
Workgroup: Web Authorization Protocol

Internet-Draft: draft-ietf-oauth-dpop-08

Published: 2 May 2022

Intended Status: Standards Track

Expires: 3 November 2022

Authors: D. Fett

yes.com

B. Campbell

Ping Identity

J. Bradley

Yubico

T. Lodderstedt

yes.com

M. Jones

Microsoft

D. Waite

Ping Identity

OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer

(DPoP)

Abstract

This document describes a mechanism for sender-constraining OAuth

2.0 tokens via a proof-of-possession mechanism on the application

level. This mechanism allows for the detection of replay attacks

with access and refresh tokens.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Terminology

2. Objectives

3. Concept

4. DPoP Proof JWTs

4.1. The DPoP HTTP Header

4.2. DPoP Proof JWT Syntax

4.3. Checking DPoP Proofs

5. DPoP Access Token Request

5.1. Authorization Server Metadata

5.2. Client Registration Metadata

6. Public Key Confirmation

6.1. JWK Thumbprint Confirmation Method

6.2. JWK Thumbprint Confirmation Method in Token Introspection

7. Protected Resource Access

7.1. The DPoP Authentication Scheme

7.2. Compatibility with the Bearer Authentication Scheme

8. Authorization Server-Provided Nonce

8.1. Providing a New Nonce Value

9. Resource Server-Provided Nonce

10. Authorization Code Binding to DPoP Key

10.1. DPoP with Pushed Authorization Requests

11. Security Considerations

11.1. DPoP Proof Replay

11.2. DPoP Proof Pre-Generation

11.3. DPoP Nonce Downgrade

11.4. Untrusted Code in the Client Context

11.5. Signed JWT Swapping

11.6. Signature Algorithms

11.7. Message Integrity

11.8. Access Token and Public Key Binding

11.9. Authorization Code and Public Key Binding

12. IANA Considerations

12.1. OAuth Access Token Type Registration

12.2. OAuth Extensions Error Registration

12.3. OAuth Parameters Registration

12.4. HTTP Authentication Scheme Registration

12.5. Media Type Registration

12.6. JWT Confirmation Methods Registration

12.7. JSON Web Token Claims Registration

12.8. HTTP Message Header Field Names Registration

12.9. OAuth Authorization Server Metadata Registration

12.10. OAuth Dynamic Client Registration Metadata

13. Normative References

¶

14. Informative References

Appendix A. Acknowledgements

Appendix B. Document History

Authors' Addresses

1. Introduction

DPoP (for Demonstrating Proof-of-Possession at the Application

Layer) is an application-level mechanism for sender-constraining

OAuth access and refresh tokens. It enables a client to prove the

possession of a public/private key pair by including a DPoP header

in an HTTP request. The value of the header is a JSON Web Token

(JWT) [RFC7519] that enables the authorization server to bind issued

tokens to the public part of a client's key pair. Recipients of such

tokens are then able to verify the binding of the token to the key

pair that the client has demonstrated that it holds via the DPoP

header, thereby providing some assurance that the client presenting

the token also possesses the private key. In other words, the

legitimate presenter of the token is constrained to be the sender

that holds and can prove possession of the private part of the key

pair.

The mechanism described herein can be used in cases where other

methods of sender-constraining tokens that utilize elements of the

underlying secure transport layer, such as [RFC8705] or [I-D.ietf-

oauth-token-binding], are not available or desirable. For example,

due to a sub-par user experience of TLS client authentication in

user agents and a lack of support for HTTP token binding, neither

mechanism can be used if an OAuth client is a Single Page

Application (SPA) running in a web browser. Native applications

installed and run on a user's device are another example well

positioned to benefit from DPoP-bound tokens to guard against misuse

of tokens by a compromised or malicious resource. Such applications

often have dedicated protected storage for cryptographic keys.

DPoP can be used to sender-constrain access tokens regardless of the

client authentication method employed, but DPoP itself is not used

for client authentication. DPoP can also be used to sender-constrain

refresh tokens issued to public clients (those without

authentication credentials associated with the client_id).

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

This specification uses the Augmented Backus-Naur Form (ABNF)

notation of [RFC5234].

This specification uses the terms "access token", "refresh token",

"authorization server", "resource server", "authorization endpoint",

"authorization request", "authorization response", "token endpoint",

"grant type", "access token request", "access token response",

"client", "public client", and "confidential client" defined by The

OAuth 2.0 Authorization Framework [RFC6749].

The terms "request", "response", "header field", "request URI" are

imported from [RFC7231].

The terms "JOSE" and "JOSE header" are imported from [RFC7515].

2. Objectives

The primary aim of DPoP is to prevent unauthorized or illegitimate

parties from using leaked or stolen access tokens, by binding a

token to a public key upon issuance and requiring that the client

proves possession of the corresponding private key when using the

token. This constrains the legitimate sender of the token to only

the party with access to the private key and gives the server

receiving the token added assurances that the sender is legitimately

authorized to use it.

Access tokens that are sender-constrained via DPoP thus stand in

contrast to the typical bearer token, which can be used by any party

in possession of such a token. Although protections generally exist

to prevent unintended disclosure of bearer tokens, unforeseen

vectors for leakage have occurred due to vulnerabilities and

implementation issues in other layers in the protocol or software

stack (CRIME, BREACH, Heartbleed, and the Cloudflare parser bug are

some examples). There have also been numerous published token theft

attacks on OAuth implementations themselves. DPoP provides a general

defense in depth against the impact of unanticipated token leakage.

DPoP is not, however, a substitute for a secure transport and MUST

always be used in conjunction with HTTPS.

The very nature of the typical OAuth protocol interaction

necessitates that the client discloses the access token to the

protected resources that it accesses. The attacker model in [I-

D.ietf-oauth-security-topics] describes cases where a protected

resource might be counterfeit, malicious or compromised and plays

received tokens against other protected resources to gain

unauthorized access. Properly audience restricting access tokens can

prevent such misuse, however, doing so in practice has proven to be

prohibitively cumbersome for many deployments (even despite

extensions such as [RFC8707]). Sender-constraining access tokens is

¶

¶

¶

¶

¶

¶

a more robust and straightforward mechanism to prevent such token

replay at a different endpoint and DPoP is an accessible application

layer means of doing so.

Due to the potential for cross-site scripting (XSS), browser-based

OAuth clients bring to bear added considerations with respect to

protecting tokens. The most straightforward XSS-based attack is for

an attacker to exfiltrate a token and use it themselves completely

independent of the legitimate client. A stolen access token is used

for protected resource access and a stolen refresh token for

obtaining new access tokens. If the private key is non-extractable

(as is possible with [W3C.WebCryptoAPI]), DPoP renders exfiltrated

tokens alone unusable.

XSS vulnerabilities also allow an attacker to execute code in the

context of the browser-based client application and maliciously use

a token indirectly through the client. That execution context has

access to utilize the signing key and thus can produce DPoP proofs

to use in conjunction with the token. At this application layer

there is most likely no feasible defense against this threat except

generally preventing XSS, therefore it is considered out of scope

for DPoP.

Malicious XSS code executed in the context of the browser-based

client application is also in a position to create DPoP proofs with

timestamp values in the future and exfiltrate them in conjunction

with a token. These stolen artifacts can later be used together

independent of the client application to access protected resources.

To prevent this, servers can optionally require clients to include a

server-chosen value into the proof that cannot be predicted by an

attacker (nonce). In the absence of the optional nonce, the impact

of pre-computed DPoP proofs is limited somewhat by the proof being

bound to an access token on protected resource access. Because a

proof covering an access token that does not yet exist cannot

feasibly be created, access tokens obtained with an exfiltrated

refresh token and pre-computed proofs will be unusable.

Additional security considerations are discussed in Section 11.

3. Concept

The main data structure introduced by this specification is a DPoP

proof JWT, described in detail below, which is sent as a header in

an HTTP request. A client uses a DPoP proof JWT to prove the

possession of a private key corresponding to a certain public key.

Roughly speaking, a DPoP proof is a signature over some data of the

HTTP request to which it is attached, a timestamp, a unique

identifier, an optional server-provided nonce, and a hash of the

¶

¶

¶

¶

¶

¶

associated access token when an access token is present within the

request.

+--------+ +---------------+

| |--(A)-- Token Request ------------------->| |

| Client | (DPoP Proof) | Authorization |

| | | Server |

| |<-(B)-- DPoP-bound Access Token ----------| |

| | (token_type=DPoP) +---------------+

| |

| |

| | +---------------+

| |--(C)-- DPoP-bound Access Token --------->| |

| | (DPoP Proof) | Resource |

| | | Server |

| |<-(D)-- Protected Resource ---------------| |

| | +---------------+

+--------+

Figure 1: Basic DPoP Flow

The basic steps of an OAuth flow with DPoP (without the optional

nonce) are shown in Figure 1:

(A) In the Token Request, the client sends an authorization grant

(e.g., an authorization code, refresh token, etc.)

to the authorization server in order to obtain an access token

(and potentially a refresh token). The client attaches a DPoP

proof to the request in an HTTP header.

(B) The authorization server binds (sender-constrains) the access

token to the public key claimed by the client in the DPoP proof;

that is, the access token cannot be used without proving

possession of the respective private key. If a refresh token is

issued to a public client, it too is bound to the public key of

the DPoP proof.

(C) To use the access token, the client has to prove possession

of the private key by, again, adding a header to the request that

carries a DPoP proof for that request. The resource server needs

to receive information about the public key to which the access

token is bound. This information may be encoded directly into the

access token (for JWT structured access tokens) or provided via

token introspection endpoint (not shown). The resource server

verifies that the public key to which the access token is bound

matches the public key of the DPoP proof. It also verifies that

the access token hash in the DPoP proof matches the access token

presented in the request.

(D) The resource server refuses to serve the request if the

signature check fails or the data in the DPoP proof is wrong,

¶

¶

*

¶

*

¶

*

¶

*

DPoP

e.g., the request URI does not match the URI claim in the DPoP

proof JWT. The access token itself, of course, must also be valid

in all other respects.

The DPoP mechanism presented herein is not a client authentication

method. In fact, a primary use case of DPoP is for public clients

(e.g., single page applications and native applications) that do not

use client authentication. Nonetheless, DPoP is designed such that

it is compatible with private_key_jwt and all other client

authentication methods.

DPoP does not directly ensure message integrity but relies on the

TLS layer for that purpose. See Section 11 for details.

4. DPoP Proof JWTs

DPoP introduces the concept of a DPoP proof, which is a JWT created

by the client and sent with an HTTP request using the DPoP header

field. Each HTTP request requires a unique DPoP proof.

A valid DPoP proof demonstrates to the server that the client holds

the private key that was used to sign the DPoP proof JWT. This

enables authorization servers to bind issued tokens to the

corresponding public key (as described in Section 5) and for

resource servers to verify the key-binding of tokens that it

receives (see Section 7.1), which prevents said tokens from being

used by any entity that does not have access to the private key.

The DPoP proof demonstrates possession of a key and, by itself, is

not an authentication or access control mechanism. When presented in

conjunction with a key-bound access token as described in Section

7.1, the DPoP proof provides additional assurance about the

legitimacy of the client to present the access token. However, a

valid DPoP proof JWT is not sufficient alone to make access control

decisions.

4.1. The DPoP HTTP Header

A DPoP proof is included in an HTTP request using the following

request header field.

A JWT that adheres to the structure and syntax of Section 4.2.

Figure 2 shows an example DPoP HTTP header field (line breaks and

extra whitespace for display purposes only).

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 2: Example DPoP header

Note that per [RFC7230] header field names are case-insensitive; so

DPoP, DPOP, dpop, etc., are all valid and equivalent header field

names. Case is significant in the header field value, however.

4.2. DPoP Proof JWT Syntax

A DPoP proof is a JWT ([RFC7519]) that is signed (using JSON Web

Signature (JWS) [RFC7515]) with a private key chosen by the client

(see below). The JOSE header of a DPoP JWT MUST contain at least the

following parameters:

typ: with value `dpop+jwt.

alg: a digital signature algorithm identifier as per [RFC7518].

MUST NOT be none or an identifier for a symmetric algorithm

(MAC).

jwk: representing the public key chosen by the client, in JSON

Web Key (JWK) [RFC7517] format, as defined in Section 4.1.3 of

[RFC7515]. MUST NOT contain a private key.

The payload of a DPoP proof MUST contain at least the following

claims:

jti: Unique identifier for the DPoP proof JWT. The value MUST be

assigned such that there is a negligible probability that the

same value will be assigned to any other DPoP proof used in the

same context during the time window of validity. Such uniqueness

can be accomplished by encoding (base64url or any other suitable

encoding) at least 96 bits of pseudorandom data or by using a

version 4 UUID string according to [RFC4122]. The jti can be used

by the server for replay detection and prevention, see Section

11.1.

htm: The HTTP method of the request to which the JWT is attached,

as defined in [RFC7231].

htu: The HTTP request URI (Section 5.5 of [RFC7230]), without

query and fragment parts.

iat: Creation timestamp of the JWT (Section 4.1.6 of [RFC7519]).

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik

 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR

 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE

 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj

 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia

 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg

 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

¶

¶

* ¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

* ¶

https://rfc-editor.org/rfc/rfc7230
https://rfc-editor.org/rfc/rfc7519

When the DPoP proof is used in conjunction with the presentation of

an access token, see Section 7, the DPoP proof MUST also contain the

following claim:

ath: hash of the access token. The value MUST be the result of a

base64url encoding (as defined in Section 2 of [RFC7515]) the

SHA-256 [SHS] hash of the ASCII encoding of the associated access

token's value.

A DPoP proof MAY contain other JOSE header parameters or claims as

defined by extension, profile, or deployment specific requirements.

Figure 3 is a conceptual example showing the decoded content of the

DPoP proof in Figure 2. The JSON of the JWT header and payload are

shown, but the signature part is omitted. As usual, line breaks and

extra whitespace are included for formatting and readability.

Figure 3: Example JWT content of a DPoP proof

Of the HTTP request, only the HTTP method and URI are included in

the DPoP JWT, and therefore only these two message parts are covered

by the DPoP proof. The idea is sign just enough of the HTTP data to

provide reasonable proof-of-possession with respect to the HTTP

request. But that it be a minimal subset of the HTTP data so as to

avoid the substantial difficulties inherent in attempting to

normalize HTTP messages. Nonetheless, DPoP proofs can be extended to

contain other information of the HTTP request (see also Section

11.7).

¶

*

¶

¶

¶

{

 "typ":"dpop+jwt",

 "alg":"ES256",

 "jwk": {

 "kty":"EC",

 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",

 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",

 "crv":"P-256"

 }

}

.

{

 "jti":"-BwC3ESc6acc2lTc",

 "htm":"POST",

 "htu":"https://server.example.com/token",

 "iat":1562262616

}

¶

https://rfc-editor.org/rfc/rfc7515

4.3. Checking DPoP Proofs

To validate a DPoP proof, the receiving server MUST ensure that

that there is not more than one DPoP HTTP request header field,

the header field value is a well-formed JWT,

all required claims per Section 4.2 are contained in the JWT,

the typ JOSE header parameter has the value dpop+jwt,

the alg JOSE header parameter indicates an asymmetric digital

signature algorithm, is not none, is supported by the

application, and is deemed secure,

the JWT signature verifies with the public key contained in the

jwk JOSE header parameter,

the jwk JOSE header parameter does not contain a private key,

the htm claim matches the HTTP method of the current request,

the htu claim matches the HTTPS URI value for the HTTP request

in which the JWT was received, ignoring any query and fragment

parts,

if the server provided a nonce value to the client, the nonce

claim matches the server-provided nonce value,

the creation time of the JWT, as determined by either the iat

claim or a server managed timestamp via the nonce claim, is

within an acceptable window (see Section 11.1),

if presented to a protected resource in conjunction with an

access token,

ensure that the value of the ath claim equals the hash of

that access token,

confirm that the public key to which the access token is

bound matches the public key from the DPoP proof.

Servers SHOULD employ Syntax-Based Normalization and Scheme-Based

Normalization in accordance with Section 6.2.2. and Section 6.2.3.

of [RFC3986] before comparing the htu claim.

5. DPoP Access Token Request

To request an access token that is bound to a public key using DPoP,

the client MUST provide a valid DPoP proof JWT in a DPoP header when

making an access token request to the authorization server's token

endpoint. This is applicable for all access token requests

regardless of grant type (including, for example, the common

authorization_code and refresh_token grant types but also extension

grants such as the JWT authorization grant [RFC7523]). The HTTP

request shown in Figure 4 illustrates such an access token request

using an authorization code grant with a DPoP proof JWT in the DPoP

header (extra line breaks and whitespace for display purposes only).

¶

1. ¶

2. ¶

3. ¶

4. ¶

5.

¶

6.

¶

7. ¶

8. ¶

9.

¶

10.

¶

11.

¶

12.

¶

1.

¶

2.

¶

¶

¶

Figure 4: Token Request for a DPoP sender-constrained token using an

authorization code

The DPoP HTTP header field MUST contain a valid DPoP proof JWT. If

the DPoP proof is invalid, the authorization server issues an error

response per Section 5.2 of [RFC6749] with invalid_dpop_proof as the

value of the error parameter.

To sender-constrain the access token, after checking the validity of

the DPoP proof, the authorization server associates the issued

access token with the public key from the DPoP proof, which can be

accomplished as described in Section 6. A token_type of DPoP MUST be

included in the access token response to signal to the client that

the access token was bound to its DPoP key and can be used as

described in Section 7.1. The example response shown in Figure 5

illustrates such a response.

Figure 5: Access Token Response

The example response in Figure 5 includes a refresh token which the

client can use to obtain a new access token when the previous one

expires. Refreshing an access token is a token request using the

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik

 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR

 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE

 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj

 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia

 WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg

 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg

grant_type=authorization_code

&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

&code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz-

¶

¶

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

 "access_token": "Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU",

 "token_type": "DPoP",

 "expires_in": 2677,

 "refresh_token": "Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g"

}

refresh_token grant type made to the authorization server's token

endpoint. As with all access token requests, the client makes it a

DPoP request by including a DPoP proof, as shown in the Figure 6

example (extra line breaks and whitespace for display purposes

only).

Figure 6: Token Request for a DPoP-bound Token using a Refresh Token

When an authorization server supporting DPoP issues a refresh token

to a public client that presents a valid DPoP proof at the token

endpoint, the refresh token MUST be bound to the respective public

key. The binding MUST be validated when the refresh token is later

presented to get new access tokens. As a result, such a client MUST

present a DPoP proof for the same key that was used to obtain the

refresh token each time that refresh token is used to obtain a new

access token. The implementation details of the binding of the

refresh token are at the discretion of the authorization server.

Since the authorization server both produces and validates its

refresh tokens, there is no interoperability consideration in the

specific details of the binding.

An authorization server MAY elect to issue access tokens which are

not DPoP bound, which is signaled to the client with a value of

Bearer in the token_type parameter of the access token response per

[RFC6750]. For a public client that is also issued a refresh token,

this has the effect of DPoP-binding the refresh token alone, which

can improve the security posture even when protected resources are

not updated to support DPoP.

If the access token response contains a different token_type value

than DPoP, the access token protection provided by DPoP is not

given. The client must discard the response in this case, if this

protection is deemed important for the security of the application;

otherwise, it may continue as in a regular OAuth interaction.

¶

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik

 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR

 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE

 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj

 oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia

 WF0IjoxNTYyMjY1Mjk2fQ.pAqut2IRDm_De6PR93SYmGBPXpwrAk90e8cP2hjiaG5Qs

 GSuKDYW7_X620BxqhvYC8ynrrvZLTk41mSRroapUA

grant_type=refresh_token

&refresh_token=Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g

¶

¶

¶

dpop_signing_alg_values_supported

dpop_bound_access_tokens

Refresh tokens issued to confidential clients (those having

established authentication credentials with the authorization

server) are not bound to the DPoP proof public key because they are

already sender-constrained with a different existing mechanism. The

OAuth 2.0 Authorization Framework [RFC6749] already requires that an

authorization server bind refresh tokens to the client to which they

were issued and that confidential clients authenticate to the

authorization server when presenting a refresh token. As a result,

such refresh tokens are sender-constrained by way of the client

identifier and the associated authentication requirement. This

existing sender-constraining mechanism is more flexible (e.g., it

allows credential rotation for the client without invalidating

refresh tokens) than binding directly to a particular public key.

5.1. Authorization Server Metadata

This document introduces the following authorization server metadata

[RFC8414] parameter to signal support for DPoP in general and the

specific JWS alg values the authorization server supports for DPoP

proof JWTs.

A JSON array containing a list of

the JWS alg values supported by the authorization server for DPoP

proof JWTs.

5.2. Client Registration Metadata

The Dynamic Client Registration Protocol [RFC7591] defines an API

for dynamically registering OAuth 2.0 client metadata with

authorization servers. The metadata defined by [RFC7591], and

registered extensions to it, also imply a general data model for

clients that is useful for authorization server implementations even

when the Dynamic Client Registration Protocol isn't in play. Such

implementations will typically have some sort of user interface

available for managing client configuration.

This document introduces the following client registration metadata

[RFC7591] parameter to indicate that the client always uses DPoP

when requesting tokens from the authorization server.

Boolean value specifying whether the

client always uses DPoP for token requests. If omitted, the

default value is false.

If true, the authorization server MUST reject token requests from

this client that do not contain the DPoP header.

¶

¶

¶

¶

¶

¶

¶

jkt

6. Public Key Confirmation

Resource servers MUST be able to reliably identify whether an access

token is DPoP-bound and ascertain sufficient information to verify

the binding to the public key of the DPoP proof (see Section 7.1).

Such a binding is accomplished by associating the public key with

the token in a way that can be accessed by the protected resource,

such as embedding the JWK hash in the issued access token directly,

using the syntax described in Section 6.1, or through token

introspection as described in Section 6.2. Other methods of

associating a public key with an access token are possible, per

agreement by the authorization server and the protected resource,

but are beyond the scope of this specification.

Resource servers supporting DPoP MUST ensure that the public key

from the DPoP proof matches the one bound to the access token.

6.1. JWK Thumbprint Confirmation Method

When access tokens are represented as JSON Web Tokens (JWT)

[RFC7519], the public key information SHOULD be represented using

the jkt confirmation method member defined herein. To convey the

hash of a public key in a JWT, this specification introduces the

following JWT Confirmation Method [RFC7800] member for use under the

cnf claim.

JWK SHA-256 Thumbprint Confirmation Method. The value of the

jkt member MUST be the base64url encoding (as defined in

[RFC7515]) of the JWK SHA-256 Thumbprint (according to [RFC7638])

of the DPoP public key (in JWK format) to which the access token

is bound.

The following example JWT in Figure 7 with decoded JWT payload shown

in Figure 8 contains a cnf claim with the jkt JWK Thumbprint

confirmation method member. The jkt value in these examples is the

hash of the public key from the DPoP proofs in the examples in

Section 5.

Figure 7: JWT containing a JWK SHA-256 Thumbprint Confirmation

¶

¶

¶

¶

¶

eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWIiOiJzb21lb25lQGV4YW1

wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJuYmYiOjE

1NjIyNjI2MTEsImV4cCI6MTU2MjI2NjIxNiwiY25mIjp7ImprdCI6IjBaY09DT1JaTll

5LURXcHFxMzBqWnlKR0hUTjBkMkhnbEJWM3VpZ3VBNEkifX0.3Tyo8VTcn6u_PboUmAO

YUY1kfAavomW_YwYMkmRNizLJoQzWy2fCo79Zi5yObpIzjWb5xW4OGld7ESZrh0fsrA

Figure 8: JWT Claims Set with a JWK SHA-256 Thumbprint Confirmation

6.2. JWK Thumbprint Confirmation Method in Token Introspection

OAuth 2.0 Token Introspection [RFC7662] defines a method for a

protected resource to query an authorization server about the active

state of an access token as well as to determine metainformation

about the token.

For a DPoP-bound access token, the hash of the public key to which

the token is bound is conveyed to the protected resource as

metainformation in a token introspection response. The hash is

conveyed using the same cnf content with jkt member structure as the

JWK Thumbprint confirmation method, described in Section 6.1, as a

top-level member of the introspection response JSON. Note that the

resource server does not send a DPoP proof with the introspection

request and the authorization server does not validate an access

token's DPoP binding at the introspection endpoint. Rather the

resource server uses the data of the introspection response to

validate the access token binding itself locally.

If the token_type member is included in the introspection response,

it MUST contain the value DPoP.

The example introspection request in Figure 9 and corresponding

response in Figure 10 illustrate an introspection exchange for the

example DPoP-bound access token that was issued in Figure 5.

Figure 9: Example Introspection Request

{

 "sub":"someone@example.com",

 "iss":"https://server.example.com",

 "nbf":1562262611,

 "exp":1562266216,

 "cnf":

 {

 "jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"

 }

}

¶

¶

¶

¶

POST /as/introspect.oauth2 HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic cnM6cnM6TWt1LTZnX2xDektJZHo0ZnNON2tZY3lhK1Rp

token=Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU

Figure 10: Example Introspection Response for a DPoP-Bound Access Token

7. Protected Resource Access

Protected resource requests with a DPoP-bound access token MUST

include both a DPoP proof as per Section 4 and the access token as

described in Section 7.1. The DPoP proof MUST include the ath claim

with a valid hash of the associated access token.

7.1. The DPoP Authentication Scheme

A DPoP-bound access token is sent using the Authorization request

header field per Section 2 of [RFC7235] using an authentication

scheme of DPoP. The syntax of the Authorization header field for the

DPoP scheme uses the token68 syntax defined in Section 2.1 of

[RFC7235] (repeated below for ease of reference) for credentials.

The ABNF notation syntax for DPoP authentication scheme credentials

is as follows:

Figure 11: DPoP Authentication Scheme ABNF

For such an access token, a resource server MUST check that a DPoP

proof was also received in the DPoP header field of the HTTP

request, check the DPoP proof according to the rules in Section 4.3,

and check that the public key of the DPoP proof matches the public

key to which the access token is bound per Section 6.

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

{

 "active": true,

 "sub": "someone@example.com",

 "iss": "https://server.example.com",

 "nbf": 1562262611,

 "exp": 1562266216,

 "cnf":

 {

 "jkt": "0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"

 }

}

¶

¶

 token68 = 1*(ALPHA / DIGIT /

 "-" / "." / "_" / "~" / "+" / "/") *"="

 credentials = "DPoP" 1*SP token68

¶

The resource server MUST NOT grant access to the resource unless all

checks are successful.

Figure 12 shows an example request to a protected resource with a

DPoP-bound access token in the Authorization header and the DPoP

proof in the DPoP header. Following that is Figure 13, which shows

the decoded content of that DPoP proof. The JSON of the JWT header

and payload are shown but the signature part is omitted. As usual,

line breaks and extra whitespace are included for formatting and

readability in both examples.

Figure 12: DPoP Protected Resource Request

Figure 13: Decoded Content of the DPoP Proof JWT in [Figure 12]

Upon receipt of a request to a protected resource within the

protection space requiring DPoP authentication, if the request does

¶

¶

GET /protectedresource HTTP/1.1

Host: resource.example.org

Authorization: DPoP Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik

 VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR

 nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE

 QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj

 oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z

 WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOCwiYXRoIjoiZlVIeU8ycjJaM0RaNTNF

 c05yV0JiMHhXWG9hTnk1OUlpS0NBcWtzbVFFbyJ9.2oW9RP35yRqzhrtNP86L-Ey71E

 OptxRimPPToA1plemAgR6pxHF8y6-yqyVnmcw6Fy1dqd-jfxSYoMxhAJpLjA

{

 "typ":"dpop+jwt",

 "alg":"ES256",

 "jwk": {

 "kty":"EC",

 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",

 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",

 "crv":"P-256"

 }

}

.

{

 "jti":"e1j3V_bKic8-LAEB",

 "htm":"GET",

 "htu":"https://resource.example.org/protectedresource",

 "iat":1562262618,

 "ath":"fUHyO2r2Z3DZ53EsNrWBb0xWXoaNy59IiKCAqksmQEo"

}

not include valid credentials or does not contain an access token

sufficient for access, the server can respond with a challenge to

the client to provide DPoP authentication information. Such a

challenge is made using the 401 (Unauthorized) response status code

([RFC7235], Section 3.1) and the WWW-Authenticate header field

([RFC7235], Section 4.1). The server MAY include the WWW-

Authenticate header in response to other conditions as well.

In such challenges:

The scheme name is DPoP.

The authentication parameter realm MAY be included to indicate

the scope of protection in the manner described in [RFC7235],

Section 2.2.

A scope authentication parameter MAY be included as defined in

[RFC6750], Section 3.

An error parameter ([RFC6750], Section 3) SHOULD be included to

indicate the reason why the request was declined, if the request

included an access token but failed authentication. The error

parameter values described in Section 3.1 of [RFC6750] are

suitable as are any appropriate values defined by extension. The

value use_dpop_nonce can be used as described in Section 9 to

signal that a nonce is needed in the DPoP proof of subsequent

request(s). And invalid_dpop_proof is used to indicate that the

DPoP proof itself was deemed invalid based on the criteria of

Section 4.3.

An error_description parameter ([RFC6750], Section 3) MAY be

included along with the error parameter to provide developers a

human-readable explanation that is not meant to be displayed to

end-users.

An algs parameter SHOULD be included to signal to the client the

JWS algorithms that are acceptable for the DPoP proof JWT. The

value of the parameter is a space-delimited list of JWS alg

(Algorithm) header values ([RFC7515], Section 4.1.1).

Additional authentication parameters MAY be used and unknown

parameters MUST be ignored by recipients.

For example, in response to a protected resource request without

authentication:

Figure 14: HTTP 401 Response to a Protected Resource Request without

Authentication

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

 HTTP/1.1 401 Unauthorized

 WWW-Authenticate: DPoP algs="ES256 PS256"

And in response to a protected resource request that was rejected

because the confirmation of the DPoP binding in the access token

failed:

Figure 15: HTTP 401 Response to a Protected Resource Request with an

Invalid Token

This authentication scheme is for origin-server authentication only.

Therefore, this authentication scheme MUST NOT be used with the

Proxy-Authenticate or Proxy-Authorization header fields.

Note that the syntax of the Authorization header field for this

authentication scheme follows the usage of the Bearer scheme defined

in Section 2.1 of [RFC6750]. While not the preferred credential

syntax of [RFC7235], it is compatible with the general

authentication framework therein and was used for consistency and

familiarity with the Bearer scheme.

7.2. Compatibility with the Bearer Authentication Scheme

Protected resources simultaneously supporting both the DPoP and

Bearer schemes need to update how evaluation of bearer tokens is

performed to prevent downgraded usage of a DPoP-bound access token.

Specifically, such a protected resource MUST reject a DPoP-bound

access token received as a bearer token per [RFC6750].

Section 4.1 of [RFC7235] allows a protected resource to indicate

support for multiple authentication schemes (i.e., Bearer and DPoP)

with the WWW-Authenticate header field of a 401 (Unauthorized)

response.

A protected resource that supports only [RFC6750] and is unaware of

DPoP would most presumably accept a DPoP-bound access token as a

bearer token (JWT [RFC7519] says to ignore unrecognized claims,

Introspection [RFC7662] says that other parameters might be present

while placing no functional requirements on their presence, and

[RFC6750] is effectively silent on the content of the access token

as it relates to validity). As such, a client can send a DPoP-bound

access token using the Bearer scheme upon receipt of a WWW-

Authenticate: Bearer challenge from a protected resource (or if it

has prior such knowledge about the capabilities of the protected

resource). The effect of this likely simplifies the logistics of

phased upgrades to protected resources in their support DPoP or even

prolonged deployments of protected resources with mixed token type

support.

¶

 HTTP/1.1 401 Unauthorized

 WWW-Authenticate: DPoP error="invalid_token",

 error_description="Invalid DPoP key binding", algs="ES256"

¶

¶

¶

¶

¶

8. Authorization Server-Provided Nonce

This section specifies a mechanism using opaque nonces provided by

the server that can be used to limit the lifetime of DPoP proofs.

Without employing such a mechanism, a malicious party controlling

the client (including potentially the end-user) can create DPoP

proofs for use arbitrarily far in the future.

Including a nonce value contributed by the authorization server in

the DPoP proof MAY be used by authorization servers to limit the

lifetime of DPoP proofs. The server is in control of when to require

the use of a new nonce value in subsequent DPoP proofs.

An authorization server MAY supply a nonce value to be included by

the client in DPoP proofs sent. In this case, the authorization

server responds to requests not including a nonce with an HTTP 400

(Bad Request) error response per Section 5.2 of [RFC6749] using

use_dpop_nonce as the error code value. The authorization server

includes a DPoP-Nonce HTTP header in the response supplying a nonce

value to be used when sending the subsequent request. This same

error code is used when supplying a new nonce value when there was a

nonce mismatch. The client will typically retry the request with the

new nonce value supplied upon receiving a use_dpop_nonce error with

an accompanying nonce value.

For example, in response to a token request without a nonce when the

authorization server requires one, the authorization server can

respond with a DPoP-Nonce value such as the following to provide a

nonce value to include in the DPoP proof:

Figure 16: HTTP 400 Response to a Token Request without a Nonce

Other HTTP headers and JSON fields MAY also be included in the error

response, but there MUST NOT be more than one DPoP-Nonce header.

Upon receiving the nonce, the client is expected to retry its token

request using a DPoP proof including the supplied nonce value in the

nonce claim of the DPoP proof. An example unencoded JWT Payload of

such a DPoP proof including a nonce is:

¶

¶

¶

¶

 HTTP/1.1 400 Bad Request

 DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

 {

 "error": "use_dpop_nonce"

 "error_description":

 "Authorization server requires nonce in DPoP proof"

 }

¶

¶

Figure 17: DPoP Proof Payload Including a Nonce Value

The nonce syntax in ABNF as used by [RFC6749] (which is the same as

the scope-token syntax) is:

Figure 18: Nonce ABNF

The nonce is opaque to the client.

If the nonce claim in the DPoP proof does not exactly match a nonce

recently supplied by the authorization server to the client, the

authorization server MUST reject the request. The rejection response

MAY include a DPoP-Nonce HTTP header providing a new nonce value to

use for subsequent requests.

The intent is that both clients and servers need to keep only one

nonce value for one another. That said, transient circumstances may

arise in which the server's and client's stored nonce values differ.

However, this situation is self-correcting; with any rejection

message, the server can send the client the nonce value that the

server wants it to use and the client can store that nonce value and

retry the request with it. Even if the client and/or server discard

their stored nonce values, that situation is also self-correcting

because new nonce values can be communicated when responding to or

retrying failed requests.

8.1. Providing a New Nonce Value

It is up to the authorization server when to supply a new nonce

value for the client to use. The client is expected to use the

existing supplied nonce in DPoP proofs until the server supplies a

new nonce value.

The authorization server MAY supply the new nonce in the same way

that the initial one was supplied: by using a DPoP-Nonce HTTP header

in the response. Of course, each time this happens it requires an

extra protocol round trip.

 {

 "jti": "-BwC3ESc6acc2lTc",

 "htm": "POST",

 "htu": "https://server.example.com/token",

 "iat": 1562262616,

 "nonce": "eyJ7S_zG.eyJH0-Z.HX4w-7v"

 }

¶

 nonce = 1*NQCHAR

¶

¶

¶

¶

¶

A more efficient manner of supplying a new nonce value is also

defined -- by including a DPoP-Nonce HTTP header in the HTTP 200

(OK) response from the previous request. The client MUST use the new

nonce value supplied for the next token request, and for all

subsequent token requests until the authorization server supplies a

new nonce.

Responses that include the DPoP-Nonce HTTP header should be

uncacheable (e.g., using Cache-Control: no-store in response to a

GET request) to prevent the response being used to serve a

subsequent request and a stale nonce value being used as a result.

An example 200 OK response providing a new nonce value is:

Figure 19: HTTP 200 Response Providing the Next Nonce Value

9. Resource Server-Provided Nonce

Resource servers can also choose to provide a nonce value to be

included in DPoP proofs sent to them. They provide the nonce using

the DPoP-Nonce header in same way that authorization servers do. The

error signaling is performed as described in Section 7.1. Resource

servers use an HTTP 401 (Unauthorized) error code with an

accompanying WWW-Authenticate: DPoP value and DPoP-Nonce value to

accomplish this.

For example, in response to a resource request without a nonce when

the resource server requires one, the resource server can respond

with a DPoP-Nonce value such as the following to provide a nonce

value to include in the DPoP proof:

Figure 20: HTTP 401 Response to a Resource Request without a Nonce

Note that the nonces provided by an authorization server and a

resource server are different and should not be confused with one

another, since nonces will be only accepted by the server that

issued them. Likewise, should a client use multiple authorization

servers and/or resource servers, a nonce issued by any of them

should be used only at the issuing server. Developers should also

¶

¶

¶

 HTTP/1.1 200 OK

 Cache-Control: no-store

 DPoP-Nonce: eyJ7S_zG.eyJbYu3.xQmBj-1

¶

¶

 HTTP/1.1 401 Unauthorized

 WWW-Authenticate: DPoP error="use_dpop_nonce",

 error_description="Resource server requires nonce in DPoP proof"

 DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v

take care to not confuse DPoP nonces with the OpenID Connect

[OpenID.Core] ID Token nonce.

10. Authorization Code Binding to DPoP Key

Binding the authorization code issued to the client's proof-of-

possession key can enable end-to-end binding of the entire

authorization flow. This specification defines the dpop_jkt

authorization request parameter for this purpose. The value of the

dpop_jkt authorization request parameter is the JSON Web Key (JWK)

Thumbprint [RFC7638] of the proof-of-possession public key using the

SHA-256 hash function - the same value as used for the jkt

confirmation method defined in Section 6.1.

When a token request is received, the authorization server computes

the JWK thumbprint of the proof-of-possession public key in the DPoP

proof and verifies that it matches the dpop_jkt parameter value in

the authorization request. If they do not match, it MUST reject the

request.

An example authorization request using the dpop_jkt authorization

request parameter is:

Figure 21: Authorization Request using the dpop_jkt Parameter

Use of the dpop_jkt authorization request parameter is OPTIONAL.

Note that the dpop_jkt authorization request parameter MAY also be

used in combination with PKCE [RFC7636], which is recommended by [I-

D.ietf-oauth-security-topics] as a countermeasure to authorization

code injection. The dpop_jkt authorization request parameter only

provides similar protections when a unique DPoP key is used for each

authorization request.

10.1. DPoP with Pushed Authorization Requests

When Pushed Authorization Requests (PAR, [RFC9126]) are used in

conjunction with DPoP, there are two ways in which the DPoP key can

be communicated in the PAR request:

The dpop_jkt parameter can be used as described above to bind the

issued authorization code to a specific key. In this case,

¶

¶

¶

¶

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz

 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

 &code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

 &code_challenge_method=S256

 &dpop_jkt=NzbLsXh8uDCcd-6MNwXF4W_7noWXFZAfHkxZsRGC9Xs HTTP/1.1

 Host: server.example.com

¶

¶

*

dpop_jkt MUST be included alongside other authorization request

parameters in the POST body of the PAR request.

Alternatively, the DPoP header can be added to the PAR request.

In this case, the authorization server MUST check the provided

DPoP proof JWT as defined in Section 4.3. It MUST further behave

as if the contained public key's thumbprint was provided using

dpop_jkt, i.e., reject the subsequent token request unless a DPoP

proof for the same key is provided. This can help to simplify the

implementation of the client, as it can "blindly" attach the DPoP

header to all requests to the authorization server regardless of

the type of request. Additionally, it provides a stronger

binding, as the DPoP header contains a proof of possession of the

private key.

Both mechanisms MUST be supported by an authorization server that

supports PAR and DPoP. If both mechanisms are used at the same time,

the authorization server MUST reject the request if the JWK

Thumbprint in dpop_jkt does not match the public key in the DPoP

header.

11. Security Considerations

In DPoP, the prevention of token replay at a different endpoint (see

Section 2) is achieved through authentication of the server per

[RFC6125] and binding of the DPoP proof to a certain URI and HTTP

method. DPoP, however, has a somewhat different nature of protection

than TLS-based methods such as OAuth Mutual TLS [RFC8705] or OAuth

Token Binding [I-D.ietf-oauth-token-binding] (see also Section 11.1

and Section 11.7). TLS-based mechanisms can leverage a tight

integration between the TLS layer and the application layer to

achieve a very high level of message integrity with respect to the

transport layer to which the token is bound and replay protection in

general.

11.1. DPoP Proof Replay

If an adversary is able to get hold of a DPoP proof JWT, the

adversary could replay that token at the same endpoint (the HTTP

endpoint and method are enforced via the respective claims in the

JWTs). To limit this, servers MUST only accept DPoP proofs for a

limited time after their creation (preferably only for a relatively

brief period on the order of seconds or minutes).

To prevent multiple uses of the same DPoP proof servers can store,

in the context of the request URI, the jti value of each DPoP proof

for the time window in which the respective DPoP proof JWT would be

accepted and decline HTTP requests to the same URI for which the jti

value has been seen before. In order to guard against memory

exhaustion attacks a server that is tracking jti values should

¶

*

¶

¶

¶

¶

reject DPoP proof JWTs with unnecessarily large jti values or store

only a hash thereof.

Note: To accommodate for clock offsets, the server MAY accept DPoP

proofs that carry an iat time in the reasonably near future (on the

order of seconds or minutes). Because clock skews between servers

and clients may be large, servers may choose to limit DPoP proof

lifetimes by using server-provided nonce values containing the time

at the server rather than comparing the client-supplied iat time to

the time at the server, yielding intended results even in the face

of arbitrarily large clock skews.

Server-provided nonces are an effective means of preventing DPoP

proof replay.

11.2. DPoP Proof Pre-Generation

An attacker in control of the client can pre-generate DPoP proofs

for use arbitrarily far into the future by choosing the iat value in

the DPoP proof to be signed by the proof-of-possession key. Note

that one such attacker is the person who is the legitimate user of

the client. The user may pre-generate DPoP proofs to exfiltrate from

the machine possessing the proof-of-possession key upon which they

were generated and copy them to another machine that does not

possess the key. For instance, a bank employee might pre-generate

DPoP proofs on a bank computer and then copy them to another machine

for use in the future, thereby bypassing bank audit controls. When

DPoP proofs can be pre-generated and exfiltrated, all that is

actually being proved in DPoP protocol interactions is possession of

a DPoP proof -- not of the proof-of-possession key.

Use of server-provided nonce values that are not predictable by

attackers can prevent this attack. By providing new nonce values at

times of its choosing, the server can limit the lifetime of DPoP

proofs, preventing pre-generated DPoP proofs from being used. When

server-provided nonces are used, possession of the proof-of-

possession key is being demonstrated -- not just possession of a

DPoP proof.

The ath claim limits the use of pre-generated DPoP proofs to the

lifetime of the access token. Deployments that do not utilize the

nonce mechanism SHOULD NOT issue long-lived DPoP constrained access

tokens, preferring instead to use short-lived access tokens and

refresh tokens. Whilst an attacker could pre-generate DPoP proofs to

use the refresh token to obtain a new access token, they would be

unable to realistically pre-generate DPoP proofs to use a newly

issued access token.

¶

¶

¶

¶

¶

¶

11.3. DPoP Nonce Downgrade

A server MUST NOT accept any DPoP proofs without the nonce claim

when a DPoP nonce has been provided to the client.

11.4. Untrusted Code in the Client Context

If an adversary is able to run code in the client's execution

context, the security of DPoP is no longer guaranteed. Common issues

in web applications leading to the execution of untrusted code are

cross-site scripting and remote code inclusion attacks.

If the private key used for DPoP is stored in such a way that it

cannot be exported, e.g., in a hardware or software security module,

the adversary cannot exfiltrate the key and use it to create

arbitrary DPoP proofs. The adversary can, however, create new DPoP

proofs as long as the client is online, and use these proofs

(together with the respective tokens) either on the victim's device

or on a device under the attacker's control to send arbitrary

requests that will be accepted by servers.

To send requests even when the client is offline, an adversary can

try to pre-compute DPoP proofs using timestamps in the future and

exfiltrate these together with the access or refresh token.

An adversary might further try to associate tokens issued from the

token endpoint with a key pair under the adversary's control. One

way to achieve this is to modify existing code, e.g., by replacing

cryptographic APIs. Another way is to launch a new authorization

grant between the client and the authorization server in an iframe.

This grant needs to be "silent", i.e., not require interaction with

the user. With code running in the client's origin, the adversary

has access to the resulting authorization code and can use it to

associate their own DPoP keys with the tokens returned from the

token endpoint. The adversary is then able to use the resulting

tokens on their own device even if the client is offline.

Therefore, protecting clients against the execution of untrusted

code is extremely important even if DPoP is used. Besides secure

coding practices, Content Security Policy [W3C.CSP] can be used as a

second layer of defense against cross-site scripting.

11.5. Signed JWT Swapping

Servers accepting signed DPoP proof JWTs MUST check the typ field in

the headers of the JWTs to ensure that adversaries cannot use JWTs

created for other purposes.

¶

¶

¶

¶

¶

¶

¶

11.6. Signature Algorithms

Implementers MUST ensure that only asymmetric digital signature

algorithms that are deemed secure can be used for signing DPoP

proofs. In particular, the algorithm none MUST NOT be allowed.

11.7. Message Integrity

DPoP does not ensure the integrity of the payload or headers of

requests. The DPoP proof only contains claims for the HTTP URI and

method, but not, for example, the message body or general request

headers.

This is an intentional design decision intended to keep DPoP simple

to use, but as described, makes DPoP potentially susceptible to

replay attacks where an attacker is able to modify message contents

and headers. In many setups, the message integrity and

confidentiality provided by TLS is sufficient to provide a good

level of protection.

Implementers that have stronger requirements on the integrity of

messages are encouraged to either use TLS-based mechanisms or signed

requests. TLS-based mechanisms are in particular OAuth Mutual TLS

[RFC8705] and OAuth Token Binding [I-D.ietf-oauth-token-binding].

Note: While signatures covering other parts of requests are out of

the scope of this specification, additional information to be signed

can be added into DPoP proofs.

11.8. Access Token and Public Key Binding

The binding of the access token to the DPoP public key, which is

specified in Section 6, uses a cryptographic hash of the JWK

representation of the public key. It relies on the hash function

having sufficient second-preimage resistance so as to make it

computationally infeasible to find or create another key that

produces to the same hash output value. The SHA-256 hash function

was used because it meets the aforementioned requirement while being

widely available. If, in the future, JWK Thumbprints need to be

computed using hash function(s) other than SHA-256, it is suggested

that an additional related JWT confirmation method member be defined

for that purpose, registered in the respective IANA registry, and

used in place of the jkt confirmation method defined herein.

Similarly, the binding of the DPoP proof to the access token uses a

hash of that access token as the value of the ath claim in the DPoP

proof (see Section 4.2). This relies on the value of the hash being

sufficiently unique so as to reliably identify the access token. The

collision resistance of SHA-256 meets that requirement. If, in the

future, access token digests need be computed using hash function(s)

¶

¶

¶

¶

¶

¶

other than SHA-256, it is suggested that an additional related JWT

claim be defined for that purpose, registered in the respective IANA

registry, and used in place of the ath claim defined herein.

11.9. Authorization Code and Public Key Binding

Cryptographic binding of the authorization code to the DPoP public

key, is specified in Section 10. This binding prevents attacks in

which the attacker captures the authorization code and creates a

DPoP proof using a proof-of-possession key other than that held by

the client and redeems the authorization code using that DPoP proof.

By ensuring end-to-end that only the client's DPoP key can be used,

this prevents captured authorization codes from being exfiltrated

and used at locations other than the one to which the authorization

code was issued.

Authorization codes can, for instance, be harvested by attackers

from places that the HTTP messages containing them are logged. Even

when efforts are made to make authorization codes one-time-use, in

practice, there is often a time window during which attackers can

replay them. For instance, when authorization servers are

implemented as scalable replicated services, some replicas may

temporarily not yet have the information needed to prevent replay.

DPoP binding of the authorization code solves these problems.

If an authorization server does not (or cannot) strictly enforce the

single-use limitation for authorization codes and an attacker can

access the authorization code (and if PKCE is used, the

code_verifier), the attacker can create a forged token request,

binding the resulting token to an attacker-controlled key. For

example, using cross-site scripting, attackers might obtain access

to the authorization code and PKCE parameters. Use of the dpop_jkt

parameter prevents this attack.

The binding of the authorization code to the DPoP public key uses a

JWK Thumbprint of the public key, just as the access token binding

does. The same JWK Thumbprint considerations apply.

12. IANA Considerations

12.1. OAuth Access Token Type Registration

This specification requests registration of the following access

token type in the "OAuth Access Token Types" registry

[IANA.OAuth.Params] established by [RFC6749].

Type name: DPoP

Additional Token Endpoint Response Parameters: (none)

HTTP Authentication Scheme(s): DPoP

Change controller: IESG

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

Specification document(s): [[this specification]]

12.2. OAuth Extensions Error Registration

This specification requests registration of the following error

values in the "OAuth Extensions Error" registry [IANA.OAuth.Params]

established by [RFC6749].

Invalid DPoP proof:

Name: invalid_dpop_proof

Usage Location: token error response, resource error response

Protocol Extension: Demonstrating Proof of Possession (DPoP)

Change controller: IETF

Specification document(s): [[this specification]]

Use DPoP nonce:

Name: use_dpop_nonce

Usage Location: token error response, resource error response

Protocol Extension: Demonstrating Proof of Possession (DPoP)

Change controller: IETF

Specification document(s): [[this specification]]

12.3. OAuth Parameters Registration

This specification requests registration of the following

authorization request parameter in the "OAuth Parameters" registry

[IANA.OAuth.Params] established by [RFC6749].

Name: dpop_jkt

Parameter Usage Location: authorization request

Change Controller: IESG

Reference: [[{#dpop_jkt} of this specification]]

12.4. HTTP Authentication Scheme Registration

This specification requests registration of the following scheme in

the "Hypertext Transfer Protocol (HTTP) Authentication Scheme

Registry" [RFC7235][IANA.HTTP.AuthSchemes]:

Authentication Scheme Name: DPoP

Reference: [[Section 7.1 of this specification]]

12.5. Media Type Registration

This section registers the application/dpop+jwt media type [RFC2046]

in the IANA "Media Types" registry [IANA.MediaTypes] in the manner

* ¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

described in [RFC6838], which is used to indicate that the content

is a DPoP JWT.

Type name: application

Subtype name: dpop+jwt

Required parameters: n/a

Optional parameters: n/a

Encoding considerations: binary; A DPoP JWT is a JWT; JWT values

are encoded as a series of base64url-encoded values (some of

which may be the empty string) separated by period ('.')

characters.

Security considerations: See Section 11 of [[this specification

]]

Interoperability considerations: n/a

Published specification: [[this specification]]

Applications that use this media type: Applications using [[this

specification]] for application-level proof of possession

Fragment identifier considerations: n/a

Additional information:

File extension(s): n/a

Macintosh file type code(s): n/a

Person & email address to contact for further information:

Michael B. Jones, mbj@microsoft.com

Intended usage: COMMON

Restrictions on usage: none

Author: Michael B. Jones, mbj@microsoft.com

Change controller: IETF

Provisional registration? No

12.6. JWT Confirmation Methods Registration

This specification requests registration of the following value in

the IANA "JWT Confirmation Methods" registry [IANA.JWT] for JWT cnf

member values established by [RFC7800].

Confirmation Method Value: jkt

Confirmation Method Description: JWK SHA-256 Thumbprint

Change Controller: IESG

Specification Document(s): [[Section 6 of this specification]]

12.7. JSON Web Token Claims Registration

This specification requests registration of the following Claims in

the IANA "JSON Web Token Claims" registry [IANA.JWT] established by

[RFC7519].

HTTP method:

Claim Name: htm

¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

- ¶

- ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

* ¶

Claim Description: The HTTP method of the request

Change Controller: IESG

Specification Document(s): [[Section 4.2 of this specification

]]

HTTP URI:

Claim Name: htu

Claim Description: The HTTP URI of the request (without query and

fragment parts)

Change Controller: IESG

Specification Document(s): [[Section 4.2 of this specification

]]

Access token hash:

Claim Name: ath

Claim Description: The base64url encoded SHA-256 hash of the

ASCII encoding of the associated access token's value

Change Controller: IESG

Specification Document(s): [[Section 4.2 of this specification

]]

12.8. HTTP Message Header Field Names Registration

This document specifies the following HTTP header fields,

registration of which is requested in the "Permanent Message Header

Field Names" registry [IANA.Headers] defined in [RFC3864].

Header Field Name: DPoP

Applicable protocol: HTTP

Status: standard

Author/change Controller: IETF

Specification Document(s): [[this specification]]

12.9. OAuth Authorization Server Metadata Registration

This specification requests registration of the following value in

the IANA "OAuth Authorization Server Metadata" registry

[IANA.OAuth.Parameters] established by [RFC8414].

Metadata Name: dpop_signing_alg_values_supported

Metadata Description: JSON array containing a list of the JWS

algorithms supported for DPoP proof JWTs

Change Controller: IESG

Specification Document(s): [[Section 5.1 of this specification

]]

* ¶

* ¶

*

¶

¶

* ¶

*

¶

* ¶

*

¶

¶

* ¶

*

¶

* ¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

*

¶

* ¶

*

¶

[RFC2119]

[RFC3986]

[RFC5234]

[RFC6125]

[RFC6749]

[RFC7231]

[RFC7515]

12.10. OAuth Dynamic Client Registration Metadata

This specification requests registration of the following value in

the IANA "OAuth Dynamic Client Registration Metadata" registry

[IANA.OAuth.Parameters] established by [RFC7591].

Metadata Name: dpop_bound_access_tokens

Metadata Description: Boolean value specifying whether the client

always uses DPoP for token requests

Change Controller: IESG

Specification Document(s): [[Section 5.2 of this specification

]]

13. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport Layer

Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

2011, <https://www.rfc-editor.org/info/rfc6125>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

¶

* ¶

*

¶

* ¶

*

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7515

[RFC7517]

[RFC7518]

[RFC7638]

[RFC7800]

[RFC8174]

[SHS]

[I-D.ietf-oauth-security-topics]

[I-D.ietf-oauth-token-binding]

[IANA.HTTP.AuthSchemes]

[IANA.Headers]

Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/

RFC7517, May 2015, <https://www.rfc-editor.org/info/

rfc7517>.

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI

10.17487/RFC7518, May 2015, <https://www.rfc-editor.org/

info/rfc7518>.

Jones, M. and N. Sakimura, "JSON Web Key (JWK)

Thumbprint", RFC 7638, DOI 10.17487/RFC7638, September

2015, <https://www.rfc-editor.org/info/rfc7638>.

Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-

Possession Key Semantics for JSON Web Tokens (JWTs)", RFC

7800, DOI 10.17487/RFC7800, April 2016, <https://www.rfc-

editor.org/info/rfc7800>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

National Institute of Standards and Technology, "Secure

Hash Standard (SHS)", FIPS PUB 180-4, August 2015,

<https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.

180-4.pdf>.

14. Informative References

Lodderstedt, T., Bradley, J.,

Labunets, A., and D. Fett, "OAuth 2.0 Security Best

Current Practice", Work in Progress, Internet-Draft,

draft-ietf-oauth-security-topics-19, 16 December 2021,

<https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

security-topics-19>.

Jones, M. B., Campbell, B., Bradley,

J., and W. Denniss, "OAuth 2.0 Token Binding", Work in

Progress, Internet-Draft, draft-ietf-oauth-token-

binding-08, 19 October 2018, <https://

datatracker.ietf.org/doc/html/draft-ietf-oauth-token-

binding-08>.

IANA, "Hypertext Transfer Protocol (HTTP)

Authentication Scheme Registry", <https://www.iana.org/

assignments/http-authschemes>.

IANA, "Message Headers", <https://www.iana.org/

assignments/message-headers>.

https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7638
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc8174
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-19
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-19
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-08
https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/message-headers
https://www.iana.org/assignments/message-headers

[IANA.JWT]

[IANA.MediaTypes]

[IANA.OAuth.Params]

[OpenID.Core]

[RFC2046]

[RFC3864]

[RFC4122]

[RFC6750]

[RFC6838]

[RFC7230]

[RFC7235]

IANA, "JSON Web Token Claims", <http://www.iana.org/

assignments/jwt>.

IANA, "Media Types", <https://www.iana.org/

assignments/media-types>.

IANA, "OAuth Parameters", <https://www.iana.org/

assignments/oauth-parameters>.

Sakimura, N., Bradley, J., Jones, M.B., Medeiros,

B.d., and C. Mortimore, "OpenID Connect Core 1.0",

November 2014, <http://openid.net/specs/openid-connect-

core-1_0.html>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/info/rfc2046>.

Klyne, G., Nottingham, M., and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC 3864,

DOI 10.17487/RFC3864, September 2004, <https://www.rfc-

editor.org/info/rfc3864>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>.

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/info/rfc6838>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/info/rfc7235>.

http://www.iana.org/assignments/jwt
http://www.iana.org/assignments/jwt
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/oauth-parameters
https://www.iana.org/assignments/oauth-parameters
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235

[RFC7519]

[RFC7523]

[RFC7591]

[RFC7636]

[RFC7662]

[RFC8414]

[RFC8705]

[RFC8707]

[RFC9126]

[W3C.CSP]

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Jones, M., Campbell, B., and C. Mortimore, "JSON Web

Token (JWT) Profile for OAuth 2.0 Client Authentication

and Authorization Grants", RFC 7523, DOI 10.17487/

RFC7523, May 2015, <https://www.rfc-editor.org/info/

rfc7523>.

Richer, J., Ed., Jones, M., Bradley, J., Machulak, M.,

and P. Hunt, "OAuth 2.0 Dynamic Client Registration

Protocol", RFC 7591, DOI 10.17487/RFC7591, July 2015,

<https://www.rfc-editor.org/info/rfc7591>.

Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof

Key for Code Exchange by OAuth Public Clients", RFC 7636,

DOI 10.17487/RFC7636, September 2015, <https://www.rfc-

editor.org/info/rfc7636>.

Richer, J., Ed., "OAuth 2.0 Token Introspection", RFC

7662, DOI 10.17487/RFC7662, October 2015, <https://

www.rfc-editor.org/info/rfc7662>.

Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0

Authorization Server Metadata", RFC 8414, DOI 10.17487/

RFC8414, June 2018, <https://www.rfc-editor.org/info/

rfc8414>.

Campbell, B., Bradley, J., Sakimura, N., and T.

Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication

and Certificate-Bound Access Tokens", RFC 8705, DOI

10.17487/RFC8705, February 2020, <https://www.rfc-

editor.org/info/rfc8705>.

Campbell, B., Bradley, J., and H. Tschofenig, "Resource

Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/

RFC8707, February 2020, <https://www.rfc-editor.org/info/

rfc8707>.

Lodderstedt, T., Campbell, B., Sakimura, N., Tonge, D.,

and F. Skokan, "OAuth 2.0 Pushed Authorization Requests",

RFC 9126, DOI 10.17487/RFC9126, September 2021, <https://

www.rfc-editor.org/info/rfc9126>.

West, M., "Content Security Policy Level 3", World Wide

Web Consortium Working Draft WD-CSP3-20181015, 15 October

2018, <https://www.w3.org/TR/2018/WD-CSP3-20181015/>.

https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc9126
https://www.rfc-editor.org/info/rfc9126
https://www.w3.org/TR/2018/WD-CSP3-20181015/

[W3C.WebCryptoAPI]
Watson, M., "Web Cryptography API", World Wide

Web Consortium Recommendation REC-WebCryptoAPI-20170126,

26 January 2017, <https://www.w3.org/TR/2017/REC-

WebCryptoAPI-20170126>.

Appendix A. Acknowledgements

We would like to thank Annabelle Backman, Dominick Baier, Vittorio

Bertocci, Jeff Corrigan, Andrii Deinega, William Denniss, Vladimir

Dzhuvinov, Mike Engan, Nikos Fotiou, Mark Haine, Dick Hardt, Joseph

Heenan, Bjorn Hjelm, Jacob Ideskog, Jared Jennings, Benjamin Kaduk,

Pieter Kasselman, Steinar Noem, Neil Madden, Rohan Mahy, Karsten

Meyer zu Selhausen, Nicolas Mora, Rob Otto, Aaron Parecki, Michael

Peck, Roberto Polli, Paul Querna, Justin Richer, Filip Skokan,

Dmitry Telegin, Dave Tonge, Jim Willeke, Philippe De Ryck, and

others (please let us know, if you've been mistakenly omitted) for

their valuable input, feedback and general support of this work.

This document originated from discussions at the 4th OAuth Security

Workshop in Stuttgart, Germany. We thank the organizers of this

workshop (Ralf Kusters, Guido Schmitz).

Appendix B. Document History

[[To be removed from the final specification]]

-08

Lots of editorial updates from WGLC feedback

Further clarify that either iat or nonce can be used alone in

validating the timeliness of the proof and somewhat de-emphasize

jti tracking

-07

Registered the application/dpop+jwt media type.

Editorial updates/clarifications based on review feedback.

Added "(on the order of seconds or minutes)" to somewhat qualify

"relatively brief period" and "reasonably near future" and give a

general idea of expected timeframe without being overly

prescriptive.

Added a step to Section 4.3 to reiterate that the jwk header

cannot have a private key.

-06

Editorial updates and fixes

Changed name of client metadata parameter to

dpop_bound_access_tokens

¶

¶

¶

¶

* ¶

*

¶

¶

* ¶

* ¶

*

¶

*

¶

¶

* ¶

*

¶

https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126

-05

Added Authorization Code binding via the dpop_jkt parameter.

Described the authorization code reuse attack and how dpop_jkt

mitigates it.

Enhanced description of DPoP proof expiration checking.

Described nonce storage requirements and how nonce mismatches and

missing nonces are self-correcting.

Specified the use of the use_dpop_nonce error for missing and

mismatched nonce values.

Specified that authorization servers use 400 (Bad Request) errors

to supply nonces and resource servers use 401 (Unauthorized)

errors to do so.

Added a bit more about ath and pre-generated proofs to the

security considerations.

Mentioned confirming the DPoP binding of the access token in the

list in Section 4.3.

Added the always_uses_dpop client registration metadata

parameter.

Described the relationship between DPoP and Pushed Authorization

Requests (PAR).

Updated references for drafts that are now RFCs.

-04

Added the option for a server-provided nonce in the DPoP proof.

Registered the invalid_dpop_proof and use_dpop_nonce error codes.

Removed fictitious uses of realm from the examples, as they added

no value.

State that if the introspection response has a token_type, it has

to be DPoP.

Mention that RFC7235 allows multiple authentication schemes in

WWW-Authenticate with a 401.

Editorial fixes.

-03

Add an access token hash (ath) claim to the DPoP proof when used

in conjunction with the presentation of an access token for

protected resource access

add Untrusted Code in the Client Context section to security

considerations

Editorial updates and fixes

-02

Lots of editorial updates and additions including expanding on

the objectives, better defining the key confirmation

representations, example updates and additions, better describing

¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

* ¶

¶

*

mixed bearer/dpop token type deployments, clarify RT binding only

being done for public clients and why, more clearly allow for a

bound RT but with bearer AT, explain/justify the choice of

SHA-256 for key binding, and more

Require that a protected resource supporting bearer and DPoP at

the same time must reject an access token received as bearer, if

that token is DPoP-bound

Remove the case-insensitive qualification on the htm claim check

Relax the jti tracking requirements a bit and qualify it by URI

-01

Editorial updates

Attempt to more formally define the DPoP Authorization header

scheme

Define the 401/WWW-Authenticate challenge

Added invalid_dpop_proof error code for DPoP errors in token

request

Fixed up and added to the IANA section

Added dpop_signing_alg_values_supported authorization server

metadata

Moved the Acknowledgements into an Appendix and added a bunch of

names (best effort)

-00 [[Working Group Draft]]

Working group draft

-04

Update OAuth MTLS reference to RFC 8705

Use the newish RFC v3 XML and HTML format

-03

rework the text around uniqueness requirements on the jti claim

in the DPoP proof JWT

make tokens a bit smaller by using htm, htu, and jkt rather than

http_method, http_uri, and jkt#S256 respectively

more explicit recommendation to use mTLS if that is available

added David Waite as co-author

editorial updates

-02

added normalization rules for URIs

removed distinction between proof and binding

"jwk" header again used instead of "cnf" claim in DPoP proof

renamed "Bearer-DPoP" token type to "DPoP"

removed ability for key rotation

¶

*

¶

* ¶

* ¶

¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

¶

* ¶

¶

* ¶

* ¶

¶

*

¶

*

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

added security considerations on request integrity

explicit advice on extending DPoP proofs to sign other parts of

the HTTP messages

only use the jkt#S256 in ATs

iat instead of exp in DPoP proof JWTs

updated guidance on token_type evaluation

-01

fixed inconsistencies

moved binding and proof messages to headers instead of parameters

extracted and unified definition of DPoP JWTs

improved description

-00

first draft

Authors' Addresses

Daniel Fett

yes.com

Email: mail@danielfett.de

Brian Campbell

Ping Identity

Email: bcampbell@pingidentity.com

John Bradley

Yubico

Email: ve7jtb@ve7jtb.com

Torsten Lodderstedt

yes.com

Email: torsten@lodderstedt.net

Michael Jones

Microsoft

Email: mbj@microsoft.com

URI: https://self-issued.info/

David Waite

Ping Identity

Email: david@alkaline-solutions.com

* ¶

*

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

mailto:mail@danielfett.de
mailto:bcampbell@pingidentity.com
mailto:ve7jtb@ve7jtb.com
mailto:torsten@lodderstedt.net
mailto:mbj@microsoft.com
https://self-issued.info/
mailto:david@alkaline-solutions.com

	OAuth 2.0 Demonstrating Proof-of-Possession at the Application Layer (DPoP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. Objectives
	3. Concept
	4. DPoP Proof JWTs
	4.1. The DPoP HTTP Header
	4.2. DPoP Proof JWT Syntax
	4.3. Checking DPoP Proofs

	5. DPoP Access Token Request
	5.1. Authorization Server Metadata
	5.2. Client Registration Metadata

	6. Public Key Confirmation
	6.1. JWK Thumbprint Confirmation Method
	6.2. JWK Thumbprint Confirmation Method in Token Introspection

	7. Protected Resource Access
	7.1. The DPoP Authentication Scheme
	7.2. Compatibility with the Bearer Authentication Scheme

	8. Authorization Server-Provided Nonce
	8.1. Providing a New Nonce Value

	9. Resource Server-Provided Nonce
	10. Authorization Code Binding to DPoP Key
	10.1. DPoP with Pushed Authorization Requests

	11. Security Considerations
	11.1. DPoP Proof Replay
	11.2. DPoP Proof Pre-Generation
	11.3. DPoP Nonce Downgrade
	11.4. Untrusted Code in the Client Context
	11.5. Signed JWT Swapping
	11.6. Signature Algorithms
	11.7. Message Integrity
	11.8. Access Token and Public Key Binding
	11.9. Authorization Code and Public Key Binding

	12. IANA Considerations
	12.1. OAuth Access Token Type Registration
	12.2. OAuth Extensions Error Registration
	12.3. OAuth Parameters Registration
	12.4. HTTP Authentication Scheme Registration
	12.5. Media Type Registration
	12.6. JWT Confirmation Methods Registration
	12.7. JSON Web Token Claims Registration
	12.8. HTTP Message Header Field Names Registration
	12.9. OAuth Authorization Server Metadata Registration
	12.10. OAuth Dynamic Client Registration Metadata

	13. Normative References
	14. Informative References
	Appendix A. Acknowledgements
	Appendix B. Document History
	Authors' Addresses

