share Data with the Resource
 Server . 5

6.2. JavaScript Applications with a Backend 6
6.3. JavaScript Applications without a Backend 8

7. Authorization Code Flow 9
 7.1. Initiating the Authorization Request from a Browser-Based
 Application . 9

7.2. Handling the Authorization Code Redirect 9
8. Refresh Tokens . 10
9. Security Considerations 11
9.1. Registration of Browser-Based Apps 11
9.2. Client Authentication 11
9.3. Client Impersonation 11
9.4. Cross-Site Request Forgery Protections 12
9.5. Authorization Server Mix-Up Mitigation 12
9.6. Cross-Domain Requests 12
9.7. Content-Security Policy 13
9.8. OAuth Implicit Grant Authorization Flow 13
9.8.1. Threat: Interception of the Redirect URI 13
9.8.2. Threat: Access Token Leak in Browser History 13
9.8.3. Threat: Manipulation of Scripts 14
9.8.4. Threat: Access Token Leak to Third Party Scripts . . 14
9.8.5. Countermeasures 14
9.8.6. Disadvantages of the Implicit Flow 14
9.8.7. Historic Note . 15

9.9. Additional Security Considerations 16
10. IANA Considerations . 16
11. References . 16
11.1. Normative References 16
11.2. Informative References 17

Appendix A. Server Support Checklist 17
Appendix B. Document History 17
Appendix C. Acknowledgements 19

 Authors' Addresses . 19

1. Introduction

 This specification describes the current best practices for
 implementing OAuth 2.0 authorization flows in applications running
 entirely in a browser.

Parecki & Waite Expires March 25, 2020 [Page 2]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 For native application developers using OAuth 2.0 and OpenID Connect,
 an IETF BCP (best current practice) was published that guides
 integration of these technologies. This document is formally known
 as [RFC8252] or BCP 212, but nicknamed "AppAuth" after the OpenID
 Foundation-sponsored set of libraries that assist developers in
 adopting these practices.

 [RFC8252] makes specific recommendations for how to securely
 implement OAuth in native applications, including incorporating
 additional OAuth extensions where needed.

 OAuth 2.0 for Browser-Based Apps addresses the similarities between
 implementing OAuth for native apps as well as browser-based apps, and
 includes additional considerations when running in a browser. This
 is primarily focused on OAuth, except where OpenID Connect provides
 additional considerations.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

3. Terminology

 In addition to the terms defined in referenced specifications, this
 document uses the following terms:

 "OAuth": In this document, "OAuth" refers to OAuth 2.0, [RFC6749].

 "Browser-based application": An application that is dynamically
 downloaded and executed in a web browser, usually written in
 JavaScript. Also sometimes referred to as a "single-page
 application", or "SPA".

4. Overview

 At the time that OAuth 2.0 RFC 6749 was created, browser-based
 JavaScript applications needed a solution that strictly complied with
 the same-origin policy. Common deployments of OAuth 2.0 involved an
 application running on a different domain than the authorization
 server, so it was historically not possible to use the authorization
 code flow which would require a cross-origin POST request. This was
 the principal motivation for the definition of the implicit flow,
 which returns the access token in the front channel via the fragment
 part of the URL, bypassing the need for a cross-origin POST request.

https://datatracker.ietf.org/doc/html/rfc8252
https://datatracker.ietf.org/doc/html/bcp212
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Parecki & Waite Expires March 25, 2020 [Page 3]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 However, there are several drawbacks to the implicit flow, generally
 involving vulnerabilities associated with the exposure of the access
 token in the URL. See Section 9.8 for an analysis of these attacks
 and the drawbacks of using the implicit flow in browsers. Additional
 attacks and security considerations can be found in
 [oauth-security-topics].

 In recent years, widespread adoption of Cross-Origin Resource Sharing
 (CORS), which enables exceptions to the same-origin policy, allows
 browser-based apps to use the OAuth 2.0 authorization code flow and
 make a POST request to exchange the authorization code for an access
 token at the token endpoint. In this flow, the access token is never
 exposed in the less secure front-channel. Furthermore, adding PKCE
 to the flow assures that even if an authorization code is
 intercepted, it is unusable by an attacker.

 For this reason, and from other lessons learned, the current best
 practice for browser-based applications is to use the OAuth 2.0
 authorization code flow with PKCE.

 Browser-based applications MUST:

 o Use the OAuth 2.0 authorization code flow with the PKCE extension

 o Protect themselves against CSRF attacks by using the OAuth 2.0
 state parameter to carry one-time use CSRF tokens, or by ensuring
 the authorization server supports PKCE

 o Register one or more redirect URIs, and not vary the redirect URI
 per authorization request

 OAuth 2.0 authorization servers MUST:

 o Require exact matching of registered redirect URIs

 o Support the PKCE extension

5. First-Party Applications

 While OAuth was initially created to allow third-party applications
 to access an API on behalf of a user, it has proven to be useful in a
 first-party scenario as well. First-party apps are applications
 where the same organization provides both the API and the
 application.

 For example, a web email client provided by the operator of the email
 account, or a mobile banking application created by bank itself.
 (Note that there is no requirement that the application actually be

Parecki & Waite Expires March 25, 2020 [Page 4]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 developed by the same company; a mobile banking application developed
 by a contractor that is branded as the bank's application is still
 considered a first-party application.) The first-party app
 consideration is about the user's relationship to the application and
 the service.

 To conform to this best practice, first-party applications using
 OAuth or OpenID Connect MUST use the OAuth Authorization Code flow as
 described later in this document.

 The Resource Owner Password Grant MUST NOT be used, as described in
 [oauth-security-topics] section 3.4.

 By using the Authorization Code flow and redirecting the user to the
 authorization server, this provides the authorization server the
 opportunity to prompt the user for multi-factor authentication
 options, take advantage of single-sign-on sessions, or use third-
 party identity providers. In contrast, the Password grant does not
 provide any built-in mechanism for these, and would instead be
 extended with custom code.

6. Application Architecture Patterns

 There are three primary architectural patterns available when
 building browser-based applications.

 o a JavaScript application with no backend, accessing resource
 servers directly

 o a JavaScript application with a backend

 o a JavaScript application that has methods of sharing data with
 resource servers, such as using common-domain cookies

 These three architectures have different use cases and
 considerations.

6.1. Browser-Based Apps that Can Share Data with the Resource Server

 For simple system architectures, such as when the JavaScript
 application is served from a domain that can share cookies with the
 domain of the API (resource server), OAuth adds additional attack
 vectors that could be avoided with a different solution.

 In particular, using any redirect-based mechanism of obtaining an
 access token enables the redirect-based attacks described in
 [oauth-security-topics], but if the application, AS and API share a

Parecki & Waite Expires March 25, 2020 [Page 5]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 domain, then it is unnecessary to use a redirect mechanism to
 communicate between them.

 An additional concern with handling access tokens in a browser is
 that there is no secure storage mechanism where JavaScript code can
 keep the access token to be later used in an API request. Using an
 OAuth flow results in the JavaScript code getting an access token,
 needing to store it somewhere, and then retrieve it to make an API
 request. Instead, a more secure design is to use an HTTP-only cookie
 between the JavaScript application and API so that the JavaScript
 code can't access the cookie value itself.

 OAuth was originally created for third-party or federated access to
 APIs, so it may not be the best solution in a common-domain
 deployment. That said, using OAuth even in a common-domain
 architecture does mean you can more easily rearchitect things later,
 such as if you were to later add a new domain to the system.

6.2. JavaScript Applications with a Backend

Parecki & Waite Expires March 25, 2020 [Page 6]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 +-------------+
 | |
 |Authorization|
 | Server |
 | |
 +-------------+

 ^ +
 |(A) |(B)
 | |
 + v

 +-------------+ +--------------+
	+--------->	
Application	(C)	Resource
Server		Server
	<---------+	
 +-------------+ (D) +--------------+

 ^ +
 | |
 | | browser
 | | cookie
 | |
 + v

 +-------------+
 | |
 | Browser |
 | |
 +-------------+

 In this architecture, the JavaScript code is loaded from a dynamic
 Application Server that also has the ability to execute code itself.
 This enables the ability to keep all of the steps involved in
 obtaining an access token outside of the JavaScript application.

 (Common examples of this architecture are an Angular front-end with a
 .NET backend, or a React front-end with a Spring Boot backend.)

 The Application Server SHOULD be considered a confidential client,
 and issued its own client secret. The Application Server SHOULD use
 the OAuth 2.0 authorization code grant to initiate a request for an
 access token. Upon handling the redirect from the Authorization
 Server, the Application Server will request an access token using the
 authorization code returned (A), which will be returned to the
 Application Server (B). The Application Server utilizes its own
 session with the browser to store the access token.

Parecki & Waite Expires March 25, 2020 [Page 7]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 When the JavaScript application in the browser wants to make a
 request to the Resource Server, it MUST instead make the request to
 the Application Server, and the Application Server will make the
 request with the access token to the Resource Server (C), and forward
 the response (D) back to the browser.

 Security of the connection between code running in the browser and
 this Application Server is assumed to utilize browser-level
 protection mechanisms. Details are out of scope of this document,
 but many recommendations can be found at the OWASP Foundation
 (https://www.owasp.org/), such as setting an HTTP-only and Secure
 cookie to authenticate the session between the browser and
 Application Server.

 In this scenario, the session between the browser and Application
 Server MAY be either a session cookie provided by the Application
 Server, OR the access token itself. Note that if the access token is
 used as the session identifier, this exposes the access token to the
 end user even if it is not available to the JavaScript application,
 so some authorization servers may wish to limit the capabilities of
 these clients to mitigate risk.

6.3. JavaScript Applications without a Backend

 +---------------+ +--------------+
 | | | |
 | Authorization | | Resource |
 | Server | | Server |
 | | | |
 +---------------+ +--------------+

 ^ + ^ +
 | | | |
 |(B) |(C) |(D) |(E)
 | | | |
 | | | |
 + v + v

 +-----------------+ +-------------------------------+
	(A)	
Static Web Host	+----->	Browser
 +-----------------+ +-------------------------------+

 In this architecture, the JavaScript code is first loaded from a
 static web host into the browser (A). The application then runs in
 the browser, and is considered a public client since it has no
 ability to be issued a client secret.

https://www.owasp.org/

Parecki & Waite Expires March 25, 2020 [Page 8]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 The code in the browser then initiates the authorization code flow
 with the PKCE extension (described in Section 7) (B) above, and
 obtains an access token via a POST request (C). The JavaScript app
 is then responsible for storing the access token securely using
 appropriate browser APIs.

 When the JavaScript application in the browser wants to make a
 request to the Resource Server, it can include the access token in
 the request (D) and make the request directly.

 In this scenario, the Authorization Server and Resource Server MUST
 support the necessary CORS headers to enable the JavaScript code to
 make this POST request from the domain on which the script is
 executing. (See Section 9.6 for additional details.)

7. Authorization Code Flow

 Public browser-based apps that use the authorization code grant type
 described in Section 4.1 of OAuth 2.0 [RFC6749] MUST also follow
 these additional requirements described in this section.

7.1. Initiating the Authorization Request from a Browser-Based
 Application

 Public browser-based apps MUST implement the Proof Key for Code
 Exchange (PKCE [RFC7636]) extension to OAuth, and authorization
 servers MUST support PKCE for such clients.

 The PKCE extension prevents an attack where the authorization code is
 intercepted and exchanged for an access token by a malicious client,
 by providing the authorization server with a way to verify the same
 client instance that exchanges the authorization code is the same one
 that initiated the flow.

 Browser-based apps MUST use a unique value for the the OAuth 2.0
 "state" parameter on each request, and MUST verify the returned state
 in the authorization response matches the original state the app
 created.

 Browser-based apps MUST follow the recommendations in
 [oauth-security-topics] section 3.1 to protect themselves during
 redirect flows.

7.2. Handling the Authorization Code Redirect

 Authorization servers MUST require an exact match of a registered
 redirect URI.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7636

Parecki & Waite Expires March 25, 2020 [Page 9]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

8. Refresh Tokens

 Refresh tokens provide a way for applications to obtain a new access
 token when the initial access token expires. With public clients,
 the risk of a leaked refresh token is greater than leaked access
 tokens, since an attacker may be able to continue using the stolen
 refresh token to obtain new access tokens potentially without being
 detectable by the authorization server.

 Browser-based applications provide an attacker with several
 opportunities by which a refresh token can be leaked, just as with
 access tokens. As such, these applications are considered a higher
 risk for handling refresh tokens.

 [oauth-security-topics] describes some additional requirements around
 refresh tokens on top of the recommendations of [RFC6749].
 Applications and authorization servers conforming to this BCP MUST
 also follow the recommendations in [oauth-security-topics] around
 refresh tokens.

 In particular, authorization servers:

 o MUST rotate refresh tokens on each use, in order to be able to
 detect a stolen refresh token if one is replayed (described in
 [oauth-security-topics] section 4.12)

 o MUST either set a maximum lifetime on refresh tokens OR expire if
 the refresh token has not been used within some amount of time

 o upon issuing a rotated refresh token, MUST NOT extend the lifetime
 of the new refresh token beyond the lifetime of the initial
 refresh token if the refresh token has a preestablished expiration
 time

 For example:

 o A user authorizes an application, issuing an access token that
 lasts 1 hour, and a refresh token that lasts 24 hours

 o After 1 hour, the initial access token expires, so the application
 uses the refresh token to get a new access token

 o The authorization server returns a new access token that lasts 1
 hour, and a new refresh token that lasts 23 hours

 o This continues until 24 hours pass from the initial authorization

https://datatracker.ietf.org/doc/html/rfc6749

Parecki & Waite Expires March 25, 2020 [Page 10]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 o At this point, when the application attempts to use the refresh
 token after 24 hours, the request will fail and the application
 will have to involve the user in a new authorization request

 By limiting the overall refresh token lifetime to the lifetime of the
 initial refresh token, this ensures a stolen refresh token cannot be
 used indefinitely.

9. Security Considerations

9.1. Registration of Browser-Based Apps

 Browser-based applications are considered public clients as defined
 by section 2.1 of OAuth 2.0 [RFC6749], and MUST be registered with
 the authorization server as such. Authorization servers MUST record
 the client type in the client registration details in order to
 identify and process requests accordingly.

 Authorization servers MUST require that browser-based applications
 register one or more redirect URIs.

9.2. Client Authentication

 Since a browser-based application's source code is delivered to the
 end-user's browser, it cannot contain provisioned secrets. As such,
 a browser-based app with native OAuth support is considered a public
 client as defined by Section 2.1 of OAuth 2.0 [RFC6749].

 Secrets that are statically included as part of an app distributed to
 multiple users should not be treated as confidential secrets, as one
 user may inspect their copy and learn the shared secret. For this
 reason, and those stated in Section 5.3.1 of [RFC6819], it is NOT
 RECOMMENDED for authorization servers to require client
 authentication of browser-based applications using a shared secret,
 as this serves little value beyond client identification which is
 already provided by the client_id request parameter.

 Authorization servers that still require a statically included shared
 secret for SPA clients MUST treat the client as a public client, and
 not accept the secret as proof of the client's identity. Without
 additional measures, such clients are subject to client impersonation
 (see Section 9.3 below).

9.3. Client Impersonation

 As stated in Section 10.2 of OAuth 2.0 [RFC6749], the authorization
 server SHOULD NOT process authorization requests automatically
 without user consent or interaction, except when the identity of the

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc6749

Parecki & Waite Expires March 25, 2020 [Page 11]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 client can be assured. Even when the user has previously approved an
 authorization request for a given client_id, the request SHOULD be
 processed as if no previous request had been approved, unless the
 identity of the client can be proven.

 If authorization servers restrict redirect URIs to a fixed set of
 absolute HTTPS URIs without wildcard domains, paths, or query string
 components, this exact match of registered absolute HTTPS URIs MAY be
 accepted by authorization servers as proof of identity of the client
 for the purpose of deciding whether to automatically process an
 authorization request when a previous request for the client_id has
 already been approved.

9.4. Cross-Site Request Forgery Protections

Section 5.3.5 of [RFC6819] recommends using the "state" parameter to
 link client requests and responses to prevent CSRF (Cross-Site
 Request Forgery) attacks. To conform to this best practice, use of
 the "state" parameter is REQUIRED, as described in Section 7.1,
 unless the application has a method of ensuring the authorization
 server supports PKCE, since PKCE also prevents CSRF attacks.

9.5. Authorization Server Mix-Up Mitigation

 The security considerations around the authorization server mix-up
 that are referenced in Section 8.10 of [RFC8252] also apply to
 browser-based apps.

 Clients MUST use a unique redirect URI for each authorization server
 used by the application. The client MUST store the redirect URI
 along with the session data (e.g. along with "state") and MUST verify
 that the URI on which the authorization response was received exactly
 matches.

9.6. Cross-Domain Requests

 To complete the authorization code flow, the browser-based
 application will need to exchange the authorization code for an
 access token at the token endpoint. If the authorization server
 provides additional endpoints to the application, such as metadata
 URLs, dynamic client registration, revocation, introspection,
 discovery or user info endpoints, these endpoints may also be
 accessed by the browser-based app. Since these requests will be made
 from a browser, authorization servers MUST support the necessary CORS
 headers (defined in [Fetch]) to allow the browser to make the
 request.

https://datatracker.ietf.org/doc/html/rfc6819#section-5.3.5
https://datatracker.ietf.org/doc/html/rfc8252#section-8.10

Parecki & Waite Expires March 25, 2020 [Page 12]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 This specification does not include guidelines for deciding whether a
 CORS policy for the token endpoint should be a wildcard origin or
 more restrictive. Note, however, that the browser will attempt to
 GET or POST to the API endpoint before knowing any CORS policy; it
 simply hides the succeeding or failing result from JavaScript if the
 policy does not allow sharing.

9.7. Content-Security Policy

 A browser-based application that wishes to use either long-lived
 refresh tokens or privileged scopes SHOULD restrict its JavaScript
 execution to a set of statically hosted scripts via a Content
 Security Policy ([CSP2]) or similar mechanism. A strong Content
 Security Policy can limit the potential attack vectors for malicious
 JavaScript to be executed on the page.

9.8. OAuth Implicit Grant Authorization Flow

 The OAuth 2.0 Implicit grant authorization flow (defined in
Section 4.2 of OAuth 2.0 [RFC6749]) works by receiving an access

 token in the HTTP redirect (front-channel) immediately without the
 code exchange step. In this case, the access token is returned in
 the fragment part of the redirect URI, providing an attacker with
 several opportunities to intercept and steal the access token.
 Several attacks on the implicit flow are described by [RFC6819] and
 [oauth-security-topics], not all of which have sufficient mitigation
 strategies.

9.8.1. Threat: Interception of the Redirect URI

 If an attacker is able to cause the authorization response to be sent
 to a URI under his control, he will directly get access to the
 fragment carrying the access token. A method of performing this
 attack is described in detail in [oauth-security-topics].

9.8.2. Threat: Access Token Leak in Browser History

 An attacker could obtain the access token from the browser's history.
 The countermeasures recommended by [RFC6819] are limited to using
 short expiration times for tokens, and indicating that browsers
 should not cache the response. Neither of these fully prevent this
 attack, they only reduce the potential damage.

 Additionally, many browsers now also sync browser history to cloud
 services and to multiple devices, providing an even wider attack
 surface to extract access tokens out of the URL.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc6819

Parecki & Waite Expires March 25, 2020 [Page 13]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 This is discussed in more detail in Section 4.3.2 of
 [oauth-security-topics].

9.8.3. Threat: Manipulation of Scripts

 An attacker could modify the page or inject scripts into the browser
 via various means, including when the browser's HTTPS connection is
 being man-in-the-middled by for example a corporate network. While
 this type of attack is typically out of scope of basic security
 recommendations to prevent, in the case of browser-based apps it is
 much easier to perform this kind of attack, where an injected script
 can suddenly have access to everything on the page.

 The risk of a malicious script running on the page is far greater
 when the application uses a known standard way of obtaining access
 tokens, namely that the attacker can always look at the
 window.location to find an access token. This threat profile is very
 different compared to an attacker specifically targeting an
 individual application by knowing where or how an access token
 obtained via the authorization code flow may end up being stored.

9.8.4. Threat: Access Token Leak to Third Party Scripts

 It is relatively common to use third-party scripts in browser-based
 apps, such as analytics tools, crash reporting, and even things like
 a Facebook or Twitter "like" button. In these situations, the author
 of the application may not be able to be fully aware of the entirety
 of the code running in the application. When an access token is
 returned in the fragment, it is visible to any third-party scripts on
 the page.

9.8.5. Countermeasures

 In addition to the countermeasures described by [RFC6819] and
 [oauth-security-topics], using the authorization code with PKCE
 avoids these attacks.

 When PKCE is used, if an authorization code is stolen in transport,
 the attacker is unable to do anything with the authorization code.

9.8.6. Disadvantages of the Implicit Flow

 There are several additional reasons the Implicit flow is
 disadvantageous compared to using the standard Authorization Code
 flow.

 o OAuth 2.0 provides no mechanism for a client to verify that an
 access token was issued to it, which could lead to misuse and

https://datatracker.ietf.org/doc/html/rfc6819

Parecki & Waite Expires March 25, 2020 [Page 14]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 possible impersonation attacks if a malicious party hands off an
 access token it retrieved through some other means to the client.

 o Returning an access token in the front channel redirect gives the
 authorization server no assurance that the access token will
 actually end up at the application, since there are many ways this
 redirect may fail or be intercepted.

 o Supporting the implicit flow requires additional code, more upkeep
 and understanding of the related security considerations, while
 limiting the authorization server to just the authorization code
 flow reduces the attack surface of the implementation.

 o If the JavaScript application gets wrapped into a native app, then
 [RFC8252] also requires the use of the authorization code flow
 with PKCE anyway.

 In OpenID Connect, the id_token is sent in a known format (as a JWT),
 and digitally signed. Returning an id_token using the Implicit flow
 (response_type=id_token) requires the client validate the JWT
 signature, as malicious parties could otherwise craft and supply
 fraudulent id_tokens. Performing OpenID Connect using the
 authorization code flow provides the benefit of the client not
 needing to verify the JWT signature, as the ID token will have been
 fetched over an HTTPS connection directly from the authorization
 server. Additionally, in many cases an application will request both
 an ID token and an access token, so it is simplier and provides fewer
 attack vectors to obtain both via the authorization code flow.

9.8.7. Historic Note

 Historically, the Implicit flow provided an advantage to single-page
 apps since JavaScript could always arbitrarily read and manipulate
 the fragment portion of the URL without triggering a page reload.
 This was necessary in order to remove the access token from the URL
 after it was obtained by the app.

 Modern browsers now have the Session History API (described in
 "Session history and navigation" of [HTML]), which provides a
 mechanism to modify the path and query string component of the URL
 without triggering a page reload. This means modern browser-based
 apps can use the unmodified OAuth 2.0 authorization code flow, since
 they have the ability to remove the authorization code from the query
 string without triggering a page reload thanks to the Session History
 API.

https://datatracker.ietf.org/doc/html/rfc8252

Parecki & Waite Expires March 25, 2020 [Page 15]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

9.9. Additional Security Considerations

 The OWASP Foundation (https://www.owasp.org/) maintains a set of
 security recommendations and best practices for web applications, and
 it is RECOMMENDED to follow these best practices when creating an
 OAuth 2.0 Browser-Based application.

10. IANA Considerations

 This document does not require any IANA actions.

11. References

11.1. Normative References

 [CSP2] West, M., Barth, A., and D. Veditz, "Content Security
 Policy", December 2016.

 [Fetch] whatwg, "Fetch", 2018.

 [oauth-security-topics]
 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", July 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <https://www.rfc-editor.org/info/rfc7636>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,

 <https://www.rfc-editor.org/info/rfc8252>.

https://www.owasp.org/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://datatracker.ietf.org/doc/html/bcp212
https://datatracker.ietf.org/doc/html/rfc8252
https://www.rfc-editor.org/info/rfc8252

Parecki & Waite Expires March 25, 2020 [Page 16]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

11.2. Informative References

 [HTML] whatwg, "HTML", 2018.

Appendix A. Server Support Checklist

 OAuth authorization servers that support browser-based apps MUST:

 1. Require "https" scheme redirect URIs.

 2. Require exact matching of registered redirect URIs.

 3. Support PKCE [RFC7636]. Required to protect authorization code
 grants sent to public clients. See Section 7.1

 4. Support cross-domain requests at the token endpoint in order to
 allow browsers to make the authorization code exchange request.
 See Section 9.6

 5. Not assume that browser-based clients can keep a secret, and
 SHOULD NOT issue secrets to applications of this type.

 6. Not support the Resource Owner Password grant for browser-based
 clients.

 7. Follow the [oauth-security-topics] recommendations on refresh
 tokens, as well as the additional requirements described in

Section 8.

Appendix B. Document History

 [[To be removed from the final specification]]

 -04

 o Disallow the use of the Password Grant

 o Add PKCE support to summary list for authorization server
 requirements

 o Rewrote refresh token section to allow refresh tokens if they are
 time-limited, rotated on each use, and requiring that the rotated
 refresh token lifetimes do not extend past the lifetime of the
 initial refresh token, and to bring it in line with the Security
 BCP

 o Updated recommendations on using state to reflect the Security BCP

https://datatracker.ietf.org/doc/html/rfc7636

Parecki & Waite Expires March 25, 2020 [Page 17]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 o Updated server support checklist to reflect latest changes

 o Updated the same-domain JS architecture section to emphasize the
 architecture rather than domain

 o Editorial clarifications in the section that talks about OpenID
 Connect ID tokens

 -03

 o Updated the historic note about the fragment URL clarifying that
 the Session History API means browsers can use the unmodified
 authorization code flow

 o Rephrased "Authorization Code Flow" intro paragraph to better lead
 into the next two sections

 o Softened "is likely a better decision to avoid using OAuth
 entirely" to "it may be..." for common-domain deployments

 o Updated abstract to not be limited to public clients, since the
 later sections talk about confidential clients

 o Removed references to avoiding OpenID Connect for same-domain
 architectures

 o Updated headers to better describe architectures (Apps Served from
 a Static Web Server -> JavaScript Applications without a Backend)

 o Expanded "same-domain architecture" section to better explain the
 problems that OAuth has in this scenario

 o Referenced Security BCP in implicit flow attacks where possible

 o Minor typo corrections

 -02

 o Rewrote overview section incorporating feedback from Leo Tohill

 o Updated summary recommendation bullet points to split out
 application and server requirements

 o Removed the allowance on hostname-only redirect URI matching, now
 requiring exact redirect URI matching

 o Updated section 6.2 to drop reference of SPA with a backend
 component being a public client

Parecki & Waite Expires March 25, 2020 [Page 18]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 o Expanded the architecture section to explicitly mention three
 architectural patterns available to JS apps

 -01

 o Incorporated feedback from Torsten Lodderstedt

 o Updated abstract

 o Clarified the definition of browser-based apps to not exclude
 applications cached in the browser, e.g. via Service Workers

 o Clarified use of the state parameter for CSRF protection

 o Added background information about the original reason the
 implicit flow was created due to lack of CORS support

 o Clarified the same-domain use case where the SPA and API share a
 cookie domain

 o Moved historic note about the fragment URL into the Overview

Appendix C. Acknowledgements

 The authors would like to acknowledge the work of William Denniss and
 John Bradley, whose recommendation for native apps informed many of
 the best practices for browser-based applications. The authors would
 also like to thank Hannes Tschofenig and Torsten Lodderstedt, the
 attendees of the Internet Identity Workshop 27 session at which this
 BCP was originally proposed, and the following individuals who
 contributed ideas, feedback, and wording that shaped and formed the
 final specification:

 Annabelle Backman, Brian Campbell, Brock Allen, Christian Mainka,
 Daniel Fett, George Fletcher, Hannes Tschofenig, Janak Amarasena,
 John Bradley, Joseph Heenan, Justin Richer, Karl McGuinness, Leo
 Tohill, Tomek Stojecki, Torsten Lodderstedt, and Vittorio Bertocci.

Authors' Addresses

 Aaron Parecki
 Okta

 Email: aaron@parecki.com
 URI: https://aaronparecki.com

https://aaronparecki.com

Parecki & Waite Expires March 25, 2020 [Page 19]

Internet-Draft OAuth 2.0 for Browser-Based Apps September 2019

 David Waite
 Ping Identity

 Email: david@alkaline-solutions.com

Parecki & Waite Expires March 25, 2020 [Page 20]

