
Workgroup: Web Authorization Protocol

Internet-Draft: draft-ietf-oauth-dpop-04

Published: 4 October 2021

Intended Status: Standards Track

Expires: 7 April 2022

Authors: D. Fett

yes.com

B. Campbell

Ping Identity

J. Bradley

Yubico

T. Lodderstedt

yes.com

M. Jones

Microsoft

D. Waite

Ping Identity

OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer

(DPoP)

Abstract

This document describes a mechanism for sender-constraining OAuth

2.0 tokens via a proof-of-possession mechanism on the application

level. This mechanism allows for the detection of replay attacks

with access and refresh tokens.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Terminology

2. Objectives

3. Concept

4. DPoP Proof JWTs

4.1. The DPoP HTTP Header

4.2. DPoP Proof JWT Syntax

4.3. Checking DPoP Proofs

5. DPoP Access Token Request

5.1. Authorization Server Metadata

6. Public Key Confirmation

6.1. JWK Thumbprint Confirmation Method

6.2. JWK Thumbprint Confirmation Method in Token Introspection

7. Protected Resource Access

7.1. The DPoP Authentication Scheme

7.2. Compatibility with the Bearer Authentication Scheme

8. Authorization Server-Provided Nonce

8.1. Providing a New Nonce Value

9. Resource Server-Provided Nonce

10. Security Considerations

10.1. DPoP Proof Replay

10.2. DPoP Proof Pre-Generation

10.3. DPoP Nonce Downgrade

10.4. Untrusted Code in the Client Context

10.5. Signed JWT Swapping

10.6. Signature Algorithms

10.7. Message Integrity

10.8. Access Token and Public Key Binding

11. IANA Considerations

11.1. OAuth Access Token Type Registration

11.2. OAuth Extensions Error Registration

11.3. HTTP Authentication Scheme Registration

11.4. Media Type Registration

11.5. JWT Confirmation Methods Registration

11.6. JSON Web Token Claims Registration

11.7. HTTP Message Header Field Names Registration

11.8. Authorization Server Metadata Registration

12. Normative References

13. Informative References

Appendix A. Acknowledgements

Appendix B. Document History

Authors' Addresses

¶

1. Introduction

DPoP, an abbreviation for Demonstrating Proof-of-Possession at the

Application Layer, is an application-level mechanism for sender-

constraining OAuth access and refresh tokens. It enables a client to

prove the possession of a public/private key pair by including a

DPoP header in an HTTP request. The value of the header is a JWT

[RFC7519] that enables the authorization server to bind issued

tokens to the public part of a client's key pair. Recipients of such

tokens are then able to verify the binding of the token to the key

pair that the client has demonstrated that it holds via the DPoP

header, thereby providing some assurance that the client presenting

the token also possesses the private key. In other words, the

legitimate presenter of the token is constrained to be the sender

that holds and can prove possession of the private part of the key

pair.

The mechanism described herein can be used in cases where other

methods of sender-constraining tokens that utilize elements of the

underlying secure transport layer, such as [RFC8705] or [I-D.ietf-

oauth-token-binding], are not available or desirable. For example,

due to a sub-par user experience of TLS client authentication in

user agents and a lack of support for HTTP token binding, neither

mechanism can be used if an OAuth client is a Single Page

Application (SPA) running in a web browser. Native applications

installed and run on a user's device are another example well

positioned to benefit from DPoP-bound tokens to guard against misuse

of tokens by a compromised or malicious resource. Such applications

often have dedicated protected storage for cryptographic keys.

DPoP can be used to sender-constrain access tokens regardless of the

client authentication method employed, but DPoP itself is not used

for client authentication. DPoP can also be used to sender-constrain

refresh tokens issued to public clients (those without

authentication credentials associated with the client_id).

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification uses the terms "access token", "refresh token",

"authorization server", "resource server", "authorization endpoint",

"authorization request", "authorization response", "token endpoint",

"grant type", "access token request", "access token response", and

"client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

¶

¶

¶

¶

¶

2. Objectives

The primary aim of DPoP is to prevent unauthorized or illegitimate

parties from using leaked or stolen access tokens by binding a token

to a public key upon issuance and requiring that the client proves

possession of the corresponding private key when using the token.

This constrains the legitimate sender of the token to only the party

with access to the private key and gives the server receiving the

token added assurances that the sender is legitimately authorized to

use it.

Access tokens that are sender-constrained via DPoP thus stand in

contrast to the typical bearer token, which can be used by any party

in possession of such a token. Although protections generally exist

to prevent unintended disclosure of bearer tokens, unforeseen

vectors for leakage have occurred due to vulnerabilities and

implementation issues in other layers in the protocol or software

stack (CRIME, BREACH, Heartbleed, and the Cloudflare parser bug are

some examples). There have also been numerous published token theft

attacks on OAuth implementations themselves. DPoP provides a general

defense in depth against the impact of unanticipated token leakage.

DPoP is not, however, a substitute for a secure transport and MUST

always be used in conjunction with HTTPS.

The very nature of the typical OAuth protocol interaction

necessitates that the client discloses the access token to the

protected resources that it accesses. The attacker model in [I-

D.ietf-oauth-security-topics] describes cases where a protected

resource might be counterfeit, malicious or compromised and plays

received tokens against other protected resources to gain

unauthorized access. Properly audience restricting access tokens can

prevent such misuse, however, doing so in practice has proven to be

prohibitively cumbersome for many deployments (even despite

extensions such as [RFC8707]). Sender-constraining access tokens is

a more robust and straightforward mechanism to prevent such token

replay at a different endpoint and DPoP is an accessible application

layer means of doing so.

Due to the potential for cross-site scripting (XSS), browser-based

OAuth clients bring to bear added considerations with respect to

protecting tokens. The most straightforward XSS-based attack is for

an attacker to exfiltrate a token and use it themselves completely

independent of the legitimate client. A stolen access token is used

for protected resource access and a stolen refresh token for

obtaining new access tokens. If the private key is non-extractable

(as is possible with [W3C.WebCryptoAPI]), DPoP renders exfiltrated

tokens alone unusable.

¶

¶

¶

¶

XXS vulnerabilities also allow an attacker to execute code in the

context of the browser-based client application and maliciously use

a token indirectly through the client. That execution context has

access to utilize the signing key and thus can produce DPoP proofs

to use in conjunction with the token. At this application layer

there is most likely no feasible defense against this threat except

generally preventing XSS, therefore it is considered out of scope

for DPoP.

Malicious XSS code executed in the context of the browser-based

client application is also in a position to create DPoP proofs with

timestamp values in the future and exfiltrate them in conjunction

with a token. These stolen artifacts can later be used together

independent of the client application to access protected resources.

To prevent this, servers can optionally require clients to include a

server-chosen value into the proof that cannot be predicted by an

attacker (nonce). In the absence of the optional nonce, the impact

of precomputed DPoP proofs is limited somewhat by the proof being

bound to an access token on protected resource access. Because a

proof covering an access token that does not yet exist cannot

feasibly be created, access tokens obtained with an exfiltrated

refresh token and pre-computed proofs will be unusable.

Additional security considerations are discussed in Section 10.

3. Concept

The main data structure introduced by this specification is a DPoP

proof JWT, described in detail below, which is sent as a header in

an HTTP request. A client uses a DPoP proof JWT to prove the

possession of a private key corresponding to a certain public key.

Roughly speaking, a DPoP proof is a signature over some data of the

HTTP request to which it is attached, a timestamp, a unique

identifier, an optional server-provided nonce, and a hash of the

associated access token when an access token is present within the

request.

¶

¶

¶

¶

¶

+--------+ +---------------+

| |--(A)-- Token Request ------------------->| |

| Client | (DPoP Proof) | Authorization |

| | | Server |

| |<-(B)-- DPoP-bound Access Token ----------| |

| | (token_type=DPoP) +---------------+

| |

| |

| | +---------------+

| |--(C)-- DPoP-bound Access Token --------->| |

| | (DPoP Proof) | Resource |

| | | Server |

| |<-(D)-- Protected Resource ---------------| |

| | +---------------+

+--------+

Figure 1: Basic DPoP Flow

The basic steps of an OAuth flow with DPoP (without the optional

nonce) are shown in Figure 1:

(A) In the Token Request, the client sends an authorization grant

(e.g., an authorization code, refresh token, etc.)

to the authorization server in order to obtain an access token

(and potentially a refresh token). The client attaches a DPoP

proof to the request in an HTTP header.

(B) The authorization server binds (sender-constrains) the access

token to the public key claimed by the client in the DPoP proof;

that is, the access token cannot be used without proving

possession of the respective private key. If a refresh token is

issued to a public client, it too is bound to the public key of

the DPoP proof.

(C) To use the access token, the client has to prove possession

of the private key by, again, adding a header to the request that

carries a DPoP proof for that request. The resource server needs

to receive information about the public key to which the access

token is bound. This information may be encoded directly into the

access token (for JWT structured access tokens) or provided via

token introspection endpoint (not shown). The resource server

verifies that the public key to which the access token is bound

matches the public key of the DPoP proof. It also verifies that

the access token hash in the DPoP proof matches the access token

presented in the request.

(D) The resource server refuses to serve the request if the

signature check fails or the data in the DPoP proof is wrong,

e.g., the request URI does not match the URI claim in the DPoP

¶

*

¶

*

¶

*

¶

*

DPoP

proof JWT. The access token itself, of course, must also be valid

in all other respects.

The DPoP mechanism presented herein is not a client authentication

method. In fact, a primary use case of DPoP is for public clients

(e.g., single page applications and native applications) that do not

use client authentication. Nonetheless, DPoP is designed such that

it is compatible with private_key_jwt and all other client

authentication methods.

DPoP does not directly ensure message integrity but relies on the

TLS layer for that purpose. See Section 10 for details.

4. DPoP Proof JWTs

DPoP introduces the concept of a DPoP proof, which is a JWT created

by the client and sent with an HTTP request using the DPoP header

field. Each HTTP request requires a unique DPoP proof.

A valid DPoP proof demonstrates to the server that the client holds

the private key that was used to sign the DPoP proof JWT. This

enables authorization servers to bind issued tokens to the

corresponding public key (as described in Section 5) and for

resource servers to verify the key-binding of tokens that it

receives (see Section 7.1), which prevents said tokens from being

used by any entity that does not have access to the private key.

The DPoP proof demonstrates possession of a key and, by itself, is

not an authentication or access control mechanism. When presented in

conjunction with a key-bound access token as described in Section

7.1, the DPoP proof provides additional assurance about the

legitimacy of the client to present the access token. However, a

valid DPoP proof JWT is not sufficient alone to make access control

decisions.

4.1. The DPoP HTTP Header

A DPoP proof is included in an HTTP request using the following

message header field.

A JWT that adheres to the structure and syntax of Section 4.2.

Figure 2 shows an example DPoP HTTP header field (line breaks and

extra whitespace for display purposes only).

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 2: Example DPoP header

Note that per [RFC7230] header field names are case-insensitive; so

DPoP, DPOP, dpop, etc., are all valid and equivalent header field

names. Case is significant in the header field value, however.

4.2. DPoP Proof JWT Syntax

A DPoP proof is a JWT ([RFC7519]) that is signed (using JWS,

[RFC7515]) with a private key chosen by the client (see below). The

header of a DPoP JWT contains at least the following parameters:

typ: type header, value dpop+jwt (REQUIRED).

alg: a digital signature algorithm identifier as per [RFC7518]

(REQUIRED). MUST NOT be none or an identifier for a symmetric

algorithm (MAC).

jwk: representing the public key chosen by the client, in JWK

format, as defined in Section 4.1.3 of [RFC7515] (REQUIRED). MUST

NOT contain the private key.

The payload of a DPoP proof contains at least the following claims:

jti: Unique identifier for the DPoP proof JWT (REQUIRED). The

value MUST be assigned such that there is a negligible

probability that the same value will be assigned to any other

DPoP proof used in the same context during the time window of

validity. Such uniqueness can be accomplished by encoding

(base64url or any other suitable encoding) at least 96 bits of

pseudorandom data or by using a version 4 UUID string according

to [RFC4122]. The jti can be used by the server for replay

detection and prevention, see Section 10.1.

htm: The HTTP method for the request to which the JWT is

attached, as defined in [RFC7231] (REQUIRED).

htu: The HTTP URI used for the request, without query and

fragment parts (REQUIRED).

iat: Time at which the JWT was created (REQUIRED).

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik

 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR

 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE

 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj

 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia

 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg

 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

¶

¶

* ¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

* ¶

When the DPoP proof is used in conjunction with the presentation of

an access token, see Section 7, the DPoP proof MUST also contain the

following claim:

ath: hash of the access token (REQUIRED). The value MUST be the

result of a base64url encoding (with no padding) the SHA-256 hash

of the ASCII encoding of the associated access token's value.

A DPoP proof MAY contain other headers or claims as defined by

extension, profile, or deployment specific requirements.

Figure 3 is a conceptual example showing the decoded content of the

DPoP proof in Figure 2. The JSON of the JOSE header and payload are

shown, but the signature part is omitted. As usual, line breaks and

extra whitespace are included for formatting and readability.

Figure 3: Example JWT content of a DPoP proof

Of the HTTP content in the request, only the HTTP method and URI are

included in the DPoP JWT, and therefore only these 2 headers of the

request are covered by the DPoP proof and its signature. The idea is

sign just enough of the HTTP data to provide reasonable proof-of-

possession with respect to the HTTP request. But that it be a

minimal subset of the HTTP data so as to avoid the substantial

difficulties inherent in attempting to normalize HTTP messages.

Nonetheless, DPoP proofs can be extended to contain other

information of the HTTP request (see also Section 10.7).

¶

*

¶

¶

¶

{

 "typ":"dpop+jwt",

 "alg":"ES256",

 "jwk": {

 "kty":"EC",

 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",

 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",

 "crv":"P-256"

 }

}

.

{

 "jti":"-BwC3ESc6acc2lTc",

 "htm":"POST",

 "htu":"https://server.example.com/token",

 "iat":1562262616

}

¶

4.3. Checking DPoP Proofs

To check if a string that was received as part of an HTTP Request is

a valid DPoP proof, the receiving server MUST ensure that

that there is not more than one DPoP header in the request,

the string value of the header field is a well-formed JWT,

all required claims per Section 4.2 are contained in the JWT,

the typ field in the header has the value dpop+jwt,

the algorithm in the header of the JWT indicates an asymmetric

digital signature algorithm, is not none, is supported by the

application, and is deemed secure,

the JWT signature verifies with the public key contained in the

jwk header of the JWT,

the htm claim matches the HTTP method value of the HTTP request

in which the JWT was received,

the htu claim matches the HTTPS URI value for the HTTP request

in which the JWT was received, ignoring any query and fragment

parts,

if the server provided a nonce value to the client, the nonce

claim matches the server-provided nonce value,

the token was issued within an acceptable timeframe and, within

a reasonable consideration of accuracy and resource

utilization, a proof JWT with the same jti value has not

previously been received at the same resource during that time

period (see Section 10.1).

when presented to a protected resource in conjunction with an

access token, ensure that the value of the ath claim equals the

hash of the access token that has been presented alongside the

DPoP proof.

Servers SHOULD employ Syntax-Based Normalization and Scheme-Based

Normalization in accordance with Section 6.2.2. and Section 6.2.3.

of [RFC3986] before comparing the htu claim.

5. DPoP Access Token Request

To request an access token that is bound to a public key using DPoP,

the client MUST provide a valid DPoP proof JWT in a DPoP header when

making an access token request to the authorization server's token

¶

1. ¶

2. ¶

3. ¶

4. ¶

5.

¶

6.

¶

7.

¶

8.

¶

9.

¶

10.

¶

11.

¶

¶

endpoint. This is applicable for all access token requests

regardless of grant type (including, for example, the common

authorization_code and refresh_token grant types but also extension

grants such as the JWT authorization grant [RFC7523]). The HTTPS

request shown in Figure 4 illustrates such an access token request

using an authorization code grant with a DPoP proof JWT in the DPoP

header (extra line breaks and whitespace for display purposes only).

Figure 4: Token Request for a DPoP sender-constrained token using an

authorization code

The DPoP HTTP header MUST contain a valid DPoP proof JWT. If the

DPoP proof is invalid, the authorization server issues an error

response per Section 5.2 of [RFC6749] with invalid_dpop_proof as the

value of the error parameter.

To sender-constrain the access token, after checking the validity of

the DPoP proof, the authorization server associates the issued

access token with the public key from the DPoP proof, which can be

accomplished as described in Section 6. A token_type of DPoP MUST be

included in the access token response to signal to the client that

the access token was bound to its DPoP key and can be used as

described in Section 7.1. The example response shown in Figure 5

illustrates such a response.

¶

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik

 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR

 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE

 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj

 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia

 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg

 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

grant_type=authorization_code

&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

&code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz-

¶

¶

Figure 5: Access Token Response

The example response in Figure 5 includes a refresh token which the

client can use to obtain a new access token when the previous one

expires. Refreshing an access token is a token request using the

refresh_token grant type made to the authorization server's token

endpoint. As with all access token requests, the client makes it a

DPoP request by including a DPoP proof, as shown in the Figure 6

example (extra line breaks and whitespace for display purposes

only).

Figure 6: Token Request for a DPoP-bound Token using a Refresh Token

When an authorization server supporting DPoP issues a refresh token

to a public client that presents a valid DPoP proof at the token

endpoint, the refresh token MUST be bound to the respective public

key. The binding MUST be validated when the refresh token is later

presented to get new access tokens. As a result, such a client MUST

present a DPoP proof for the same key that was used to obtain the

refresh token each time that refresh token is used to obtain a new

access token. The implementation details of the binding of the

refresh token are at the discretion of the authorization server. The

server both produces and validates the refresh tokens that it issues

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

 "access_token": "Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU",

 "token_type": "DPoP",

 "expires_in": 2677,

 "refresh_token": "Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g"

}

¶

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik

 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR

 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE

 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj

 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia

 WF0IjoxNTYyMjY1Mjk2fQ.pAqut2IRDm_De6PR93SYmGBPXpwrAk90e8cP2hjiaG5Qs

 GSuKDYW7_X620BxqhvYC8ynrrvZLTk41mSRroapUA

grant_type=refresh_token

&refresh_token=Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g

dpop_signing_alg_values_supported

so there is no interoperability consideration in the specific

details of the binding.

An authorization server MAY elect to issue access tokens which are

not DPoP bound, which is signaled to the client with a value of

Bearer in the token_type parameter of the access token response per

[RFC6750]. For a public client that is also issued a refresh token,

this has the effect of DPoP-binding the refresh token alone, which

can improve the security posture even when protected resources are

not updated to support DPoP.

If a client receives a different token_type value than DPoP in the

response, the access token protection provided by DPoP is not given.

The client MUST discard the response in this case if this protection

is deemed important for the security of the application and MAY

continue as in a regular OAuth interaction otherwise.

Refresh tokens issued to confidential clients (those having

established authentication credentials with the authorization

server) are not bound to the DPoP proof public key because they are

already sender-constrained with a different existing mechanism. The

OAuth 2.0 Authorization Framework [RFC6749] already requires that an

authorization server bind refresh tokens to the client to which they

were issued and that confidential clients authenticate to the

authorization server when presenting a refresh token. As a result,

such refresh tokens are sender-constrained by way of the client ID

and the associated authentication requirement. This existing sender-

constraining mechanism is more flexible (e.g., it allows credential

rotation for the client without invalidating refresh tokens) than

binding directly to a particular public key.

5.1. Authorization Server Metadata

This document introduces the following new authorization server

metadata [RFC8414] parameter to signal support for DPoP in general

and the specific JWS alg values the authorization server supports

for DPoP proof JWTs.

A JSON array containing a list of

the JWS alg values supported by the authorization server for DPoP

proof JWTs.

6. Public Key Confirmation

Resource servers MUST be able to reliably identify whether an access

token is bound using DPoP and ascertain sufficient information about

the public key to which the token is bound in order to verify the

binding with respect to the presented DPoP proof (see Section 7.1).

Such a binding is accomplished by associating the public key with

the token in a way that can be accessed by the protected resource,

¶

¶

¶

¶

¶

¶

jkt

such as embedding the JWK hash in the issued access token directly,

using the syntax described in Section 6.1, or through token

introspection as described in Section 6.2. Other methods of

associating a public key with an access token are possible, per

agreement by the authorization server and the protected resource,

but are beyond the scope of this specification.

Resource servers supporting DPoP MUST ensure that the public key

from the DPoP proof matches the public key to which the access token

is bound.

6.1. JWK Thumbprint Confirmation Method

When access tokens are represented as JSON Web Tokens (JWT)

[RFC7519], the public key information SHOULD be represented using

the jkt confirmation method member defined herein. To convey the

hash of a public key in a JWT, this specification introduces the

following new JWT Confirmation Method [RFC7800] member for use under

the cnf claim.

JWK SHA-256 Thumbprint Confirmation Method. The value of the

jkt member MUST be the base64url encoding (as defined in

[RFC7515]) of the JWK SHA-256 Thumbprint (according to [RFC7638])

of the DPoP public key (in JWK format) to which the access token

is bound.

The following example JWT in Figure 7 with decoded JWT payload shown

in Figure 8 contains a cnf claim with the jkt JWK thumbprint

confirmation method member. The jkt value in these examples is the

hash of the public key from the DPoP proofs in the examples in

Section 5.

Figure 7: JWT containing a JWK SHA-256 Thumbprint Confirmation

Figure 8: JWT Claims Set with a JWK SHA-256 Thumbprint Confirmation

¶

¶

¶

¶

¶

eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWIiOiJzb21lb25lQGV4YW1

wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJuYmYiOjE

1NjIyNjI2MTEsImV4cCI6MTU2MjI2NjIxNiwiY25mIjp7ImprdCI6IjBaY09DT1JaTll

5LURXcHFxMzBqWnlKR0hUTjBkMkhnbEJWM3VpZ3VBNEkifX0.3Tyo8VTcn6u_PboUmAO

YUY1kfAavomW_YwYMkmRNizLJoQzWy2fCo79Zi5yObpIzjWb5xW4OGld7ESZrh0fsrA

{

 "sub":"someone@example.com",

 "iss":"https://server.example.com",

 "nbf":1562262611,

 "exp":1562266216,

 "cnf":{"jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"}

}

6.2. JWK Thumbprint Confirmation Method in Token Introspection

OAuth 2.0 Token Introspection [RFC7662] defines a method for a

protected resource to query an authorization server about the active

state of an access token as well as to determine metainformation

about the token.

For a DPoP-bound access token, the hash of the public key to which

the token is bound is conveyed to the protected resource as

metainformation in a token introspection response. The hash is

conveyed using the same cnf content with jkt member structure as the

JWK thumbprint confirmation method, described in Section 6.1, as a

top-level member of the introspection response JSON. Note that the

resource server does not send a DPoP proof with the introspection

request and the authorization server does not validate an access

token's DPoP binding at the introspection endpoint. Rather the

resource server uses the data of the introspection response to

validate the access token binding itself locally.

If the token_type member is included in the introspection response,

it MUST contain the value DPoP.

The example introspection request in Figure 9 and corresponding

response in Figure 10 illustrate an introspection exchange for the

example DPoP-bound access token that was issued in Figure 5.

Figure 9: Example Introspection Request

Figure 10: Example Introspection Response for a DPoP-Bound Access Token

¶

¶

¶

¶

POST /as/introspect.oauth2 HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic cnM6cnM6TWt1LTZnX2xDektJZHo0ZnNON2tZY3lhK1Rp

token=Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

 "active": true,

 "sub": "someone@example.com",

 "iss": "https://server.example.com",

 "nbf": 1562262611,

 "exp": 1562266216,

 "cnf": {"jkt": "0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"}

}

7. Protected Resource Access

To make use of an access token that is bound to a public key using

DPoP, a client MUST prove possession of the corresponding private

key by providing a DPoP proof in the DPoP request header. As such,

protected resource requests with a DPoP-bound access token

necessarily must include both a DPoP proof as per Section 4 and the

access token as described in Section 7.1. The DPoP proof MUST

include the ath claim with a valid hash of the associated access

token.

7.1. The DPoP Authentication Scheme

A DPoP-bound access token is sent using the Authorization request

header field per Section 2 of [RFC7235] using an authentication

scheme of DPoP. The syntax of the Authorization header field for the

DPoP scheme uses the token68 syntax defined in Section 2.1 of

[RFC7235] (repeated below for ease of reference) for credentials.

The Augmented Backus-Naur Form (ABNF) notation [RFC5234] syntax for

DPoP authentication scheme credentials is as follows:

Figure 11: DPoP Authentication Scheme ABNF

For such an access token, a resource server MUST check that a DPoP

proof was also received in the DPoP header field of the HTTP

request, check the DPoP proof according to the rules in Section 4.3,

and check that the public key of the DPoP proof matches the public

key to which the access token is bound per Section 6.

The resource server MUST NOT grant access to the resource unless all

checks are successful.

Figure 12 shows an example request to a protected resource with a

DPoP-bound access token in the Authorization header and the DPoP

proof in the DPoP header. Following that is Figure 13, which shows

the decoded content of that DPoP proof. The JSON of the JOSE header

and payload are shown but the signature part is omitted. As usual,

line breaks and extra whitespace are included for formatting and

readability in both examples.

¶

¶

 token68 = 1*(ALPHA / DIGIT /

 "-" / "." / "_" / "~" / "+" / "/") *"="

 credentials = "DPoP" 1*SP token68

¶

¶

¶

Figure 12: DPoP Protected Resource Request

Figure 13: Decoded Content of the DPoP Proof JWT in [Figure 12]

Upon receipt of a request for a URI of a protected resource within

the protection space requiring DPoP authentication, if the request

does not include valid credentials or does not contain an access

token sufficient for access to the protected resource, the server

can reply with a challenge using the 401 (Unauthorized) status code

([RFC7235], Section 3.1) and the WWW-Authenticate header field

([RFC7235], Section 4.1). The server MAY include the WWW-

Authenticate header in response to other conditions as well.

In such challenges:

The scheme name is DPoP.

GET /protectedresource HTTP/1.1

Host: resource.example.org

Authorization: DPoP Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik

 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR

 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE

 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj

 oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z

 WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOCwiYXRoIjoiZlVIeU8ycjJaM0RaNTNF

 c05yV0JiMHhXWG9hTnk1OUlpS0NBcWtzbVFFbyJ9.2oW9RP35yRqzhrtNP86L-Ey71E

 OptxRimPPToA1plemAgR6pxHF8y6-yqyVnmcw6Fy1dqd-jfxSYoMxhAJpLjA

{

 "typ":"dpop+jwt",

 "alg":"ES256",

 "jwk": {

 "kty":"EC",

 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",

 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",

 "crv":"P-256"

 }

}

.

{

 "jti":"e1j3V_bKic8-LAEB",

 "htm":"GET",

 "htu":"https://resource.example.org/protectedresource",

 "iat":1562262618,

 "ath":"fUHyO2r2Z3DZ53EsNrWBb0xWXoaNy59IiKCAqksmQEo"

}

¶

¶

* ¶

The authentication parameter realm MAY be included to indicate

the scope of protection in the manner described in [RFC7235],

Section 2.2.

A scope authentication parameter MAY be included as defined in

[RFC6750], Section 3.

An error parameter ([RFC6750], Section 3) SHOULD be included to

indicate the reason why the request was declined, if the request

included an access token but failed authentication. The error

parameter values described in Section 3.1 of [RFC6750] are

suitable as are any appropriate values defined by extension. The

value use_dpop_nonce can be used as described in Section 9 to

signal that a nonce is needed in the DPoP proof of subsequent

request(s). And invalid_dpop_proof is used to indicate that the

DPoP proof itself was deemed invalid based on the criteria of

Section 4.3.

An error_description parameter ([RFC6750], Section 3) MAY be

included along with the error parameter to provide developers a

human-readable explanation that is not meant to be displayed to

end-users.

An algs parameter SHOULD be included to signal to the client the

JWS algorithms that are acceptable for the DPoP proof JWT. The

value of the parameter is a space-delimited list of JWS alg

(Algorithm) header values ([RFC7515], Section 4.1.1).

Additional authentication parameters MAY be used and unknown

parameters MUST be ignored by recipients.

For example, in response to a protected resource request without

authentication:

Figure 14: HTTP 401 Response to a Protected Resource Request without

Authentication

And in response to a protected resource request that was rejected

because the confirmation of the DPoP binding in the access token

failed:

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

 HTTP/1.1 401 Unauthorized

 WWW-Authenticate: DPoP algs="ES256 PS256"

¶

 HTTP/1.1 401 Unauthorized

 WWW-Authenticate: DPoP error="invalid_token",

 error_description="Invalid DPoP key binding", algs="ES256"

Figure 15: HTTP 401 Response to a Protected Resource Request with an

Invalid Token

7.2. Compatibility with the Bearer Authentication Scheme

Protected resources simultaneously supporting both the DPoP and

Bearer schemes need to update how evaluation of bearer tokens is

performed to prevent downgraded usage of a DPoP-bound access tokens.

Specifically, such a protected resource MUST reject an access token

received as a bearer token per [!@RFC6750], if that token is

determined to be DPoP-bound.

Section 4.1 of [RFC7235] allows a protected resource to indicate

support for multiple authentication schemes (i.e., Bearer and DPoP)

with the WWW-Authenticate header field of a 401 (Unauthorized)

response.

A protected resource that supports only [RFC6750] and is unaware of

DPoP would most presumably accept a DPoP-bound access token as a

bearer token (JWT [RFC7519] says to ignore unrecognized claims,

Introspection [RFC7662] says that other parameters might be present

while placing no functional requirements on their presence, and

[RFC6750] is effectively silent on the content of the access token

as it relates to validity). As such, a client MAY send a DPoP-bound

access token using the Bearer scheme upon receipt of a WWW-

Authenticate: Bearer challenge from a protected resource (or if it

has prior such knowledge about the capabilities of the protected

resource). The effect of this likely simplifies the logistics of

phased upgrades to protected resources in their support DPoP or even

prolonged deployments of protected resources with mixed token type

support.

8. Authorization Server-Provided Nonce

Including a nonce value contributed by the authorization server in

the DPoP proof MAY be used by authorization servers to limit the

lifetime of DPoP proofs. The server is in control of when to require

the use of a new nonce value in subsequent DPoP proofs.

Without employing such a mechanism, a malicious party controlling

the client (including potentially the end user) can create DPoP

proofs for use arbitrarily far in the future. This section specifies

how server-provided nonces are used with DPoP.

An authorization server MAY supply a nonce value to be included by

the client in DPoP proofs sent to it by responding to requests not

including a nonce with an error response per Section 5.2 of

[RFC6749] using use_dpop_nonce as the error code value and including

a DPoP-Nonce HTTP header in the response supplying a nonce value to

be used when sending the subsequent request.

¶

¶

¶

¶

¶

¶

For example, in response to a token request without a nonce when the

authorization server requires one, the authorization server can

respond with a DPoP-Nonce value such as the following to provide a

nonce value to include in the DPoP proof:

Figure 16: HTTP 400 Response to a Token Request without a Nonce

Other HTTP headers and JSON fields MAY also be included in the error

response, but there MUST NOT be more than one DPoP-Nonce header.

Upon receiving the nonce, the client is expected to retry its token

request using a DPoP proof including the supplied nonce value in the

nonce claim of the DPoP proof. An example unencoded JWT Payload of

such a DPoP proof including a nonce is:

Figure 17: DPoP Proof Payload Including a Nonce Value

The nonce syntax in ABNF as used by [RFC6749] (which is the same as

the scope-token syntax) is:

Figure 18: Nonce ABNF

The nonce is opaque to the client.

If the nonce claim in the DPoP proof of a token request does not

exactly match the nonce supplied by the authorization server to the

client, the authorization server MUST reject the request. The

¶

 HTTP/1.1 400 Bad Request

 DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

 {

 "error": "use_dpop_nonce"

 "error_description":

 "Authorization server requires nonce in DPoP proof"

 }

¶

¶

 {

 "jti": "-BwC3ESc6acc2lTc",

 "htm": "POST",

 "htu": "https://server.example.com/token",

 "iat": 1562262616,

 "nonce": "eyJ7S_zG.eyJH0-Z.HX4w-7v"

 }

¶

 nonce = 1*NQCHAR

¶

rejection response MAY include a DPoP-Nonce HTTP header providing a

new nonce value to use for subsequent requests.

8.1. Providing a New Nonce Value

It is up to the authorization server when to supply a new nonce

value for the client to use. The client is expected to use the

existing supplied nonce in DPoP proofs until the server supplies a

new nonce value.

The authorization server MAY supply the new nonce in the same way

that the initial one was supplied: by using a DPoP-Nonce HTTP header

in the response. Of course, each time this happens it requires an

extra protocol round trip.

A more efficient manner of supplying a new nonce value is also

defined -- by including a DPoP-Nonce HTTP header in the 200 OK

response from the previous request. The client MUST use the new

nonce value supplied for the next token request, and for all

subsequent token requests until the authorization server supplies a

new nonce.

An example 200 OK response providing a new nonce value is:

Figure 19: HTTP 200 Response Providing the Next Nonce Value

9. Resource Server-Provided Nonce

Resource servers can also choose to provide a nonce value to be

included in DPoP proofs sent to them. They provide the nonce using

the DPoP-Nonce header in same way that authorization servers do. The

error signaling is performed as described in Section 7.1.

For example, in response to a resource request without a nonce when

the resource server requires one, the resource server can respond

with a DPoP-Nonce value such as the following to provide a nonce

value to include in the DPoP proof:

Figure 20: HTTP 401 Response to a Resource Request without a Nonce

¶

¶

¶

¶

¶

 HTTP/1.1 200 OK

 DPoP-Nonce: eyJ7S_zG.eyJbYu3.xQmBj-1

¶

¶

 HTTP/1.1 401 Unauthorized

 WWW-Authenticate: DPoP error="use_dpop_nonce",

 error_description="Resource server requires nonce in DPoP proof"

 DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

Note that the nonces provided by the two kinds of servers are

different and MUST not be confused with one another. In particular,

a nonce provided to the client by a particular server MUST only be

used with that server and no other. Developers should also take care

to not confuse this nonce with the OpenID Connect [OpenID.Core] ID

Token nonce, should one also be present.

10. Security Considerations

In DPoP, the prevention of token replay at a different endpoint (see

Section 2) is achieved through the binding of the DPoP proof to a

certain URI and HTTP method plus the optional server-provided nonce.

DPoP, however, has a somewhat different nature of protection than

TLS-based methods such as OAuth Mutual TLS [RFC8705] or OAuth Token

Binding [I-D.ietf-oauth-token-binding] (see also Section 10.1 and

Section 10.7). TLS-based mechanisms can leverage a tight integration

between the TLS layer and the application layer to achieve a very

high level of message integrity with respect to the transport layer

to which the token is bound and replay protection in general.

10.1. DPoP Proof Replay

If an adversary is able to get hold of a DPoP proof JWT, the

adversary could replay that token at the same endpoint (the HTTP

endpoint and method are enforced via the respective claims in the

JWTs). To prevent this, servers MUST only accept DPoP proofs for a

limited time window after their iat time, preferably only for a

relatively brief period (on the order of a few seconds).

Servers SHOULD store, in the context of the request URI, the jti

value of each DPoP proof for the time window in which the respective

DPoP proof JWT would be accepted and decline HTTP requests to the

same URI for which the jti value has been seen before. In order to

guard against memory exhaustion attacks a server SHOULD reject DPoP

proof JWTs with unnecessarily large jti values or store only a hash

thereof.

Note: To accommodate for clock offsets, the server MAY accept DPoP

proofs that carry an iat time in the reasonably near future (e.g., a

few seconds in the future). Because clock skews between servers and

clients may be large, servers may choose to limit DPoP proof

lifetimes by using server-provided nonce values rather than clock

times, yielding intended results even in the face of arbitrarily

large clock skews.

Server-provided nonces are an effective means of preventing DPoP

proof replay.

¶

¶

¶

¶

¶

¶

10.2. DPoP Proof Pre-Generation

An attacker in control of the client can pre-generate DPoP proofs

for use arbitrarily far into the future by choosing the iat value in

the DPoP proof to be signed by the proof-of-possession key. Note

that one such attacker is the person who is the legitimate user of

the client. The user may pre-generate DPoP proofs to exfiltrate from

the machine possessing the proof-of-possession key upon which they

were generated and copy them to another machine that does not

possess the key. For instance, a bank employee might pre-generate

DPoP proofs on a bank computer and then copy them to another machine

for use in the future, thereby bypassing bank audit controls. When

DPoP proofs can be pre-generated and exfiltrated, all that is

actually being proved in DPoP protocol interactions is possession of

a DPoP proof -- not of the proof-of-possession key.

Use of server-provided nonce values that are not predictable by

attackers can prevent this attack. By providing new nonce values at

times of its choosing, the server can limit the lifetime of DPoP

proofs, preventing pre-generated DPoP proofs from being used. When

server-provided nonces are used, possession of the proof-of-

possession key is being demonstrated -- not just possession of a

DPoP proof.

10.3. DPoP Nonce Downgrade

A server MUST NOT accept any DPoP proofs without the nonce claim

when a DPoP nonce has been provided to the client.

10.4. Untrusted Code in the Client Context

If an adversary is able to run code in the client's execution

context, the security of DPoP is no longer guaranteed. Common issues

in web applications leading to the execution of untrusted code are

cross-site scripting and remote code inclusion attacks.

If the private key used for DPoP is stored in such a way that it

cannot be exported, e.g., in a hardware or software security module,

the adversary cannot exfiltrate the key and use it to create

arbitrary DPoP proofs. The adversary can, however, create new DPoP

proofs as long as the client is online, and use these proofs

(together with the respective tokens) either on the victim's device

or on a device under the attacker's control to send arbitrary

requests that will be accepted by servers.

To send requests even when the client is offline, an adversary can

try to pre-compute DPoP proofs using timestamps in the future and

exfiltrate these together with the access or refresh token.

¶

¶

¶

¶

¶

¶

An adversary might further try to associate tokens issued from the

token endpoint with a key pair under the adversary's control. One

way to achieve this is to modify existing code, e.g., by replacing

cryptographic APIs. Another way is to launch a new authorization

grant between the client and the authorization server in an iframe.

This grant needs to be "silent", i.e., not require interaction with

the user. With code running in the client's origin, the adversary

has access to the resulting authorization code and can use it to

associate their own DPoP keys with the tokens returned from the

token endpoint. The adversary is then able to use the resulting

tokens on their own device even if the client is offline.

Therefore, protecting clients against the execution of untrusted

code is extremely important even if DPoP is used. Besides secure

coding practices, Content Security Policy [W3C.CSP] can be used as a

second layer of defense against cross-site scripting.

10.5. Signed JWT Swapping

Servers accepting signed DPoP proof JWTs MUST check the typ field in

the headers of the JWTs to ensure that adversaries cannot use JWTs

created for other purposes.

10.6. Signature Algorithms

Implementers MUST ensure that only asymmetric digital signature

algorithms that are deemed secure can be used for signing DPoP

proofs. In particular, the algorithm none MUST NOT be allowed.

10.7. Message Integrity

DPoP does not ensure the integrity of the payload or headers of

requests. The DPoP proof only contains claims for the HTTP URI and

method, but not, for example, the message body or general request

headers.

This is an intentional design decision intended to keep DPoP simple

to use, but as described, makes DPoP potentially susceptible to

replay attacks where an attacker is able to modify message contents

and headers. In many setups, the message integrity and

confidentiality provided by TLS is sufficient to provide a good

level of protection.

Implementers that have stronger requirements on the integrity of

messages are encouraged to either use TLS-based mechanisms or signed

requests. TLS-based mechanisms are in particular OAuth Mutual TLS

[RFC8705] and OAuth Token Binding [I-D.ietf-oauth-token-binding].

¶

¶

¶

¶

¶

¶

¶

Note: While signatures covering other parts of requests are out of

the scope of this specification, additional information to be signed

can be added into DPoP proofs.

10.8. Access Token and Public Key Binding

The binding of the access token to the DPoP public key, which is

specified in Section 6, uses a cryptographic hash of the JWK

representation of the public key. It relies on the hash function

having sufficient second-preimage resistance so as to make it

computationally infeasible to find or create another key that

produces to the same hash output value. The SHA-256 hash function

was used because it meets the aforementioned requirement while being

widely available. If, in the future, JWK thumbprints need to be

computed using hash function(s) other than SHA-256, it is suggested

that an additional related JWT confirmation method member be defined

for that purpose, registered in the respective IANA registry, and

used in place of the jkt confirmation method defined herein.

Similarly, the binding of the DPoP proof to the access token uses a

hash of that access token as the value of the ath claim in the DPoP

proof (see Section 4.2). This relies on the value of the hash being

sufficiently unique so as to reliably identify the access token. The

collision resistance of SHA-256 meets that requirement. If, in the

future, access token digests need be computed using hash function(s)

other than SHA-256, it is suggested that an additional related JWT

claim be defined for that purpose, registered in the respective IANA

registry, and used in place of the ath claim defined herein.

11. IANA Considerations

11.1. OAuth Access Token Type Registration

This specification requests registration of the following access

token type in the "OAuth Access Token Types" registry

[IANA.OAuth.Params] established by [RFC6749].

Type name: DPoP

Additional Token Endpoint Response Parameters: (none)

HTTP Authentication Scheme(s): DPoP

Change controller: IESG

Specification document(s): [[this specification]]

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

11.2. OAuth Extensions Error Registration

This specification requests registration of the following error

values in the "OAuth Extensions Error" registry [IANA.OAuth.Params]

established by [RFC6749].

Invalid DPoP proof:

Name: invalid_dpop_proof

Usage Location: token error response, resource error response

Protocol Extension: Demonstrating Proof of Possession (DPoP)

Change controller: IETF

Specification document(s): [[this specification]]

Use DPoP nonce:

Name: use_dpop_nonce

Usage Location: token error response, resource error response

Protocol Extension: Demonstrating Proof of Possession (DPoP)

Change controller: IETF

Specification document(s): [[this specification]]

11.3. HTTP Authentication Scheme Registration

This specification requests registration of the following scheme in

the "Hypertext Transfer Protocol (HTTP) Authentication Scheme

Registry" [RFC7235][IANA.HTTP.AuthSchemes]:

Authentication Scheme Name: DPoP

Reference: [[Section 7.1 of this specification]]

11.4. Media Type Registration

[[Is a media type registration at [IANA.MediaTypes] necessary for

application/dpop+jwt? There is a +jwt structured syntax suffix

registered already at [IANA.MediaType.StructuredSuffix] by Section

7.2 of [RFC8417], which is maybe sufficient? A full-blown

registration of application/dpop+jwt seems like it'd be overkill.

The dpop+jwt is used in the JWS/JWT typ header for explicit typing

of the JWT per Section 3.11 of [RFC8725] but it is not used anywhere

else (such as the Content-Type of HTTP messages).

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

¶

Note that there does seem to be some precedence for

[IANA.MediaTypes] registration with [I-D.ietf-oauth-access-token-

jwt], [I-D.ietf-oauth-jwsreq], [RFC8417], and of course [RFC7519].

But precedence isn't always right.]]

11.5. JWT Confirmation Methods Registration

This specification requests registration of the following value in

the IANA "JWT Confirmation Methods" registry [IANA.JWT] for JWT cnf

member values established by [RFC7800].

Confirmation Method Value: jkt

Confirmation Method Description: JWK SHA-256 Thumbprint

Change Controller: IESG

Specification Document(s): [[Section 6 of this specification]]

11.6. JSON Web Token Claims Registration

This specification requests registration of the following Claims in

the IANA "JSON Web Token Claims" registry [IANA.JWT] established by

[RFC7519].

HTTP method:

Claim Name: htm

Claim Description: The HTTP method of the request

Change Controller: IESG

Specification Document(s): [[Section 4.2 of this specification

]]

HTTP URI:

Claim Name: htu

Claim Description: The HTTP URI of the request (without query and

fragment parts)

Change Controller: IESG

Specification Document(s): [[Section 4.2 of this specification

]]

Access token hash:

Claim Name: ath

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

*

¶

¶

* ¶

*

¶

* ¶

*

¶

¶

* ¶

[RFC3986]

[RFC5234]

Claim Description: The base64url encoded SHA-256 hash of the

ASCII encoding of the associated access token's value

Change Controller: IESG

Specification Document(s): [[Section 4.2 of this specification

]]

11.7. HTTP Message Header Field Names Registration

This document specifies the following new HTTP header fields,

registration of which is requested in the "Permanent Message Header

Field Names" registry [IANA.Headers] defined in [RFC3864].

Header Field Name: DPoP

Applicable protocol: HTTP

Status: standard

Author/change Controller: IETF

Specification Document(s): [[this specification]]

11.8. Authorization Server Metadata Registration

This specification requests registration of the following values in

the IANA "OAuth Authorization Server Metadata" registry

[IANA.OAuth.Parameters] established by [RFC8414].

Metadata Name: dpop_signing_alg_values_supported

Metadata Description: JSON array containing a list of the JWS

algorithms supported for DPoP proof JWTs

Change Controller: IESG

Specification Document(s): [[Section 5.1 of this specification

]]

12. Normative References

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

*

¶

* ¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

*

¶

* ¶

*

¶

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

[RFC6749]

[RFC7231]

[RFC7515]

[RFC7518]

[RFC7638]

[RFC7800]

[I-D.ietf-oauth-access-token-jwt]

[I-D.ietf-oauth-jwsreq]

[I-D.ietf-oauth-security-topics]

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI

10.17487/RFC7518, May 2015, <https://www.rfc-editor.org/

info/rfc7518>.

Jones, M. and N. Sakimura, "JSON Web Key (JWK)

Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September

2015, <https://www.rfc-editor.org/info/rfc7638>.

Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-

Possession Key Semantics for JSON Web Tokens (JWTs)", RFC

7800, DOI 10.17487/RFC7800, April 2016, <https://www.rfc-

editor.org/info/rfc7800>.

13. Informative References

Bertocci, V., "JSON Web Token (JWT) Profile for OAuth 2.0

Access Tokens", Work in Progress, Internet-Draft, draft-

ietf-oauth-access-token-jwt-13, 25 May 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-oauth-access-

token-jwt-13>.

Sakimura, N., Bradley, J., and M. B. Jones,

"The OAuth 2.0 Authorization Framework: JWT-Secured

Authorization Request (JAR)", Work in Progress, Internet-

Draft, draft-ietf-oauth-jwsreq-34, 8 April 2021,

<https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

jwsreq-34>.

Lodderstedt, T., Bradley, J.,

Labunets, A., and D. Fett, "OAuth 2.0 Security Best

Current Practice", Work in Progress, Internet-Draft,

draft-ietf-oauth-security-topics-18, 13 April 2021,

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7638
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-access-token-jwt-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-access-token-jwt-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-access-token-jwt-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwsreq-34
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwsreq-34

[I-D.ietf-oauth-token-binding]

[IANA.HTTP.AuthSchemes]

[IANA.Headers]

[IANA.JWT]

[IANA.MediaType.StructuredSuffix]

[IANA.MediaTypes]

[IANA.OAuth.Params]

[OpenID.Core]

[RFC2119]

[RFC3864]

[RFC4122]

<https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

security-topics-18>.

Jones, M. B., Campbell, B., Bradley,

J., and W. Denniss, "OAuth 2.0 Token Binding", Work in

Progress, Internet-Draft, draft-ietf-oauth-token-

binding-08, 19 October 2018, <https://

datatracker.ietf.org/doc/html/draft-ietf-oauth-token-

binding-08>.

IANA, "Hypertext Transfer Protocol (HTTP)

Authentication Scheme Registry", <https://www.iana.org/

assignments/http-authschemes>.

IANA, "Message Headers", <https://www.iana.org/

assignments/message-headers>.

IANA, "JSON Web Token Claims", <http://www.iana.org/

assignments/jwt>.

IANA, "Structured Syntax Suffix

Registry", <https://www.iana.org/assignments/media-type-

structured-suffix>.

IANA, "Media Types", <https://www.iana.org/

assignments/media-types>.

IANA, "OAuth Parameters", <https://www.iana.org/

assignments/oauth-parameters>.

Sakimura, N., Bradley, J., Jones, M.B., Medeiros,

B.d., and C. Mortimore, "OpenID Connect Core 1.0",

November 2014, <http://openid.net/specs/openid-connect-

core-1_0.html>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Klyne, G., Nottingham, M., and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC 3864,

DOI 10.17487/RFC3864, September 2004, <https://www.rfc-

editor.org/info/rfc3864>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-18
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-18
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/message-headers
https://www.iana.org/assignments/message-headers
http://www.iana.org/assignments/jwt
http://www.iana.org/assignments/jwt
https://www.iana.org/assignments/media-type-structured-suffix
https://www.iana.org/assignments/media-type-structured-suffix
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122

[RFC6750]

[RFC7230]

[RFC7235]

[RFC7519]

[RFC7523]

[RFC7662]

[RFC8174]

[RFC8414]

[RFC8417]

[RFC8705]

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/info/rfc7235>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Jones, M., Campbell, B., and C. Mortimore, "JSON Web

Token (JWT) Profile for OAuth 2.0 Client Authentication

and Authorization Grants", RFC 7523, DOI 10.17487/

RFC7523, May 2015, <https://www.rfc-editor.org/info/

rfc7523>.

Richer, J., Ed., "OAuth 2.0 Token Introspection", RFC

7662, DOI 10.17487/RFC7662, October 2015, <https://

www.rfc-editor.org/info/rfc7662>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0

Authorization Server Metadata", RFC 8414, DOI 10.17487/

RFC8414, June 2018, <https://www.rfc-editor.org/info/

rfc8414>.

Hunt, P., Ed., Jones, M., Denniss, W., and M. Ansari,

"Security Event Token (SET)", RFC 8417, DOI 10.17487/

RFC8417, July 2018, <https://www.rfc-editor.org/info/

rfc8417>.

Campbell, B., Bradley, J., Sakimura, N., and T.

Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication

and Certificate-Bound Access Tokens", RFC 8705, DOI

10.17487/RFC8705, February 2020, <https://www.rfc-

editor.org/info/rfc8705>.

https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8417
https://www.rfc-editor.org/info/rfc8417
https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc8705

[RFC8707]

[RFC8725]

[W3C.CSP]

[W3C.WebCryptoAPI]

Campbell, B., Bradley, J., and H. Tschofenig, "Resource

Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/

RFC8707, February 2020, <https://www.rfc-editor.org/info/

rfc8707>.

Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token

Best Current Practices", BCP 225, RFC 8725, DOI 10.17487/

RFC8725, February 2020, <https://www.rfc-editor.org/info/

rfc8725>.

West, M., "Content Security Policy Level 3", World Wide

Web Consortium Working Draft WD-CSP3-20181015, 15 October

2018, <https://www.w3.org/TR/2018/WD-CSP3-20181015/>.

Watson, M., "Web Cryptography API", World Wide

Web Consortium Recommendation REC-WebCryptoAPI-20170126,

26 January 2017, <https://www.w3.org/TR/2017/REC-

WebCryptoAPI-20170126>.

Appendix A. Acknowledgements

We would like to thank Annabelle Backman, Dominick Baier, Andrii

Deinega, William Denniss, Vladimir Dzhuvinov, Mike Engan, Nikos

Fotiou, Mark Haine, Dick Hardt, Bjorn Hjelm, Jared Jennings,

Benjamin Kaduk, Pieter Kasselman, Steinar Noem, Neil Madden, Rob

Otto, Aaron Parecki, Michael Peck, Paul Querna, Justin Richer, Filip

Skokan, Dmitry Telegin, Dave Tonge, Jim Willeke, Philippe De Ryck,

and others (please let us know, if you've been mistakenly omitted)

for their valuable input, feedback and general support of this work.

This document resulted from discussions at the 4th OAuth Security

Workshop in Stuttgart, Germany. We thank the organizers of this

workshop (Ralf Kusters, Guido Schmitz).

Appendix B. Document History

[[To be removed from the final specification]]

-04

Added the option for a server-provided nonce in the DPoP proof.

Registered the invalid_dpop_proof and use_dpop_nonce error codes.

Removed fictitious uses of realm from the examples, as they added

no value.

State that if the introspection response has a token_type, it has

to be DPoP.

¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725
https://www.w3.org/TR/2018/WD-CSP3-20181015/
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126

Mention that RFC7235 allows multiple authentication schemes in

WWW-Authenticate with a 401.

Editorial fixes.

-03

Add an access token hash (ath) claim to the DPoP proof when used

in conjunction with the presentation of an access token for

protected resource access

add Untrusted Code in the Client Context section to security

considerations

Editorial updates and fixes

-02

Lots of editorial updates and additions including expanding on

the objectives, better defining the key confirmation

representations, example updates and additions, better describing

mixed bearer/dpop token type deployments, clarify RT binding only

being done for public clients and why, more clearly allow for a

bound RT but with bearer AT, explain/justify the choice of

SHA-256 for key binding, and more

Require that a protected resource supporting bearer and DPoP at

the same time must reject an access token received as bearer, if

that token is DPoP-bound

Remove the case-insensitive qualification on the htm claim check

Relax the jti tracking requirements a bit and qualify it by URI

-01

Editorial updates

Attempt to more formally define the DPoP Authorization header

scheme

Define the 401/WWW-Authenticate challenge

Added invalid_dpop_proof error code for DPoP errors in token

request

Fixed up and added to the IANA section

Added dpop_signing_alg_values_supported authorization server

metadata

*

¶

* ¶

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

* ¶

* ¶

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

Moved the Acknowledgements into an Appendix and added a bunch of

names (best effort)

-00 [[Working Group Draft]]

Working group draft

-04

Update OAuth MTLS reference to RFC 8705

Use the newish RFC v3 XML and HTML format

-03

rework the text around uniqueness requirements on the jti claim

in the DPoP proof JWT

make tokens a bit smaller by using htm, htu, and jkt rather than

http_method, http_uri, and jkt#S256 respectively

more explicit recommendation to use mTLS if that is available

added David Waite as co-author

editorial updates

-02

added normalization rules for URIs

removed distinction between proof and binding

"jwk" header again used instead of "cnf" claim in DPoP proof

renamed "Bearer-DPoP" token type to "DPoP"

removed ability for key rotation

added security considerations on request integrity

explicit advice on extending DPoP proofs to sign other parts of

the HTTP messages

only use the jkt#S256 in ATs

iat instead of exp in DPoP proof JWTs

updated guidance on token_type evaluation

*

¶

¶

* ¶

¶

* ¶

* ¶

¶

*

¶

*

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

-01

fixed inconsistencies

moved binding and proof messages to headers instead of parameters

extracted and unified definition of DPoP JWTs

improved description

-00

first draft

Authors' Addresses

Daniel Fett

yes.com

Email: mail@danielfett.de

Brian Campbell

Ping Identity

Email: bcampbell@pingidentity.com

John Bradley

Yubico

Email: ve7jtb@ve7jtb.com

Torsten Lodderstedt

yes.com

Email: torsten@lodderstedt.net

Michael Jones

Microsoft

Email: mbj@microsoft.com

URI: https://self-issued.info/

David Waite

Ping Identity

Email: david@alkaline-solutions.com

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

mailto:mail@danielfett.de
mailto:bcampbell@pingidentity.com
mailto:ve7jtb@ve7jtb.com
mailto:torsten@lodderstedt.net
mailto:mbj@microsoft.com
https://self-issued.info/
mailto:david@alkaline-solutions.com

	OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer (DPoP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. Objectives
	3. Concept
	4. DPoP Proof JWTs
	4.1. The DPoP HTTP Header
	4.2. DPoP Proof JWT Syntax
	4.3. Checking DPoP Proofs

	5. DPoP Access Token Request
	5.1. Authorization Server Metadata

	6. Public Key Confirmation
	6.1. JWK Thumbprint Confirmation Method
	6.2. JWK Thumbprint Confirmation Method in Token Introspection

	7. Protected Resource Access
	7.1. The DPoP Authentication Scheme
	7.2. Compatibility with the Bearer Authentication Scheme

	8. Authorization Server-Provided Nonce
	8.1. Providing a New Nonce Value

	9. Resource Server-Provided Nonce
	10. Security Considerations
	10.1. DPoP Proof Replay
	10.2. DPoP Proof Pre-Generation
	10.3. DPoP Nonce Downgrade
	10.4. Untrusted Code in the Client Context
	10.5. Signed JWT Swapping
	10.6. Signature Algorithms
	10.7. Message Integrity
	10.8. Access Token and Public Key Binding

	11. IANA Considerations
	11.1. OAuth Access Token Type Registration
	11.2. OAuth Extensions Error Registration
	11.3. HTTP Authentication Scheme Registration
	11.4. Media Type Registration
	11.5. JWT Confirmation Methods Registration
	11.6. JSON Web Token Claims Registration
	11.7. HTTP Message Header Field Names Registration
	11.8. Authorization Server Metadata Registration

	12. Normative References
	13. Informative References
	Appendix A. Acknowledgements
	Appendix B. Document History
	Authors' Addresses

