
OAuth W. Denniss
Internet-Draft Google
Intended status: Standards Track J. Bradley
Expires: January 18, 2019 Ping Identity
 M. Jones
 Microsoft
 H. Tschofenig
 ARM Limited
 July 17, 2018

OAuth 2.0 Device Flow for Browserless and Input Constrained Devices
draft-ietf-oauth-device-flow-11

Abstract

 This OAuth 2.0 authorization flow for browserless and input
 constrained devices, often referred to as the device flow, enables
 OAuth clients to request user authorization from devices that have an
 Internet connection, but don't have an easy input method (such as a
 smart TV, media console, picture frame, or printer), or lack a
 suitable browser for a more traditional OAuth flow. This
 authorization flow instructs the user to perform the authorization
 request on a secondary device, such as a smartphone. There is no
 requirement for communication between the constrained device and the
 user's secondary device.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 18, 2019.

Denniss, et al. Expires January 18, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OAuth 2.0 Device Flow July 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 5
3. Protocol . 5
3.1. Device Authorization Request 5
3.2. Device Authorization Response 6
3.3. User Interaction . 7
3.3.1. Non-textual Verification URI Optimization 8

3.4. Device Access Token Request 9
3.5. Device Access Token Response 10

4. Discovery Metadata . 11
5. Security Considerations 11
5.1. User Code Brute Forcing 11
5.2. Device Trustworthiness 12
5.3. Remote Phishing . 12
5.4. Session Spying . 13
5.5. Non-confidential Clients 13
5.6. Non-Visual Code Transmission 13

6. Usability Considerations 13
6.1. User Code Recommendations 13
6.2. Non-Browser User Interaction 14

7. IANA Considerations . 14
7.1. OAuth URI Registration 14
7.1.1. Registry Contents 14

7.2. OAuth Extensions Error Registration 15
7.2.1. Registry Contents 15

7.3. OAuth 2.0 Authorization Server Metadata 15
7.3.1. Registry Contents 15

8. Normative References . 16
Appendix A. Acknowledgements 16
Appendix B. Document History 17

 Authors' Addresses . 18

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Denniss, et al. Expires January 18, 2019 [Page 2]

Internet-Draft OAuth 2.0 Device Flow July 2018

1. Introduction

 This OAuth 2.0 protocol flow for browserless and input constrained
 devices, often referred to as the device flow, enables OAuth clients
 to request user authorization from devices that have an internet
 connection, but don't have an easy input method (such as a smart TV,
 media console, picture frame, or printer), or lack a suitable browser
 for a more traditional OAuth flow. This authorization flow instructs
 the user to perform the authorization request on a secondary device,
 such as a smartphone.

 The device flow is not intended to replace browser-based OAuth in
 native apps on capable devices (like smartphones). Those apps should
 follow the practices specified in OAuth 2.0 for Native Apps OAuth 2.0
 for Native Apps [RFC8252].

 The only requirements to use this flow are that the device is
 connected to the Internet, and able to make outbound HTTPS requests,
 be able to display or otherwise communicate a URI and code sequence
 to the user, and that the user has a secondary device (e.g., personal
 computer or smartphone) from which to process the request. There is
 no requirement for two-way communication between the OAuth client and
 the user-agent, enabling a broad range of use-cases.

 Instead of interacting with the end-user's user-agent, the client
 instructs the end-user to use another computer or device and connect
 to the authorization server to approve the access request. Since the
 client cannot receive incoming requests, it polls the authorization
 server repeatedly until the end-user completes the approval process.

https://datatracker.ietf.org/doc/html/rfc8252

Denniss, et al. Expires January 18, 2019 [Page 3]

Internet-Draft OAuth 2.0 Device Flow July 2018

 +----------+ +----------------+
 | |>---(A)-- Client Identifier --->| |
 | | | |
 | |<---(B)-- Verification Code, --<| |
 | | User Code, | |
 | | & Verification URI | |
 | Device | | |
 | Client | Client Identifier & | |
 | |>---(E)-- Verification Code --->| |
 | | polling... | |
 | |>---(E)-- Verification Code --->| |
 | | | Authorization |
 | |<---(F)-- Access Token --------<| Server |
 +----------+ (w/ Optional Refresh Token) | |
 v | |
 : | |
 (C) User Code & Verification URI | |
 : | |
 v | |
 +----------+ | |
 | End-user | | |
 | at |<---(D)-- User authenticates -->| |
 | Browser | | |
 +----------+ +----------------+

 Figure 1: Device Flow.

 The device flow illustrated in Figure 1 includes the following steps:

 (A) The client requests access from the authorization server and
 includes its client identifier in the request.

 (B) The authorization server issues a verification code, an end-
 user code, and provides the end-user verification URI.

 (C) The client instructs the end-user to use its user-agent
 (elsewhere) and visit the provided end-user verification URI. The
 client provides the end-user with the end-user code to enter in
 order to grant access.

 (D) The authorization server authenticates the end-user (via the
 user-agent) and prompts the end-user to grant the client's access
 request. If the end-user agrees to the client's access request,
 the end-user enters the end-user code provided by the client. The
 authorization server validates the end-user code provided by the
 end-user.

Denniss, et al. Expires January 18, 2019 [Page 4]

Internet-Draft OAuth 2.0 Device Flow July 2018

 (E) While the end-user authorizes (or denies) the client's request
 (step D), the client repeatedly polls the authorization server to
 find out if the end-user completed the end-user authorization
 step. The client includes the verification code and its client
 identifier.

 (F) Assuming the end-user granted access, the authorization server
 validates the verification code provided by the client and
 responds back with the access token.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 Device Authorization Endpoint:
 The authorization server's endpoint capable of issuing device
 verification codes, user codes, and verification URLs.

 Device Verification Code:
 A short-lived token representing an authorization session.

 End-User Verification Code:
 A short-lived token which the device displays to the end user, is
 entered by the end-user on the authorization server, and is thus
 used to bind the device to the end-user.

3. Protocol

3.1. Device Authorization Request

 The client initiates the flow by requesting a set of verification
 codes from the authorization server by making an HTTP "POST" request
 to the device authorization endpoint. The client constructs the
 request with the following parameters, encoded with the "application/
 x-www-form-urlencoded" content type:

 client_id
 REQUIRED. The client identifier as described in Section 2.2 of
 [RFC6749].

 scope
 OPTIONAL. The scope of the access request as described by

Section 3.3 of [RFC6749].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749#section-2.2
https://datatracker.ietf.org/doc/html/rfc6749#section-2.2
https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Denniss, et al. Expires January 18, 2019 [Page 5]

Internet-Draft OAuth 2.0 Device Flow July 2018

 For example, the client makes the following HTTPS request (line
 breaks are for display purposes only):

 POST /device_authorization HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 client_id=459691054427

 Parameters sent without a value MUST be treated as if they were
 omitted from the request. The authorization server MUST ignore
 unrecognized request parameters. Request and response parameters
 MUST NOT be included more than once.

3.2. Device Authorization Response

 In response, the authorization server generates a device verification
 code and an end-user code that are valid for a limited time and
 includes them in the HTTP response body using the "application/json"
 format with a 200 (OK) status code. The response contains the
 following parameters:

 device_code
 REQUIRED. The device verification code.

 user_code
 REQUIRED. The end-user verification code.

 verification_uri
 REQUIRED. The end-user verification URI on the authorization
 server. The URI should be short and easy to remember as end-users
 will be asked to manually type it into their user-agent.

 verification_uri_complete
 OPTIONAL. A verification URI that includes the "user_code" (or
 other information with the same function as the "user_code"),
 designed for non-textual transmission.

 expires_in
 OPTIONAL. The lifetime in seconds of the "device_code" and
 "user_code".

 interval
 OPTIONAL. The minimum amount of time in seconds that the client
 SHOULD wait between polling requests to the token endpoint.

 For example:

Denniss, et al. Expires January 18, 2019 [Page 6]

Internet-Draft OAuth 2.0 Device Flow July 2018

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "device_code":"GMMhmHCXhWEzkobqIHGG_EnNYYsAkukHspeYUk9E8",
 "user_code":"WDJB-MJHT",
 "verification_uri":"https://www.example.com/device",
 "verification_uri_complete":
 "https://www.example.com/device?user_code=WDJB-MJHT",
 "expires_in" : 1800,
 "interval": 5
 }

3.3. User Interaction

 After receiving a successful Authorization Response, the client
 displays or otherwise communicates the "user_code" and the
 "verification_uri" to the end-user and instructs them to visit the
 URI in a user agent on a secondary device (for example, in a browser
 on their mobile phone), and enter the user code.

 +---+
 | |
 | Using a browser on another device, visit: |
 | https://example.com/device |
 | |
 | And enter the code: |
 | WDJB-MJHT |
 | |
 +---+

 Figure 2: Example User Instruction

 The authorizing user navigates to the "verification_uri" and
 authenticates with the authorization server in a secure TLS-protected
 session. The authorization server prompts the end-user to identify
 the device authorization session by entering the "user_code" provided
 by the client. The authorization server should then inform the user
 about the action they are undertaking and ask them to approve or deny
 the request. Once the user interaction is complete, the server
 informs the user to return to their device.

 During the user interaction, the device continuously polls the token
 endpoint with the "device_code", as detailed in Section 3.4, until
 the user completes the interaction, the code expires, or another
 error occurs. The "device_code" is not intended for the end-user and
 MUST NOT be displayed or communicated.

Denniss, et al. Expires January 18, 2019 [Page 7]

Internet-Draft OAuth 2.0 Device Flow July 2018

 Authorization servers supporting this specification MUST implement a
 user interaction sequence that starts with the user navigating to
 "verification_uri" and continues with them supplying the "user_code"
 at some stage during the interaction. Other than that, the exact
 sequence and implementation of the user interaction is up to the
 authorization server and is out of scope of this specification.

 It is NOT RECOMMENDED for authorization servers to include the user
 code in the verification URI ("verification_uri"), as this increases
 the length and complexity of the URI that the user must type. The
 next section documents user interaction with
 "verification_uri_complete", which is designed to carry this
 information.

3.3.1. Non-textual Verification URI Optimization

 When "verification_uri_complete" is included in the Authorization
 Response (Section 3.2), clients MAY present this URI in a non-textual
 manner using any method that results in the browser being opened with
 the URI, such as with QR codes or NFC, to save the user typing the
 URI.

 For usability reasons, it is RECOMMENDED for clients to still display
 the textual verification URI ("verification_uri") for users not able
 to use such a shortcut. Clients MUST still display the "user_code",
 as the authorization server may still require the user to confirm it
 to disambiguate devices, or as a remote phishing mitigation (See

Section 5.3).

 +---+
 | |
 | Using a browser on another +------------+ |
 | device, visit: |[_].. . [_]| |
 | https://example.com/device || |
 | || |
 | |. . . . | |
 | And enter the code: |[_]. | |
 | WDJB-MJHT +------------+ |
 | |
 +---+

 Figure 3: Example User Instruction with QR Code Representation of the
 Complete Verification URI

Denniss, et al. Expires January 18, 2019 [Page 8]

Internet-Draft OAuth 2.0 Device Flow July 2018

3.4. Device Access Token Request

 After displaying instructions to the user, the client makes an Access
 Token Request to the token endpoint with a "grant_type" of
 "urn:ietf:params:oauth:grant-type:device_code". This is an extension
 grant type (as defined by Section 4.5 of [RFC6749]) with the
 following parameters:

 grant_type
 REQUIRED. Value MUST be set to
 "urn:ietf:params:oauth:grant-type:device_code".

 device_code
 REQUIRED. The device verification code, "device_code" from the
 Device Authorization Response, defined in Section 3.2.

 client_id
 REQUIRED, if the client is not authenticating with the
 authorization server as described in Section 3.2.1. of [RFC6749].

 For example, the client makes the following HTTPS request (line
 breaks are for display purposes only):

 POST /token HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Adevice_code
 &device_code=GMMhmHCXhWEzkobqIHGG_EnNYYsAkukHspeYUk9E8
 &client_id=459691054427

 If the client was issued client credentials (or assigned other
 authentication requirements), the client MUST authenticate with the
 authorization server as described in Section 3.2.1 of [RFC6749].
 Note that there are security implications of statically distributed
 client credentials, see Section 5.5.

 The response to this request is defined in Section 3.5. Unlike other
 OAuth grant types, it is expected for the client to try the Access
 Token Request repeatedly in a polling fashion, based on the error
 code in the response.

https://datatracker.ietf.org/doc/html/rfc6749#section-4.5
https://datatracker.ietf.org/doc/html/rfc6749#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc6749#section-3.2.1

Denniss, et al. Expires January 18, 2019 [Page 9]

Internet-Draft OAuth 2.0 Device Flow July 2018

3.5. Device Access Token Response

 If the user has approved the grant, the token endpoint responds with
 a success response defined in Section 5.1 of [RFC6749]; otherwise it
 responds with an error, as defined in Section 5.2 of [RFC6749].

 In addition to the error codes defined in Section 5.2 of [RFC6749],
 the following error codes are specified by the device flow for use in
 token endpoint responses:

 authorization_pending
 The authorization request is still pending as the end-user hasn't
 yet completed the user interaction steps (Section 3.3). The
 client should repeat the Access Token Request to the token
 endpoint.

 access_denied
 The end-user denied the authorization request.

 slow_down
 The client is polling too quickly and should back off at a
 reasonable rate.

 expired_token
 The "device_code" has expired. The client will need to make a new
 Device Authorization Request.

 The error codes "authorization_pending" and "slow_down" are
 considered soft errors. The client should continue to poll the token
 endpoint by repeating the Device Token Request (Section 3.4) when
 receiving soft errors, increasing the time between polls if a
 "slow_down" error is received. Other error codes are considered hard
 errors; the client should stop polling and react accordingly, for
 example, by displaying an error to the user.

 If the verification codes have expired, the server SHOULD respond
 with the error code "expired_token". Clients MAY then choose to
 start a new device authorization session.

 The interval at which the client polls MUST NOT be more frequent than
 the "interval" parameter returned in the Device Authorization
 Response (see Section 3.2). If no interval was provided, the client
 MUST use a reasonable default polling interval.

 The assumption of this specification is that the secondary device the
 user is authorizing the request on does not have a way to communicate
 back to the OAuth client. Only a one-way channel is required to make
 this flow useful in many scenarios. For example, an HTML application

https://datatracker.ietf.org/doc/html/rfc6749#section-5.1
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2

Denniss, et al. Expires January 18, 2019 [Page 10]

Internet-Draft OAuth 2.0 Device Flow July 2018

 on a TV that can only make outbound requests. If a return channel
 were to exist for the chosen user interaction interface, then the
 device MAY wait until notified on that channel that the user has
 completed the action before initiating the token request. Such
 behavior is, however, outside the scope of this specification.

4. Discovery Metadata

 Support for the device flow MAY be declared in the OAuth 2.0
 Authorization Server Metadata [RFC8414] with the following metadata:

 device_authorization_endpoint
 OPTIONAL. URL of the authorization server's device authorization
 endpoint defined in Section 3.1.

5. Security Considerations

5.1. User Code Brute Forcing

 Since the user code is typed by the user, shorter codes are more
 desirable for usability reasons. This means the entropy is typically
 less than would be used for the device code or other OAuth bearer
 token types where the code length does not impact usability. It is
 therefore recommended that the server rate-limit user code attempts.
 The user code SHOULD have enough entropy that when combined with rate
 limiting and other mitigations makes a brute-force attack infeasible.

 A successful brute forcing of the user code would enable the attacker
 to authenticate with their own credentials and make an authorization
 grant to the device. This is the opposite scenario to an OAuth
 bearer token being brute forced, whereby the attacker gains control
 of the victim's authorization grant. In some applications this
 attack may not make much economic sense, for example for a video app,
 the owner of the device may then be able to purchase movies with the
 attacker's account, however there are still privacy considerations in
 that case as well as other uses of the device flow whereby the
 granting account may be able to perform sensitive actions such as
 controlling the victim's device.

 The precise length of the user code and the entropy contained within
 is at the discretion of the authorization server, which needs to
 consider the sensitivity of their specific protected resources, the
 practicality of the code length from a usability standpoint, and any
 mitigations that are in place such as rate-limiting, when determining
 the user code format.

https://datatracker.ietf.org/doc/html/rfc8414

Denniss, et al. Expires January 18, 2019 [Page 11]

Internet-Draft OAuth 2.0 Device Flow July 2018

5.2. Device Trustworthiness

 Unlike other native application OAuth 2.0 flows, the device
 requesting the authorization is not the same as the device that the
 user grants access from. Thus, signals from the approving user's
 session and device are not relevant to the trustworthiness of the
 client device.

 Note that if an authorization server used with this flow is
 malicious, then it could man-in-the middle the backchannel flow to
 another authorization server. In this scenario, the man-in-the-
 middle is not completely hidden from sight, as the end-user would end
 up on the authorization page of the wrong service, giving them an
 opportunity to notice that the authorization being requested is
 wrong. For this to be possible, the device manufacturer must either
 directly be the attacker, shipping a device intended to perform the
 man-in-the-middle attack, or be using an authorization server that is
 controlled by an attacker, possibly because the attacker compromised
 the authorization server used by the device. In part, the person
 purchasing the device is counting on it and its business partners to
 be trustworthy.

5.3. Remote Phishing

 It is possible for the device flow to be initiated on a device in an
 attacker's possession. For example, the attacker might send an email
 instructing the target user to visit the verification URL and enter
 the user code. To mitigate such an attack, it is RECOMMENDED to
 inform the user that they are authorizing a device during the user
 interaction step (see Section 3.3), and to confirm that the device is
 in their possession. The authorization server SHOULD display
 information about the device so that the person can notice if a
 software client was attempting to impersonating a hardware device.

 For authorization servers that support the option specified in
Section 3.3.1 for the client to append the user code to the

 authorization URI, it is particularly important to confirm that the
 device is in the user's possession, as the user no longer has to type
 the code manually. One possibility is to display the code during the
 authorization flow and asking the user to verify that the same code
 is being displayed on the device they are setting up.

 The user code needs to have a long enough lifetime to be useable
 (allowing the user to retrieve their secondary device, navigate to
 the verification URI, login, etc.), but should be sufficiently short
 to limit the usability of a code obtained for phishing. This doesn't
 prevent a phisher presenting a fresh token, particularly in the case

Denniss, et al. Expires January 18, 2019 [Page 12]

Internet-Draft OAuth 2.0 Device Flow July 2018

 they are interacting with the user in real time, but it does limit
 the viability of codes sent over email or SMS.

5.4. Session Spying

 While the device is pending authorization, it may be possible for a
 malicious user to spy on the device user interface and hijack the
 session by completing the authorization faster than the user that
 initiated it. Devices SHOULD take into account the operating
 environment when considering how to communicate the code to the user
 to reduce the chances it will be observed by a malicious user.

5.5. Non-confidential Clients

 Most device clients are incapable of being confidential clients, as
 secrets that are statically included as part of an app distributed to
 multiple users cannot be considered confidential. For such clients,
 the recommendations of Section 5.3.1 of [RFC6819] and Section 8.5 of
 [RFC8252] apply.

5.6. Non-Visual Code Transmission

 There is no requirement that the user code be displayed by the device
 visually. Other methods of one-way communication can potentially be
 used, such as text-to-speech audio, or Bluetooth Low Energy. To
 mitigate an attack in which a malicious user can bootstrap their
 credentials on a device not in their control, it is RECOMMENDED that
 any chosen communication channel only be accessible by people in
 close proximity. E.g., users who can see, or hear the device, or
 within range of a short-range wireless signal.

6. Usability Considerations

 This section is a non-normative discussion of usability
 considerations.

6.1. User Code Recommendations

 For many users, their nearest Internet-connected device will be their
 mobile phone, and typically these devices offer input methods that
 are more time consuming than a computer keyboard to change the case
 or input numbers. To improve usability (improving entry speed, and
 reducing retries), these limitations should be taken into account
 when selecting the user-code character set.

 One way to improve input speed is to restrict the character set to
 case-insensitive A-Z characters, with no digits. These characters
 can typically be entered on a mobile keyboard without using modifier

https://datatracker.ietf.org/doc/html/rfc6819#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc8252#section-8.5
https://datatracker.ietf.org/doc/html/rfc8252#section-8.5

Denniss, et al. Expires January 18, 2019 [Page 13]

Internet-Draft OAuth 2.0 Device Flow July 2018

 keys. Further removing vowels to avoid randomly creating words
 results in the base-20 character set: "BCDFGHJKLMNPQRSTVWXZ". Dashes
 or other punctuation may be included for readability.

 An example user code following this guideline, with an entropy of
 20^8: "WDJB-MJHT".

 Pure numeric codes are also a good choice for usability, especially
 for clients targeting locales where A-Z character keyboards are not
 used, though their length needs to be longer to maintain a high
 entropy.

 An example numeric user code, with an entropy of 10^9: "019-450-730".

 The server should ignore any characters like punctuation that are not
 in the user-code character set. Provided that the character set
 doesn't include characters of different case, the comparison should
 be case insensitive.

6.2. Non-Browser User Interaction

 Devices and authorization servers MAY negotiate an alternative code
 transmission and user interaction method in addition to the one
 described in Section 3.3. Such an alternative user interaction flow
 could obviate the need for a browser and manual input of the code,
 for example, by using Bluetooth to transmit the code to the
 authorization server's companion app. Such interaction methods can
 utilize this protocol, as ultimately, the user just needs to identify
 the authorization session to the authorization server; however, user
 interaction other than via the verification URI is outside the scope
 of this specification.

7. IANA Considerations

7.1. OAuth URI Registration

 This specification registers the following values in the IANA "OAuth
 URI" registry [IANA.OAuth.Parameters] established by [RFC6755].

7.1.1. Registry Contents

 o URN: urn:ietf:params:oauth:grant-type:device_code
 o Common Name: Device flow grant type for OAuth 2.0
 o Change controller: IESG
 o Specification Document: Section 3.1 of [[this specification]]

https://datatracker.ietf.org/doc/html/rfc6755

Denniss, et al. Expires January 18, 2019 [Page 14]

Internet-Draft OAuth 2.0 Device Flow July 2018

7.2. OAuth Extensions Error Registration

 This specification registers the following values in the IANA "OAuth
 Extensions Error Registry" registry [IANA.OAuth.Parameters]
 established by [RFC6749].

7.2.1. Registry Contents

 o Error name: authorization_pending
 o Error usage location: Token endpoint response
 o Related protocol extension: [[this specification]]
 o Change controller: IETF
 o Specification Document: Section 3.5 of [[this specification]]

 o Error name: access_denied
 o Error usage location: Token endpoint response
 o Related protocol extension: [[this specification]]
 o Change controller: IETF
 o Specification Document: Section 3.5 of [[this specification]]

 o Error name: slow_down
 o Error usage location: Token endpoint response
 o Related protocol extension: [[this specification]]
 o Change controller: IETF
 o Specification Document: Section 3.5 of [[this specification]]

 o Error name: expired_token
 o Error usage location: Token endpoint response
 o Related protocol extension: [[this specification]]
 o Change controller: IETF
 o Specification Document: Section 3.5 of [[this specification]]

7.3. OAuth 2.0 Authorization Server Metadata

 This specification registers the following values in the IANA "OAuth
 2.0 Authorization Server Metadata" registry [IANA.OAuth.Parameters]
 established by [RFC8414].

7.3.1. Registry Contents

 o Metadata name: device_authorization_endpoint
 o Metadata Description: The Device Authorization Endpoint.
 o Change controller: IESG
 o Specification Document: Section 4 of [[this specification]]

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc8414

Denniss, et al. Expires January 18, 2019 [Page 15]

Internet-Draft OAuth 2.0 Device Flow July 2018

8. Normative References

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,
 <https://www.rfc-editor.org/info/rfc6755>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC8252] Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",
BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,

 <https://www.rfc-editor.org/info/rfc8252>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

Appendix A. Acknowledgements

 The starting point for this document was the Internet-Draft draft-
recordon-oauth-v2-device, authored by David Recordon and Brent

 Goldman, which itself was based on content in draft versions of the
 OAuth 2.0 protocol specification removed prior to publication due to
 a then lack of sufficient deployment expertise. Thank you to the
 OAuth working group members who contributed to those earlier drafts.

 This document was produced in the OAuth working group under the
 chairpersonship of Rifaat Shekh-Yusef and Hannes Tschofenig with
 Benjamin Kaduk, Kathleen Moriarty, and Eric Rescorla serving as
 Security Area Directors.

http://www.iana.org/assignments/oauth-parameters
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6755
https://www.rfc-editor.org/info/rfc6755
https://datatracker.ietf.org/doc/html/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/bcp212
https://datatracker.ietf.org/doc/html/rfc8252
https://www.rfc-editor.org/info/rfc8252
https://datatracker.ietf.org/doc/html/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://datatracker.ietf.org/doc/html/draft-recordon-oauth-v2-device
https://datatracker.ietf.org/doc/html/draft-recordon-oauth-v2-device

Denniss, et al. Expires January 18, 2019 [Page 16]

Internet-Draft OAuth 2.0 Device Flow July 2018

 The following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

 Brian Campbell, Roshni Chandrashekhar, Eric Fazendin, Torsten
 Lodderstedt, James Manger, Breno de Medeiros, Simon Moffatt, Stein
 Myrseth, Justin Richer, Nat Sakimura, Andrew Sciberras, Marius
 Scurtescu, Ken Wang, and Steven E. Wright.

Appendix B. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -11

 o Updated reference to OAuth 2.0 Authorization Server Metadata.

 -10

 o Added a missing definition of access_denied for use on the token
 endpoint.
 o Corrected text documenting which error code should be returned for
 expired tokens (it's "expired_token", not "invalid_grant").
 o Corrected section reference to RFC 8252 (the section numbers had
 changed after the initial reference was made).
 o Fixed line length of one diagram (was causing xml2rfc warnings).
 o Added line breaks so the URN grant_type is presented on an
 unbroken line.
 o Typos fixed and other stylistic improvements.

 -09

 o Addressed review comments by Security Area Director Eric Rescorla
 about the potential of a confused deputy attack.

 -08

 o Expanded the User Code Brute Forcing section to include more
 detail on this attack.

 -07

 o Replaced the "user_code" URI parameter optimization with
 verification_uri_complete following the IETF99 working group
 discussion.
 o Added security consideration about spying.
 o Required that device_code not be shown.
 o Added text regarding a minimum polling interval.

https://datatracker.ietf.org/doc/html/rfc8252

Denniss, et al. Expires January 18, 2019 [Page 17]

Internet-Draft OAuth 2.0 Device Flow July 2018

 -06

 o Clarified usage of the "user_code" URI parameter optimization
 following the IETF98 working group discussion.

 -05

 o response_type parameter removed from authorization request.
 o Added option for clients to include the user_code on the
 verification URI.
 o Clarified token expiry, and other nits.

 -04

 o Security & Usability sections. OAuth Discovery Metadata.

 -03

 o device_code is now a URN. Added IANA Considerations

 -02

 o Added token request & response specification.

 -01

 o Applied spelling and grammar corrections and added the Document
 History appendix.

 -00

 o Initial working group draft based on draft-recordon-oauth-
v2-device.

Authors' Addresses

 William Denniss
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 USA

 Email: wdenniss@google.com
 URI: http://wdenniss.com/device-flow

https://datatracker.ietf.org/doc/html/draft-recordon-oauth-v2-device
https://datatracker.ietf.org/doc/html/draft-recordon-oauth-v2-device
http://wdenniss.com/device-flow

Denniss, et al. Expires January 18, 2019 [Page 18]

Internet-Draft OAuth 2.0 Device Flow July 2018

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Hannes Tschofenig
 ARM Limited
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

http://www.thread-safe.com/
http://self-issued.info/
http://www.tschofenig.priv.at

Denniss, et al. Expires January 18, 2019 [Page 19]

