
OAuth Working Group J. Richer, Ed.
Internet-Draft The MITRE Corporation
Intended status: Standards Track J. Bradley
Expires: August 25, 2013 Ping Identity
 M. Jones
 Microsoft
 M. Machulak
 Newcastle University
 February 21, 2013

OAuth Dynamic Client Registration Protocol
draft-ietf-oauth-dyn-reg-07

Abstract

 This specification defines an endpoint and protocol for dynamic
 registration of OAuth Clients at an Authorization Server.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 25, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Richer, et al. Expires August 25, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft oauth-dyn-reg February 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 3
1.2. Terminology . 3

2. Client Metadata . 4
3. Client Registration Endpoint 7
3.1. Client Registration Request 8
3.2. Client Registration Response 9

4. Client Configuration Endpoint 9
4.1. Forming the Client Configuration Endpoint URL 9
4.2. Client Read Request 10
4.3. Client Update Request 10
4.4. Client Delete Request 12

5. Responses . 13
5.1. Client Information Response 13
5.2. Client Registration Error Response 15

6. IANA Considerations . 16
7. Security Considerations 16
8. Normative References . 17
Appendix A. Acknowledgments 18
Appendix B. Document History 18

 Authors' Addresses . 20

Richer, et al. Expires August 25, 2013 [Page 2]

Internet-Draft oauth-dyn-reg February 2013

1. Introduction

 In some use-case scenarios, it is desirable or necessary to allow
 OAuth clients to obtain authorization from an OAuth authorization
 server without requiring the two parties to interact beforehand.
 Nevertheless, in order for the authorization server to accurately and
 securely represent to end-users which client is seeking authorization
 to access the end-user's resources, a method for automatic and unique
 registration of clients is needed. The OAuth2 authorization
 framework does not define how the relationship between the Client and
 the Authorization Server is initialized, or how a given client is
 assigned a unique Client Identifier. Historically, this has happened
 out-of-band from the OAuth protocol. This draft provides a mechanism
 for a client to register itself with the Authorization Server, which
 can be used to dynamically provision a Client Identifier, and
 optionally a Client Secret.

 As part of the registration process, this specification also defines
 a mechanism for the client to present the Authorization Server with a
 set of metadata, such as a display name and icon to be presented to
 the user during the authorization step. This draft also provides a
 mechanism for the Client to read and update this information after
 the initial registration action.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 This specification uses the terms "Access Token", "Refresh Token",
 "Authorization Code", "Authorization Grant", "Authorization Server",
 "Authorization Endpoint", "Client", "Client Identifier", "Client
 Secret", "Protected Resource", "Resource Owner", "Resource Server",
 and "Token Endpoint" defined by OAuth 2.0 [RFC6749].

 This specification defines the following additional terms:

 o Client Registration Endpoint: The OAuth 2.0 Endpoint through which
 a Client can request new registration. The means of the Client
 obtaining the URL for this endpoint are out of scope for this
 specification.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749

Richer, et al. Expires August 25, 2013 [Page 3]

Internet-Draft oauth-dyn-reg February 2013

 o Client Configuration Endpoint: The OAuth 2.0 Endpoint through
 which a specific Client can manage its registration information,
 provided by the Authorization Server to the Client. This URL for
 this endpoint is communicated to the client by the Authorization
 Server in the Client Information Response.

 o Registration Access Token: An OAuth 2.0 Bearer Token issued by the
 Authorization Server through the Client Registration Endpoint
 which is used by the Client to authenticate itself during read,
 update, and delete operations. This token is associated with a
 particular Client.

2. Client Metadata

 Clients generally have an array of metadata associated with their
 unique Client Identifier at the Authorization Server. These can
 range from human-facing display strings, such as a client name, to
 items that impact the security of the protocol, such as the list of
 valid redirect URIs.

 Extensions and profiles of this specification MAY expand this list,
 but MUST at least accept all parameters on this list. The
 Authorization Server MUST ignore any additional parameters sent by
 the Client that it does not understand.

 [[Editor's note: normative language in the table below is meant to
 apply to the *client* when sending the request. The paragraph above
 is meant to say that the server must at least accept all parameters
 and not fail with an error at an unknown parameter, especially if
 it's in the list below. Also, extensions need to explicitly call out
 if they're not going to do something with one of these basic
 parameters instead of just ignoring their existence. This is meant
 to be the *minimum set* of parameters for interoperability.]]

 redirect_uris
 RECOMMENDED. Array of redirect URIs for use in the Authorization
 Code and Implicit grant types. An Authorization Server SHOULD
 require registration of valid redirect URIs for all clients that
 use these grant types in order to protect against token and
 credential theft attacks.

 client_name
 RECOMMENDED. Human-readable name of the Client to be presented to
 the user. If omitted, the Authorization Server MAY display to the
 user the raw "client_id" value instead.

Richer, et al. Expires August 25, 2013 [Page 4]

Internet-Draft oauth-dyn-reg February 2013

 client_uri
 RECOMMENDED. URL of the homepage of the Client. If present, the
 server SHOULD display this URL to the end user in a clickable
 fashion.

 logo_uri
 OPTIONAL. URL that references a logo for the Client. If present,
 the server SHOULD display this image to the end user during
 approval.

 contacts
 OPTIONAL. Array of email addresses for people responsible for
 this Client. The Authorization Server MAY make these addresses
 available to end users for support requests for the Client. An
 Authorization Server MAY use these email addresses as identifiers
 for an administrative page for this client.

 tos_uri
 OPTIONAL. URL that points to a human-readable Terms of Service
 for the Client. The Authorization Server SHOULD display this URL
 to the End-User if it is given.

 token_endpoint_auth_method
 OPTIONAL. The requested authentication type for the Token
 Endpoint. Valid values are:

 * "none": this is a public client as defined in OAuth 2.0 and
 does not have a client secret

 * "client_secret_post": the client uses the HTTP POST parameters
 defined in OAuth2.0 section 2.3.1

 * "client_secret_basic": the client uses HTTP Basic defined in
 OAuth 2.0 section 2.3.1

 * "client_secret_jwt": the client uses the JWT Assertion profile
 with a symmetric secret issued by the server

 * "private_key_jwt": the client uses the JWT Assertion profile
 with its own private key

 Other authentication methods may be defined by extension. If
 unspecified or omitted, the default is "client_secret_basic",
 denoting HTTP Basic Authentication Scheme as specified in Section

2.3.1 of OAuth 2.0.

Richer, et al. Expires August 25, 2013 [Page 5]

Internet-Draft oauth-dyn-reg February 2013

 scope
 OPTIONAL. Space separated list of scope values (as described in
 OAuth 2.0 Section 3.3 [RFC6749]) that the client is declaring that
 it may use when requesting access tokens. If omitted, an
 Authorization Server MAY register a Client with a default set of
 scopes.

 grant_type
 OPTIONAL. Array of grant types that a client may use. These
 grant types are defined as follows:

 * "authorization_code": The Authorization Code Grant described in
 OAuth2 Section 4.1.

 * "implicit": The Implicit Grant described in OAuth2 Section 4.2.

 * "password": The Resource Owner Password Credentials Grant
 described in OAuth2 Section 4.3

 * "client_credentials": The Client Credentials Grant described in
 OAuth2 Section 4.4

 * "refresh_token": The Refresh Token Grant described in OAuth2
Section 6.

 Authorization Servers MAY allow for other values as defined in
 grant type extensions to OAuth2. The extension process is
 described in OAuth2 Section 2.5, and the value of this parameter
 MUST be the same as the value of the "grant_type" parameter
 defined in the extension.

 policy_uri
 OPTIONAL. A URL location that the Client provides to the End-User
 to read about the how the profile data will be used. The
 Authorization Server SHOULD display this URL to the End-User if it
 is given.

 jwk_uri
 OPTIONAL. URL for the Client's JSON Web Key [JWK] document that
 is used for signing requests, such as requests to the Token
 Endpoint using the "private_key_jwt" assertion client credential.
 If the Client registers both "x509_uri" and "jwk_uri", the keys
 contained in both formats MUST be the same.

 jwk_encryption_uri
 OPTIONAL. URL for the Client's JSON Web Key [JWK] that the server
 can use to encrypt responses to the Client. If the Client
 registers both "jwk_encryption_uri" and "x509_encryption_uri", the

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Richer, et al. Expires August 25, 2013 [Page 6]

Internet-Draft oauth-dyn-reg February 2013

 keys contained in both formats MUST be the same.

 x509_uri
 OPTIONAL. URL for the Client's PEM encoded X.509 Certificate or
 Certificate chain that is used for signing requests, such as
 requests to the Token Endpoint using the "private_key_jwt"
 assertion client credential. If the Client registers both
 "x509_uri" and "jwk_uri", the keys contained in both formats MUST
 be the same.

 x509_encryption_uri
 OPTIONAL. URL for the Client's PEM encoded X.509 Certificate or
 Certificate chain that the server can use to encrypt responses to
 the Client. If the Client registers both "jwk_encryption_uri" and
 "x509_encryption_uri", the keys contained in both formats MUST be
 the same.

3. Client Registration Endpoint

 The Client Registration Endpoint is an OAuth 2.0 Endpoint defined in
 this document that is designed to allow a Client to register itself
 with the Authorization Server. The Client Registration Endpoint MUST
 accept HTTP POST messages with request parameters encoded in the
 entity body using the "application/json" format. The Client
 Registration Endpoint MUST be protected by a transport-layer security
 mechanism, and the server MUST support TLS 1.2 RFC 5246 [RFC5246]
 and/or TLS 1.0 [RFC2246] and MAY support additional transport-layer
 mechanisms meeting its security requirements. When using TLS, the
 Client MUST perform a TLS/SSL server certificate check, per RFC 6125
 [RFC6125].

 The Client Registration Endpoint MAY accept an initial authorization
 credential in the form of an OAuth 2.0 [RFC6749] access token in
 order to limit registration to only previously authorized parties.
 The method by which this access token is obtained by the registrant
 is generally out-of-band and is out of scope of this specification.

 In order to support open registration and facilitate wider
 interoperability, the Client Registration Endpoint SHOULD allow
 initial registration requests with no authentication. These requests
 MAY be rate-limited or otherwise limited to prevent a denial-of-
 service attack on the Client Registration Endpoint.

 In order to facilitate registered clients updating their information,
 the Client Registration Endpoint issues a Request Access Token for
 clients to securely identify themselves in future connections to the
 Client Configuration Endpoint (Section 4). As such, the Client

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749

Richer, et al. Expires August 25, 2013 [Page 7]

Internet-Draft oauth-dyn-reg February 2013

 Configuration Endpoint MUST accept requests with OAuth 2.0 Bearer
 Tokens [RFC6750] for these operations, whether or not the initial
 registration call requires authentication of some form.

 The Client Registration Endpoint MUST ignore all parameters it does
 not understand.

3.1. Client Registration Request

 This operation registers a new Client to the Authorization Server.
 The Authorization Server assigns this client a unique Client
 Identifier, optionally assigns a Client Secret, and associates the
 metadata given in the request with the issued Client Identifier. The
 request includes any parameters described in Client Metadata
 (Section 2) that the client wishes to specify for itself during the
 registration. The Authorization Server MAY provision default values
 for any items omitted in the Client Metadata.

 The Client sends an HTTP POST to the Client Registration Endpoint
 with a content type of "application/json". The HTTP Entity Payload
 is a JSON [RFC4627] document consisting of a JSON object and all
 parameters as top- level members of that JSON object.

 For example, a client could send the following registration request
 to the Client Registration Endpoint:

 Following is a non-normative example request (with line wraps for
 display purposes only):

 POST /register HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Host: server.example.com

 {
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/callback2"]
 "client_name":"My Example Client",
 "token_endpoint_auth_method":"client_secret_basic",
 "scope":"read write dolphin",
 "logo_uri":"https://client.example.org/logo.png",
 "jwk_uri":"https://client.example.org/my_rsa_public_key.jwk"
 }

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc4627

Richer, et al. Expires August 25, 2013 [Page 8]

Internet-Draft oauth-dyn-reg February 2013

3.2. Client Registration Response

 Upon successful registration, the Authorization Server generates a
 new Client Identifier for the client. This Client Identifier MUST be
 unique at the server and MUST NOT be in use by any other client. The
 server responds with an HTTP 201 Created code and a body of type
 "application/json" with content described in Client Information
 Response (Section 5.1).

 Upon an unsuccessful registration, the Authorization Server responds
 with an error as described in Client Registration Error
 (Section 5.2).

4. Client Configuration Endpoint

 The Client Configuration Endpoint is an OAuth 2.0 protected endpoint
 that is provisioned by the server for a specific client to be able to
 view and update its registered information. The Client MUST include
 its Registration Access Token in all calls to this endpoint as an
 OAuth 2.0 Bearer Token [RFC6750].

 Operations on this endpoint are switched through the use of different
 HTTP methods [RFC2616].

4.1. Forming the Client Configuration Endpoint URL

 The Authorization Server MUST provide the client with the fully
 qualified URL in the "registration_client_uri" element of the Client
 Information Response (Section 5.1). The Authorization Server MUST
 NOT expect the client to construct or discover this URL on its own.
 The Client MUST use the URL as given by the server and MUST NOT
 construct this URL from component pieces.

 Depending on deployment characteristics, the Client Configuration
 Endpoint URL may take any number of forms. It is RECOMMENDED that
 this endpoint URL be formed through the use of a server-constructed
 URL string which combines the Client Registration Endpoint's URL and
 the issued client_id for this Client, with the latter as either a
 path parameter or a query parameter. For example, a Client with the
 Client ID "s6BhdRkqt3" could be given a Client Configuration Endpoint
 URL of "https://server.example.com/register/s6BhdRkqt3" (path
 parameter) or of
 "https://server.example.com/register?client_id=s6BhdRkqt3" (query
 parameter). In both of these cases, the client simply follows the
 URL as given.

 These common patterns can help the Server to more easily determine

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc2616

Richer, et al. Expires August 25, 2013 [Page 9]

Internet-Draft oauth-dyn-reg February 2013

 the client to which the request pertains, which MUST be matched
 against the client to which the Registration Access Token was issued.
 If desired, the server MAY simply return the Client Registration
 Endpoint URL as the Client Configuration Endpoint URL and change
 behavior based on the authentication context provided by the
 Registration Access Token.

4.2. Client Read Request

 In order to read the current configuration of the Client on the
 Authorization Server, the Client makes an HTTP GET request to the
 Client Configuration Endpoint, authenticating with its Registration
 Access Token.

 Following is a non-normative example request (with line wraps for
 display purposes only):
 GET /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 Upon successful read of the information for a currently active
 Client, the Authorization Server responds with an HTTP 200 OK with
 content type of "application/json" and a payload as described in
 Client Information Response (Section 5.1).

 If the client does not exist on this server, the server MUST return
 an HTTP 403 Forbidden.

 If the Client does not have permission to read its record, the server
 MUST return an HTTP 403 Forbidden.

4.3. Client Update Request

 This operation updates a previously-registered client with new
 metadata at the Authorization Server. This request is authenticated
 by the Registration Access Token issued to the client.

 The Client sends an HTTP PUT to the Client Configuration Endpoint
 with a content type of "application/json". The HTTP Entity Payload
 is a JSON [RFC4627] document consisting of a JSON object and all
 parameters as top- level members of that JSON object.

 This request MUST include all fields described in Client Metadata
 (Section 2) as returned to the Client from a previous register, read,
 or update operation. The Client MUST NOT include the
 "registration_access_token", "registration_client_uri", "expires_at",

https://datatracker.ietf.org/doc/html/rfc4627

Richer, et al. Expires August 25, 2013 [Page 10]

Internet-Draft oauth-dyn-reg February 2013

 or "issued_at" fields described in Client Information Response
 (Section 5.1).

 Valid values of Client Metadata fields in this request MUST replace,
 not augment, the values previously associated with this Client.
 Omitted fields MUST be treated as null or empty values by the server.

 The Client MUST include its client_id field in the request, and it
 MUST be the same as its currently-issued Client Identifier. If the
 client includes its client_secret in the request, then it MUST match
 the currently-issued client_secret for that Client. The client MUST
 NOT be allowed to overwrite its existing client_secret with its own
 value.

 For all metadata fields, the Authorization Server MAY replace any
 invalid values with suitable default values, and it MUST return any
 such fields to the Client in the response.

 For example, a client could send the following request to the Client
 Registration Endpoint to update the client registration in the above
 example:

 Following is a non-normative example request (with line wraps for
 display purposes only):
 PUT /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 {
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/alt"],
 "scope": "read write dolphin",
 "grant_type": ["authorization_code", "refresh_token"]
 "token_endpoint_auth_method": "client_secret_basic",
 "jwk_uri": "https://client.example.org/my_rsa_public_key.jwk"
 "client_name":"My New Example",
 "logo_uri":"https://client.example.org/newlogo.png"
 }

 Upon successful update, the Authorization Server responds with an
 HTTP 200 OK Message with content type "application/json" and a
 payload as described in Client Information Response (Section 5.1).
 The Authorization Server MAY include a new Client Secret and/or
 Registration Access Token in its response. If so, the Client MUST
 immediately discard its previous Client Secret and/or Registration

Richer, et al. Expires August 25, 2013 [Page 11]

Internet-Draft oauth-dyn-reg February 2013

 Access Token.

 If the Client does not exist on this server, the server MUST return
 an HTTP 403 Forbidden.

 If the Client is not allowed to update its records, the server MUST
 respond with HTTP 403 Forbidden.

 If the Client attempts to set an invalid metadata field and the
 Authorization Server does not set a default value, the Authorization
 Server responds with an error as described in Client Registration
 Error Response (Section 5.2).

4.4. Client Delete Request

 [[Editor's note: The utility and nature of this function are still
 under active discussion. This is a proposed set of functionality
 that a server MAY choose to implement, else give a 405 response to
 any client that tries, if it can't support it.]]

 In order to deprovision itself on the Authorization Server, the
 Client makes an HTTP DELETE request to the Client Configuration
 Endpoint. This request is authenticated by the Registration Access
 Token issued to the client.

 Following is a non-normative example request (with line wraps for
 display purposes only):
 DELETE /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 A successful delete action will invalidate the client_id,
 client_secret, and registration_access_token for this client, thereby
 preventing the client_id from being used at either the Authorization
 Endpoint or Token Endpoint of the Authorization Server. The
 Authorization Server SHOULD immediately invalidate all existing
 authorization grants and currently-active tokens associated with this
 Client.

 If a Client has been successfully deprovisioned, the Authorization
 Server responds with an HTTP 204 No Content message.

 If there is no such client, the server responds with an HTTP 403
 Forbidden.

 If the client is not allowed to delete itself, the server responds

Richer, et al. Expires August 25, 2013 [Page 12]

Internet-Draft oauth-dyn-reg February 2013

 with HTTP 403 Forbidden.

 If the server does not support the delete method, it responds with an
 HTTP 405 Not Supported.

 Following is a non-normative example response:
 HTTP/1.1 204 No Content
 Cache-Control: no-store
 Pragma: no-cache

5. Responses

 In response to certain requests from the Client to either the Client
 Registration Endpoint or the Client Configuration Endpoint as
 described in this specification, the Authorization Server sends the
 following response bodies.

5.1. Client Information Response

 The response contains the Client Identifier as well as the Client
 Secret, if the Client is a confidential Client. The response also
 contains the fully qualified URL to the Client Configuration Endpoint
 for this specific client that the client may use to obtain and update
 information about itself. The response also contains a Registration
 Access Token that is to be used by the client to perform subsequent
 operations at the Client Configuration Endpoint.

 client_id
 REQUIRED. The unique Client identifier, MUST NOT be currently
 valid for any other registered Client.

 client_secret
 OPTIONAL. The Client secret. If issued, this MUST be unique for
 each "client_id". This value is used by confidential clients to
 authenticate to the Token Endpoint as described in OAuth 2.0

Section 2.3.1.

 expires_at
 REQUIRED if "client_secret" is issued. The number of seconds from
 1970-01-01T0:0:0Z as measured in UTC that the "client_secret" will
 expire or "0" if it does not expire. See RFC 3339 [RFC3339] for
 details regarding date/times in general and UTC in particular.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Richer, et al. Expires August 25, 2013 [Page 13]

Internet-Draft oauth-dyn-reg February 2013

 issued_at
 OPTIONAL. Specifies the timestamp when the Client Identifier was
 issued. The timestamp value MUST be a positive integer. The
 value is expressed in the number of seconds since January 1, 1970
 00:00:00 GMT.

 registration_access_token
 REQUIRED. The Access token to be used by the client to perform
 actions on the Client Configuration Endpoint.

 registration_client_uri
 REQUIRED. The fully qualified URL of the Client Configuration
 Endpoint for this client. The Client MUST use this URL as given
 when communicating with the Client Configuration Endpoint.

 Additionally, the Authorization Server MUST return all registered
 metadata (Section 2) about this client, including any fields
 provisioned by the Authorization Server itself. The Authorization
 Server MAY reject or replace any of the client's requested metadata
 values submitted during the registration or update requests and
 substitute them with suitable values.

 The response is an "application/json" document with all parameters as
 top-level members of a JSON object [RFC4627].

 Following is a non-normative example response:
 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "registration_access_token": "reg-23410913-abewfq.123483",
 "registration_client_uri":
 "https://server.example.com/register/s6BhdRkqt3",
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "expires_at":2893276800
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/callback2"]
 "scope": "read write dolphin",
 "grant_type": ["authorization_code", "refresh_token"]
 "token_endpoint_auth_method": "client_secret_basic",
 "logo_uri": "https://client.example.org/logo.png",
 "jwk_uri": "https://client.example.org/my_rsa_public_key.jwk"
 }

https://datatracker.ietf.org/doc/html/rfc4627

Richer, et al. Expires August 25, 2013 [Page 14]

Internet-Draft oauth-dyn-reg February 2013

5.2. Client Registration Error Response

 When an OAuth error condition occurs, such as the client presenting
 an invalid Registration Access Token, the Authorization Server
 returns an Error Response as defined in Section 5.2 of the OAuth 2.0
 specification.

 When a registration error condition occurs, the Authorization Server
 returns an HTTP 400 status code with content type "application/json"
 consisting of a JSON object [RFC4627] describing the error in the
 response body.

 The JSON object contains two members:

 error
 The error code, a single ASCII string.

 error_description
 A human-readable text description of the error for debugging.

 This specification defines the following error codes:

 invalid_redirect_uri
 The value of one or more "redirect_uris" is invalid.

 invalid_client_metadata
 The value of one of the client metadata (Section 2) fields is
 invalid and the server has rejected this request. Note that an
 Authorization server MAY choose to substitute a valid value for
 any requested parameter of a client's metadata.

 invalid_client_id
 Value of "client_id" is invalid.

 Following is a non-normative example of an error response (with line
 wraps for display purposes only):
 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error":"invalid_redirect_uri",
 "error_description":"The redirect URI of http://sketchy.example.com
 is not allowed for this server."
 }

https://datatracker.ietf.org/doc/html/rfc4627

Richer, et al. Expires August 25, 2013 [Page 15]

Internet-Draft oauth-dyn-reg February 2013

6. IANA Considerations

 This document makes no requests of IANA.

7. Security Considerations

 [[Editor's note: Following are some security considerations taken
 from the UMA and OpenID Connect source drafts. These need to be
 massaged into a properly generic set of considerations.]]

 Since requests to the Client Registration Endpoint result in the
 transmission of clear-text credentials (in the HTTP request and
 response), the server MUST require the use of a transport-layer
 security mechanism when sending requests to the Registration
 Endpoint. The server MUST support TLS 1.2 RFC 5246 [RFC5246] and/or
 TLS 1.0 [RFC2246] and MAY support additional transport-layer
 mechanisms meeting its security requirements. When using TLS, the
 Client MUST perform a TLS/SSL server certificate check, per RFC 6125
 [RFC6125].

 As this endpoint is an OAuth2 Protected Resource, requests to the
 Registration Endpoint SHOULD have some rate limiting on failures to
 prevent the Registration Access Token from being disclosed though
 repeated access attempts.

 The authorization server MUST treat all client metadata as self-
 asserted. A rogue Client might use the name and logo for the
 legitimate Client, which it is trying to impersonate. An
 Authorization Server needs to take steps to mitigate this phishing
 risk, since the logo could confuse users into thinking they're
 logging in to the legitimate Client. For instance, an Authorization
 Server could warn if the domain/site of the logo doesn't match the
 domain/site of redirect URIs. An Authorization Server can also
 present warning messages to end users about untrusted Clients in all
 cases, especially if such clients have been dynamically registered
 and have not been trusted by any users at the Authorization Server
 before.

 In a situation where the Authorization Server is supporting open
 Client registration, it must be extremely careful with any URL
 provided by the Client that will be displayed to the user (e.g.
 "logo_uri" and "policy_uri"). A rogue Client could specify a
 registration request with a reference to a drive-by download in the
 "policy_uri". The Authorization Server should check to see if the
 "logo_uri" and "policy_uri" have the same host as the hosts defined
 in the array of "redirect_uris".

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125

Richer, et al. Expires August 25, 2013 [Page 16]

Internet-Draft oauth-dyn-reg February 2013

 While the Client Secret can expire, the Registration Access Token
 should not expire while a client is still actively registered. If
 this token were to expire, a Client could be left in a situation
 where it has no means of updating itself and must register itself
 anew. As the Registration Access Tokens are long-term credentials,
 and since the Registration Access Token is a Bearer token and acts as
 the sole authentication for use at the Client Configuration Endpoint,
 it MUST be protected by the Client as described in OAuth 2.0 Bearer
 [RFC6750].

 If a Client is deprovisioned from a server, any outstanding
 Registration Access Tokens for that client MUST be invalidated at the
 same time. Otherwise, this can lead to an inconsistent state wherein
 a Client could make requests to the Client Configuration Endpoint
 where the authentication would succeed but the action would fail
 because the Client is no longer valid.

8. Normative References

 [JWK] Jones, M., "JSON Web Key (JWK)", May 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework",

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6125

Richer, et al. Expires August 25, 2013 [Page 17]

Internet-Draft oauth-dyn-reg February 2013

RFC 6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

Appendix A. Acknowledgments

 The authors thank the OAuth Working Group, the User-Managed Access
 Working Group, and the OpenID Connect Working Group participants for
 their input to this document. In particular, the following
 individuals have been instrumental in their review and contribution
 to various versions of this document: Amanda Anganes, Tim Bray,
 Domenico Catalano, George Fletcher, Torsten Lodderstedt, Eve Maler,
 Thomas Hardjono, Nat Sakimura, and Christian Scholz.

Appendix B. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -07

 o Changed registration_access_url to registration_client_uri

 o Fixed missing text in 5.1

 o Added Pragma: no-cache to examples

 o Changed "no such client" error to 403

 o Renamed Client Registration Access Endpoint to Client
 Configuration Endpoint

 o Changed all the parameter names containing "_url" to instead use
 "_uri"

 o Updated example text for forming Client Configuration Endpoint URL

 -06

 o Removed secret_rotation as a client-initiated action, including
 removing client secret rotation endpoint and parameters.

 o Changed _links structure to single value registration_access_url.

 o Collapsed create/update/read responses into client info response.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires August 25, 2013 [Page 18]

Internet-Draft oauth-dyn-reg February 2013

 o Changed return code of create action to 201.

 o Added section to describe suggested generation and composition of
 Client Registration Access URL.

 o Added clarifying text to PUT and POST requests to specify JSON in
 the body.

 o Added Editor's Note to DELETE operation about its inclusion.

 o Added Editor's Note to registration_access_url about alternate
 syntax proposals.

 -05

 o changed redirect_uri and contact to lists instead of space
 delimited strings

 o removed operation parameter

 o added _links structure

 o made client update management more RESTful

 o split endpoint into three parts

 o changed input to JSON from form-encoded

 o added READ and DELETE operations

 o removed Requirements section

 o changed token_endpoint_auth_type back to
 token_endpoint_auth_method to match OIDC who changed to match us

 -04

 o removed default_acr, too undefined in the general OAuth2 case

 o removed default_max_auth_age, since there's no mechanism for
 supplying a non-default max_auth_age in OAuth2

 o clarified signing and encryption URLs

 o changed token_endpoint_auth_method to token_endpoint_auth_type to
 match OIDC

 -03

Richer, et al. Expires August 25, 2013 [Page 19]

Internet-Draft oauth-dyn-reg February 2013

 o added scope and grant_type claims

 o fixed various typos and changed wording for better clarity

 o endpoint now returns the full set of client information

 o operations on client_update allow for three actions on metadata:
 leave existing value, clear existing value, replace existing value
 with new value

 -02

 o Reorganized contributors and references

 o Moved OAuth references to RFC

 o Reorganized model/protocol sections for clarity

 o Changed terminology to "client register" instead of "client
 associate"

 o Specified that client_id must match across all subsequent requests

 o Fixed RFC2XML formatting, especially on lists

 -01

 o Merged UMA and OpenID Connect registrations into a single document

 o Changed to form-paramter inputs to endpoint

 o Removed pull-based registration

 -00

 o Imported original UMA draft specification

Richer, et al. Expires August 25, 2013 [Page 20]

Internet-Draft oauth-dyn-reg February 2013

Authors' Addresses

 Justin Richer (editor)
 The MITRE Corporation

 Phone:
 Fax:
 Email: jricher@mitre.org
 URI:

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com

 Maciej Machulak
 Newcastle University

 Email: m.p.machulak@ncl.ac.uk
 URI: http://ncl.ac.uk/

http://ncl.ac.uk/

Richer, et al. Expires August 25, 2013 [Page 21]

