
Workgroup: Web Authorization Protocol

Internet-Draft:

draft-ietf-oauth-cross-device-security-01

Published: 13 March 2023

Intended Status: Best Current Practice

Expires: 14 September 2023

Authors: P. Kasselman

Microsoft

D. Fett

yes.com

F. Skokan

Okta

Cross-Device Flows: Security Best Current Practice

Abstract

This document describes threats against cross-device flows along

with near term mitigations, protocol selection guidance and the

analytical tools needed to evaluate the effectiveness of these

mitigations. It serves as a security guide to system designers,

architects, product managers, security specialists, fraud analysts

and engineers implementing cross-device flows.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Web Authorization

Protocol Working Group mailing list (oauth@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/oauth/.

Source for this draft and an issue tracker can be found at https://

github.com/oauth-wg/oauth-cross-device-security.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/oauth/
https://github.com/oauth-wg/oauth-cross-device-security
https://github.com/oauth-wg/oauth-cross-device-security
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Terminology

2. Cross Device Flow Concepts

2.1. User Transferred Pattern

2.2. Client Transferred Pattern

2.3. Hybrid Pattern

2.4. Examples of cross-device flows

2.4.1. Example A1: Authorize access to a video streaming

service (User Transfer)

2.4.2. Example A2: Authorize access to productivity services

(User Transfer)

2.4.3. Example A3: Authorize use of a bike sharing scheme (User

Transfer)

2.4.4. Example A4: Authorize a financial transaction (Client

Transfer)

2.4.5. Example A5: Add a device to a network (Hybrid)

2.4.6. Example A6: Remote onboarding (User Transfer)

2.4.7. Example A7: Transfer a session (Hybrid)

2.4.8. Example A8: Access a productivity application (Hybrid)

3. Cross-Device Flow Exploits

3.1. User Transferred Pattern

3.2. Client Transferred Pattern

3.3. Hybrid Pattern

3.4. Examples of cross-device flow exploits

3.5. Example B1: Illicit access to a video streaming service

(User Transferred Pattern)

3.6. Example B2: Illicit access to productivity services (User

Transferred Pattern)

3.7. Example B3: Illicit access to physical assets (User

Transferred Pattern)

3.8. Example B4: Illicit Transaction Authorization (Client

Transferred Pattern)

¶

¶

https://trustee.ietf.org/license-info

3.9. Example B5: Illicit Network Join (Hybrid Pattern)

3.10. Example B6: Illicit Onboarding (User Transferred Pattern)

3.11. Example B7: Illicit session transfer (Hybrid Pattern)

3.12. Example B8: Account takeover (User Transferred Pattern)

3.13. Out of Scope

4. Cross-Device Protocols and Standards

5. Mitigating Against Cross-Device Flow Attacks

5.1. Practical Mitigations

5.1.1. Establish Proximity

5.1.2. Short Lived/Timebound User Codes

5.1.3. One-Time or Limited Use Codes

5.1.4. Unique Codes

5.1.5. Content Filtering

5.1.6. Detect and remediate

5.1.7. Trusted Devices

5.1.8. Trusted Networks

5.1.9. Limited Scopes

5.1.10. Short lived tokens

5.1.11. Rate Limits

5.1.12. Sender Constrained Tokens

5.1.13. User Experience

5.1.14. Authenticated flow

5.1.15. Practical Mitigation Summary

5.2. Protocol selection

5.2.1. IETF OAuth 2.0 Device Authorization Grant RFC8628:

5.2.2. OpenID Foundation Client Initiated Back-Channel

Authentication (CIBA):

5.2.3. FIDO2/WebAuthn

5.2.4. Protocol Selection Summary

5.3. Foundational Pillars

6. Conclusion

7. Contributors

8. Informative References

Appendix A. Document History

Authors' Addresses

1. Introduction

Cross-device flows enable a user to initiate an authorization flow

on one device (the initiating device) and then use a second,

personally trusted, device (authorization device) to authorize

access to a resource (e.g., access to a service).

These flows are increasingly popular and typically involve using a

mobile phone to scan a QR code or enter a user code displayed on an

initiating device (e.g., Smart TV, Kiosk, Personal Computer etc).

The channel between the initiating device and the authorization

device is unauthenticated and relies on the user's judgment to

¶

¶

decide whether to trust a QR code, user code, or the authorization

request pushed to their authorization device.

Several publications have emerged in the public domain ([Exploit1],

[Exploit2], [Exploit3], [Exploit4], [Exploit5], [Exploit6]),

describing how the unauthenticated channel can be exploited using

social engineering techniques borrowed from phishing. Unlike

traditional phishing attacks, these attacks don't harvest

credentials. Instead, they skip the step of collecting credentials

by persuading users to grant authorization using their authorization

devices.

Once the user grants authorization, the attacker has access to the

user's resources and in some cases is able to collect access and

refresh tokens. Once in possession of the access and refresh tokens,

the attacker may use these tokens to execute lateral attacks and

gain additional access, or monetize the tokens by selling them.

These attacks are effective even when multi-factor authentication is

deployed, since the attacker's aim is not to capture and replay the

credentials, but rather to persuade the user to grant authorization.

In order to defend against these attacks, this document outlines

three responses:

For protocols that are susceptible to unauthenticated channel

exploits, deploy practical mitigations.

Select protocols that are not susceptible to unauthenticated

channel exploits when possible.

Conduct formal analysis of cross-device flows to assess

susceptibility to these attacks and the effectiveness of the

proposed mitigations.

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification uses the terms "access token", "refresh token",

"authorization server", "resource server", "authorization endpoint",

"authorization request", "authorization response", "token endpoint",

"grant type", "access token request", "access token response", and

"client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

2. Cross Device Flow Concepts

In a cross-device flow, a user starts a scenario on the initiating

device (e.g., a smart TV) and then uses an authorization device

(e.g., a smartphone) to authorize access to a resource (e.g., access

to a streaming service).

Cross device flows have several benefits, including:

Authorization on devices with limited input capabilities: End-

users can authorize devices with limited input capabilities to

access content (e.g., smart TVs, digital whiteboards, printers,

etc).

Secure authentication on shared or public devices: End-users can

perform authentication and authorization using a personally

trusted device, without risk of disclosing their credentials to a

public or shared device.

Ubiquitous multi-factor authentication: Enables a user to use

multi-factor authentication, independent of the device on which

the service is being accessed (e.g., a kiosk, smart TV or shared

Personal Computer).

Convenience of a single, portable, credential store: Users can

keep all their credentials in a mobile wallet or mobile phone

that they already carry with them.

There are three cross-device flow patterns for transferring the

authorization request between the Initiating Device to the

Authorization Device.

User transferred: In the first variant, the user initiates the

authorization process with the authorization server by copying

information from the initiating device to the authorization

device, before authorizing an action. For example the user may

read a code displayed on the initiating device and enter it on

the authorization device, or they may scan a QR code displayed in

the initiating device with the authorization device.

Client transferred: In the second variant, the OAuth client on

the initiating device is responsible for initiating authorization

on the authorization device via a backchannel with the

authroization server.

Hybrid: In the third variant, the OAuth client on the initiating

device triggers the authorization request via a backchannel with

the Authorization Server. An access code is displayed on the

Authorization device, which the user enters on the initiating

device.

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

2.1. User Transferred Pattern

An example of a cross-device flow that relies on the user copying

information from the Initiating Device to the Authorization Device

is shown below:

Figure 1: Cross Device Flows (User Transferred)

(A) The user takes an action on the initiating device by starting

a purchase, adding a device to a network or connecting a service

to the initiating device.

(B) The initiating device retrieves a QR code or user code from

an authorization server.

(C) The QR code or user code is displayed on the initiating

device where the user scans the QR code or enters the user code

on the authorization device.

(D) The user authenticates to the authorization server before

granting authorization.

(E) The Authorization Server issues tokens or grants

authorization to the initiating device to access the user's

resources.

The Device Authorization Grant ([RFC8628]) follows this pattern.

¶

 (B) Initiating Device

 +--------------+ Get QR/User Code +---------------+

(A)User +---| Initiating |<--------------------->| |

 Start | | Device |(E) Grant Authorization| Authorization |

 Flow +-->| |<--------------------->| Server |

 +--------------+ | |

 | | |

 | (C) Scan QR code | |

 | or | |

 | enter User Code | |

 v | |

 +--------------+ | |

 | Authorization| | |

 | Device |<--------------------->| |

 | |(D) User Authenticates | |

 | | and Authorize Access | |

 +--------------+ +---------------+

*

¶

*

¶

*

¶

*

¶

*

¶

¶

2.2. Client Transferred Pattern

The figure below shows an example of the client requesting the

authorization server to initiate an authorization on the user's

authorization device via the backchannel.

Figure 2: Cross Device Flows (Client Transferred)

(A) The user takes an action on the initiating device by starting

a purchase, adding a device to a network or connecting a service

to the initiating device.

(B) The client on the initiating device requests user

authorization on the backchannel from the authorization server.

(C) The authorization server requests the authorization from the

user on the user's device.

(D) The user authenticates to the authorization server before

granting authorization on their device.

(E) The Authorization Server issues tokens or grants

authorization to the initiating device to access the user's

resources.

The Authorization Server may use a variety of mechanisms to request

user authorization, including a push notification to a dedicated app

on a mobile phone, or sending a text message with a link to an

endpoint where the user can authenticate and authorize and action.

¶

 (B) Backchannel Authorization

 +--------------+ Request +---------------+

(A)User +---| Initiating |<--------------------->| |

 Start | | Device |(E) Grant Authorization| Authorization |

 Flow +-->| |<--------------------->| Server |

 +--------------+ | |

 | |

 | |

 | |

 | |

(D)User | |

 Authorize +--------------+ | |

 Action +---| Authorization| | |

 | | Device |<--------------------->| |

 +-->| |(C) Request User | |

 | | Authorization | |

 +--------------+ +---------------+

*

¶

*

¶

*

¶

*

¶

*

¶

¶

The Client Initiated Backchannel Authentication [CIBA] follows this

pattern.

2.3. Hybrid Pattern

The figure below shows an example of the client requesting the

authorization server to initiate an authorization request via the

backchannel.

Figure 3: Cross Device Flows (Hybrid)

(A) The user takes an action on the initiating device by starting

a purchase, adding a device to a network or connecting a service

to the initiating device.

(B) The client on the initiating device requests user

authorization on the backchannel from the authorization server.

(C) The authorization server sends an access code to the

Authorization Device.

(D) The user enters the access code on the Initiating Device.

(E) The Authorization Server issues tokens or grants

authorization to the initiating device to access the user's

resources.

The Authorization Server may choose to authenticate the user before

sending the access code. The access code may be delivered as a text

message or through a mobile application.

¶

¶

 (B) Backchannel Authorization

 +--------------+ Request +---------------+

(A)User +---| Initiating |<--------------------->| |

 Start | | Device |(E) Grant Authorization| Authorization |

 Flow +-->| |<--------------------->| Server |

 +--------------+ | |

 ^ | |

 | (D)User Enters | |

 | Access Code | |

 | | |

 | | |

 +--------------+ | |

 | Authorization| | |

 | Device |<--------------------->| |

 | |(C) Send Access Code | |

 | | | |

 +--------------+ +---------------+

*

¶

*

¶

*

¶

* ¶

*

¶

¶

2.4. Examples of cross-device flows

Examples of cross-device flow scenarios include:

2.4.1. Example A1: Authorize access to a video streaming service (User

Transfer)

An end-user sets up a new smart TV and wants to connect it to their

favorite streaming service. The TV displays a QR code that the user

scans with their mobile phone. The user is redirected to the

streaming service provider's web page and asked to enter their

credentials to authorize the smart TV to access the streaming

service. The user enters their credentials and grants authorization,

after which the streaming service is available on the smart TV.

2.4.2. Example A2: Authorize access to productivity services (User

Transfer)

An employee wants to access their files on an interactive whiteboard

in a conference room. The interactive whiteboard displays a URL and

a code. The user enters the URL on their personal computer and is

prompted for the code. Once they enter the code, the user is asked

to authenticate and authorize the interactive whiteboard to access

their files. The user enters their credentials and authorizes the

transaction and the interactive whiteboard retrieves their files and

allows the user to interact with the content.

2.4.3. Example A3: Authorize use of a bike sharing scheme (User

Transfer)

An end-user wants to rent a bicycle from a bike sharing scheme. The

bicycles are locked in bike racks on sidewalks throughout a city. To

unlock and use a bike, the user scans a QR code on the bike using

their mobile phone. Scanning the QR code redirects the user to the

bike sharing scheme's authorization page where the user

authenticates and authorizes payment for renting the bike. Once

authorized, the bike sharing service unlocks the bike, allowing the

user to use it to cycle around the city.

2.4.4. Example A4: Authorize a financial transaction (Client Transfer)

An end-user makes an online purchase. Before completing the

purchase, they get a notification on their mobile phone, asking them

to authorize the transaction. The user opens their app and

authenticates to the service before authorizing the transaction.

2.4.5. Example A5: Add a device to a network (Hybrid)

An employee is issued with a personal computer that is already

joined to a network. The employee wants to add their mobile phone to

¶

¶

¶

¶

¶

the network to allow it to access corporate data and services (e.g.,

files and e-mail). The personal computer displays a QR code, which

the employee scans with their mobile phone. The mobile phone is

joined to the network and the employee can start accessing corporate

data and services on their mobile device.

2.4.6. Example A6: Remote onboarding (User Transfer)

A new employee is directed to an onboarding portal to provide

additional information to confirm their identity on their first day

with their new employer. Before activating the employee's account,

the onboarding portal requests that the employee present a

government issued ID, proof of a background check and proof of their

qualifications. The onboarding portal displays a QR code, which the

user scans with their mobile phone. Scanning the QR code invokes the

employee's wallet on their mobile phone, and the employee is asked

to present digital versions of an identity document (e.g., a driving

license), proof of a background check by an identity verifier, and

proof of their qualifications. The employee authorizes the release

of the credentials and after completing the onboarding process,

their account is activated.

2.4.7. Example A7: Transfer a session (Hybrid)

An employee is signed into an application on their personal computer

and wants to bootstrap the mobile application on their mobile phone.

The employee initiates the cross-device flow and is shown a QR code

in their application. The employee launches the mobile application

on their phone and scans the QR code which results in the user being

signed into the application on the mobile phone.

2.4.8. Example A8: Access a productivity application (Hybrid)

A user is accessing a Computer Aid Design (CAD) application. When

accessing the application, an access code is sent to the user's

mobile phone. The user views the access code on their phone and

enters it in the CAD application, after which the CAD application

displays the user's most recent designs.

3. Cross-Device Flow Exploits

Attackers exploit cross-device flows by initiating an authorization

flow on the Initiating Device and then use social engineering

techniques to change the context in which the request is presented

to the user in order to trick them into granting authorization on

the Authorization Device. The attacker is able to change the context

of the authorization request because the channel between the

Initiating Device and the Authorizing Device is unauthenticated.

These attacks are also known as illicit consent grant attacks.

¶

¶

¶

¶

¶

3.1. User Transferred Pattern

A common action in cross-device flows is to present the user with a

QR code or a user code on the initiating device (e.g., Smart TV)

which is then scanned or entered on the authorization device (the

mobile phone). When the user scans the code or copies the user code,

they do so without any proof that the QR code or user code is being

displayed in the place or context intended by the service provider.

It is up to the user's judgment to decide on whether they can trust

the QR code or user code. In effect the user is asked to compensate

for the absence of an authenticated channel between the initiating

device (smart TV) and the device on which the authentication/

authorization will take place (the mobile phone).

Attackers exploit this absence of an authenticated channel between

the two devices by obtaining QR codes or user codes (e.g., by

initiating the authorization flows). They then use social

engineering techniques to change the context in which authorization

is requested to trick end-users to scan the QR code or enter it on

their mobile devices. Once the end-user performs the authorization

on the mobile device, the attacker who initiated the authentication

or authorization request obtains access to the users resources. The

figure below shows an example of such an attack.

¶

¶

Figure 4: Attacker Initiated Cross Device Flow Exploit (User

Transferred Pattern)

(A) The attacker initiates the protocol on the initiating device

(or by mimicking the initiating device) by starting a purchase,

adding a device to a network or connecting a service to the

initiating device.

(B) The initiating device retrieves a QR code or user code from

an authorization server

(C) The attacker copies the QR code or user code

(D) The attacker changes the context in which the QR code or user

code is displayed in such a way that the user is likely to scan

the QR code or use the user code when completing the

authorization.

 (B) Initiating Device

 +--------------+ Get QR/User Code +---------------+

 | Attacker's |<--------------------->| |

 | Initiating |(G) Grant Authorization| Authorization |

 | Device |<--------------------->| Server |

 +--------------+ | |

 ^ | (C) Attacker Copy | |

(A) Attacker | | QR or User Code | |

 Start | | | |

 Flow | V | |

 +--------------+ | |

 | | | |

 | Attacker | | |

 | | (D) Attacker Change | |

 | | QR Code/User Code | |

 | | Context | |

 +--------------+ | |

 | (E) User is tricked and | |

 | Scan QR code or | |

 | enter User Code | |

 v | |

 +--------------+ | |

 | End User | | |

 | Authorization| | |

 | Device |<--------------------->| |

 | |(F) User Authenticates | |

 | | and Authorize Access | |

 +--------------+ +---------------+

*

¶

*

¶

* ¶

*

¶

(E) The QR code or user code is displayed in a context chosen by

the attacker and the user is tricked into scanning the QR code or

enter the user code on the authorization device.

(F) The user authenticates to the Authorization Server before

granting authorization.

(G) The Authorization Server issues tokens or grants

authorization to the initiating device, which is under the

attackers control, to access the users resources and the attacker

gains access to the resources and possibly any authorization

artefacts like access and refresh tokens.

3.2. Client Transferred Pattern

In the client transferred pattern, the client instructs the

authorization server to authetnicate the user and obtain

authorization for an action. This may happen as a result of user

interaction with the initiating device, but may also be triggered

without the users direct interaction with the initiating device,

resulting in an authorization request presented to the user without

context of why or who triggered the request.

Attackers exploit this lack of context by using social engineering

techniques to prime the user for an authorization request and

thereby trick them into granting authroization. The social

engineering techniques range in sophistication from messages

misrepresenting the reason for receiving an authroizations requests

through to triggering a large volume of requests at an inconvenient

time for the user, in the hope that the user will grant

authroization to make the requests stop. The figure below shows an

example of such an attack.

*

¶

*

¶

*

¶

¶

¶

Figure 5: Attacker Initiated Cross Device Flow Exploit (Client

Transferred Pattern)

(A) The attacker sends a social engineering message to prepare

the user for the upcoming authroization (optional).

(B) The attacker initiates the protocol on the initiating device

(or by mimicking the initiating device) by starting a purchase,

adding a device to a network or accessing a service on the

initiating device.

(C) The client on the initiating device requests user

authorization on the backchannel from the authorization server.

(D) The authorization server requests the authorization from the

user on the user's device.

(E) The user authenticates to the authorization server before

granting authorization on their device.

 (C) Backchannel Authorization

 +--------------+ Request +---------------+

 | Attackers |<--------------------->| |

 | Initiating |(F) Grant Authorization| Authorization |

 | Device |<--------------------->| Server |

 +--------------+ | |

 ^ | |

 (B) Attacker | | |

 Start | | |

 Flow | | |

 +--------------+ | |

 | | | |

 | Attacker | | |

 | | | |

 | | | |

 | | | |

 +--------------+ | |

 | (A) Attacker Sends | |

 | Social Engineering | |

 | Message to User | |

 | | |

(E)User v | |

 Authorize +--------------+ | |

 Action +---| Authorization| | |

 | | Device |<--------------------->| |

 +-->| |(D) Request User | |

 | | Authorization | |

 +--------------+ +---------------+

*

¶

*

¶

*

¶

*

¶

*

¶

(G) The Authorization Server issues tokens or grants

authorization to the initiating device, which is under the

attackers control. The attacker gains access to the users

resources and possibly any authorization artefacts like access

and refresh tokens.

3.3. Hybrid Pattern

In cross device flows that follow the Hybrid Pattern, the client

initiates the authorizations request, but the user stil has to

transfer the authorization code to the inititing device. The

authorization request may happen as a result of user interaction

with the initiating device, but may also be triggered without the

users direct interaction with the initiating device.

Attackers exploit the hybrid pattern by combining the social

engineering techniques used to set context for users and tricking

users into providing them with access codes sent to their phones.

These attacks are very similar to phishing attacks, except that the

attacker also has the ability to trigger the authroization request

to be sent to the user directly by the Authorization server.

*

¶

¶

¶

Figure 6: Attacker Initiated Cross Device Flow Exploit (Hybrid Pattern)

(A) The attacker sends a social engineering message to prime the

user for the authorization request they just received, along with

instructions on what to do with the access code they received.

(B) The attacker initiates the protocol on the initiating device

(or by mimicking the initiating device) by starting a purchase,

adding a device to a network or accessing a service on the

initiating device.

(C) The client on the initiating device requests user

authorization on the backchannel from the authorization server.

(D) The authorization server sends an access code to the user's

device (the access code may be presented as a QR code, or text

message).

(E) The user sends the access code to the attacker.

 (C) Backchannel Authorization

 +--------------+ Request +---------------+

 | Attackers |<--------------------->| |

 | Initiating |(G) Grant Authorization| Authorization |

 | Device |<--------------------->| Server |

 +--------------+ | |

 ^ ^ | |

 (B) Attacker | | (F) Attacker Forwards | |

 Start | | Access Code | |

 Flow | | | |

 +--------------+ | |

 | | | |

 | Attacker | | |

 | | | |

 | | | |

 | | | |

 +--------------+ | |

(A) Attacker | ^ (E) User | |

 Sends | | Send | |

 Social | | Access Code | |

 Engineering | | | |

 Message | | | |

 v | | |

 +--------------+ | |

 | Authorization| | |

 | Device |<--------------------->| |

 | |(D) Send Access | |

 | | Code | |

 +--------------+ +---------------+

*

¶

*

¶

*

¶

*

¶

* ¶

(F) The attacker enters the access code on the Initiating Device.

(G) The Authorization Server issues tokens or grants

authorization to the initiating device, which is under the

attackers control. The attacker gains access to the users

resources and possibly any authorization artefacts like access

and refresh tokens.

The unauthenticated channel may also be exploited in variations of

the above scenario where the user initiates the flow and is then

tricked into sending the QR code or user code to the attacker. In

these flows, the user is already authenticated and they request a QR

code or user code to transfer a session or obtain some other

privilege such as joining a device to a network. The attacker then

proceeds to exploit the unauthenticated channel by using social

engineering techniques to trick the user into initiating a flow and

send the QR code or user code to the attacker, which they can then

use to obtain the privileges that would have been assigned to the

user.

3.4. Examples of cross-device flow exploits

The following examples illustrate these attacks in practical

settings and show how the unauthenticated channel is exploited by

attackers who can copy the QR codes and user codes, change the

context in which they are presented using social engineering

techniques and mislead end-users into granting consent to avail of

services, access data and make payments.

3.5. Example B1: Illicit access to a video streaming service (User

Transferred Pattern)

An attacker obtains a smart TV and attempts to access an online

streaming service. The smart TV obtains a QR code from the

authorization server and displays it on screen. The attacker copies

the QR code and embeds it in an e-mail that is sent to a large

number of recipients. The e-mail contains a message stating that the

streaming service wants to thank them for their loyal support and by

scanning the QR code, they will be able to add a bonus device to

their account for no charge. One of the recipients open the e-mail

and scan the QR code to register for early access to premium

content. The users perform multi-factor authentication, and when

asked if they want a new device to be added to their account, they

authorize the action. The attacker's device is now authorized to

access the content and obtains an access and refresh token. The

access token allows the attacker to access content and the refresh

token allows the attacker to obtain fresh tokens whenever the access

token expires.

* ¶

*

¶

¶

¶

¶

The attacker scales up the attack by emulating a new smart TV,

obtaining multiple QR codes and widening the audience it sends the

QR code to. Whenever a recipient scans the QR code and authorizes

the addition of a new device, the attacker obtains an access and

refresh token, which they sell for a profit.

3.6. Example B2: Illicit access to productivity services (User

Transferred Pattern)

An attacker emulates an enterprise application (e.g., an interactive

whiteboard) and initiates a cross-device flow by requesting a user

code and URL from the authorization server. The attacker obtains a

list of potential victims and sends an e-mail informing users that

their files will be deleted within 24 hours if they don't follow the

link, enter the user code and authenticate. The e-mail reminds them

that this is the third time that they have been notified and their

last opportunity to prevent deletion of their work files. One or

more employees respond by following the URL, entering the code and

performing multi-factor authentication. Once these employees

authorized access, the attacker obtains access and refresh tokens

from the authorization server and uses it to access the users files,

perform lateral attacks to obtain access to other information and

continuously refresh the session by requesting new access tokens.

These tokens may be exfiltrated and sold to third parties.

3.7. Example B3: Illicit access to physical assets (User Transferred

Pattern)

An attacker copies a QR code from a bicycle locked in a bike rack in

a city, prints it on a label and places the label on a bicycle at

the other end of the bike rack. A customer approaches the bike that

contains the replicated QR code and scans the code and authenticates

before authorizing payment for renting the bicycle. The bike rack

unlocks the bike containing the original QR code and the attacker

removes the bicycle before cycling down the street while the

customer is left frustrated that the bike they were trying to use is

not being unlocked [NYC.Bike]. The customer proceeds to unlock

another bicycle and lodges a complaint with the bike renting

company.

3.8. Example B4: Illicit Transaction Authorization (Client Transferred

Pattern)

An attacker obtains a list of user identifiers for a financial

institution and triggers a transaction request for each of the users

on the list. The financial institution's authorization server sends

push notifications to each of the users, requesting authorization of

a transaction. The vast majority of users ignore the request to

¶

¶

¶

authorize the transaction, but a small percentage grants

authorization by approving the transaction.

3.9. Example B5: Illicit Network Join (Hybrid Pattern)

An attacker creates a message to all employees of a company,

claiming to be from a trusted technology provider investigating a

suspected security breach. They ask employees to send them the QR

code typically used to join a new device to the network, along with

detailed steps on how to obtain the QR code. The employee, eager to

assist, initiates the process to add a new mobile device to the

network. They authenticate to the network and obtain a QR code. They

send the QR code to the attacker. The attacker scans the QR code and

adds their own device to the network. They use this device access as

an entry point and perform lateral moves to obtain additional

privileges and access to restricted resources.

3.10. Example B6: Illicit Onboarding (User Transferred Pattern)

An attacker initiates an employee onboarding flow and obtains a QR

code from the onboarding portal to invoke a wallet and present a

verifiable credential attesting to a new employee's identity. The

attacker obtains a list of potential new employees and sends an e-

mail informing them that it is time to present proof of their

background check or government issued ID. The new employee scans the

QR code, invokes their wallet and presents their credentials. Once

the credentials are presented, the employee's account is activated.

The employee portal accessed by the attacker to obtain the QR code

displays a message to the attacker with instructions on how to

access their account.

3.11. Example B7: Illicit session transfer (Hybrid Pattern)

An attacker creates a message to all employees of a company,

claiming to be from the company's IT service provider. They claim

that they are trying to resolve an application performance issue and

ask employees to send them the QR code typically used to transfer a

session. The employee, eager to assist, initiates the process to

transfer a session. They authenticate and obtain a QR code and then

send the QR code to the attacker. The attacker scans the QR code

with their mobile phone and access the users data and resources.

3.12. Example B8: Account takeover (User Transferred Pattern)

An attacker wants to use some website which requires presentation of

a verifiable credential for authentication. The attacker creates a

phishing website which will in real time capture log-in QR Codes

from the original website and present these to the victim. The

attacker tries to get the victim to use the phishing website using

an e-mail campaign etc. The victim scans the QR code on the phishing

¶

¶

¶

¶

website, invokes their wallet and presents their credentials. Once

the credentials are presented, the original session from the

attackers device is authenticated with the victim's credentials.

3.13. Out of Scope

In all of the attack scenarios listed above, a user is tricked or

exploited. For other attacks, where the user is willingly colluding

with the attacker, the security implications and potential

mitigations are very different. For example, a cooperating user can

bypass software mitigations on his device, share access to hardware

tokens with the attacker, and install additional devices to forward

radio signals to trick proximity checks.

This document only considers scenarios where a user does not collude

with an attacker.

4. Cross-Device Protocols and Standards

Cross-device flows that are subject to the attacks described

earlier, typically share the following characteristics:

The attacker can initiate the flow and manipulate the context

of an authorization request. a. E.g. the attacker can obtain a

QR code or user code, or can request an authentication/

authorization decision from the user.

The interaction between the initiating device and

authentication device is unauthenticated. a. E.g. it is left ot

the user to decide if the QR code, user code or authentication

request is being presented in a legitimate context

A number of protocols that have been standardized, or are in the

process of being standardized that share these characteristics

include:

IETF OAuth 2.0 Device Authorization Grant ([RFC8628]): A standard

to enable authorization on devices with constrained input

capabilities (smart TVs, printers, kiosks). In this protocol, the

user code or QR code is displayed on the initiating device and

entered on a second device (e.g., a mobile phone).

Open ID Foundation Client Initiated Back-Channel Authentication

(CIBA) [CIBA]: A standard developed in the OpenID Foundation that

allows a device or service (e.g., a personal computer, Smart TV,

Kiosk) to request the OpenID Provider to initiate an

authentication flow if it knows a valid identifier for the user.

The user completes the authentication flow using a second device

(e.g., a mobile phone). In this flow the user does not scan a QR

code or obtain a user code from the initiating device, but is

¶

¶

¶

¶

1.

¶

2.

¶

¶

*

¶

*

instead contacted by the OpenID Provider to complete the

authentication using a push notification, e-mail, text message or

any other suitable mechanism.

OpenID for Verifiable Credential Protocol Suite (Issuance,

Presentation): The OpenID for Verifiable Credentials enables

cross-device scenarios by allowing users to scan QR codes to

retrieve credentials (Issuance) or present credentials

(Presentation). The QR code is presented on a device that

initiates the flow.

Self-Issued OpenID Provider v2 (SIOP V2): A standard that allows

end-user to present self-attested or third party attested

attributes when used with Opend ID for Verifiable Credential

protocols. The user scans a QR code presented by the relying

party to initiate the flow.

Cross-device protocols should not be used for same-device scenarios.

If the initiating device and authorization device is the same

device, protocols like OpenID Connect Core [OpenID.Core] and OAuth

2.0 Authorization Code Grant as defined in [RFC6749] are more

appropriate. If a protocol supports both same-device and cross-

device modes (e.g. [OpenID.SIOPV2]), the cross-device mode should

not be used for same-device scenarios. If an implementor decides to

use a cross-device protocol or a protocol with a cross-device mode

in a same-device scenario, the mitigations recommended in this

document should be implemented to reduce the risks that the

unauthenticated channel is exploited.

5. Mitigating Against Cross-Device Flow Attacks

The unauthenticated channel between the initiating device and the

authenticating device allows attackers to change the context in

which the authorization request is presented to the user. This

shifts responsibility of "authenticating" the channel between the

two devices to the end-user. End users have "expertise elsewhere"

and are typically not security experts and don't understand the

protocols and systems they interact with. As a result, end-users are

poorly equipped to authenticate the channel between the two devices.

Mitigations should focus on:

Minimizing reliance on the user to make decisions to

authenticate the channel.

Providing better information with which to make decisions to

authenticate the channel.

Recovering from incorrect channel authentication decisions by

users.

¶

*

¶

*

¶

¶

¶

1.

¶

2.

¶

3.

¶

To achieve the above outcomes, mitigating the exploits of cross-

device flows require a three-pronged approach:

Secure deployed protocols with practical mitigations.

Adopt or develop more secure protocols where possible.

Provide analytical tools to assess vulnerabilities and

effectiveness of mitigations.

5.1. Practical Mitigations

A number of protocols that enable cross-device flows that are

susceptible to illicit consent grant attacks are already deployed.

The security profile of these protocols can be improved through

practical mitigations that provide defense in depth that either:

Prevents the attack from being initiated.

Disrupts the attack once it is initiated.

Remediates or reduces the impact if the attack succeeds.

It is recommended that one or more of the mitigations are applied

whenever implementing a cross-device flow. Every mitigation provides

an additional layer of security that makes it harder to initiate the

attack, disrupts attacks when in process or reduces the impact of a

successful attack.

5.1.1. Establish Proximity

The unauthenticated channel between the initiating and

authenticating device allows attackers to obtain a QR code or user

code in one location and display in another location. Establishing

proximity between the location of the initiating device and the

authentication device limits an attacker's ability to launch attacks

by sending the user or QR codes to large numbers of users across the

globe. There are a couple of ways to establish proximity:

Physical connectivity: This is a good indicator of proximity, but

requires specific ports, cables and hardware and may be

challenging from a user experience perspective or may not be

possible in certain settings (e.g., when USB ports are blocked or

removed for security purposes). Physical connectivity may be

better suited to dedicated hardware like FIDO devices that can be

used with protocols that are resistant to the exploits described

in this document.

Wireless proximity: Near Field Communications (NFC), Bluetooth

Low Energy (BLE), and Ultra Wideband (UWB) services can be used

¶

1. ¶

2. ¶

3.

¶

¶

1. ¶

2. ¶

3. ¶

¶

¶

*

¶

*

to prove proximity between the two devices. NFC technology is

widely deployed in mobile phones as part of payment solutions,

but NFC readers are less widely deployed. BLE presents another

alternative for establishing proximity, but may present user

experience challenges when setting up.

Shared network: Device proximity can be inferred by verifying

that both devices are on the same network. This check may be

performed by the authorization server by comparing the network

addresses of the device where the code is displayed (initiating

device) with that of the authentication/authorization device.

Alternatively the check can be performed on the device, provided

that the network address is available. This could be achieved if

the authorization server encodes the initiating device's network

address in the QR code and uses a digital signature to prevent

tampering with the code. This does require the wallet to be aware

of the countermeasure and effectively enforce it.

Geo-location: Proximity can be established by comparing geo-

location information derived from global navigation satellite-

system (GNSS) co-ordinates or geolocation lookup of IP addresses

and comparing proximity. Due to inaccuracies, this may require

restrictions to be at a more granular level (e.g., same city,

country, region or continent). Similar to the shared network

checks, these checks may be performed by the authorization server

or on the users device, provided that the information encoded in

a QR code is integrity protected using a digital signature.

Dependig on the risk profile and the threat model in which as system

is operating, it mey be neccesary to user mor than one mechanism to

establish proximity to raise the bar for any potential attackers.

Note: There are scenarios that require that an authorization takes

place in a different location than the one in which the transaction

is authorized. For example, there may be a primary and secondary

credit card holder and both can initiate transactions, but only the

primary holder can authorize it. There is no guarantee that the

primary and secondary holders are in the same location at the time

of the authorization. In such cases, proximity may be an indicator

of risk and the system may deploy additional controls (e.g.,

transaction value limits, transaction velocity limits) or use the

proximity information as input to a risk management system.

Limitations: Proximity mechanisms raises the bar for an attack.

However, depending on how the proximity check is performed, an

attacker may be able to circumvent the protection: The attacker can

use a VPN to simulate a shared network or spoof a GNSS position. For

example, the attacker can try to request the location of the end-

user's authorization device through browser APIs and then simulate

¶

*

¶

*

¶

¶

¶

the same location on his initiating device using standard debugging

features available on many platforms.

5.1.2. Short Lived/Timebound User Codes

The impact of an attack can be reduced by making user codes short

lived. If an attacker obtains a short-lived code, the duration

during which the unauthenticated channel can be exploited is

reduced, potentially increasing the cost of a successful attack.

Limitations: There is a practical limit to how short a user code can

be valid due to network latency and user experience limitations

(time taken to enter a code, or incorrectly entering a code).

5.1.3. One-Time or Limited Use Codes

By enforcing one-time use or limited use of user or QR codes, the

authorization server can limit the impact of attacks where the same

user code or QR code is sent to multiple victims. One-time use may

be achieved by including a nonce or date-stamp in the user code or

QR code which is validated by the authorization server when the user

scans the QR code against a list of previously issued codes.

Limitations: Enforcing one-time use may be difficult in large

globally distributed systems with low latency requirements, in which

case short lived tokens may be more practical. One-time use codes

may also have an impact on the user experience. For example, a user

may enter a code, but their session may be interrupted before the

access request is completed. If the code is a one-time use code,

they would need to restart the session and obtain a new code since

they won't be allowed to enter the same code a second time. As a

result, it may be practical to allow the same code to be presented a

small number of times.

5.1.4. Unique Codes

By issuing unique user or QR codes, an authorization server can

detect if the same codes are being repeatedly submitted. This may be

interpreted as anomalous behavior and the authorizations server may

choose to decline issuing access and refresh tokens if it detects

the same codes being presented repeatedly. This may be achieved by

maintaining a deny list that contains QR codes or user codes that

were previously used. The authorization server may use a sliding

window eqaul to lifetime of a token if short lived/timebound tokens

are used (see Short Lived/Timebound Codes). This will limit the size

of the deny list.

Limitations: Maintaining a deny list of previously redeemed codes,

even for a sliding window, may have an impact on the latency of

¶

¶

¶

¶

¶

¶

globally distributed systems. One alternative is to segment user

codes by geography or region and maintain local deny lists.

5.1.5. Content Filtering

Attackers exploit the unauthenticated channel by changing the

context of the user code or QR code and then sending a message to a

user (e-mail, text, instant messaging etc). By deploying content

filtering (e.g., anti-spam filter), these messages can be blocked

and prevented from reaching the end-users. It may be possible to

fine-tune content filtering solutions to detect artifacts like QR

codes or user codes that are being reused in multiple messages to

disrupt spray attacks.

Limitations: Content filtering may be better suited to interrupt

large scale spray attacks since some scenarios may require re-

transmission of user, QR and access codes. Content filtering may

also be fragmented across multiple communications systems and

channels (e-mail, messaging, text etc), making it harder to detect

or interrupt attacks that are executed over multiple channels,

unless here is a high degree of integration between content

filtering systems.

5.1.6. Detect and remediate

The authorization server may be able to detect misuse of the codes

due to repeated use as described in Unique Codes, as an input from a

content filtering engine as described in Content Filtering, or

through other mechanisms such as reports from end users. If an

authorization server determines that a user code or QR code is being

used in an attack it may choose to invalidate all tokens issued in

response to these codes and make that information available through

a token introspection endpoint (see [RFC7662]. In addition it may

notify resource servers to stop accepting these tokens or to

terminate existing sessions associated with these tokens using

Continious Access Evaluation Protocol (CAEP) messages [CAEP] using

the Shared Signals and Events (SSE) [SSE] framework or an equivalent

notification system.

Limitations: Detection and remediation requires that resource

servers are integrated with security eventing systems or token

introspection services. This may not always be practical for

existing systems and may need to be targeted to the most critical

resource services in an environment.

5.1.7. Trusted Devices

If an attacker is unable to initiate the protocol, they are unable

to obtain a QR code or user code that can be leveraged for the

attacks described in this document. By restricting the protocol to

¶

¶

¶

¶

¶

only be executed on devices trusted by the authorization server, it

prevents attackers from using arbitrary devices, or by mimicking

devices to initiate the protocol. Trusted devices include devices

that are pre-registered with the authorization server or are subject

to device management policies. Device management policies may

enforce patching, version updates, on-device anti-malware

deployment, revocation status and device location amongst others.

Trusted devices may have their identities rooted in hardware (e.g.,

a TPM or equivalent technology). By only allowing trusted devices to

initiate cross-device flows, it requires the attacker to have access

to such a device and maintain access in a way that does not result

in the device's trust status from being revoked.

Limitations: An attacker may still be able to obain access to a

trusted device and use it to initiate authorization requests, making

it necesary to apply additional controls and integrating with other

threat detection and management systems that can detect suspicious

behaviour such as repeated requests to initiate authorization or

high volume of service activation on the same device.

5.1.8. Trusted Networks

An attacker can be prevented from initiating a cross device flow

protocol by only allowing the protocol to be initiated on a trusted

network or within a security perimeter (e.g., a corporate network).

A trusted network may be defined as a set of IP addresses and

joining the network is subject to security controls managed by the

network operator, which may include only allowing trusted devices on

the network, device management, user authentication and physical

access policies and systems. By limiting protocol initiation to a

specific network, the attacker needs to have access to a device on

the network.

Limitations: Network level controls may not always be feasible,

especially when dealing with consumer scenarios where the network

may not be under control of the service provider. Even if it is

possible to deploy network level controls, it should be used in

concert with other controls outlined in this document to achieve

defence in-depth.

5.1.9. Limited Scopes

Authorization servers may choose to limit the scopes they include in

access tokens issued through cross-device flows where the

unauthenticated channel between two devices are susceptible to being

exploited. Including limited scopes lessens the impact in case of a

successful attack. The decision about which scopes are included may

be further refined based on whether the protocol is initiated on a

¶

¶

¶

¶

trusted device or the user's location relative to the initiating

device.

Limitations: Limiting scopes reduces the impact of a compromise, but

does not avoid it. It should be used in conjunction with other

mitigations described in this document.

5.1.10. Short lived tokens

Another mitigation strategy includes limiting the life of the access

and refresh tokens. The lifetime can be lengthened or shortened,

depending on the user's location, the resources they are trying to

access or whether they are using a trusted device. Short lived

tokens do not prevent or disrupt the attack, but serve as a remedial

mechanism in case the attack succeeded.

Limitations: Short lived tokens reduces the time window during which

an attacker can benefit from a succesfull attack. This is most

effective for access tokens. However, once an attacker obtains a

refresh token, they can continue to request new access tokens, as

well as refresh tokens. Forcing the expiry of refresh tokens may

cause the user to re-authorize an action more frequently, which

results in a negative user experience.

5.1.11. Rate Limits

An attacker that engages in a scaled spray attack needs to request a

large number of user codes (see exploit Example B1) or initiate a

large number of authorization requests (see exploit Example B4) in a

short period of time. An authorization server can apply rate limits

to minimize the number of requests it would accept from a client in

a limited time period.

Limitations: Rate limits are effective at slowing an attacker down

and helps to degrade spray attacks, but does not prevent more

targeted attacks that are executed with lower volumes and velocity.

Therefor it should be used along with other techniques to provide a

defence-in-depth against cross-device attacks.

5.1.12. Sender Constrained Tokens

Sender constrained tokens limit the impact of a successful attack by

preventing the tokens from being moved from the device on which the

attack was successfully executed. This makes attacks where an

attacker gathers a large number of access and refresh tokens on a

single device and then sells them for profit more difficult, since

the attacker would also have to export the cryptographic keys used

to sender constrain the tokens or be able to access them an generate

signatures for future use. If the attack is being executed on a

trusted device to a device with anti-malware, any attempts to

¶

¶

¶

¶

¶

¶

exfiltrate tokens or keys may be detected and the device's trust

status may be changed. Using hardware keys for sender constraining

tokens will further reduce the ability of the attacker to move

tokens to another device.

Limitations: Sender constrained tokens, especially sender

constrained tokens that require proof-of-posession, raises the bar

for executing the attack and and profiting from exfiltrating tokens.

The quality of key protection has an impact on the effectiveness of

the attack, and although a software proof-of-posession key is better

than no proof-of-posession key, an attacker may still exfiltrate the

software key. Hardware keys will be harder to exfiltrate, but comes

with aditional implementation complexity. An attacker that controls

the initiating device may still be able to excercise they key, even

if it is in hardware, thus the main protection derived from sender

constrianed tokens is preventing them from being moved from the

iniating device to another device that can be used to profit from

the attack.

5.1.13. User Experience

The user experience should preserve the context within which the

protocols were initiated and communicate this clearly to the user

when they are asked to authorize, authenticate or present a

credential. In preserving the context, it should be clear to the

user who invoked the flow, why it was invoked and what the

consequence of completing the authorization, authentication or

credential presentation. The user experience should reinforce the

message that unless the user initiated the authorization request, or

was expecting it, they should decline the request.

It should be clear to the user how to decline the request. To avoid

accidental authorization grants, the "decline" option may be the

default option or given similar prominence in the user experience as

the "grant" option.

This information may be communicated graphically or in a simple

message (e.g., "It looks like you are trying to access your files on

a digital whiteboard in your city center office. Click here to grant

access to your files. If you are not trying to access your files,

you should decline this request and notify the security

department").

The service may provide out-of-band reinforcement to the user on the

context and conditions under which an authorization grant may be

requested. For example if the service provider does not send e-mails

with QR codes requesting users to grant authorization, this may be

reinforced in marketing messages, in-app experiences and through

anti-fraud awareness campaigns.

¶

¶

¶

¶

¶

¶

Limitations: Improvements to user experience on their own is

unlikely to be sufficient and should be used in conjuntion with

other controls described in this document.

5.1.14. Authenticated flow

By requiring a user to authenticate on the initiating device with a

phishing resistant authentication method before initiating a cross-

device flow, the server can prevent an attacker from initiating a

cross-device flow and obtaining QR codes or user codes. This

prevents the attacker from obtaining a QR code or user code that

they can use to mislead an unsuspecting user. This requires that the

initiating device has sufficient input capabilities to support a

phishing resistant authentication mechanism, which may in itself

negate the need for a cross-device flow.

Limitations: Starting with and authenticated does not prevent the

attacks described in Example B5: Illicit Network Join and Example

B7: Illicit Session Transfer and it is recommended that additional

mitigations described in this document is used if the cross-device

flows are used in scenarios such as Example A5: Add a device to a

network and Example A7: Transfer a session.

5.1.15. Practical Mitigation Summary

The practical mitigations described in this section can prevent the

attacks from being initiated, disrupt attacks once they start or

reduce the impact or remediate an attack if it succeeds. When

combining one or more of these mitigations the overall security

profile of a cross-device flow improves significantly. The following

table provides a summary view of these mitigations:

Mitigation Prevent Disrupt Recover

Establish Proximity X X

Short Lived/Timebound Codes X

One-Time or Limited Use Codes X

Unique Codes X

Content Filtering X

Detect and remediate X

Trusted Devices X

Trusted Networks X

Limited Scopes X

Short Lived Tokens X

Rate Limits X X

Sender Constrained Tokens X

User Experience X

Authenticated flow X

Table 1: Practical Mitigation Summary

¶

¶

¶

¶

5.2. Protocol selection

Some cross-device protocols are more susceptible to the exploits

described in this document than others. In this section we will

compare three different cross-device protocols in terms of their

susceptibility to exploits focused on the unauthenticated channel,

the prerequisites to implement and deploy them along with guidance

on when it is appropriate to use them.

5.2.1. IETF OAuth 2.0 Device Authorization Grant [RFC8628]:

5.2.1.1. Description

A standard to enable authorization on devices with constrained input

capabilities (smart TVs, printers, kiosks). In this protocol, the

user code or QR code is displayed or made available on the

initiating device (smart TV) and entered on a second device (e.g., a

mobile phone).

5.2.1.2. Susceptibility

There are several reports in the public domain outlining how the

unauthenticated channel may be exploited to execute an illicit

consent grant attack.

5.2.1.3. Device capabilities

There are no assumptions in the protocol about underlying

capabilities of the device, making it a "least common denominator"

protocol that is expected to work on the broadest set of devices and

environments.

5.2.1.4. Mitigations

In addition to the security considerations section in the standard,

it is recommended that one or more of the mitigations outlined in

this document be considered, especially mitigations that can help

establish proximity or prevent attackers from obtaining QR or user

codes.

5.2.1.5. When to use

Only use this protocol if other cross-device protocols are not

viable due to device or system constraints. Avoid using if the

protected resources are sensitive, high value or business critical.

Always deploy additional mitigations like proximity or only allow

with pre-registered devices. Do not use for same-device scenarios

(e.g. if the initiating device and authorization device is the same

device).

¶

¶

¶

¶

¶

¶

5.2.2. OpenID Foundation Client Initiated Back-Channel Authentication

(CIBA):

5.2.2.1. Description

Client Initiated Back-Channel Authentication (CIBA) [CIBA]: A

standard developed in the OpenID Foundation that allows a device or

service (e.g., a personal computer, Smart TV, Kiosk) to request the

OpenID Provider to initiate an authentication flow if it knows a

valid identifier for the user. The user completes the authentication

flow using a second device (e.g., a mobile phone). In this flow the

user does not scan a QR code or obtain a user code from the

initiating device, but is instead contacted by the OpenID Provider

to complete the authentication using a push notification, e-mail,

text message or any other suitable mechanism.

5.2.2.2. Susceptibility

Less susceptible to unauthenticated channel attacks, but still

vulnerable to attackers who know or can guess the user identifier

and initiate a spray attack as described in Example 4.

5.2.2.3. Device capabilities

There is no requirement on the initiating device to support specific

hardware. The authorizing device must be registered/associated with

the user and it must be possible for the Authorization Server to

trigger an authorization on this device.

5.2.2.4. Mitigations

In addition to the security considerations section in the standard,

it is recommended that one or more of the mitigations outlined in

this document be considered, especially mitigations that can help

establish proximity or prevent attackers from initiating

authorization requests.

5.2.2.5. When to use

Use CIBA instead of Device Authorization Grant if it is possible for

the initiating device to obtain a user identifier on the initiating

device (e.g., through an input or selection mechanism) and if the

Authorization Server can trigger an authorization on the

authorization device. Do not use for same-device scenarios (e.g. if

the initiating device and authorization device is the same device).

¶

¶

¶

¶

¶

5.2.3. FIDO2/WebAuthn

5.2.3.1. Description

FIDO2/WebAuthn is a stack of standards developed in the FIDO

Alliance and W3C respectively which allow for origin-bound,

phishing-resistant user authentication using asymmetric cryptography

that can be invoked from a web browser or native client. Version 2.2

of the FIDO Client to Authenticator Protocol (CTAP) supports a new

cross-device authentication protocol, called "hybrid", which enables

an external device, such as a phone or tablet, to be used as a

roaming authenticator for signing into the primary device, such as a

personal computer. This is commonly called FIDO Cross-Device

Authentication (CDA).

When a user wants to authenticate using their mobile device

(authenticator) for the first time, they need to link their

authenticator to their main device. This is done using a scan of a

QR code. When the authenticator scans the QR code, the device sends

an encrypted BLE advertisement containing keying material and a

tunnel ID. The main device and authenticator both establish

connections to the web service, and the normal CTAP protocol

exchange occurs.

If the user chooses to keep their authenticator linked with the main

device, the QR code link step is not necessary for subsequent use.

The user will receive a push notification on the authenticator.

5.2.3.2. Susceptibility

The Cross-Device Authentication flow proves proximity by leveraging

BLE advertisements for service establishment, significantly reducing

the susceptibility to any of the exploits described in Examples 1-6.

5.2.3.3. Device capabilities

Both the initiating device and the authenticator require BLE

support. The initiating device must support both FIDO2/WebAuthn,

specifically CTAP 2.2 with hybrid transport. The mobile phone must

support CTAP 2.2+ to be used as a cross-device authenticator.

5.2.3.4. Mitigations

FIDO Cross-Device Authentication (CDA) establishes proximity through

the use of BLE, reducing the need for additional mitigations. An

implementer may still choose to implement additional mitigation as

described in this document.

¶

¶

¶

¶

¶

¶

5.2.3.5. When to use

FIDO2/WebAuthn should be used for cross-device authentication

scenarios whenever the devices are capable of doing so. It may be

used as an authentication method with the Authorization Code Grant

[RFC6749] and PKCE [RFC7663], to grant authorization to an

initiating device (e.g., Smart TV or interactive whiteboard) using a

mobile phone as the authenticating device. This combination of

FIDO2/WebAuthn and Authorization Code Flow with PKCE enables cross

device authorization flows, without the risks posed by the Device

Authorization Grant [RFC8628].

5.2.4. Protocol Selection Summary

The FIDO Cross-Device Authentication (CDA) flow provides the best

protection against attacks on the unauthenticated channel for cross

device flows. It can be combined with OAuth 2.0 and OpenID Connect

protocols for standards based authorization and authentication

flows. If FIDO2/WebAuthn support is not available, Client Initiated

Backchannel Authentication (CIBA) provides an alternative, provided

that there is a channel through which the authorizations server can

contact the end user. Examples of such a channel include device push

notifications, e-mail or text messages which the user can access

from their device. If CIBA is used, additional mitigations to

enforce proximity and initiate transactions from trusted devices or

trusted networks should be considered. The OAuth 2.0 Device

Authorization Grant provides the most flexibility and has the lowest

requirements on devices used, but it is recommended that it is only

used when additional mitigations are deployed to prevent attacks

that exploit the unauthenticated channel between devices.

5.3. Foundational Pillars

Experience with web authorization and authentication protocols such

as OAuth and OpenID Connect has shown that securing these protocols

can be hard. The major reason for this is that the landscape in

which they are operating - the web infrastructure with browsers,

servers, and the underlying network - is complex, diverse, and ever-

evolving.

As is the case with other kinds of protocols, it can be easy to

overlook vulnerabilities in this environment. One way to reduce the

chances of hidden security problems is to use mathematical-logical

models to describe the protocols, their environments and their

security goals, and then use these models to try to prove security.

This approach is what is usually subsumed as "formal security

analysis".

¶

¶

¶

¶

There are two major strengths of formal analysis: First, finding new

vulnerabilities does not require creativity - i.e., new classes of

attacks can be uncovered even if no one thought of these attacks

before. In a faithful model, vulnerabilities become clear during the

proof process or even earlier. Second, formal analysis can exclude

the existence of any attacks within the boundaries of the model

(e.g., the protocol layers modeled, the level of detail and

functionalities covered, the assumed attacker capabilities, and the

formalized security goals). As a downside, there is usually a gap

between the model (which necessarily abstracts away from details)

and implementations. In other words, implementations can introduce

flaws where the model does not have any. Nonetheless, for protocol

standards, formal analysis can help to ensure that the specification

is secure when implemented correctly.

There are various different approaches to formal security analysis

and each brings its own strengths and weaknesses. For example,

models differ in the level of detail in which they can capture a

protocol (granularity, expressiveness), in the kind of statements

they can produce, and whether the proofs can be assisted by tools or

have to be performed manually. One of the most successfully used

approaches is the so-called Web Infrastructure Model (WIM), a model

specifically designed for the analysis of web authentication and

authorization protocols. While it is a manual (pen-and-paper) model,

it captures details of browsers and web interactions in

unprecedented detail. Using the WIM, previously unknown flaws in

OAuth, OpenID Connect, and FAPI were discovered.

To ensure secure cross-device interactions, a formal analysis using

the WIM therefore seems to be in order. Such an analysis should

comprise a generic model for cross-device flows, potentially

including different kinds of interactions. The aim of the analysis

would be to evaluate the effectiveness of selected mitigation

strategies. To the best of our knowledge, this would be the first

study of this kind.

6. Conclusion

Cross-device flows enable authorization on devices with limited

input capabilities, allow for secure authentication when using

public or shared devices, provide a path towards multi-factor

authentication and provide the convenience of a single, portable

credential store.

The popularity of cross-device flows attracted the attention of

attackers that exploit the unauthenticated channel between the

initiating and authentication/authorizing device using techniques

commonly used in phishing attacks. These attacks allow attackers to

obtain access and refresh tokens, rather than authentication

¶

¶

¶

¶

[CAEP]

[CIBA]

[Exploit1]

[Exploit2]

[Exploit3]

credentials, resulting in access to resources even if the user used

multi-factor authentication.

To address these attacks, we propose a three pronged approach that

includes the deployment of practical mitigations to safeguard

protocols that are already deployed, provide guidance on when to use

different protocols, including protocols that are not susceptible to

these attacks, and the introduction of formal methods to evaluate

the impact of mitigations and find additional issues.

7. Contributors

We would like to thank Tim Cappalli, Nick Ludwig, Adrian Frei,

Nikhil Reddy Boreddy, Bjorn Hjelm, Joseph Heenan, Brian Campbell,

Damien Bowden, Kristina Yasuda, Tim Würtele and others (please let

us know, if you've been mistakenly omitted) for their valuable

input, feedback and general support of this work.

8. Informative References

Tulshibagwale, A. and T. Cappalli, "OpenID Continuous

Access Evaluation Profile 1.0 - draft 01", June 2021,

<https://openid.net/specs/openid-caep-

specification-1_0-01.html>.

Fernandez, G., Walter, F., Nennker, A., Tonge, D., and B.

Campbell, "OpenID Connect Client-Initiated Backchannel

Authentication Flow - Core 1.0", September 2021,

<https://openid.net/specs/openid-client-initiated-

backchannel-authentication-core-1_0.html>.

Cooke, B., "The Art of the Device Code Phish", July 2021,

<https://0xboku.com/2021/07/12/

ArtOfDeviceCodePhish.html>.

"Microsoft 365 OAuth Device Code Flow and Phishing",

August 2021, <https://www.optiv.com/insights/source-zero/

blog/microsoft-365-oauth-device-code-flow-and-phishing>.

Syynimaa, N., "Introducing a new phishing technique for

compromising Office 365 accounts", October 2020,

¶

¶

¶

https://openid.net/specs/openid-caep-specification-1_0-01.html
https://openid.net/specs/openid-caep-specification-1_0-01.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://0xboku.com/2021/07/12/ArtOfDeviceCodePhish.html
https://0xboku.com/2021/07/12/ArtOfDeviceCodePhish.html
https://www.optiv.com/insights/source-zero/blog/microsoft-365-oauth-device-code-flow-and-phishing
https://www.optiv.com/insights/source-zero/blog/microsoft-365-oauth-device-code-flow-and-phishing

[Exploit4]

[Exploit5]

[Exploit6]

[NYC.Bike]

[OpenID.Core]

[OpenID.SIOPV2]

[RFC2119]

[RFC6749]

[RFC7662]

[RFC7663]

<https://o365blog.com/post/phishing/#new-phishing-

technique-device-code-authentication>.

Hwong, J., "New Phishing Attacks Exploiting OAuth

Authentication Flows (DEFCON 29)", August 2021, <https://

www.youtube.com/watch?v=9slRYvpKHp4>.

"OAuth's Device Code Flow Abused in Phishing Attacks",

August 2021, <https://www.secureworks.com/blog/oauths-

device-code-flow-abused-in-phishing-attacks>.

"SquarePhish: Advanced phishing tool combines QR codes

and OAuth 2.0 device code flow", August 2022, <https://

www.helpnetsecurity.com/2022/08/11/squarephish-video/>.

Byrne, K.J., "Citi Bikes being swiped by joyriding

scammers who have cracked the QR code", August 2021,

<https://nypost.com/2021/08/07/citi-bikes-being-swiped-

by-joyriding-scammers-who-have-cracked-the-qr-code/>.

Sakimura, N., Bradley, J., Jones, M.B., Medeiros,

B.d., and C. Mortimore, "OpenID Connect Core 1.0",

November 2014, <http://openid.net/specs/openid-connect-

core-1_0.html>.

Yasuda, K., Jones, M., and T. Lodderstedt, "Self-

Issued OpenID Provider v2", November 2022, <https://

bitbucket.org/openid/connect/src/master/openid-connect-

self-issued-v2/openid-connect-self-issued-v2-1_0.md>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Richer, J., Ed., "OAuth 2.0 Token Introspection", RFC

7662, DOI 10.17487/RFC7662, October 2015, <https://

www.rfc-editor.org/info/rfc7662>.

Trammell, B., Ed. and M. Kuehlewind, Ed., "Report from

the IAB Workshop on Stack Evolution in a Middlebox

https://o365blog.com/post/phishing/#new-phishing-technique-device-code-authentication
https://o365blog.com/post/phishing/#new-phishing-technique-device-code-authentication
https://www.youtube.com/watch?v=9slRYvpKHp4
https://www.youtube.com/watch?v=9slRYvpKHp4
https://www.secureworks.com/blog/oauths-device-code-flow-abused-in-phishing-attacks
https://www.secureworks.com/blog/oauths-device-code-flow-abused-in-phishing-attacks
https://www.helpnetsecurity.com/2022/08/11/squarephish-video/
https://www.helpnetsecurity.com/2022/08/11/squarephish-video/
https://nypost.com/2021/08/07/citi-bikes-being-swiped-by-joyriding-scammers-who-have-cracked-the-qr-code/
https://nypost.com/2021/08/07/citi-bikes-being-swiped-by-joyriding-scammers-who-have-cracked-the-qr-code/
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2/openid-connect-self-issued-v2-1_0.md
https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2/openid-connect-self-issued-v2-1_0.md
https://bitbucket.org/openid/connect/src/master/openid-connect-self-issued-v2/openid-connect-self-issued-v2-1_0.md
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7662

[RFC8174]

[RFC8628]

[SSE]

Internet (SEMI)", RFC 7663, DOI 10.17487/RFC7663, October

2015, <https://www.rfc-editor.org/info/rfc7663>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Denniss, W., Bradley, J., Jones, M., and H. Tschofenig,

"OAuth 2.0 Device Authorization Grant", RFC 8628, DOI

10.17487/RFC8628, August 2019, <https://www.rfc-

editor.org/info/rfc8628>.

Tulshibagwale, A., Cappalli, T., Scurtescu, M., Backman,

A., and J. Bradley, "OpenID Shared Signals and Events

Framework Specification 1.0", June 2021, <https://

openid.net/specs/openid-sse-framework-1_0-01.html>.

Appendix A. Document History

[[To be removed from the final specification]]

-01

Added additional diagrams and descriptions to distinguish between

different cross-device flow patterns.

Added short description on limitations of each mitiagtion.

Added acknowledgement of additional contributors.

Fixed document history format.

-00 (Working Group Draft)

Initial WG revision (content unchanged from draft-kasselman-

cross-device-security-03)

-03 draft-kasselman-cross-device-security

Minor edits and typos

-02 draft-kasselman-cross-device-security

Minor edits and typos

Upload as draft-ietf-oauth-cross-device-security-best-practice-02

¶

¶

*

¶

* ¶

* ¶

* ¶

¶

*

¶

¶

* ¶

¶

* ¶

* ¶

https://www.rfc-editor.org/info/rfc7663
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc8628
https://openid.net/specs/openid-sse-framework-1_0-01.html
https://openid.net/specs/openid-sse-framework-1_0-01.html

-01 draft-kasselman-cross-device-security

Updated draft based on feedback from version circulated to OAuth

working group

Upload as draft-ietf-oauth-cross-device-security-best-practice-01

-00 draft-kasselman-cross-device-security

Initial draft adopted from document circulated to the OAuth

Security Workshop Slack Channel

Upload as draft-ietf-oauth-cross-device-security-best-practice-00

Authors' Addresses

Pieter Kasselman

Microsoft

Email: pieter.kasselman@microsoft.com

Daniel Fett

yes.com

Email: mail@danielfett.de

Filip Skokan

Okta

Email: panva.ip@gmail.com

¶

*

¶

* ¶

¶

*

¶

* ¶

mailto:pieter.kasselman@microsoft.com
mailto:mail@danielfett.de
mailto:panva.ip@gmail.com

	Cross-Device Flows: Security Best Current Practice
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. Cross Device Flow Concepts
	2.1. User Transferred Pattern
	2.2. Client Transferred Pattern
	2.3. Hybrid Pattern
	2.4. Examples of cross-device flows
	2.4.1. Example A1: Authorize access to a video streaming service (User Transfer)
	2.4.2. Example A2: Authorize access to productivity services (User Transfer)
	2.4.3. Example A3: Authorize use of a bike sharing scheme (User Transfer)
	2.4.4. Example A4: Authorize a financial transaction (Client Transfer)
	2.4.5. Example A5: Add a device to a network (Hybrid)
	2.4.6. Example A6: Remote onboarding (User Transfer)
	2.4.7. Example A7: Transfer a session (Hybrid)
	2.4.8. Example A8: Access a productivity application (Hybrid)

	3. Cross-Device Flow Exploits
	3.1. User Transferred Pattern
	3.2. Client Transferred Pattern
	3.3. Hybrid Pattern
	3.4. Examples of cross-device flow exploits
	3.5. Example B1: Illicit access to a video streaming service (User Transferred Pattern)
	3.6. Example B2: Illicit access to productivity services (User Transferred Pattern)
	3.7. Example B3: Illicit access to physical assets (User Transferred Pattern)
	3.8. Example B4: Illicit Transaction Authorization (Client Transferred Pattern)
	3.9. Example B5: Illicit Network Join (Hybrid Pattern)
	3.10. Example B6: Illicit Onboarding (User Transferred Pattern)
	3.11. Example B7: Illicit session transfer (Hybrid Pattern)
	3.12. Example B8: Account takeover (User Transferred Pattern)
	3.13. Out of Scope

	4. Cross-Device Protocols and Standards
	5. Mitigating Against Cross-Device Flow Attacks
	5.1. Practical Mitigations
	5.1.1. Establish Proximity
	5.1.2. Short Lived/Timebound User Codes
	5.1.3. One-Time or Limited Use Codes
	5.1.4. Unique Codes
	5.1.5. Content Filtering
	5.1.6. Detect and remediate
	5.1.7. Trusted Devices
	5.1.8. Trusted Networks
	5.1.9. Limited Scopes
	5.1.10. Short lived tokens
	5.1.11. Rate Limits
	5.1.12. Sender Constrained Tokens
	5.1.13. User Experience
	5.1.14. Authenticated flow
	5.1.15. Practical Mitigation Summary

	5.2. Protocol selection
	5.2.1. IETF OAuth 2.0 Device Authorization Grant [RFC8628]:
	5.2.1.1. Description
	5.2.1.2. Susceptibility
	5.2.1.3. Device capabilities
	5.2.1.4. Mitigations
	5.2.1.5. When to use

	5.2.2. OpenID Foundation Client Initiated Back-Channel Authentication (CIBA):
	5.2.2.1. Description
	5.2.2.2. Susceptibility
	5.2.2.3. Device capabilities
	5.2.2.4. Mitigations
	5.2.2.5. When to use

	5.2.3. FIDO2/WebAuthn
	5.2.3.1. Description
	5.2.3.2. Susceptibility
	5.2.3.3. Device capabilities
	5.2.3.4. Mitigations
	5.2.3.5. When to use

	5.2.4. Protocol Selection Summary

	5.3. Foundational Pillars

	6. Conclusion
	7. Contributors
	8. Informative References
	Appendix A. Document History
	Authors' Addresses

