
Network Working Group J. Richer, Ed.
Internet-Draft The MITRE Corporation
Intended status: Standards Track J. Bradley
Expires: August 10, 2013 Ping Identity
 M. Jones
 Microsoft
 M. Machulak
 Newcastle University
 February 6, 2013

OAuth Dynamic Client Registration Protocol
draft-ietf-oauth-dyn-reg-05

Abstract

 This specification defines an endpoint and protocol for dynamic
 registration of OAuth Clients at an Authorization Server.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 10, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Richer, et al. Expires August 10, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft oauth-dyn-reg February 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 3
1.2. Terminology . 3

2. Client Metadata . 4
3. Client Registration Endpoint 7
3.1. Client Registration Request 8
3.2. Client Registration Response 8
3.3. Client Registration Error Response 10

4. Client Update Endpoint . 11
4.1. Client Update Request 12
4.2. Client Read Request 12
4.3. Client Update or Read Response 13
4.4. Client Delete Request 14

5. Client Secret Rotation . 15
5.1. Rotate Secret Request 15
5.2. Rotate Secret Response 15

6. IANA Considerations . 16
7. Security Considerations 16
8. Acknowledgments . 18
9. Document History . 18
10. Normative References . 20

 Authors' Addresses . 20

Richer, et al. Expires August 10, 2013 [Page 2]

Internet-Draft oauth-dyn-reg February 2013

1. Introduction

 In some use-case scenarios, it is desirable or necessary to allow
 OAuth clients to obtain authorization from an OAuth authorization
 server without requiring the two parties to interact before hand.
 Nevertheless, in order for the authorization server to accurately and
 securely represent to end-users which client is seeking authorization
 to access the end-user's resources, a method for automatic and unique
 registration of clients is needed. The OAuth2 authorization
 framework does not define how the relationship between the Client and
 the Authorization Server is initialized, or how a given client is
 assigned a unique Client Identifier. Historically, this has happened
 out-of-band from the OAuth protocol. This draft provides a mechanism
 for a client to register itself with the Authorization Server, which
 can be used to dynamically provision a Client Identifier, and
 optionally a Client Secret.

 As part of the registration process, this specification also defines
 a mechanism for the client to present the Authorization Server with a
 set of metadata, such as a display name and icon to be presented to
 the user during the authorization step. This draft provides a method
 for the client to register and update this information over time.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 This specification uses the terms "Access Token", "Refresh Token",
 "Authorization Code", "Authorization Grant", "Authorization Server",
 "Authorization Endpoint", "Client", "Client Identifier", "Client
 Secret", "Protected Resource", "Resource Owner", "Resource Server",
 and "Token Endpoint" defined by OAuth 2.0 [RFC6749].

 This specification defines the following additional terms:

 o Client Registration Endpoint: The OAuth 2.0 Endpoint through which
 a Client can request new registration.

 o Client Update Endpoint: The OAuth 2.0 Endpoint through which a
 specific Client can manage its registration information, provided
 by the Authorization Server to the Client.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749

Richer, et al. Expires August 10, 2013 [Page 3]

Internet-Draft oauth-dyn-reg February 2013

 o Client Secret Rotation Endpoint: The OAuth 2.0 Endpoint through
 which a specific Client can request refreshes of its Client Secret
 and Registration Access Token.

 o Registration Access Token: An OAuth 2.0 Bearer Token issued by the
 Authorization Server through the Client Registration Endpoint
 which is used by the Client to authenticate itself during update
 and secret rotation operations. This token is associated with a
 particular Client.

2. Client Metadata

 Clients generally have an array of metadata associated with their
 unique Client Identifier at the Authorization Server. These can
 range from human-facing display strings, such as a client name, to
 items that impact the security of the protocol, such as the list of
 valid redirect URIs.

 Extensions and profiles of this specification MAY expand this list,
 but MUST at least accept all parameters on this list. The
 Authorization Server MUST ignore any additional parameters sent by
 the Client that it does not understand.

 [[Editor's note: normative language in the table below is meant to
 apply to the *client* when sending the request. The paragraph above
 is meant to say that the server must at least accept all parameters
 and not fail with an error at an unknown parameter, especially if
 it's in the list below. Also, extensions need to explicitly call out
 if they're not going to do something with one of these basic
 parameters instead of just ignoring their existence. This is meant
 to be the *minimum set* of parameters for interoperability.]]

 redirect_uris
 RECOMMENDED. A list of redirect URIs for use in the Authorization
 Code and Implicit grant types. An Authorization Server SHOULD
 require registration of valid redirect URIs for all clients that
 use these grant types in order to protect against token and
 credential theft attacks.

 client_name
 RECOMMENDED. Human-readable name of the Client to be presented to
 the user. If omitted, the Authorization Server MAY display to the
 user the raw "client_id" value instead.

Richer, et al. Expires August 10, 2013 [Page 4]

Internet-Draft oauth-dyn-reg February 2013

 client_url
 RECOMMENDED. URL of the homepage of the Client. If present, the
 server SHOULD display this URL to the end user in a clickable
 fashion.

 logo_url
 OPTIONAL. URL that references a logo for the Client. If present,
 the server SHOULD display this image to the end user during
 approval.

 contacts
 OPTIONAL. List of email addresses for people responsible for this
 Client. The Authorization Server MAY make these addresses
 available to end users for support requests for the Client. An
 Authorization Server MAY use these email addresses as identifiers
 for an administrative page for this client.

 tos_url
 OPTIONAL. URL that points to a human-readable Terms of Service
 for the Client. The Authorization Server SHOULD display this URL
 to the End-User if it is given.

 token_endpoint_auth_method
 OPTIONAL. The requested authentication type for the Token
 Endpoint. Valid values are:

 * "none": this is a public client as defined in OAuth 2.0 and
 does not have a client secret

 * "client_secret_post": the client uses the HTTP POST parameters
 defined in OAuth2.0 section 2.3.1

 * "client_secret_basic": the client uses HTTP Basic defined in
 OAuth 2.0 section 2.3.1

 * "client_secret_jwt": the client uses the JWT Assertion profile
 with a symmetric secret issued by the server

 * "private_key_jwt": the client uses the JWT Assertion profile
 with its own private key

 Other authentication methods may be defined by extension. If
 unspecified or omitted, the default is "client_secret_basic",
 denoting HTTP Basic Authentication Scheme as specified in Section

2.3.1 of OAuth 2.0.

Richer, et al. Expires August 10, 2013 [Page 5]

Internet-Draft oauth-dyn-reg February 2013

 scope
 OPTIONAL. Space separated list of scopes (as described in OAuth
 2.0 Section 3.3 [RFC6749]) that the client will be allowed to
 request tokens for. If omitted, an Authorization Server MAY
 register a Client with a default set of allowed scopes.

 grant_type
 OPTIONAL. List of grant types that a client may use. These grant
 types are defined as follows:

 * "authorization_code": The Authorization Code Grant described in
 OAuth2 Section 4.1.

 * "implicit": The Implicit Grant described in OAuth2 Section 4.2.

 * "password": The Resource Owner Password Credentials Grant
 described in OAuth2 Section 4.3

 * "client_credentials": The Client Credentials Grant described in
 OAuth2 Section 4.4

 * "refresh_token": The Refresh Token Grant described in OAuth2
Section 6.

 Authorization Servers MAY allow for other values as defined in
 grant type extensions to OAuth2. The extension process is
 described in OAuth2 Section 2.5, and the value of this parameter
 MUST be the same as the value of the "grant_type" parameter
 defined in the extension.

 policy_url
 OPTIONAL. A URL location that the Client provides to the End-User
 to read about the how the profile data will be used. The
 Authorization Server SHOULD display this URL to the End-User if it
 is given.

 jwk_url
 OPTIONAL. URL for the Client's JSON Web Key [JWK] document that
 is used for signing requests, such as requests to the Token
 Endpoint using the "private_key_jwt" assertion client credential.
 If the Client registers both "x509_url" and "jwk_url", the keys
 contained in both formats MUST be the same.

 jwk_encryption_url
 OPTIONAL. URL for the Client's JSON Web Key [JWK] that the server
 can use to encrypt responses to the Client. If the Client
 registers both "jwk_encryption_url" and "x509_encryption_url", the
 keys contained in both formats MUST be the same.

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Richer, et al. Expires August 10, 2013 [Page 6]

Internet-Draft oauth-dyn-reg February 2013

 x509_url
 OPTIONAL. URL for the Client's PEM encoded X.509 Certificate or
 Certificate chain that is used for signing requests, such as
 requests to the Token Endpoint using the "private_key_jwt"
 assertion client credential. If the Client registers both
 "x509_url" and "jwk_url", the keys contained in both formats MUST
 be the same.

 x509_encryption_url
 OPTIONAL. URL for the Client's PEM encoded X.509 Certificate or
 Certificate chain that the server can use to encrypt responses to
 the Client. If the Client registers both "jwk_encryption_url" and
 "x509_encryption_url", the keys contained in both formats MUST be
 the same.

3. Client Registration Endpoint

 The Client Registration Endpoint is an OAuth 2.0 Endpoint defined in
 this document that is designed to allow a Client to register itself
 with the Authorization Server. The Client Registration Endpoint MUST
 accept HTTP POST messages with request parameters encoded in the
 entity body using the "application/json" format. The Client
 Registration Endpoint MUST be protected by a transport-layer security
 mechanism, and the server MUST support TLS 1.2 RFC 5246 [RFC5246]
 and/or TLS 1.0 [RFC2246] and MAY support additional transport-layer
 mechanisms meeting its security requirements. When using TLS, the
 Client MUST perform a TLS/SSL server certificate check, per RFC 6125
 [RFC6125].

 The Client Registration Endpoint MAY accept an initial authorization
 credential in the form of an OAuth 2.0 [RFC6749] access token in
 order to limit registration to only previously authorized parties.
 The method by which this access token is obtained by the registrant
 is generally out-of-band and is out of scope of this specification.

 In order to support open registration and facilitate wider
 interoperability, the Client Registration Endpoint SHOULD allow
 initial registration requests with no authentication. These requests
 MAY be rate-limited or otherwise limited to prevent a denial-of-
 service attack on the Client Registration Endpoint.

 In order to facilitate registered clients updating their information,
 the Client Registration Endpoint issues a Request Access Token for
 clients to securely identify themselves in future connections to the
 Client Update Endpoint. As such, the Client Update Endpoint MUST
 accept requests with OAuth 2.0 Bearer Tokens [RFC6750] for these
 operations, whether or not the initial registration call requires

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires August 10, 2013 [Page 7]

Internet-Draft oauth-dyn-reg February 2013

 authentication of some form.

 The Client Registration Endpoint MUST ignore all parameters it does
 not understand.

3.1. Client Registration Request

 This operation registers a new Client to the Authorization Server.
 The Authorization Server assigns this client a unique Client
 Identifier, optionally assigns a Client Secret, and associates the
 metadata given in the request with the issued Client Identifier. The
 request includes any parameters described in Client Metadata
 (Section 2) that the client wishes to specify for itself during the
 registration. The Authorization Server MAY provision default values
 for any items omitted in the Client Metadata.

 The Client sends an HTTP POST to the Client Registration Endpoint
 with a content type of "application/json" and all parameters as top-
 level members of a JSON object.

 For example, a client could send the following registration request
 to the Client Registration Endpoint:

 Following is a non-normative example request (with line wraps for
 display purposes only):
 POST /register HTTP/1.1
 Accept: application/json
 Host: server.example.com

 {
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/callback2"]
 "client_name":"My Example Client",
 "token_endpoint_auth_method":"client_secret_basic",
 "scope":"read write dolphin",
 "logo_url":"https://client.example.org/logo.png",
 "jwk_url":"https://client.example.org/my_rsa_public_key.jwk"
 }

3.2. Client Registration Response

 Upon successful registration, the Client Registration Endpoint
 returns the newly-created Client Identifier and, if applicable, a
 Client Secret.

 Additionally, the Authorization Server SHOULD return all registered
 metadata (Section 2) about this client, including any fields
 provisioned by the Authorization Server itself. The Authorization

Richer, et al. Expires August 10, 2013 [Page 8]

Internet-Draft oauth-dyn-reg February 2013

 Server MAY reject or replace any of the client's requested metadata
 values submitted during the registration request and substitute them
 with suitable values. If the Authorization Server performs any such
 substitutions to the requested values, it MUST return these values in
 the response.

 The response contains a "_links" structure which contains fully
 qualified URLs to the Client Update Endpoint and the Client Secret
 Rotation Endpoint for this specific client. The response also
 contains a Registration Access Token that is to be used by the client
 to perform subsequent operations at the Client Update Endpoint and
 the Client Secret Rotation Endpoint.

 The response is an "application/json" document with the following
 parameters in addition to any applicable client metadata fields as
 top-level members of a JSON object [RFC4627] .

 client_id
 REQUIRED. The unique Client identifier, MUST NOT be currently
 valid for any other registered Client.

 client_secret
 OPTIONAL. The Client secret. If issued, this MUST be unique for
 each "client_id". This value is used by confidential clients to
 authenticate to the Token Endpoint as described in OAuth 2.0

Section 2.3.1.

 registration_access_token
 REQUIRED. The Access token to be used by the client to perform
 actions on the Client Update Endpoint and the Client Secret
 Rotation Endpoint.

 issued_at
 OPTIONAL. Specifies the timestamp when the Client Identifier was
 issued. The timestamp value MUST be a positive integer. The
 value is expressed in the number of seconds since January 1, 1970
 00:00:00 GMT.

 expires_at
 REQUIRED if "client_secret" is issued. The number of seconds from
 1970-01-01T0:0:0Z as measured in UTC that the "client_secret" will
 expire or "0" if it does not expire. See RFC 3339 [RFC3339] for
 details regarding date/times in general and UTC in particular.

 _links
 REQUIRED. A JSON object that contains references to the Client
 Update Endpoint and Client Secret Rotation Endpoint, via the
 following members:

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Richer, et al. Expires August 10, 2013 [Page 9]

Internet-Draft oauth-dyn-reg February 2013

 self REQUIRED. A JSON object that contains the member href which
 contains the fully qualified URL of the Client Update Endpoint
 for this client. This MAY be constructed using a URL Template
 of the Client Registration Endpoint with the issued client_id.

 rotate_secret REQUIRED. A JSON object that contains the member
 href which contains the fully qualified URL of the Client
 Secret Rotation Endpoint for this client. This MAY be
 constructed using a URL Template of the Client Registration
 Endpoint with the issued client_id.

 Following is a non-normative example response:
 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 _links: {
 "self": {
 "href":
 "https://server.example.com/register/s6BhdRkqt3"
 },
 "rotate_secret": {
 "href":
 "https://server.example.com/register/rotate_secret/s6BhdRkqt3"
 }
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/callback2"]
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "scope": "read write dolphin",
 "grant_type": ["authorization_code", "refresh_token"]
 "token_endpoint_auth_method": "client_secret_basic",
 "logo_url": "https://client.example.org/logo.png",
 "jwk_url": "https://client.example.org/my_rsa_public_key.jwk",
 "registration_access_token": "reg-23410913-abewfq.123483",
 "expires_at":2893276800
 }

3.3. Client Registration Error Response

 When an OAuth error condition occurs, the Client Registration
 Endpoint returns an Error Response as defined in Section 5.2 of the
 OAuth 2.0 specification.

 When a registration error condition occurs, the Client Registration
 Endpoint returns a HTTP 400 status code including a JSON object
 [RFC4627] describing the error in the response body.

https://datatracker.ietf.org/doc/html/rfc4627

Richer, et al. Expires August 10, 2013 [Page 10]

Internet-Draft oauth-dyn-reg February 2013

 The JSON object contains two members:

 error
 The error code, a single ASCII string.

 error_description
 The additional text description of the error for debugging.

 This specification defines the following error codes:

 invalid_redirect_uri
 The value of one or more "redirect_uris" is invalid.

 invalid_client_metadata
 The value of one of the client metadata (Section 2) fields is
 invalid and the server has rejected this request. Note that an
 Authorization server MAY choose to substitute a valid value for
 any requested parameter of a client's metadata.

 Following is a non-normative example of an error response (with line
 wraps for display purposes only):
 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error":"invalid_redirect_uri",
 "error_description":"The redirect URI of http://sketchy.example.com
 is not allowed for this server."
 }

4. Client Update Endpoint

 The Client Update Endpoint is an OAuth 2.0 protected endpoint that is
 provisioned by the server for a specific client to be able to view
 and update its registered information. It is RECOMMENDED that this
 endpoint URL be formed through the use of a URL template which
 combines the Client Registration Endpoint and the issued client_id
 for this client, either as a path parameter
 (https://server.example.com/register/client_id) or as a query
 parameter (https://server.example.com/register/?update=client_id).
 The Authorization Server MUST provide the client with the fully
 qualified URL in the _links structure described in section 3 and MUST
 NOT require the client to construct this URL on its own.

 The Authorization Server MUST be able to determine the appropriate
 client_id from the context of the request without requiring the

Richer, et al. Expires August 10, 2013 [Page 11]

Internet-Draft oauth-dyn-reg February 2013

 Client to explicitly send its own "client_id" in the request.

 Operations on this endpoint are switched through the use of specific
 HTTP verbs.

4.1. Client Update Request

 This operation updates a previously-registered client with new
 metadata at the Authorization Server. This request is authenticated
 by the Registration Access Token issued to the client.

 The Client makes an HTTP PUT request to the Client Update Endpoint
 with a content type of "application/json". This request MAY include
 any fields described in Client Metadata (Section 2). If included in
 the request, valid values of Client Metadata fields in this request
 MUST replace, not augment, the values previously associated with this
 Client. Any fields with the value of a JSON "null" in Client
 Metadata MUST be taken as a request to clear any existing value of
 that field. Omitted values in the Client Metadata MUST remain
 unchanged by the Authorization Server. The Authorization Server MAY
 replace any invalid values with suitable values, and it MUST return
 any such fields to the Client in the response.

 For example, a client could send the following request to the Client
 Registration Endpoint to update the client registration in the above
 example:

 Following is a non-normative example request (with line wraps for
 display purposes only):
 PUT /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 {
 "redirect_uri":["https://client.example.org/callback",
 "https://client.example.org/alt"],
 "client_name":"My New Example",
 "logo_url":"https://client.example.org/newlogo.png"
 }

4.2. Client Read Request

 In order to read the current configuration of the Client on the
 Authorization Server, the Client makes an HTTP GET request to the
 Client Update Endpoint with the Registration Access Token.

Richer, et al. Expires August 10, 2013 [Page 12]

Internet-Draft oauth-dyn-reg February 2013

 Following is a non-normative example request (with line wraps for
 display purposes only):
 GET /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

4.3. Client Update or Read Response

 Upon successful update or read operation, the Client Update Endpoint
 returns the Client ID. Additionally, the Authorization Server SHOULD
 return all registered metadata (Section 2) about this client,
 including any fields provisioned by the Authorization Server itself.

 The Authorization Server MAY reject or replace any of the client's
 requested metadata values submitted during an update request and
 substitute them with suitable values. If the Authorization Server
 performs any such substitutions to the requested values, it MUST
 return these values in the response.

 The Authorization Server MUST NOT include the Client Secret or
 Request Access Token in this response.

 The response is a JSON Document [RFC4627] with the following fields
 as well as any applicable client metadata as top-level members of a
 JSON object.

 client_id
 REQUIRED. The unique Client identifier, MUST equal the value of
 the client_id returned in the original client_register request.

 _links
 REQUIRED. A JSON object that contains references to the Client
 Update Endpoint and Client Secret Rotation Endpoint, via the
 following members:

 self REQUIRED. A JSON object that contains the member href which
 contains the fully qualified URL of the Client Update Endpoint
 for this client. This MAY be constructed using a URL Template
 of the Client Registration Endpoint with the issued client_id.

 rotate_secret REQUIRED. A JSON object that contains the member
 href which contains the fully qualified URL of the Client
 Secret Rotation Endpoint for this client. This MAY be
 constructed using a URL Template of the Client Registration
 Endpoint with the issued client_id.

https://datatracker.ietf.org/doc/html/rfc4627

Richer, et al. Expires August 10, 2013 [Page 13]

Internet-Draft oauth-dyn-reg February 2013

 Following is a non-normative example response:
 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 _links: {
 "self": {
 "href": "https://server.example.com/register/s6BhdRkqt3"
 },
 "rotate_secret": {
 "href": "https://server.example.com/register/s6BhdRkqt3/secret"
 }
 "client_id": "s6BhdRkqt3",
 "client_name": "My New Example",
 "redirect_uri": ["https://client.example.org/callback",
 "https://client.example.org/alt"]
 "scope": "read write dolphin",
 "grant_type": ["authorization_code", "refresh_token"],
 "token_endpoint_auth_method": "client_secret_basic",
 "logo_url": "https://client.example.org/newlogo.png",
 "jwk_url": "https://client.example.org/my_rsa_public_key.jwk",
 }

4.4. Client Delete Request

 In order to deprovision itself on the Authorization Server, the
 Client makes an HTTP DELETE request to the Client Update Endpoint
 with the Registration Access Token. This request is authenticated by
 the Registration Access Token issued to the client.

 Following is a non-normative example request (with line wraps for
 display purposes only):
 DELETE /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 If a client has been successfully deprovisioned, the Authorization
 Server responds with an HTTP 204 No Content message.

 Following is a non-normative example response:
 HTTP/1.1 204 No Content
 Cache-Control: no-store

Richer, et al. Expires August 10, 2013 [Page 14]

Internet-Draft oauth-dyn-reg February 2013

5. Client Secret Rotation

 The Client Secret Rotation Endpoint is an OAuth 2.0 protected
 endpoint that is provisioned by the server for a specific client to
 be able to request rotation of its Registration Access Token and, if
 it has one, Client Secret. It is RECOMMENDED that this endpoint URL
 be formed through the use of a URL template which combines the Client
 Registration Endpoint and the issued client_id for this client,
 either as a path parameter
 (https://server.example.com/register/rotate_secret/client_id) or as a
 query parameter
 (https://server.example.com/register/?rotate_secret=client_id). The
 Authorization Server MUST provide the client with the fully qualified
 URL in the _links structure described in section 3, and MUST NOT
 require the Client to construct this URL on its own.

 The Authorization Server MUST be able to determine the appropriate
 client_id from the context of the request without requiring the
 Client to explicitly send its own "client_id" in the request.

5.1. Rotate Secret Request

 This operation allows the client to rotate its current Registration
 Access Token as well as its Client Secret, if it has one. The client
 sends an HTTP POST with its current Registration Access Token. This
 request is authenticated by the Registration Access Token issued to
 the client.

 Following is a non-normative example request (with line wraps for
 display purposes only):
 POST /register/rotate_secret/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

5.2. Rotate Secret Response

 Upon successful rotation of the Registration Access Token, and
 optionally the Client Secret, the Client Registration Endpoint
 returns a JSON document [RFC4627] with the following fields as top-
 level members of the root JSON object. This response MUST NOT
 include any other client metadata.

 client_id
 REQUIRED. The unique Client identifier, MUST match the client_id
 issued in the original registration request.

https://datatracker.ietf.org/doc/html/rfc4627

Richer, et al. Expires August 10, 2013 [Page 15]

Internet-Draft oauth-dyn-reg February 2013

 client_secret
 REQUIRED if the server initially issued this Client a Client
 Secret, otherwise the server MUST NOT return a value. The value
 MUST be unique for each "client_id".

 registration_access_token
 REQUIRED. The Access token to be used by the client to perform
 subsequent "client_update" and "rotate_secret" requests.

 issued_at
 OPTIONAL. Specifies the timestamp when the identifier was issued.
 The timestamp value MUST be a positive integer. The value is
 expressed in the number of seconds since January 1, 1970 00:00:00
 GMT.

 expires_at
 REQUIRED if the server issues a Client Secret. The number of
 seconds from 1970-01-01T0:0:0Z as measured in UTC that the
 "client_secret" will expire or "0" if they do not expire. See RFC

3339 [RFC3339] for details regarding date/times in general and UTC
 in particular.

 Following is a non-normative example response:
 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "client_id":"s6BhdRkqt3",
 "client_secret": "7fce6c93f31185e5885805d",
 "registration_access_token": "reg-02348913-oieqer.983421",
 "expires_at":2893276800
 }

 The Authorization Server SHOULD discard and invalidate the Request
 Access Token and the Client Secret associated with this Client after
 successful completion of this request.

6. IANA Considerations

 This document makes no requests of IANA.

7. Security Considerations

 [[Editor's note: Following are some security considerations taken
 from the UMA and OpenID Connect source drafts. These need to be

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Richer, et al. Expires August 10, 2013 [Page 16]

Internet-Draft oauth-dyn-reg February 2013

 massaged into a properly generic set of considerations.]]

 Since requests to the Client Registration Endpoint result in the
 transmission of clear-text credentials (in the HTTP request and
 response), the server MUST require the use of a transport-layer
 security mechanism when sending requests to the Registration
 Endpoint. The server MUST support TLS 1.2 RFC 5246 [RFC5246] and/or
 TLS 1.0 [RFC2246] and MAY support additional transport-layer
 mechanisms meeting its security requirements. When using TLS, the
 Client MUST perform a TLS/SSL server certificate check, per RFC 6125
 [RFC6125].

 As this endpoint is an OAuth2 Protected Resource, requests to the
 Registration Endpoint SHOULD have some rate limiting on failures to
 prevent the Registration Access Token from being disclosed though
 repeated access attempts.

 The authorization server MUST treat all client metadata as self-
 asserted. A rogue Client might use the name and logo for the
 legitimate Client, which it is trying to impersonate. An
 Authorization Server needs to take steps to mitigate this phishing
 risk, since the logo could confuse users into thinking they're
 logging in to the legitimate Client. For instance, an Authorization
 Server could warn if the domain/site of the logo doesn't match the
 domain/site of redirect URIs. An Authorization Server can also
 present warning messages to end users about untrusted Clients in all
 cases, especially if such clients have been dynamically registered
 and have not been trusted by any users at the Authorization Server
 before.

 In a situation where the Authorization Server is supporting open
 Client registration, it must be extremely careful with any URL
 provided by the Client that will be displayed to the user (e.g.
 "logo_url" and "policy_url"). A rogue Client could specify a
 registration request with a reference to a drive-by download in the
 "policy_url". The Authorization Server should check to see if the
 "logo_url" and "policy_url" have the same host as the hosts defined
 in the array of "redirect_uris".

 While the Client Secret can expire, the Registration Access Token
 should not expire while a client is still actively registered. If
 this token were to expire, a Client could be left in a situation
 where it has no means of updating itself and must register itself
 anew. As the Registration Access Tokens are long-term credentials,
 they MUST be protected by the Client as a secret. [[Editor's note:
 with the right error codes returned from client_update, the AS could
 force the Client to call rotate_secret before going forward,
 lessening the window for abuse of a leaked registration token.]]

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125

Richer, et al. Expires August 10, 2013 [Page 17]

Internet-Draft oauth-dyn-reg February 2013

 Since the Registration Access Token is a Bearer token and acts as the
 sole authentication for use at the Client Update Endpoint, it MUST be
 protected by the Client as described in OAuth 2.0 Bearer [RFC6750].

8. Acknowledgments

 The authors thank the OAuth Working Group, the User-Managed Access
 Working Group, and the OpenID Connect Working Group participants for
 their input to this document. In particular, the following
 individuals have been instrumental in their review and contribution
 to various versions of this document: Torsten Lodderstedt, Eve Maler,
 Thomas Hardjono, Christian Scholz, Nat Sakimura, George Fletcher,
 Amanda Anganes, and Domenico Catalano.

9. Document History

 [[to be removed by RFC editor before publication as an RFC]]

 - 05

 o changed redirect_uri and contact to lists instead of space
 delimited strings

 o removed operation parameter

 o added _links structure

 o made client update management more RESTful

 o split endpoint into three parts

 o changed input to JSON from form-encoded

 o added READ and DELETE operations

 o removed Requirements section

 o changed token_endpoint_auth_type back to
 token_endpoint_auth_method to match OIDC who changed to match us

 - 04

 o removed default_acr, too undefined in the general OAuth2 case

 o removed default_max_auth_age, since there's no mechanism for
 supplying a non-default max_auth_age in OAuth2

https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires August 10, 2013 [Page 18]

Internet-Draft oauth-dyn-reg February 2013

 o clarified signing and encryption URLs

 o changed token_endpoint_auth_method to token_endpoint_auth_type to
 match OIDC

 - 03

 o added scope and grant_type claims

 o fixed various typos and changed wording for better clarity

 o endpoint now returns the full set of client information

 o operations on client_update allow for three actions on metadata:
 leave existing value, clear existing value, replace existing value
 with new value

 - 02

 o Reorganized contributors and references

 o Moved OAuth references to RFC

 o Reorganized model/protocol sections for clarity

 o Changed terminology to "client register" instead of "client
 associate"

 o Specified that client_id must match across all subsequent requests

 o Fixed RFC2XML formatting, especially on lists

 - 01

 o Merged UMA and OpenID Connect registrations into a single document

 o Changed to form-paramter inputs to endpoint

 o Removed pull-based registration

 - 00

 o Imported original UMA draft specification

Richer, et al. Expires August 10, 2013 [Page 19]

Internet-Draft oauth-dyn-reg February 2013

10. Normative References

 [JWK] Jones, M., "JSON Web Key (JWK)", May 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework",
RFC 6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

Authors' Addresses

 Justin Richer (editor)
 The MITRE Corporation

 Phone:
 Fax:
 Email: jricher@mitre.org
 URI:

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires August 10, 2013 [Page 20]

Internet-Draft oauth-dyn-reg February 2013

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com

 Maciej Machulak
 Newcastle University

 Email: m.p.machulak@ncl.ac.uk
 URI: http://ncl.ac.uk/

http://ncl.ac.uk/

Richer, et al. Expires August 10, 2013 [Page 21]

