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1. Introduction

This specification describes the current best practices for

implementing OAuth 2.0 authorization flows in applications executing

in a browser.

For native application developers using OAuth 2.0 and OpenID

Connect, an IETF BCP (best current practice) was published that

guides integration of these technologies. This document is formally

known as [RFC8252] or BCP 212, but nicknamed "AppAuth" after the

OpenID Foundation-sponsored set of libraries that assist developers

in adopting these practices. [RFC8252] makes specific

recommendations for how to securely implement OAuth in native

applications, including incorporating additional OAuth extensions

where needed.

OAuth 2.0 for Browser-Based Apps addresses the similarities between

implementing OAuth for native apps and browser-based apps, and

includes additional considerations when apps are running in a

browser. This is primarily focused on OAuth, except where OpenID

Connect provides additional considerations.

Many of these recommendations are derived from the OAuth 2.0

Security Best Current Practice [oauth-security-topics] and browser-

based apps are expected to follow those recommendations as well.

This draft expands on and further restricts various recommendations

in [oauth-security-topics].

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in 

[RFC2119].
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"OAuth":

"Browser-based application":

3. Terminology

In addition to the terms defined in referenced specifications, this

document uses the following terms:

In this document, "OAuth" refers to OAuth 2.0, [RFC6749]

and [RFC6750].

An application that is dynamically

downloaded and executed in a web browser, usually written in

JavaScript. Also sometimes referred to as a "single-page

application", or "SPA".

While this document often refers to "JavaScript apps", this is not

intended to be exclusive to JavaScript. The recommendations and

considerations herein also apply to other languages that execute

code in the browser, such as Web Assembly.

4. Overview

At the time that OAuth 2.0 [RFC6749] and [RFC6750] were created,

browser-based JavaScript applications needed a solution that

strictly complied with the same-origin policy. Common deployments of

OAuth 2.0 involved an application running on a different domain than

the authorization server, so it was historically not possible to use

the Authorization Code flow which would require a cross-origin POST

request. This was one of the motivations for the definition of the

Implicit flow, which returns the access token in the front channel

via the fragment part of the URL, bypassing the need for a cross-

origin POST request.

However, there are several drawbacks to the Implicit flow, generally

involving vulnerabilities associated with the exposure of the access

token in the URL. See Section 10.9 for an analysis of these attacks

and the drawbacks of using the Implicit flow in browsers. Additional

attacks and security considerations can be found in 

[oauth-security-topics].

In recent years, widespread adoption of Cross-Origin Resource

Sharing (CORS), which enables exceptions to the same-origin policy,

allows browser-based apps to use the OAuth 2.0 Authorization Code

flow and make a POST request to exchange the authorization code for

an access token at the token endpoint. In this flow, the access

token is never exposed in the less-secure front channel.

Furthermore, adding PKCE to the flow prevents authorization code

injection, as well as ensures that even if an authorization code is

intercepted, it is unusable by an attacker.

For this reason, and from other lessons learned, the current best

practice for browser-based applications is to use the OAuth 2.0
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Authorization Code flow with PKCE. There are various architectural

patterns for deploying browser-based apps, both with and without a

corresponding server-side component, each with their own trade-offs

and considerations, discussed further in this document. Additional

considerations apply for first-party common-domain apps.

In summary, browser-based applications using the Authorization Code

flow:

MUST use PKCE ([RFC7636]) when obtaining an access token

(Section 7.1)

MUST Protect themselves against CSRF attacks (Section 7.3) by

either:

ensuring the authorization server supports PKCE, or

by using the OAuth 2.0 "state" parameter or the OpenID Connect

"nonce" parameter to carry one-time use CSRF tokens

MUST Register one or more redirect URIs, and use only exact

registered redirect URIs in authorization requests (Section 7.2)

In summary, OAuth 2.0 authorization servers supporting browser-based

applications using the Authorization Code flow:

MUST Require exact matching of registered redirect URIs

(Section 7.2)

MUST Support the PKCE extension (Section 7.1)

MUST NOT issue access tokens in the authorization response

(Section 10.9)

If issuing refresh tokens to browser-based applications

(Section 8), then:

MUST rotate refresh tokens on each use or use sender-

constrained refresh tokens, and

MUST set a maximum lifetime on refresh tokens or expire if

they are not used in some amount of time

when issuing a rotated refresh token, MUST NOT extend the

lifetime of the new refresh token beyond the lifetime of the

original refresh token if the refresh token has a

preestablished expiration time
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5. First-Party Applications

While OAuth was initially created to allow third-party applications

to access an API on behalf of a user, it has proven to be useful in

a first-party scenario as well. First-party apps are applications

where the same organization provides both the API and the

application.

Examples of first-party applications are a web email client provided

by the operator of the email account, or a mobile banking

application created by bank itself. (Note that there is no

requirement that the application actually be developed by the same

company; a mobile banking application developed by a contractor that

is branded as the bank's application is still considered a first-

party application.) The first-party app consideration is about the

user's relationship to the application and the service.

To conform to this best practice, first-party browser-based

applications using OAuth or OpenID Connect MUST use a redirect-based

flow (such as the OAuth Authorization Code flow) as described later

in this document.

The resource owner password credentials grant MUST NOT be used, as

described in [oauth-security-topics] Section 2.4. Instead, by using

the Authorization Code flow and redirecting the user to the

authorization server, this provides the authorization server the

opportunity to prompt the user for multi-factor authentication

options, take advantage of single sign-on sessions, or use third-

party identity providers. In contrast, the resource owner password

credentials grant does not provide any built-in mechanism for these,

and would instead need to be extended with custom code.

6. Application Architecture Patterns

Here are the main architectural patterns available when building

browser-based applications.

single-domain, not using OAuth

a JavaScript application with a stateful backend component

storing tokens and proxying all requests (BFF Proxy)

obtaining tokens and passing them to the frontend (Token-

Mediating Backend)

a JavaScript application obtaining access tokens

via code executed in a browsing context
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through a Service Worker

These architectures have different use cases and considerations.

6.1. Single-Domain Browser-Based Apps (not using OAuth)

For simple system architectures, such as when the JavaScript

application is served from a domain that can share cookies with the

domain of the API (resource server) and the authorization server,

OAuth adds additional attack vectors that could be avoided with a

different solution.

In particular, using any redirect-based mechanism of obtaining an

access token enables the redirect-based attacks described in 

[oauth-security-topics] Section 4, but if the application,

authorization server and resource server share a domain, then it is

unnecessary to use a redirect mechanism to communicate between them.

An additional concern with handling access tokens in a browser is

that in case of successful cross-site scripting (XSS) attack, tokens

could be read and further used or transmitted by the injected code

if no secure storage mechanism is in place.

As such, it could be considered to use an HTTP-only cookie between

the JavaScript application and API so that the JavaScript code can't

access the cookie value itself. The Secure cookie attribute should

be used to ensure the cookie is not included in unencrypted HTTP

requests. Additionally, the SameSite cookie attribute can be used to

counter some CSRF attacks, but should not be considered the extent

of the CSRF protection, as described in 

[draft-ietf-httpbis-rfc6265bis]

OAuth was originally created for third-party or federated access to

APIs, so it may not be the best solution in a common-domain

deployment. That said, there are still some advantages in using

OAuth even in a common-domain architecture:

Allows more flexibility in the future, such as if you were to

later add a new domain to the system. With OAuth already in

place, adding a new domain wouldn't require any additional

rearchitecting.

Being able to take advantage of existing library support rather

than writing bespoke code for the integration.

Centralizing login and multifactor authentication support,

account management, and recovery at the OAuth server, rather than

making it part of the application logic.
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Splitting of responsibilities between authenticating a user and

serving resources

Using OAuth for browser-based apps in a first-party same-domain

scenario provides these advantages, and can be accomplished by any

of the architectural patterns described below.

6.2. Backend For Frontend (BFF) Proxy

In this architecture, commonly referred to as "backend for frontend"

or "BFF", the JavaScript code is loaded from a BFF Proxy server (A)

that has the ability to execute code and handle the full OAuth flow

itself. This enables the ability to keep the request to obtain an

access token outside the JavaScript application.

Note that this BFF Proxy is not the Resource Server, it is the OAuth

client and would be later accessing data at a separate resource

server after obtaining tokens.

In this case, the BFF Proxy initiates the OAuth flow itself, by

redirecting the browser to the authorization endpoint (B). When the

user is redirected back, the browser delivers the authorization code

to the BFF Proxy (C), where it can then exchange it for an access

*

¶

¶

+-------------+  +--------------+ +---------------+

|             |  |              | |               |

|Authorization|  |    Token     | |   Resource    |

|  Endpoint   |  |   Endpoint   | |    Server     |

|             |  |              | |               |

+-------------+  +--------------+ +---------------+

       ^                ^                   ^

       |             (D)|                (G)|

       |                v                   v

       |

       |         +--------------------------------------+

       |         |                                      |

       |         |   Backend for Frontend Proxy (BFF)   |

    (B)|         |                                      |

       |         +--------------------------------------+

       |

       |           ^     ^     +          ^    +

       |        (A)|  (C)|  (E)|       (F)|    |(H)

       v           v     +     v          +    v

+-------------------------------------------------+

|                                                 |

|                   Browser                       |

|                                                 |

+-------------------------------------------------+
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token at the token endpoint (D) using its client secret and PKCE

code verifier. The BFF Proxy then keeps the access token and refresh

token stored internally, and creates a separate session with the

browser-based app via a traditional browser cookie (E).

When the JavaScript application in the browser wants to make a

request to the Resource Server, it instead makes the request to the

BFF Proxy (F), and the BFF Proxy will make the request with the

access token to the Resource Server (G), and forward the response

(H) back to the browser.

(Common examples of this architecture are an Angular front-end with

a .NET backend, or a React front-end with a Spring Boot backend.)

The BFF Proxy SHOULD be considered a confidential client, and issued

its own client secret. The BFF Proxy SHOULD use the OAuth 2.0

Authorization Code grant with PKCE to initiate a request for an

access token. Detailed recommendations for confidential clients can

be found in [oauth-security-topics] Section 2.1.1.

In this scenario, the connection between the browser and BFF Proxy

SHOULD be a session cookie provided by the BFF Proxy.

While the security of this model is strong, since the OAuth tokens

are never sent to the browser, there are performance and scalability

implications of deploying a BFF proxy server and routing all JS

requests through the server. If routing every API request through

the BFF proxy is prohibitive, you may wish to consider one of the

alternative architectures below.

6.2.1. Security considerations

Security of the connection between code running in the browser and

this BFF Proxy is assumed to utilize browser-level protection

mechanisms. Details are out of scope of this document, but many

recommendations can be found in the OWASP Cheat Sheet series

(https://cheatsheetseries.owasp.org), such as setting an HTTP-only

and Secure cookie to authenticate the session between the browser

and BFF Proxy. Additionally, cookies MUST be protected from leakage

by other means, such as logs.

In this architecture, tokens are never sent to the front-end and are

never accessible by any JavaScript code, so it fully protects

against XSS attackers stealing tokens. However, an XSS attacker may

still be able to make authenticated requests to the BFF Proxy which

will in turn make requests to the resource server including the

user's legitimate token. While the attacker is unable to extract and

use the access token elsewhere, they could still effectively make

authenticated requests to the resource server.
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6.3. Token-Mediating Backend

An alternative to a full BFF where all resource requests go through

the backend is to use a token-mediating backend which obtains the

tokens and then forwards the tokens to the browser.

The frontend code makes a request to the Token-Mediating Backend

(A), and the backend initiates the OAuth flow itself, by redirecting

the browser to the authorization endpoint (B). When the user is

redirected back, the browser delivers the authorization code to the

application server (C), where it can then exchange it for an access

token at the token endpoint (D) using its client secret and PKCE

code verifier. The backend delivers the tokens to the browser (E),

which stores them for later use. The browser makes requests to the

resource server directly (F) including the token it has stored.

The main advantage this architecture provides over the full BFF

architecture previously described is that the backend service is

only involved in the acquisition of tokens, and doesn't have to

proxy every request in the future. Routing every API call through a

backend can be expensive in terms of performance and latency, and

can create challenges in deploying the application across many

¶

+-------------+  +--------------+ +---------------+

|             |  |              | |               |

|Authorization|  |    Token     | |   Resource    |

|  Endpoint   |  |   Endpoint   | |    Server     |

|             |  |              | |               |

+-------------+  +--------------+ +---------------+

       ^                ^                      ^

       |             (D)|                      |

       |                v                      |

       |                                       |

       |    +-------------------------+        |

       |    |                         |        |

       |    | Token-Mediating Backend |        |

    (B)|    |                         |        |

       |    +-------------------------+        |

       |                                       |

       |           ^     ^     +               |

       |        (A)|  (C)|  (E)|            (F)|

       v           v     +     v               +

+-------------------------------------------------+

|                                                 |

|                   Browser                       |

|                                                 |

+-------------------------------------------------+
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regions. Instead, routing only the token acquisition through a

backend means fewer requests are made to the backend. This improves

the performance and reduces the latency of requests from the

frontend, and reduces the amount of infrastructure needed in the

backend.

Similar to the previously described BFF Proxy pattern, The Token-

Mediating Backend SHOULD be considered a confidential client, and

issued its own client secret. The Token-Mediating Backend SHOULD use

the OAuth 2.0 Authorization Code grant with PKCE to initiate a

request for an access token. Detailed recommendations for

confidential clients can be found in [oauth-security-topics] Section

2.1.1.

In this scenario, the connection between the browser and Token-

Mediating Backend SHOULD be a session cookie provided by the

backend.

The Token-Mediating Backend SHOULD cache tokens it obtains from the

authorization server such that when the frontend needs to obtain new

tokens, it can do so without the additional round trip to the

authorization server if the tokens are still valid.

The frontend SHOULD NOT persist tokens in local storage or similar

mechanisms; instead, the frontend SHOULD store tokens only in

memory, and make a new request to the backend if no tokens exist.

This provides fewer attack vectors for token exfiltration should an

XSS attack be successful.

Editor's Note: A method of implementing this architecture is

described by the [tmi-bff] draft, although it is currently an

expired individual draft and has not been proposed for adoption to

the OAuth Working Group.

6.3.1. Security Considerations

If the backend caches tokens from the authorization server, it

presents scope elevation risks if applied indiscriminately. If the

token cached by the authorization server features a superset of the

scopes requested by the frontend, the backend SHOULD NOT return it

to the frontend; instead it SHOULD perform a new request with the

smaller set of scopes to the authorization server.

In the case of a successful XSS attack, the attacker may be able to

access the tokens if the tokens are persisted in the frontend, but

is less likely to be able to access the tokens if they are stored

only in memory. However, a successful XSS attack will also allow the

attacker to call the Token-Mediating Backend itself to retrieve the

cached token or start a new OAuth flow.
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6.4. JavaScript Applications obtaining tokens directly

This section describes the architecture of a JavaScript application

obtaining tokens from the authorization server itself, with no

intermediate proxy server and no backend component.

In this architecture, the JavaScript code is first loaded from a

static web host into the browser (A), and the application then runs

in the browser. This application is considered a public client,

since there is no way to issue it a client secret in this model.

The code in the browser initiates the Authorization Code flow with

the PKCE extension (described in Section 7) (B) above, and obtains

an access token via a POST request (C).

The application is then responsible for storing the access token

(and optional refresh token) as securely as possible using

appropriate browser APIs, described in Section 9.

When the JavaScript application in the browser wants to make a

request to the Resource Server, it can interact with the Resource

Server directly. It includes the access token in the request (D) and

receives the Resource Server's response (E).

In this scenario, the Authorization Server and Resource Server MUST

support the necessary CORS headers to enable the JavaScript code to

make these POST requests from the domain on which the script is

executing. (See Section 10.7 for additional details.)

¶

                      +---------------+           +--------------+

                      |               |           |              |

                      | Authorization |           |   Resource   |

                      |    Server     |           |    Server    |

                      |               |           |              |

                      +---------------+           +--------------+

                             ^     ^                 ^     +

                             |     |                 |     |

                             |(B)  |(C)              |(D)  |(E)

                             |     |                 |     |

                             |     |                 |     |

                             +     v                 +     v

+-----------------+         +-------------------------------+

|                 |   (A)   |                               |

| Static Web Host | +-----> |           Browser             |

|                 |         |                               |

+-----------------+         +-------------------------------+
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Besides the general risks of XSS, if tokens are stored or handled by

the browser, XSS poses an additional risk of token exfiltration. In

this architecture, the JavaScript application is storing the access

token so that it can make requests directly to the resource server.

There are two primary methods by which the application can acquire

tokens, with different security considerations of each.

6.4.1. Acquiring tokens from the Browsing Context

If the JavaScript executing in the browsing context will be making

requests directly to the resource server, the simplest mechanism is

to acquire and store the tokens somewhere accessible to the

JavaScript code. This will typically involve JavaScript code

initiating the Authorization Code flow and exchanging the

authorization code for an access token, and then storing the access

token obtained. There are a number of different options for storing

tokens, each with different tradeoffs, described in Section 9.

This method poses a particular risk in the case of a successful XSS

attack. In case of a successful XSS attack, the injected code will

have full access to the stored tokens and can exfiltrate them to the

attacker.

6.4.2. Acquiring tokens from a Service Worker

In this model, a Service Worker is responsible for obtaining tokens

from the authorization server and making requests to the resource

server.

Service workers are run in a separate context from the DOM, have no

access to the DOM, and the DOM has no access to the service worker

or the storage available to the service worker. This makes service

workers the most secure place to acquire and store tokens, as an XSS

attack would be unable to exfiltrate the tokens.

In this architecture, a service worker intercepts calls from the

frontend to the resource server. As such, it completely isolates

calls to the authorization server from XSS attack surface, as all

tokens are safely kept in the service worker context without any

access from other JavaScript contexts. The service worker is then

solely responsible for adding the token in the authorization header

to calls to the resource server.
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6.4.2.1. Implementation Guidelines

The service worker MUST initiate the OAuth 2.0 Authorization Code

grant with PKCE itself.

The service worker MUST intercept the authorization code when the

authorization server redirects to the application.

The service worker implementation MUST then initiate the token

request itself.

The service worker MUST not transmit tokens, authorization codes

or PKCE secrets (e.g. code verifier) to the frontend application.

The service worker MUST block authorization requests and token

requests initiating from the frontend application in order to

avoid any front-end side-channel for getting tokens: the only way

of starting the authorization flow should be through the service

worker. This protects against re-authorization from XSS-injected

code.

The application MUST register the Service Worker before running

any code interacting with the user.

See Section 9.2 for details on storing tokens from the Service

Worker.

                                                                 Resource               Authorization

  User       Application        Service Worker                    server                   server

   |   browse     |                   |                              |                        |

   | ------------>|                   |                              |                        |

   |              |------------------->                              |           /authorize   |

   |              |                   -------------------------------------------------------->

   |              |                   |                 redirect w/ authorization code        |

   |              |                   < - - - - - - - - - - - - - - - - - - - - - - - - - - - |

   |              |                   |                              |                        |

   |              |                   |  token request w/ auth code  |               /token   |

   |              |                   | ------------------------------------------------------>

   |              |                   | <- - - - - - - - - - - - - - - - - - - - - - - - - - -|

   |              |                   |                              |                        |

   |              | resource request  |                              |                        |

   |              |-------------------> resource request with token  |                        |

   |              |                   | ---------------------------->|                        |

   |              |                   |                              |                        |

  User       Application        Service Worker                   Resource               Authorization

                                                                  server                   server
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6.4.2.2. Security Considerations

A successful XSS attack on an application using this Service Worker

pattern would be unable to exfiltrate existing tokens stored by the

application. However, an XSS attacker may still be able to cause the

Service Worker to make authenticated requests to the resource server

including the user's legitimate token.

In case of a vulnerability leading to the Service Worker not being

registered, an XSS attack would result in the attacker being able to

initiate a new OAuth flow to obtain new tokens itself.

To prevent the Service Worker from being unregistered, the Service

Worker registration MUST happen as first step of the application

start, and before any user interaction. Starting the Service worker

before the rest of the application, and the fact that there is no

way to remove a Service Worker from an active application, reduces

the risk of an XSS attack being able to prevent the Service Worker

from being registered.

7. Authorization Code Flow

Browser-based applications that are public clients and use the

Authorization Code grant type described in Section 4.1 of OAuth 2.0 

[RFC6749] MUST also follow these additional requirements described

in this section.

7.1. Initiating the Authorization Request from a Browser-Based

Application

Browser-based applications that are public clients MUST implement

the Proof Key for Code Exchange (PKCE [RFC7636]) extension when

obtaining an access token, and authorization servers MUST support

and enforce PKCE for such clients.

The PKCE extension prevents an attack where the authorization code

is intercepted and exchanged for an access token by a malicious

client, by providing the authorization server with a way to verify

the client instance that exchanges the authorization code is the

same one that initiated the flow.

7.2. Authorization Code Redirect

Clients MUST register one or more redirect URIs with the

authorization server, and use only exact registered redirect URIs in

the authorization request.

Authorization servers MUST require an exact match of a registered

redirect URI. As described in [oauth-security-topics] Section 4.1.1.

this helps to prevent attacks targeting the authorization code.
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7.3. Cross-Site Request Forgery Protections

Browser-based applications MUST prevent CSRF attacks against their

redirect URI. This can be accomplished by any of the below:

using PKCE, and confirming that the authorization server supports

PKCE

using a unique value for the OAuth 2.0 "state" parameter to carry

a CSRF token

if the application is using OpenID Connect, by using and

verifying the OpenID Connect "nonce" parameter as described in 

[OpenID]

See Section 2.1 of [oauth-security-topics] for additional details.

8. Refresh Tokens

Refresh tokens provide a way for applications to obtain a new access

token when the initial access token expires. With public clients,

the risk of a leaked refresh token is greater than leaked access

tokens, since an attacker may be able to continue using the stolen

refresh token to obtain new access tokens potentially without being

detectable by the authorization server.

Javascript-accessible storage mechanisms like Local Storage provide

an attacker with several opportunities by which a refresh token can

be leaked, just as with access tokens. As such, these mechanisms are

considered a higher risk for handling refresh tokens.

Authorization servers may choose whether or not to issue refresh

tokens to browser-based applications. [oauth-security-topics]

describes some additional requirements around refresh tokens on top

of the recommendations of [RFC6749]. Applications and authorization

servers conforming to this BCP MUST also follow the recommendations

in [oauth-security-topics] around refresh tokens if refresh tokens

are issued to browser-based applications.

In particular, authorization servers:

MUST either rotate refresh tokens on each use OR use sender-

constrained refresh tokens as described in 

[oauth-security-topics] Section 4.13.2

MUST either set a maximum lifetime on refresh tokens OR expire if

the refresh token has not been used within some amount of time

upon issuing a rotated refresh token, MUST NOT extend the

lifetime of the new refresh token beyond the lifetime of the
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initial refresh token if the refresh token has a preestablished

expiration time

For example:

A user authorizes an application, issuing an access token that

lasts 1 hour, and a refresh token that lasts 24 hours

After 1 hour, the initial access token expires, so the

application uses the refresh token to get a new access token

The authorization server returns a new access token that lasts 1

hour, and a new refresh token that lasts 23 hours

This continues until 24 hours pass from the initial authorization

At this point, when the application attempts to use the refresh

token after 24 hours, the request will fail and the application

will have to involve the user in a new authorization request

By limiting the overall refresh token lifetime to the lifetime of

the initial refresh token, this ensures a stolen refresh token

cannot be used indefinitely.

Authorization servers MAY set different policies around refresh

token issuance, lifetime and expiration for browser-based

applications compared to other public clients.

9. Token Storage in the Browser

When using an architectural pattern that involves the browser-based

code obtaining tokens itself, the application will ultimately need

to store the tokens it acquires for later use. This applies to both

the Token-Mediating Backend architecture as well as any architecture

where the JavaScript code is the OAuth client itself and does not

have a corresponding backend component.

This section is primarily concerned with the ability for an attacker

to exfiltrate the tokens from where they are stored. Token

exfiltration may occur via an XSS attack, via injected code from a

browser extension, via malicious code deployed to the application

such as via upstream dependencies of a package management system, or

by the attacker getting access to the filesystem of the user's

machine via malware.

There are a number of storage options available to browser-based

applications, and more may be created in the future. The different
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options have different use cases and considerations, and there is no

clear "best" option that applies to every scenario. Tokens can be:

Stored and managed by a Service Worker

Stored in memory only, in particular stored in a closure variable

rather than an object property

Stored in LocalStorage, SessionStorage, or IndexedDB

Stored in an encrypted format using the WebCrypto API to encrypt

and decrypt from storage

9.1. Cookies

The JavaScript Cookie API is a mechanism that is technically

possible to use as storage from JavaScript, but is NOT RECOMMENDED

as a place to store tokens that will be later accessed from

JavaScript. (Note that this statement does not affect the BFF

pattern described in Section 6.2 since in that pattern the tokens

are never accessible to the browser-based code.)

When JavaScript code stores a token, the intent is for it to be able

to retrieve the token for later use in an API call. Using the Cookie

API to store the token has the unintended side effect of the browser

also sending the token to the web server the next time the app is

loaded, or on any API calls the app makes to its own backend.

Illustrating this example with the diagram in Section 6.4, the app

would acquire the tokens in step C, store them in a cookie, and the

next time the app loads from the Static Web Host, the browser would

transmit the tokens in the Cookie header to the Static Web Host

unnecessarily. Instead, the tokens should be stored using an API

that is only accessible to JavaScript, such as the methods described

below, so that the tokens are only sent outside the browser when

intended.

9.2. Token Storage in a Service Worker

Obtaining and storing the tokens with a service worker is the most

secure option for unencrypted storage, as that isolates the tokens

from XSS attacks, as described in Section 6.4.2.

The Service Worker MUST NOT store tokens in any persistent storage

API that is shared with the main window. For example, the IndexedDB

storage is shared between the browsing context and Service Worker,

so is not a suitable place for the Service Worker to persist data

that should remain inaccessible to the main window.
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Service Workers are not guaranteed to run persistently, and may be

shut down by the browser for various reasons. This should be taken

into consideration when implementing this pattern, until a

persistent storage API that is isolated to Service Workers is

available in browsers.

This, like the other unencrypted options, do not provide any

protection against exfiltration from the filesystem.

9.3. In-Memory Token Storage

If using a service worker is not a viable option, the next most

secure option is to store tokens in memory only. To prevent XSS

attackers from exfiltrating the tokens, a "token manager" class can

store the token in a closure variable (rather than an object

property), and manage all calls to the resource server itself, never

letting the access token be accessible outside this manager class.

However, the major downside to this approach is that the tokens will

not be persisted between page reloads. If that is a property you

would like, then the next best options are one of the persistent

browser storage APIs.

9.4. Persistent Token Storage

The persistent storage APIs currently available as of this writing

are LocalStorage, SessionStorage, and IndexedDB.

LocalStorage persists between page reloads as well as is shared

across all tabs. This storage is accessible to the entire origin,

and persists longer term. LocalStorage does not protect against XSS

attacks, as the attacker would be running code within the same

origin, and as such, would be able to read the contents of the

LocalStorage.

SessionStorage is similar to LocalStorage, except that

SessionStorage is cleared when a browser tab is closed, and is not

shared between multiple tabs open to pages on the same origin. This

slightly reduces the chance of a successful XSS attack, since a user

who clicks a link carrying an XSS payload would open a new tab, and

wouldn't have access to the existing tokens stored. However there

are still other variations of XSS attacks that can compromise this

storage.

IndexedDB is a persistent storage mechanism like LocalStorage, but

is shared between multiple tabs as well as between the browsing

context and Service Workers. For this reason, IndexedDB SHOULD NOT

be used by a Service Worker if attempting to use the Service Worker

to isolate the front-end from XSS attacks.
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9.5. Filesystem Considerations for Browser Storage APIs

In all cases, as of this writing, browsers ultimately store data in

plain text on the filesystem. Even if an application does not suffer

from an XSS attack, other software on the computer may be able to

read the filesystem and exfiltrate tokens from the storage.

The [WebCrypto] API provides a mechanism for JavaScript code to

generate a private key, as well as an option for that key to be non-

exportable. A JavaScript application could then use this API to

encrypt and decrypt tokens before storing them. However, the

WebCrypto specification only ensures that the key is not exportable

to the browser code, but does not place any requirements on the

underlying storage of the key itself with the operating system. As

such, a non-exportable key cannot be relied on as a way to protect

against exfiltration from the underlying filesystem.

In order to protect against token exfiltration from the filesystem,

the encryption keys would need to be stored somewhere other than the

filesystem, such as on a remote server. This introduces new

complexity for a purely browser-based app, and is out of scope of

this document.

9.6. Sender-Constrained Tokens

Sender-constrained tokens require that the OAuth client prove

possession of a private key in order to use the token, such that the

token isn't usable by itself. If a sender-constrained token is

stolen, the attacker wouldn't be able to use the token directly,

they would need to also steal the private key.

One method of implementing sender-constrained tokens in a way that

is usable from browser-based apps is [DPoP].

Using sender-constrained tokens shifts the challenge of securely

storing the token to securely storing the private key.

If an application is using sender-constrained tokens, the secure

storage of the private key is more important than the secure storage

of the token. Ideally the application should use a non-exportable

private key, such as generating one with the [WebCrypto] API. With

an unencrypted token in LocalStorage protected by a non-exportable

private key, an XSS attack would not be able to extract the key, so

the token would not be usable by the attacker.

If the application is unable to use an API that generates a non-

exportable key, the application should take measures to isolate the

private key from XSS attacks, such as by generating and storing it

in a closure variable or in a Service Worker. This is similar to the
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considerations for storing tokens in a Service Worker, as described

in Section 9.2.

10. Security Considerations

10.1. Cross-Site Scripting Attacks (XSS)

For all known architectures, all precautions MUST be taken to

prevent cross-site scripting (XSS) attacks. In general, XSS attacks

are a huge risk, and can lead to full compromise of the application.

If tokens are handled or accessible by the browser, there is a risk

that a XSS attack can lead to token exfiltration.

Even if tokens are never sent to the frontend and are never

accessible by any JavaScript code, an XSS attacker may still be able

to make authenticated requests to the resource server by mimicking

legitimate code in the browsing context. For example, the attacker

may make a request to the BFF Proxy which will in turn make requests

to the resource server including the user's legitimate token. In the

Service Worker example, the attacker may make an API call to the

resource server, and the Service Worker will intercept the request

and add the access token to the request. While the attacker is

unable to extract and use the access token elsewhere, they can still

effectively make authenticated requests to the resource server to

steal or modify data.

10.2. Reducing the Impact of Token Exfiltration

If tokens are ever accessible to the browser or to any JavaScript

code, there is always a risk of token exfiltration. The particular

risk may change depending on the architecture chosen. Regardless of

the particular architecture chosen, these additional security

considerations limit the impact of token exfiltration:

The authorization server SHOULD restrict access tokens to

strictly needed resources, to avoid escalating the scope of the

attack.

To avoid information disclosure from ID Tokens, the authorization

server SHOULD NOT include any ID token claims that aren't used by

the frontend.

Refresh tokens should be used in accordance with the guidance in 

Section 8.

10.3. Registration of Browser-Based Apps

Browser-based applications (with no backend) are considered public

clients as defined by Section 2.1 of OAuth 2.0 [RFC6749], and MUST
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be registered with the authorization server as such. Authorization

servers MUST record the client type in the client registration

details in order to identify and process requests accordingly.

Authorization servers MUST require that browser-based applications

register one or more redirect URIs.

10.4. Client Authentication

Since a browser-based application's source code is delivered to the

end-user's browser, it cannot contain provisioned secrets. As such,

a browser-based app with native OAuth support is considered a public

client as defined by Section 2.1 of OAuth 2.0 [RFC6749].

Secrets that are statically included as part of an app distributed

to multiple users should not be treated as confidential secrets, as

one user may inspect their copy and learn the shared secret. For

this reason, and those stated in Section 5.3.1 of [RFC6819], it is

NOT RECOMMENDED for authorization servers to require client

authentication of browser-based applications using a shared secret,

as this serves little value beyond client identification which is

already provided by the client_id parameter.

Authorization servers that still require a statically included

shared secret for SPA clients MUST treat the client as a public

client, and not accept the secret as proof of the client's identity.

Without additional measures, such clients are subject to client

impersonation (see Section 10.5 below).

10.5. Client Impersonation

As stated in Section 10.2 of OAuth 2.0 [RFC6749], the authorization

server SHOULD NOT process authorization requests automatically

without user consent or interaction, except when the identity of the

client can be assured.

If authorization servers restrict redirect URIs to a fixed set of

absolute HTTPS URIs, preventing the use of wildcard domains,

wildcard paths, or wildcard query string components, this exact

match of registered absolute HTTPS URIs MAY be accepted by

authorization servers as proof of identity of the client for the

purpose of deciding whether to automatically process an

authorization request when a previous request for the client_id has

already been approved.

10.6. Authorization Server Mix-Up Mitigation

Authorization server mix-up attacks mark a severe threat to every

client that supports at least two authorization servers. To conform
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to this BCP such clients MUST apply countermeasures to defend

against mix-up attacks.

It is RECOMMENDED to defend against mix-up attacks by identifying

and validating the issuer of the authorization response. This can be

achieved either by using the "iss" response parameter, as defined in

[oauth-iss-auth-resp], or by using the "iss" Claim of the ID token

when OpenID Connect is used.

Alternative countermeasures, such as using distinct redirect URIs

for each issuer, SHOULD only be used if identifying the issuer as

described is not possible.

Section 4.4 of [oauth-security-topics] provides additional details

about mix-up attacks and the countermeasures mentioned above.

10.7. Cross-Domain Requests

To complete the Authorization Code flow, the browser-based

application will need to exchange the authorization code for an

access token at the token endpoint. If the authorization server

provides additional endpoints to the application, such as metadata

URLs, dynamic client registration, revocation, introspection,

discovery or user info endpoints, these endpoints may also be

accessed by the browser-based app. Since these requests will be made

from a browser, authorization servers MUST support the necessary

CORS headers (defined in [Fetch]) to allow the browser to make the

request.

This specification does not include guidelines for deciding whether

a CORS policy for the token endpoint should be a wildcard origin or

more restrictive. Note, however, that the browser will attempt to

GET or POST to the API endpoint before knowing any CORS policy; it

simply hides the succeeding or failing result from JavaScript if the

policy does not allow sharing.

10.8. Content Security Policy

A browser-based application that wishes to use either long-lived

refresh tokens or privileged scopes SHOULD restrict its JavaScript

execution to a set of statically hosted scripts via a Content

Security Policy ([CSP3]) or similar mechanism. A strong Content

Security Policy can limit the potential attack vectors for malicious

JavaScript to be executed on the page.

10.9. OAuth Implicit Flow

The OAuth 2.0 Implicit flow (defined in Section 4.2 of OAuth 2.0 

[RFC6749]) works by the authorization server issuing an access token

in the authorization response (front channel) without the code
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exchange step. In this case, the access token is returned in the

fragment part of the redirect URI, providing an attacker with

several opportunities to intercept and steal the access token.

Authorization servers MUST NOT issue access tokens in the

authorization response, and MUST issue access tokens only from the

token endpoint.

10.9.1. Attacks on the Implicit Flow

Many attacks on the Implicit flow described by [RFC6819] and Section

4.1.2 of [oauth-security-topics] do not have sufficient mitigation

strategies. The following sections describe the specific attacks

that cannot be mitigated while continuing to use the Implicit flow.

10.9.1.1. Threat: Manipulation of the Redirect URI

If an attacker is able to cause the authorization response to be

sent to a URI under their control, they will directly get access to

the authorization response including the access token. Several

methods of performing this attack are described in detail in 

[oauth-security-topics].

10.9.1.2. Threat: Access Token Leak in Browser History

An attacker could obtain the access token from the browser's

history. The countermeasures recommended by [RFC6819] are limited to

using short expiration times for tokens, and indicating that

browsers should not cache the response. Neither of these fully

prevent this attack, they only reduce the potential damage.

Additionally, many browsers now also sync browser history to cloud

services and to multiple devices, providing an even wider attack

surface to extract access tokens out of the URL.

This is discussed in more detail in Section 4.3.2 of 

[oauth-security-topics].

10.9.1.3. Threat: Manipulation of Scripts

An attacker could modify the page or inject scripts into the browser

through various means, including when the browser's HTTPS connection

is being intercepted by, for example, a corporate network. While

man-in-the-middle attacks are typically out of scope of basic

security recommendations to prevent, in the case of browser-based

apps they are much easier to perform. An injected script can enable

an attacker to have access to everything on the page.

The risk of a malicious script running on the page may be amplified

when the application uses a known standard way of obtaining access
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tokens, namely that the attacker can always look at the 

window.location variable to find an access token. This threat

profile is different from an attacker specifically targeting an

individual application by knowing where or how an access token

obtained via the Authorization Code flow may end up being stored.

10.9.1.4. Threat: Access Token Leak to Third-Party Scripts

It is relatively common to use third-party scripts in browser-based

apps, such as analytics tools, crash reporting, and even things like

a Facebook or Twitter "like" button. In these situations, the author

of the application may not be able to be fully aware of the entirety

of the code running in the application. When an access token is

returned in the fragment, it is visible to any third-party scripts

on the page.

10.9.2. Countermeasures

In addition to the countermeasures described by [RFC6819] and 

[oauth-security-topics], using the Authorization Code flow with PKCE

extension prevents the attacks described above by avoiding returning

the access token in the redirect response.

When PKCE is used, if an authorization code is stolen in transport,

the attacker is unable to do anything with the authorization code.

10.9.3. Disadvantages of the Implicit Flow

There are several additional reasons the Implicit flow is

disadvantageous compared to using the standard Authorization Code

flow.

OAuth 2.0 provides no mechanism for a client to verify that a

particular access token was intended for that client, which could

lead to misuse and possible impersonation attacks if a malicious

party hands off an access token it retrieved through some other

means to the client.

Returning an access token in the front-channel redirect gives the

authorization server no assurance that the access token will

actually end up at the application, since there are many ways

this redirect may fail or be intercepted.

Supporting the Implicit flow requires additional code, more

upkeep and understanding of the related security considerations,

while limiting the authorization server to just the Authorization

Code flow reduces the attack surface of the implementation.
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If the JavaScript application gets wrapped into a native app,

then [RFC8252] also requires the use of the Authorization Code

flow with PKCE anyway.

In OpenID Connect, the ID Token is sent in a known format (as a

JWT), and digitally signed. Returning an ID token using the Implicit

flow (response_type=id_token) requires the client validate the JWT

signature, as malicious parties could otherwise craft and supply

fraudulent ID tokens. Performing OpenID Connect using the

Authorization Code flow provides the benefit of the client not

needing to verify the JWT signature, as the ID token will have been

fetched over an HTTPS connection directly from the authorization

server. Additionally, in many cases an application will request both

an ID token and an access token, so it is simplier and provides

fewer attack vectors to obtain both via the Authorization Code flow.

10.9.4. Historic Note

Historically, the Implicit flow provided an advantage to browser-

based apps since JavaScript could always arbitrarily read and

manipulate the fragment portion of the URL without triggering a page

reload. This was necessary in order to remove the access token from

the URL after it was obtained by the app. Additionally, until Cross

Origin Resource Sharing (CORS) was widespread in browsers, the

Implicit flow offered an alternative flow that didn't require CORS

support in the browser or on the server.

Modern browsers now have the Session History API (described in

"Session history and navigation" of [HTML]), which provides a

mechanism to modify the path and query string component of the URL

without triggering a page reload. Additionally, CORS has widespread

support and is often used by single-page apps for many purposes.

This means modern browser-based apps can use the unmodified OAuth

2.0 Authorization Code flow, since they have the ability to remove

the authorization code from the query string without triggering a

page reload thanks to the Session History API, and CORS support at

the token endpoint means the app can obtain tokens even if the

authorization server is on a different domain.

10.10. Additional Security Considerations

The OWASP Foundation (https://www.owasp.org/) maintains a set of

security recommendations and best practices for web applications,

and it is RECOMMENDED to follow these best practices when creating

an OAuth 2.0 Browser-Based application.

11. IANA Considerations

This document does not require any IANA actions.

*

¶

¶

¶

¶

¶

¶



[CSP3]

[draft-ietf-httpbis-rfc6265bis]

[Fetch]

[oauth-iss-auth-resp]

[oauth-security-topics]

[RFC2119]

[RFC6749]

[RFC6750]

[RFC6819]

[RFC7636]

12. References

12.1. Normative References

West, M., "Content Security Policy", October 2018, 

<https://www.w3.org/TR/CSP3/>. 

Chen, L., Englehardt, S., West, M.,

and J. Wilander, "Cookies: HTTP State Management

Mechanism", October 2021, <https://datatracker.ietf.org/

doc/html/draft-ietf-httpbis-rfc6265bis>. 

whatwg, "Fetch", 2018, <https://fetch.spec.whatwg.org/>. 

Meyer zu Selhausen, K. and D. Fett, "OAuth 2.0

Authorization Server Issuer Identifier in Authorization

Response", January 2021, <https://datatracker.ietf.org/

doc/html/draft-ietf-oauth-iss-auth-resp>. 

Lodderstedt, T., Bradley, J., Labunets, A.,

and D. Fett, "OAuth 2.0 Security Best Current Practice", 

April 2021, <https://datatracker.ietf.org/doc/html/draft-

ietf-oauth-security-topics>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", 

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>. 

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>. 

Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth

2.0 Threat Model and Security Considerations", RFC 6819, 

DOI 10.17487/RFC6819, January 2013, <https://www.rfc-

editor.org/info/rfc6819>. 

Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof

Key for Code Exchange by OAuth Public Clients", RFC 7636,

https://www.w3.org/TR/CSP3/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis
https://fetch.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-iss-auth-resp
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-iss-auth-resp
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc6819


[RFC8252]

[DPoP]

[HTML]

[OpenID]

[tmi-bff]

[WebCrypto]

DOI 10.17487/RFC7636, September 2015, <https://www.rfc-

editor.org/info/rfc7636>. 

Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps", 

BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017, 

<https://www.rfc-editor.org/info/rfc8252>. 

12.2. Informative References

Fett, D., Cambpell, B., Bradley, J., Lodderstedt, T., 

Jones, M., and D. Waite, "Demonstrating Proof-of-

Possession at the Application Layer", n.d., <https://

datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop>. 

whatwg, "HTML", 2020, <https://html.spec.whatwg.org/>. 

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,

and C. Mortimore, "OpenID Connect", November 2014, 

<https://openid.net/specs/openid-connect-core-1_0.html>. 

Bertocci, V. and B. Cambpell, "Token Mediating and

session Information Backend For Frontend", April 2021, 

<https://datatracker.ietf.org/doc/html/draft-bertocci-

oauth2-tmi-bff-01>. 

Huigens, D., "Web Cryptography API", November 2022, 

<https://w3c.github.io/webcrypto/>. 

Appendix A. Server Support Checklist

OAuth authorization servers that support browser-based apps MUST:

Support PKCE [RFC7636]. Required to protect authorization code

grants sent to public clients. See Section 7.1

NOT support the Resource Owner Password grant for browser-based

clients.

NOT support the Implicit grant for browser-based clients.

Require "https" scheme redirect URIs.

Require exact matching of registered redirect URIs.

Support cross-domain requests at the token endpoint in order to

allow browsers to make the authorization code exchange request.

See Section 10.7

Not assume that browser-based clients can keep a secret, and

SHOULD NOT issue secrets to applications of this type.
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Follow the [oauth-security-topics] recommendations on refresh

tokens, as well as the additional requirements described in 

Section 8.
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