
OAuth Working Group J. Richer, Ed.
Internet-Draft The MITRE Corporation
Intended status: Standards Track J. Bradley
Expires: January 03, 2014 Ping Identity
 M. Jones
 Microsoft
 M. Machulak
 Newcastle University
 July 02, 2013

OAuth 2.0 Dynamic Client Registration Protocol
draft-ietf-oauth-dyn-reg-13

Abstract

 This specification defines an endpoint and protocol for dynamic
 registration of OAuth 2.0 clients at an authorization server and
 methods for the dynamically registered client to manage its
 registration through an OAuth 2.0 protected web API.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 03, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Richer, et al. Expires January 03, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft oauth-dyn-reg July 2013

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3
1.2. Terminology . 3
1.3. Protocol Flow . 4
1.4. Registration Tokens and Client Credentials 6
1.4.1. Credential Rotation 7

2. Client Metadata . 7
2.1. Relationship Between Grant Types and Response Types . . . 10
2.2. Human Readable Client Metadata 11

3. Client Registration Endpoint 12
3.1. Client Registration Request 13
3.2. Client Registration Response 15

4. Client Configuration Endpoint 15
4.1. Forming the Client Configuration Endpoint URL 15
4.2. Client Read Request 16
4.3. Client Update Request 17
4.4. Client Delete Request 19

5. Responses . 20
5.1. Client Information Response 20
5.2. Client Registration Error Response 21

6. IANA Considerations . 22
6.1. OAuth Token Endpoint Authentication Methods Registry . . 22
6.1.1. Registration Template 23
6.1.2. Initial Registry Contents 23

7. Security Considerations 24
8. Normative References . 26
Appendix A. Acknowledgments 27
Appendix B. Client Lifecycle Examples 27
B.1. Open Registration . 28
B.2. Protected Registration 29
B.3. Developer Automation 30

Appendix C. Document History 32
 Authors' Addresses . 35

1. Introduction

 In some use-case scenarios, it is desirable or necessary to allow
 OAuth 2.0 clients to obtain authorization from an OAuth 2.0
 authorization server without requiring the two parties to interact
 beforehand. Nevertheless, for the authorization server to accurately
 and securely represent to end-users which client is seeking

Richer, et al. Expires January 03, 2014 [Page 2]

Internet-Draft oauth-dyn-reg July 2013

 authorization to access the end-user's resources, a method for
 automatic and unique registration of clients is needed. The OAuth
 2.0 authorization framework does not define how the relationship
 between the client and the authorization server is initialized, or
 how a given client is assigned a unique client identifier.
 Historically, this has happened out-of-band from the OAuth 2.0
 protocol. This draft provides a mechanism for a client to register
 itself with the authorization server, which can be used to
 dynamically provision a client identifier, and optionally a client
 secret. Additionally, the mechanisms in this draft may can be used
 by a client developer to register the client with the authorization
 server in a programmatic fashion.

 As part of the registration process, this specification also defines
 a mechanism for the client to present the authorization server with a
 set of metadata, such as a display name and icon to be presented to
 the user during the authorization step. This draft also provides a
 mechanism for the client to read and update this information after
 the initial registration action. This draft protects these actions
 through the use of an OAuth 2.0 bearer access token that is issued to
 the client during registration explicitly for this purpose.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 This specification uses the terms "Access Token", "Refresh Token",
 "Authorization Code", "Authorization Grant", "Authorization Server",
 "Authorization Endpoint", "Client", "Client Identifier", "Client
 Secret", "Protected Resource", "Resource Owner", "Resource Server",
 and "Token Endpoint" defined by OAuth 2.0 [RFC6749].

 This specification defines the following additional terms:

 Client Registration Endpoint OAuth 2.0 endpoint through which a
 client can be registered at an authorization server. The means by
 which the URL for this endpoint are obtained are out of scope for
 this specification.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749

Richer, et al. Expires January 03, 2014 [Page 3]

Internet-Draft oauth-dyn-reg July 2013

 Client Configuration Endpoint OAuth 2.0 endpoint through which
 registration information for a registered client can be managed.
 This URL for this endpoint is returned by the authorization server
 in the client information response.
 Registration Access Token OAuth 2.0 bearer token issued by the
 authorization server through the client registration endpoint that
 is used to authenticate the caller when accessing the client's
 registration information at the client configuration endpoint.
 This access token is associated with a particular registered
 client.
 Initial Access Token OAuth 2.0 access token optionally issued by an
 Authorization Server and used to authorize calls to the client
 registration endpoint. The type and format of this token are
 likely service-specific and are out of scope for this
 specification. The means by which the authorization server issues
 this token as well as the means by which the registration endpoint
 validates this token are out of scope for this specification.

1.3. Protocol Flow

 (preamble)

 +--------(A)- Initial Access Token
 |
 v
 +-----------+ +---------------+
 | |--(B)- Client Registration Request -->| Client |
 | | | Registration |
 | |<-(C)- Client Information Response ---| Endpoint |
 | | +---------------+
 | |
 | | +---------------+
 | Client or |--(D)- Read or Update Request ------->| |
 | Developer | | |
 | |<-(E)- Client Information Response ---| Client |
 | | | Configuration |
 | | | Endpoint |
 | | | |
 | |--(F)- Delete Request --------------->| |
 | | | |
 | |<-(G)- Delete Confirmation -----------| |
 +-----------+ +---------------+

 Figure 1: Abstract Protocol Flow

Richer, et al. Expires January 03, 2014 [Page 4]

Internet-Draft oauth-dyn-reg July 2013

 The abstract OAuth 2.0 Client dynamic registration flow illustrated
 in Figure 1 describes the interaction between the client or developer
 and the two endpoints defined in this specification. This figure
 does not demonstrate error conditions. This flow includes the
 following steps:

 (A)
 Optionally, the client or developer is issued an initial access
 token for use with the client registration endpoint. The method
 by which the initial access token is issued to the client or
 developer is out of scope for this specification.
 (B)
 The client or developer calls the client registration endpoint
 with its desired registration metadata, optionally including the
 initial access token from (A) if one is required by the
 authorization server.
 (C)
 The authorization server registers the client and returns the
 client's registered metadata, a client identifier that is unique
 at the server, a set of client credentials such as a client secret
 if applicable for this client, a URI pointing to the client
 configuration endpoint, and a registration access token to be used
 when calling the client configuration endpoint.
 (D)
 The client or developer optionally calls the client configuration
 endpoint with a read or update request using the registration
 access token issued in (C). An update request contains all of the
 client's registered metadata.
 (E)
 The authorization server responds with the client's current
 configuration, potentially including a new registration access
 token and a new set of client credentials such as a client secret
 if applicable for this client. If a new registration access token
 is issued, it replaces the token issued in (C) for all subsequent
 calls to the client configuration endpoint.
 (F)
 The client or developer optionally calls the client configuration
 endpoint with a delete request using the registration access token
 issued in (C).
 (G)
 The authorization server deprovisions the client and responds with
 a confirmation that the deletion has taken place.

 Further discussion of possible example lifecycles are found in the
 Appendix to this specification, Client Lifecycle Examples
 (Appendix B).

Richer, et al. Expires January 03, 2014 [Page 5]

Internet-Draft oauth-dyn-reg July 2013

1.4. Registration Tokens and Client Credentials

 Throughout the course of the dynamic registration protocol, there are
 three different classes of credentials in play, each with different
 properties and targets.

 o The initial access token is optionally used by the client or
 developer at the registration endpoint. This is an OAuth 2.0
 token that is used to authorize the initial client registration
 request. The content, structure, generation, and validation of
 this token are out of scope for this specification. The
 authorization server can use this token to verify that the
 presenter is allowed to dynamically register new clients. This
 token may be shared between multiple instances of a client to
 allow them to each register separately, thereby letting the
 authorization server use this token to tie multiple instances of
 registered clients (each with their own distinct client
 identifier) back to the party to whom the initial access token was
 issued, usually an application developer. This token should be
 used only at the client registration endpoint.
 o The registration access token is used by the client or developer
 at the client configuration endpoint and represents the holder's
 authorization to manage the registration of a client. This is an
 OAuth 2.0 bearer token that is issued from the client registration
 endpoint in response to a client registration request and is
 returned in a client information response. The registration
 access token is uniquely bound to the client identifier and is
 required to be presented with all calls to the client
 configuration endpoint. The registration access token should be
 protected and should not be shared between instances of a client
 (otherwise, one instance could change or delete registration
 values for all instances of the client). The registration access
 token can be rotated through the use of the client read and update
 methods on the client configuration endpoint. The registration
 access token should be used only at the client configuration
 endpoint.
 o The client credentials (such as "client_secret") are optional
 depending on the type of client and are used to retrieve OAuth
 tokens. Client credentials are most often bound to particular
 instances of a client and should not be shared between instances.
 Note that since not all types of clients have client credentials,
 they cannot be used to manage client registrations at the client
 configuration endpoint. The client credentials can be rotated
 through the use of the client read and update methods on the
 client configuration endpoint. The client credentials can not be
 used for authentication at the client registration endpoint or at
 the client configuration endpoint.

Richer, et al. Expires January 03, 2014 [Page 6]

Internet-Draft oauth-dyn-reg July 2013

1.4.1. Credential Rotation

 The Authorization Server MAY rotate the client's registration access
 token and/or client credentials (such as a "client_secret")
 throughout the lifetime of the client. The client is informed of the
 changed values changing by making either read or update requests to
 the client configuration endpoint, and the new values of the
 registration access token and the client credentials will be included
 in the client information response.

 The registration access token SHOULD be rotated only in response to a
 read or update request to the client configuration endpoint, at which
 point the new registration access token is returned to the client and
 the old registration access token SHOULD be discarded by both
 parties. If the registration access token to expire or be rotated
 outside of such requests, the client or developer may be locked out
 of managing the client's configuration.

2. Client Metadata

 Clients generally have an array of metadata associated with their
 unique client identifier at the authorization server. These can
 range from human-facing display strings, such as a client name, to
 items that impact the security of the protocol, such as the list of
 valid redirect URIs.

 The client metadata values serve two parallel purposes in the overall
 OAuth 2.0 dynamic client registration protocol:

 o the client requesting its desired values for each parameter to the
 authorization server in a register (Section 3.1) or update
 (Section 4.3) request, and
 o the authorization server informing the client of the current
 values of each parameter that the client has been registered to
 use through a client information response (Section 5.1).

 An authorization server MAY override any value that a client requests
 during the registration process (including any omitted values) and
 replace the requested value with a default at the server's
 discretion. The authorization server SHOULD provide documentation
 for any fields that it requires to be filled in by the client or to
 have particular values or formats. An authorization server MAY
 ignore the values provided by the client for any field in this list.

 Extensions and profiles of this specification MAY expand this list,
 and authorization servers MUST accept all fields in this list. The
 authorization server MUST ignore any additional parameters sent by
 the Client that it does not understand.

Richer, et al. Expires January 03, 2014 [Page 7]

Internet-Draft oauth-dyn-reg July 2013

 redirect_uris
 Array of redirect URIs for use in redirect-based flows such as the
 authorization code and implicit grant types. It is RECOMMENDED
 that clients using these flows register this parameter, and an
 authorization server SHOULD require registration of valid redirect
 URIs for all clients that use these grant types to protect against
 token and credential theft attacks.
 client_name
 Human-readable name of the client to be presented to the user. If
 omitted, the authorization server MAY display the raw "client_id"
 value to the user instead. It is RECOMMENDED that clients always
 send this field. The value of this field MAY be internationalized
 as described in Human Readable Client Metadata (Section 2.2).
 client_uri
 URL of the homepage of the client. If present, the server SHOULD
 display this URL to the end user in a clickable fashion. It is
 RECOMMENDED that clients always send this field. The value of
 this field MUST point to a valid web page. The value of this
 field MAY be internationalized as described in Human Readable
 Client Metadata (Section 2.2).
 logo_uri
 URL that references a logo for the client. If present, the server
 SHOULD display this image to the end user during approval. The
 value of this field MUST point to a valid image file. The value
 of this field MAY be internationalized as described in Human
 Readable Client Metadata (Section 2.2).
 contacts
 Array of email addresses for people responsible for this client.
 The authorization server MAY make these addresses available to end
 users for support requests for the client. An authorization
 server MAY use these email addresses as identifiers for an
 administrative page for this client.
 tos_uri
 URL that points to a human-readable Terms of Service document for
 the client. The Authorization Server SHOULD display this URL to
 the end-user if it is given. The Terms of Service usually
 describe a contractual relationship between the end-user and the
 client that the end-user accepts when authorizing the client. The
 value of this field MUST point to a valid web page. The value of
 this field MAY be internationalized as described in Human Readable
 Client Metadata (Section 2.2).
 policy_uri

Richer, et al. Expires January 03, 2014 [Page 8]

Internet-Draft oauth-dyn-reg July 2013

 URL that points to a human-readable Policy document for the
 client. The authorization server SHOULD display this URL to the
 end-user if it is given. The policy usually describes how an end-
 user's data will be used by the client. The value of this field
 MUST point to a valid web page. The value of this field MAY be
 internationalized as described in Human Readable Client Metadata
 (Section 2.2).
 token_endpoint_auth_method
 The requested authentication method for the token endpoint.
 Values defined by this specification are:

 * "none": The client is a public client as defined in OAuth 2.0
 and does not have a client secret.
 * "client_secret_post": The client uses the HTTP POST parameters
 defined in OAuth 2.0 section 2.3.1.
 * "client_secret_basic": the client uses HTTP Basic defined in
 OAuth 2.0 section 2.3.1

 Additional values can be defined via the IANA OAuth Token Endpoint
 Authentication Methods Registry Section 6.1. Absolute URIs can
 also be used as values for this parameter without being
 registered. If unspecified or omitted, the default is
 "client_secret_basic", denoting HTTP Basic Authentication Scheme
 as specified in Section 2.3.1 of OAuth 2.0.
 scope
 Space separated list of scope values (as described in OAuth 2.0

Section 3.3 [RFC6749]) that the client can use when requesting
 access tokens. The semantics of values in this list is service
 specific. If omitted, an authorization server MAY register a
 Client with a default set of scopes.
 grant_types
 Array of OAuth 2.0 grant types that the Client may use. These
 grant types are defined as follows:

 * "authorization_code": The Authorization Code Grant described in
 OAuth 2.0 Section 4.1
 * "implicit": The Implicit Grant described in OAuth 2.0

Section 4.2
 * "password": The Resource Owner Password Credentials Grant
 described in OAuth 2.0 Section 4.3
 * "client_credentials": The Client Credentials Grant described in
 OAuth 2.0 Section 4.4
 * "refresh_token": The Refresh Token Grant described in OAuth 2.0

Section 6.
 * "urn:ietf:params:oauth:grant-type:jwt-bearer": The JWT Bearer
 Grant defined in OAuth JWT Bearer Token Profiles [OAuth.JWT].

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Richer, et al. Expires January 03, 2014 [Page 9]

Internet-Draft oauth-dyn-reg July 2013

 * "urn:ietf:params:oauth:grant-type:saml2-bearer": The SAML 2
 Bearer Grant defined in OAuth SAML 2 Bearer Token Profiles
 [OAuth.SAML2].

 Authorization Servers MAY allow for other values as defined in
 grant type extensions to OAuth 2.0. The extension process is
 described in OAuth 2.0 Section 2.5. If the token endpoint is used
 in the grant type, the value of this parameter MUST be the same as
 the value of the "grant_type" parameter passed to the token
 endpoint defined in the extension.
 response_types
 Array of the OAuth 2.0 response types that the Client may use.
 These response types are defined as follows:

 * "code": The Authorization Code response described in OAuth 2.0
Section 4.1.

 * "token": The Implicit response described in OAuth 2.0
Section 4.2.

 Authorization servers MAY allow for other values as defined in
 response type extensions to OAuth 2.0. The extension process is
 described in OAuth 2.0 Section 2.5. If the authorization endpoint
 is used by the grant type, the value of this parameter MUST be the
 same as the value of the "response_type" parameter passed to the
 authorization endpoint defined in the extension.
 jwks_uri
 URL for the Client's JSON Web Key Set [JWK] document representing
 the client's public keys. The value of this field MUST point to a
 valid JWK Set. These keys MAY be used for higher level protocols
 that require signing or encryption.

2.1. Relationship Between Grant Types and Response Types

 The "grant_types" and "response_types" values described above are
 partially orthogonal, as they refer to arguments passed to different
 endpoints in the OAuth protocol. However, they are related in that
 the "grant_types" available to a client influence the
 "response_types" that the client is allowed to use, and vice versa.
 For instance, a "grant_types" value that includes
 "authorization_code" implies a "response_types" value that includes
 "code", as both values are defined as part of the OAuth 2.0
 authorization code grant. As such, a server supporting these fields
 SHOULD take steps to ensure that a client cannot register itself into
 an inconsistent state.

 The correlation between the two fields is listed in the table below.

Richer, et al. Expires January 03, 2014 [Page 10]

Internet-Draft oauth-dyn-reg July 2013

 +---+-----------------+
 | grant_types value includes: | response_types |
 | | value includes: |
 +---+-----------------+
authorization_code	code
implicit	token
password	(none)
client_credentials	(none)
refresh_token	(none)
urn:ietf:params:oauth:grant-type:jwt-bearer	(none)
urn:ietf:params:oauth:grant-type:saml2-bearer	(none)
 +---+-----------------+

 Extensions and profiles of this document that introduce new values to
 either the "grant_types" or "response_types" parameter MUST document
 all correspondences between these two parameter types.

2.2. Human Readable Client Metadata

 Human-readable client metadata values and client metadata values that
 reference human-readable values MAY be represented in multiple
 languages and scripts. For example, the values of fields such as
 "client_name", "tos_uri", "policy_uri", "logo_uri", and "client_uri"
 might have multiple locale-specific values in some client
 registrations.

 To specify the languages and scripts, BCP47 [RFC5646] language tags
 are added to client metadata member names, delimited by a #
 character. Since JSON member names are case sensitive, it is
 RECOMMENDED that language tag values used in Claim Names be spelled
 using the character case with which they are registered in the IANA
 Language Subtag Registry [IANA.Language]. In particular, normally
 language names are spelled with lowercase characters, region names
 are spelled with uppercase characters, and languages are spelled with
 mixed case characters. However, since BCP47 language tag values are
 case insensitive, implementations SHOULD interpret the language tag
 values supplied in a case insensitive manner. Per the
 recommendations in BCP47, language tag values used in metadata member
 names should only be as specific as necessary. For instance, using
 "fr" might be sufficient in many contexts, rather than "fr-CA" or
 "fr-FR".

 For example, a client could represent its name in English as
 ""client_name#en": "My Client"" and its name in Japanese as
 ""client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D"" within the same
 registration request. The authorization server MAY display any or

https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/bcp47

Richer, et al. Expires January 03, 2014 [Page 11]

Internet-Draft oauth-dyn-reg July 2013

 all of these names to the resource owner during the authorization
 step, choosing which name to display based on system configuration,
 user preferences or other factors.

 If any human-readable field is sent without a language tag, parties
 using it MUST NOT make any assumptions about the language, character
 set, or script of the string value, and the string value MUST be used
 as-is wherever it is presented in a user interface. To facilitate
 interoperability, it is RECOMMENDED that clients and servers use a
 human-readable field without any language tags in addition to any
 language-specific fields, and it is RECOMMENDED that any human-
 readable fields sent without language tags contain values suitable
 for display on a wide variety of systems.

 Implementer's Note: Many JSON libraries make it possible to reference
 members of a JSON object as members of an object construct in the
 native programming environment of the library. However, while the
 "#" character is a valid character inside of a JSON object's member
 names, it is not a valid character for use in an object member name
 in many programming environments. Therefore, implementations will
 need to use alternative access forms for these claims. For instance,
 in JavaScript, if one parses the JSON as follows, "var j =
 JSON.parse(json);", then the member "client_name#en-us" can be
 accessed using the JavaScript syntax "j["client_name#en-us"]".

3. Client Registration Endpoint

 The client registration endpoint is an OAuth 2.0 endpoint defined in
 this document that is designed to allow a client to be registered
 with the authorization server. The client registration Endpoint MUST
 accept HTTP POST messages with request parameters encoded in the
 entity body using the "application/json" format. The client
 registration endpoint MUST be protected by a transport-layer security
 mechanism, and the server MUST support TLS 1.2 RFC 5246 [RFC5246] and
 /or TLS 1.0 [RFC2246] and MAY support additional transport-layer
 mechanisms meeting its security requirements. When using TLS, the
 Client MUST perform a TLS/SSL server certificate check, per RFC 6125
 [RFC6125].

 The client registration endpoint MAY be an OAuth 2.0 protected
 resource and accept an initial access token in the form of an OAuth
 2.0 [RFC6749] access token to limit registration to only previously
 authorized parties. The method by which the initial access token is
 obtained by the registrant is generally out-of-band and is out of
 scope for this specification. The method by which the initial access
 token is verified and validated by the client registration endpoint
 is out of scope for this specification.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749

Richer, et al. Expires January 03, 2014 [Page 12]

Internet-Draft oauth-dyn-reg July 2013

 To support open registration and facilitate wider interoperability,
 the client registration endpoint SHOULD allow initial registration
 requests with no authorization (which is to say, with no OAuth 2.0
 access token in the request). These requests MAY be rate-limited or
 otherwise limited to prevent a denial-of-service attack on the client
 registration endpoint.

 To allow the registrant to manage the client's information, the
 client registration endpoint issues a request access token as an
 OAuth 2.0 Bearer Token [RFC6750] to securely authorize calls to the
 client configuration endpoint (Section 4).

 The client registration endpoint MUST ignore all parameters it does
 not understand.

3.1. Client Registration Request

 This operation registers a new client to the authorization server.
 The authorization server assigns this client a unique client
 identifier, optionally assigns a client secret, and associates the
 metadata given in the request with the issued client identifier. The
 request includes any parameters described in Client Metadata
 (Section 2) that the client wishes to specify for itself during the
 registration. The authorization server MAY provision default values
 for any items omitted in the client metadata.

 To register, the client or developer sends an HTTP POST to the client
 registration endpoint with a content type of "application/json". The
 HTTP Entity Payload is a JSON [RFC4627] document consisting of a JSON
 object and all parameters as top-level members of that JSON object.

 For example, if the server supports open registration (with no
 initial access token), the client could send the following
 registration request to the client registration endpoint:

 Following is a non-normative example request (with line wraps for
 display purposes only):

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc4627

Richer, et al. Expires January 03, 2014 [Page 13]

Internet-Draft oauth-dyn-reg July 2013

 POST /register HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Host: server.example.com

 {
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "client_name":"My Example Client",
 "client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "token_endpoint_auth_method":"client_secret_basic",
 "scope":"read write dolphin",
 "logo_uri":"https://client.example.org/logo.png",
 "jwks_uri":"https://client.example.org/my_public_keys.jwks"
 }

 Alternatively, if the server supports authorized registration, the
 developer or the client will be provisioned with an initial access
 token (the method by which the initial access token is obtained is
 out of scope for this specification). The developer or client sends
 the following authorized registration request to the client
 registration endpoint. Note that the initial access token sent in
 this example as an OAuth 2.0 Bearer Token [RFC6750], but any OAuth
 2.0 token type could be used by an authorization server:

 Following is a non-normative example request (with line wraps for
 display purposes only):

 POST /register HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Bearer ey23f2.adfj230.af32-developer321
 Host: server.example.com

 {
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "client_name":"My Example Client",
 "client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "token_endpoint_auth_method":"client_secret_basic",
 "scope":"read write dolphin",
 "logo_uri":"https://client.example.org/logo.png",
 "jwks_uri":"https://client.example.org/my_public_keys.jwks"
 }

https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires January 03, 2014 [Page 14]

Internet-Draft oauth-dyn-reg July 2013

3.2. Client Registration Response

 Upon successful registration, the authorization server generates a
 new client identifier for the client. This client identifier MUST be
 unique at the server and MUST NOT be in use by any other client. The
 server responds with an HTTP 201 Created code and a body of type
 "application/json" with content described in Client Information
 Response (Section 5.1).

 Upon an unsuccessful registration, the authorization server responds
 with an error as described in Client Registration Error
 (Section 5.2).

4. Client Configuration Endpoint

 The client configuration endpoint is an OAuth 2.0 protected resource
 that is provisioned by the server to facilitate viewing, updating,
 and deleting a client's registered information. The location of this
 endpoint is communicated to the client through the
 "registration_client_uri" member of the Client Information Response
 (Section 5.1). The client MUST use its registration access token in
 all calls to this endpoint as an OAuth 2.0 Bearer Token [RFC6750].

 Operations on this endpoint are switched through the use of different
 HTTP methods [RFC2616]. If an authorization server does not support
 a particular method on the client configuration endpoint, it MUST
 respond with the appropriate error code.

4.1. Forming the Client Configuration Endpoint URL

 The authorization server MUST provide the client with the fully
 qualified URL in the "registration_client_uri" element of the Client
 Information Response (Section 5.1). The authorization server MUST
 NOT expect the client to construct or discover this URL on its own.
 The client MUST use the URL as given by the server and MUST NOT
 construct this URL from component pieces.

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc2616

Richer, et al. Expires January 03, 2014 [Page 15]

Internet-Draft oauth-dyn-reg July 2013

 Depending on deployment characteristics, the client configuration
 endpoint URL may take any number of forms. It is RECOMMENDED that
 this endpoint URL be formed through the use of a server-constructed
 URL string which combines the client registration endpoint's URL and
 the issued "client_id" for this client, with the latter as either a
 path parameter or a query parameter. For example, a client with the
 client identifier "s6BhdRkqt3" could be given a client configuration
 endpoint URL of "https://server.example.com/register/s6BhdRkqt3"
 (path parameter) or of "https://server.example.com/
 register?client_id=s6BhdRkqt3" (query parameter). In both of these
 cases, the client simply uses the URL as given by the authorization
 server.

 These common patterns can help the server to more easily determine
 the client to which the request pertains, which MUST be matched
 against the client to which the registration access token was issued.
 If desired, the server MAY simply return the client registration
 endpoint URL as the client configuration endpoint URL and change
 behavior based on the authentication context provided by the
 registration access token.

4.2. Client Read Request

 To read the current configuration of the client on the authorization
 server, the client makes an HTTP GET request to the client
 configuration endpoint, authenticating with its registration access
 token.

 Following is a non-normative example request (with line wraps for
 display purposes only):

 GET /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

Richer, et al. Expires January 03, 2014 [Page 16]

Internet-Draft oauth-dyn-reg July 2013

 Upon successful read of the information for a currently active
 client, the authorization server responds with an HTTP 200 OK with
 content type of "application/json" and a payload as described in
 Client Information Response (Section 5.1). Some values in the
 response, including the "client_secret" and
 "registration_access_token", MAY be different from those in the
 initial registration response. If the authorization server includes
 a new client secret and/or registration access token in its response,
 the client MUST immediately discard its previous client secret and/or
 registration access token. The value of the "client_id" MUST NOT
 change from the initial registration response.

 If the client does not exist on this server, the server MUST respond
 with HTTP 401 Unauthorized and the registration access token used to
 make this request SHOULD be immediately revoked.

 If the client does not have permission to read its record, the server
 MUST return an HTTP 403 Forbidden.

4.3. Client Update Request

 This operation updates a previously-registered client with new
 metadata at the authorization server. This request is authenticated
 by the registration access token issued to the client.

 The client sends an HTTP PUT to the client configuration endpoint
 with a content type of "application/json". The HTTP entity payload
 is a JSON [RFC4627] document consisting of a JSON object and all
 parameters as top- level members of that JSON object.

 This request MUST include all fields described in Client Metadata
 (Section 2) as returned to the client from a previous register, read,
 or update operation. The client MUST NOT include the
 "registration_access_token", "registration_client_uri",
 "client_secret_expires_at", or "client_id_issued_at" fields described
 in Client Information Response (Section 5.1).

 Valid values of client metadata fields in this request MUST replace,
 not augment, the values previously associated with this client.
 Omitted fields MUST be treated as null or empty values by the server.

 The client MUST include its "client_id" field in the request, and it
 MUST be the same as its currently-issued client identifier. If the
 client includes the "client_secret" field in the request, the value
 of this field MUST match the currently-issued client secret for that
 client. The client MUST NOT be allowed to overwrite its existing
 client secret with its own chosen value.

https://datatracker.ietf.org/doc/html/rfc4627

Richer, et al. Expires January 03, 2014 [Page 17]

Internet-Draft oauth-dyn-reg July 2013

 For all metadata fields, the authorization server MAY replace any
 invalid values with suitable default values, and it MUST return any
 such fields to the client in the response.

 For example, a client could send the following request to the client
 registration endpoint to update the client registration in the above
 example with new information:

 Following is a non-normative example request (with line wraps for
 display purposes only):

 PUT /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 {
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/alt"],
 "scope": "read write dolphin",
 "grant_types": ["authorization_code", "refresh_token"]
 "token_endpoint_auth_method": "client_secret_basic",
 "jwks_uri": "https://client.example.org/my_public_keys.jwks"
 "client_name":"My New Example",
 "client_name#fr":"Mon Nouvel Exemple",
 "logo_uri":"https://client.example.org/newlogo.png"
 "logo_uri#fr":"https://client.example.org/fr/newlogo.png"
 }

 Upon successful update, the authorization server responds with an
 HTTP 200 OK Message with content type "application/json" and a
 payload as described in Client Information Response (Section 5.1).
 Some values in the response, including the "client_secret" and
 r"egistration_access_token", MAY be different from those in the
 initial registration response. If the authorization server includes
 a new client secret and/or registration access token in its response,
 the client MUST immediately discard its previous client secret and/or
 registration access token. The value of the "client_id" MUST NOT
 change from the initial registration response.

 If the client does not exist on this server, the server MUST respond
 with HTTP 401 Unauthorized, and the registration access token used to
 make this request SHOULD be immediately revoked.

Richer, et al. Expires January 03, 2014 [Page 18]

Internet-Draft oauth-dyn-reg July 2013

 If the client is not allowed to update its records, the server MUST
 respond with HTTP 403 Forbidden.

 If the client attempts to set an invalid metadata field and the
 authorization server does not set a default value, the authorization
 server responds with an error as described in Client Registration
 Error Response (Section 5.2).

4.4. Client Delete Request

 To deprovision itself on the authorization server, the client makes
 an HTTP DELETE request to the client configuration endpoint. This
 request is authenticated by the registration access token issued to
 the client.

 Following is a non-normative example request (with line wraps for
 display purposes only):

 DELETE /register/s6BhdRkqt3 HTTP/1.1
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 A successful delete action will invalidate the "client_id",
 "client_secret", and "registration_access_token" for this client,
 thereby preventing the "client_id" from being used at either the
 authorization endpoint or token endpoint of the authorization server.
 The authorization server SHOULD immediately invalidate all existing
 authorization grants and currently-active tokens associated with this
 client.

 If a client has been successfully deprovisioned, the authorization
 server responds with an HTTP 204 No Content message.

 If the server does not support the delete method, the server MUST
 respond with an HTTP 405 Not Supported.

 If the client does not exist on this server, the server MUST respond
 with HTTP 401 Unauthorized and the registration access token used to
 make this request SHOULD be immediately revoked.

 If the client is not allowed to delete itself, the server MUST
 respond with HTTP 403 Forbidden.

 Following is a non-normative example response:

Richer, et al. Expires January 03, 2014 [Page 19]

Internet-Draft oauth-dyn-reg July 2013

 HTTP/1.1 204 No Content
 Cache-Control: no-store
 Pragma: no-cache

5. Responses

 In response to certain requests from the client to either the client
 registration endpoint or the client configuration endpoint as
 described in this specification, the authorization server sends the
 following response bodies.

5.1. Client Information Response

 The response contains the client identifier as well as the client
 secret, if the client is a confidential client. The response also
 contains the fully qualified URL to the client configuration endpoint
 for this specific client that the client may use to obtain and update
 information about itself. The response also contains a registration
 access token that is to be used by the client to perform subsequent
 operations at the client configuration endpoint.

 client_id
 REQUIRED. The unique client identifier, MUST NOT be currently
 valid for any other registered client.
 client_secret
 OPTIONAL. The client secret. If issued, this MUST be unique for
 each "client_id". This value is used by confidential clients to
 authenticate to the token endpoint as described in OAuth 2.0

Section 2.3.1.
 client_id_issued_at
 OPTIONAL. Time at which the Client Identifier was issued. The
 time is represented as the number of seconds from
 1970-01-01T0:0:0Z as measured in UTC until the date/time.
 client_secret_expires_at
 REQUIRED if "client_secret" is issued. Time at which the
 "client_secret" will expire or 0 if it will not expire. The time
 is represented as the number of seconds from 1970-01-01T0:0:0Z as
 measured in UTC until the date/time.
 registration_access_token
 REQUIRED. Access token that is used at the client configuration
 endpoint to perform subsequent operations upon the client
 registration.
 registration_client_uri
 REQUIRED. The fully qualified URL of the client configuration
 endpoint for this client. The client MUST use this URL as given
 when communicating with the client configuration endpoint.

Richer, et al. Expires January 03, 2014 [Page 20]

Internet-Draft oauth-dyn-reg July 2013

 Additionally, the Authorization Server MUST return all registered
 metadata (Section 2) about this client, including any fields
 provisioned by the authorization server itself. The authorization
 server MAY reject or replace any of the client's requested metadata
 values submitted during the registration or update requests and
 substitute them with suitable values.

 The response is an "application/json" document with all parameters as
 top-level members of a JSON object [RFC4627].

 Following is a non-normative example response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "registration_access_token": "reg-23410913-abewfq.123483",
 "registration_client_uri":
 "https://server.example.com/register/s6BhdRkqt3",
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "client_id_issued_at":2893256800
 "client_secret_expires_at":2893276800
 "client_name":"My Example Client",
 "client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "redirect_uris":["https://client.example.org/callback",
 "https://client.example.org/callback2"]
 "scope": "read write dolphin",
 "grant_types": ["authorization_code", "refresh_token"]
 "token_endpoint_auth_method": "client_secret_basic",
 "logo_uri": "https://client.example.org/logo.png",
 "jwks_uri": "https://client.example.org/my_public_keys.jwks"
 }

5.2. Client Registration Error Response

 When an OAuth 2.0 error condition occurs, such as the client
 presenting an invalid registration access token, the authorization
 server returns an error response appropriate to the OAuth 2.0 token
 type. For the registration access token, which is an OAuth 2.0
 bearer token, this error response is defined in Section 3 of OAuth
 2.0 Bearer Token Usage [RFC6750].

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires January 03, 2014 [Page 21]

Internet-Draft oauth-dyn-reg July 2013

 When a registration error condition occurs, the authorization server
 returns an HTTP 400 status code (unless otherwise specified) with
 content type "application/json" consisting of a JSON object [RFC4627]
 describing the error in the response body.

 The JSON object contains two members:

 error
 The error code, a single ASCII string.
 error_description
 A human-readable text description of the error for debugging.

 This specification defines the following error codes:

 invalid_redirect_uri
 The value of one or more "redirect_uris" is invalid.
 invalid_client_metadata
 The value of one of the client metadata (Section 2) fields is
 invalid and the server has rejected this request. Note that an
 Authorization server MAY choose to substitute a valid value for
 any requested parameter of a client's metadata.
 invalid_client_id
 The value of "client_id" does not match the one assigned to this
 client.

 Following is a non-normative example of an error response (with line
 wraps for display purposes only):

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error":"invalid_redirect_uri",
 "error_description":"The redirect URI of http://sketchy.example.com
 is not allowed for this server."
 }

6. IANA Considerations

6.1. OAuth Token Endpoint Authentication Methods Registry

 This specification establishes the OAuth Token Endpoint
 Authentication Methods registry.

https://datatracker.ietf.org/doc/html/rfc4627

Richer, et al. Expires January 03, 2014 [Page 22]

Internet-Draft oauth-dyn-reg July 2013

 Additional values for use as "token_endpoint_auth_method" metadata
 values are registered with a Specification Required ([RFC5226]) after
 a two-week review period on the oauth-ext-review@ietf.org mailing
 list, on the advice of one or more Designated Experts. However, to
 allow for the allocation of values prior to publication, the
 Designated Expert(s) may approve registration once they are satisfied
 that such a specification will be published.

 Registration requests must be sent to the oauth-ext-review@ietf.org
 mailing list for review and comment, with an appropriate subject
 (e.g., "Request to register token_endpoint_auth_method value:
 example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

6.1.1. Registration Template

 Token Endpoint Authorization Method name:
 The name requested (e.g., "example"). This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted.

 Change controller:
 For Standards Track RFCs, state "IETF". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification document(s):
 Reference to the document(s) that specify the token endpoint
 authorization method, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

6.1.2. Initial Registry Contents

 The OAuth Token Endpoint Authentication Methods registry's initial
 contents are:

 o Token Endpoint Authorization Method name: "none"
 o Change controller: IETF

https://datatracker.ietf.org/doc/html/rfc5226

Richer, et al. Expires January 03, 2014 [Page 23]

Internet-Draft oauth-dyn-reg July 2013

 o Specification document(s): [[this document]]

 o Token Endpoint Authorization Method name: "client_secret_post"
 o Change controller: IETF
 o Specification document(s): [[this document]]

 o Token Endpoint Authorization Method name: "client_secret_basic"
 o Change controller: IETF
 o Specification document(s): [[this document]]

7. Security Considerations

 Since requests to the client registration endpoint result in the
 transmission of clear-text credentials (in the HTTP request and
 response), the Authorization Server MUST require the use of a
 transport-layer security mechanism when sending requests to the
 registration endpoint. The server MUST support TLS 1.2 RFC 5246
 [RFC5246] and/or TLS 1.0 [RFC2246] and MAY support additional
 transport-layer mechanisms meeting its security requirements. When
 using TLS, the Client MUST perform a TLS/SSL server certificate
 check, per RFC 6125 [RFC6125].

 Since the client configuration endpoint is an OAuth 2.0 protected
 resource, it SHOULD have some rate limiting on failures to prevent
 the registration access token from being disclosed though repeated
 access attempts.

 For clients that use redirect-based grant types such as
 "authorization_code" and "implicit", authorization servers SHOULD
 require clients to register their "redirect_uris". Requiring clients
 to do so can help mitigate attacks where rogue actors inject and
 impersonate a validly registered client and intercept its
 authorization code or tokens through an invalid redirect URI.

 The authorization server MUST treat all client metadata as self-
 asserted. A rogue client might use the name and logo for the
 legitimate client, which it is trying to impersonate. An
 authorization server needs to take steps to mitigate this phishing
 risk, since the logo could confuse users into thinking they're
 logging in to the legitimate client. For instance, an authorization
 server could warn if the domain/site of the logo doesn't match the
 domain/site of redirect URIs. An authorization server can also
 present warning messages to end users about untrusted clients in all
 cases, especially if such clients have been recently registered and
 have not been trusted by any users at the authorization server
 before.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125

Richer, et al. Expires January 03, 2014 [Page 24]

Internet-Draft oauth-dyn-reg July 2013

 In a situation where the authorization server is supporting open
 client registration, it must be extremely careful with any URL
 provided by the client that will be displayed to the user (e.g.
 "logo_uri", "tos_uri", "client_uri", and "policy_uri"). For
 instance, a rogue client could specify a registration request with a
 reference to a drive-by download in the "policy_uri". The
 authorization server SHOULD check to see if the "logo_uri",
 "tos_uri", "client_uri", and "policy_uri" have the same host and
 scheme as the those defined in the array of "redirect_uris" and that
 all of these resolve to valid web pages.

 While the client secret can expire, the registration access token
 should not expire while a client is still actively registered. If
 this token were to expire, a developer or client could be left in a
 situation where they have no means of retrieving or updating the
 client's registration information. Were that the case, a new
 registration would be required, thereby generating a new client
 identifier. However, to limit the exposure surface of the
 registration access token, the registration access token MAY be
 rotated when the developer or client does a read or update operation
 on the client's client configuration endpoint. As the registration
 access tokens are relatively long-term credentials, and since the
 registration access token is a Bearer token and acts as the sole
 authentication for use at the client configuration endpoint, it MUST
 be protected by the developer or client as described in OAuth 2.0
 Bearer Token Usage [RFC6750].

 If a client is deprovisioned from a server, any outstanding
 registration access token for that client MUST be invalidated at the
 same time. Otherwise, this can lead to an inconsistent state wherein
 a client could make requests to the client configuration endpoint
 where the authentication would succeed but the action would fail
 because the client is no longer valid. To prevent accidental
 disclosure from such an erroneous situation, the authorization server
 MUST treat all such requests as if the registration access token was
 invalid (by returning an HTTP 401 Unauthorized error, as described).

 Public clients MAY register with an authorization server using this
 protocol, if the authorization server's policy allows them. Public
 clients use a "none" value for the "token_endpoint_auth_method"
 metadata field and are generally used with the "implicit" grant type.
 Often these clients will be short-lived in-browser applications
 requesting access to a user's resources and access is tied to a
 user's active session at the authorization server. Since such
 clients often do not have long-term storage, it's possible that such
 clients would need to re-register every time the browser application
 is loaded. Additionally, such clients may not have ample opportunity
 to unregister themselves using the delete action before the browser

https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires January 03, 2014 [Page 25]

Internet-Draft oauth-dyn-reg July 2013

 closes. To avoid the resulting proliferation of dead client
 identifiers, an authorization server MAY decide to expire
 registrations for existing clients meeting certain criteria after a
 period of time has elapsed.

 Since different OAuth 2.0 grant types have different security and
 usage parameters, an authorization server MAY require separate
 registrations for a piece of software to support multiple grant
 types. For instance, an authorization server might require that all
 clients using the "authorization_code" grant type make use of a
 client secret for the "token_endpoint_auth_method", but any clients
 using the "implicit" grant type do not use any authentication at the
 token endpoint. In such a situation, a server MAY disallow clients
 from registering for both the "authorization_code" and "implicit"
 grant types simultaneously. Similarly, the "authorization_code"
 grant type is used to represent access on behalf of an end user, but
 the "client_credentials" grant type represents access on behalf of
 the client itself. For security reasons, an authorization server
 could require that different scopes be used for these different use
 cases, and as a consequence it MAY disallow these two grant types
 from being registered together by the same client. In all of these
 cases, the authorization server would respond with an
 "invalid_client_metadata" error response (Section 5.2).

8. Normative References

 [IANA.Language]
 Internet Assigned Numbers Authority (IANA), "Language
 Subtag Registry", 2005.

 [JWK] Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-
key (work in progress), May 2013.

 [OAuth.JWT]
 Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Bearer Token Profiles for OAuth 2.0", draft-ietf-

oauth-jwt-bearer (work in progress), March 2013.

 [OAuth.SAML2]
 Campbell, B., Mortimore, C., and M. Jones, "SAML 2.0
 Bearer Assertion Profiles for OAuth 2.0", draft-ietf-

oauth-saml2-bearer (work in progress), March 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bearer
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bearer
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-saml2-bearer
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-saml2-bearer
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246

Richer, et al. Expires January 03, 2014 [Page 26]

Internet-Draft oauth-dyn-reg July 2013

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

Appendix A. Acknowledgments

 The authors thank the OAuth Working Group, the User-Managed Access
 Working Group, and the OpenID Connect Working Group participants for
 their input to this document. In particular, the following
 individuals have been instrumental in their review and contribution
 to various versions of this document: Amanda Anganes, Derek Atkins,
 Tim Bray, Domenico Catalano, Donald Coffin, Vladimir Dzhuvinov,
 George Fletcher, Thomas Hardjono, Phil Hunt, William Kim, Torsten
 Lodderstedt, Eve Maler, Josh Mandel, Nov Matake, Nat Sakimura,
 Christian Scholz, and Hannes Tschofenig.

Appendix B. Client Lifecycle Examples

 In the OAuth 2.0 specification [RFC6749], a client is identified by
 its own unique Client identifier ("client_id") at each authorization
 server that it associates with. Dynamic registration as defined in
 this document is one way for a client to get a client identifier and
 associate a set of metadata with that identifier. Lack of such a

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6749

Richer, et al. Expires January 03, 2014 [Page 27]

Internet-Draft oauth-dyn-reg July 2013

 client identifier is the expected trigger for a client registration
 operation.

 In many cases, this client identifier is a unique, pairwise
 association between a particular running instance of a piece of
 client software and a particular running instance of an authorization
 server software. In particular:

 o A single instance of client software (such as a Web server)
 talking to multiple authorization servers will need to register
 with each authorization server separately, creating a distinct
 client identifier with each authorization server. The client can
 not make any assumption that the authorization servers are
 correlating separate registrations of the client software together
 without further profiles and extensions to this specification
 document. The means by which a client discovers and
 differentiates between multiple authorization servers is out of
 scope for this specification.
 o Multiple instances of client software (such as a native
 application installed on multiple devices simultaneously) talking
 to the same authorization server will need to each register with
 that authorization server separately, creating a distinct client
 identifier for each copy of the application. The authorization
 server cannot make any assumption of correlation between these
 clients without further specifications, profiles, and extensions
 to this specification. The client can not make any assumption
 that the authorization server will correlate separate
 registrations of the client software together without further
 profiles and extensions to this specification document.

 A client identifier (and its associated credentials) could also be
 shared between multiple instances of a client. Mechanisms for
 sharing client identifiers between multiple instances of a piece of
 software (either client or authorization server) are outside the
 scope of this specification, as it is expected that every successful
 registration request (Section 3.1) results in the issuance of a new
 client identifier.

 There are several patterns of OAuth client registration that dynamic
 registration protocol can enable. The following non-normative
 example lifecycle descriptions are not intended to be an exhaustive
 list. It is assumed that the authorization server supports the
 dynamic registration protocol and that all necessary discovery steps
 (which are out of scope for this specification) have already been
 performed.

B.1. Open Registration

Richer, et al. Expires January 03, 2014 [Page 28]

Internet-Draft oauth-dyn-reg July 2013

 Open registration, with no authorization required on the client
 registration endpoint, works as follows:

 a. A client needs to get OAuth 2.0 tokens from an authorization
 server, but the client does not have a client identifier for that
 authorization server.
 b. The client sends an HTTP POST request to the client registration
 endpoint at the authorization server and includes its metadata.
 c. The authorization server issues a client identifier and returns
 it to the client along with a registration access token and a
 reference to the client's client configuration endpoint.
 d. The client stores the returned response from the authorization
 server. At a minimum, it should remember the values of
 "client_id", "client_secret" (if present),
 "registration_access_token", and "registration_client_uri".
 e. The client uses the its "client_id" and "client_secret" (if
 provided) to request OAuth 2.0 tokens using any valid OAuth 2.0
 flow for which it is authorized.
 f. If the client's "client_secret" expires or otherwise stops
 working, the client sends an HTTP GET request to the
 "registration_client_uri" with the "registration_access_token" as
 its authorization. This response will contain the client's
 refreshed "client_secret" along with any changed metadata values.
 Its "client_id" will remain the same.
 g. If the client needs to update its configuration on the
 authorization server, it sends an HTTP PUT request to the
 "registration_client_uri" with the "registration_access_token" as
 its authorization. This response will contain the client's
 changed metadata values. Its "client_id" will remain the same.
 h. If the client is uninstalled or otherwise deprovisioned, it can
 send an HTTP DELETE request to the "registration_client_uri" with
 the "registration_access_token" as its authorization. This will
 effectively deprovision the client from the authorization server.

B.2. Protected Registration

 An authorization server may require an initial access token for
 requests to its registration endpoint. While the method by which a
 client receives this initial Access token and the method by which the
 authorization server validates this initial access token are out of
 scope for this specification, a common approach is for the developer
 to use a manual pre-registration portal at the authorization server
 that issues an initial access token to the developer. This allows
 the developer to package the initial access token with different
 instances of the client application. While each copy of the
 application would get its own client identifier (and registration
 access token), all instances of the application would be tied back to
 the developer by their shared use of this initial access token.

Richer, et al. Expires January 03, 2014 [Page 29]

Internet-Draft oauth-dyn-reg July 2013

 a. A developer is creating a client to use an authorization server
 and knows that instances of the client will dynamically register
 at runtime, but that the authorization server requires
 authorization at the registration endpoint.
 b. The developer visits a manual pre-registration page at the
 authorization server and is issued an initial access token in the
 form of an OAuth 2.0 Bearer Token [RFC6750].
 c. The developer packages that token with all instances of the
 client application.
 d. The client needs to get OAuth 2.0 tokens from an authorization
 server, but the client does not have a client identifier for that
 authorization server.
 e. The client sends an HTTP POST request to the client registration
 endpoint at the authorization server with its metadata, and the
 initial access token as its authorization.
 f. The authorization server issues a client identifier and returns
 it to the client along with a registration access token and a
 reference to the client's client configuration endpoint.
 g. The client stores the returned response from the authorization
 server. At a minimum, it should know the values of "client_id",
 "client_secret" (if present), "registration_access_token", and
 "registration_client_uri".
 h. The client uses the its "client_id" and "client_secret" (if
 provided) to request OAuth 2.0 tokens using any supported OAuth
 2.0 flow for which this client is authorized.
 i. If the client's "client_secret" expires or otherwise stops
 working, the client sends an HTTP GET request to the
 "registration_client_uri" with the "registration_access_token" as
 its authorization. This response will contain the client's
 refreshed "client_secret" along with any metadata values
 registered to that client, some of which may have changed. Its
 "client_id" will remain the same.
 j. If the client needs to update its configuration on the
 authorization server, it sends an HTTP PUT request to the
 "registration_client_uri" with the "registration_access_token" as
 its authorization. The response will contain the client's
 changed metadata values. Its "client_id" will remain the same.
 k. If the client is uninstalled or otherwise deprovisioned, it can
 send an HTTP DELETE request to the "registration_client_uri" with
 the "registration_access_token" as its authorization. This will
 effectively deprovision the client from the Authorization Server.

B.3. Developer Automation

 The dynamic registration protocol can also be used in place of a
 manual registration portal, for instance as part of an automated
 build and deployment process. In this scenario, the authorization
 server may require an initial access token for requests to its

https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires January 03, 2014 [Page 30]

Internet-Draft oauth-dyn-reg July 2013

 registration endpoint, as described in Protected Registration
 (Appendix B.2). However, here the developer manages the client's
 registration instead of the client itself. Therefore, the initial
 registration token and registration access token all remain with the
 developer. The developer packages the client identifier with the
 client as part of the client's build process.

 a. A developer is creating a client to use an authorization server
 and knows that instances of the client will not dynamically
 register at runtime.
 b. If required for registrations at the authorization server, the
 developer performs an OAuth 2.0 authorization of his build
 environment against the authorization server using any valid
 OAuth 2.0 flow. The authorization server and is issues an
 initial access token to the developer's build environment in the
 form of an OAuth 2.0 Bearer Token [RFC6750].
 c. The developer configures his build environment to send an HTTP
 POST request to the client registration endpoint at the
 authorization server with the client's metadata, using the
 initial access token obtained the previous step as an OAuth 2.0
 Bearer Token [RFC6750].
 d. The authorization server issues a client identifier and returns
 it to the developer along with a registration access token and a
 reference to the client's client configuration endpoint.
 e. The developer packages the client identifier with the client and
 stores the "registration_access_token", and
 "registration_client_uri" in the deployment system.
 f. The client uses the its "client_id" and "client_secret" (if
 provided) to request OAuth 2.0 tokens using any supported OAuth
 2.0 flow.
 g. If the client's "client_secret" expires or otherwise stops
 working, the developer's deployment system sends an HTTP GET
 request to the "registration_client_uri" with the
 "registration_access_token" as its authorization. This response
 will contain the client's refreshed "client_secret" along with
 any changed metadata values. Its "client_id" will remain the
 same. These new values will then be packaged and shipped to or
 retrieved by instances of the client, if necessary.
 h. If the developer needs to update its configuration on the
 authorization server, the deployment system sends an HTTP PUT
 request to the "registration_client_uri" with the
 "registration_access_token" as its authorization. This response
 will contain the client's changed metadata values. Its
 "client_id" will remain the same. These new values will then be
 packaged and shipped to or retrieved by instances of the client,
 if necessary.
 i. If the client is deprovisioned, the developer's deployment system
 can send an HTTP DELETE request to the "registration_client_uri"

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires January 03, 2014 [Page 31]

Internet-Draft oauth-dyn-reg July 2013

 with the "registration_access_token" as its authorization. This
 will effectively deprovision the client from the authorization
 server and prevent any instances of the client from functioning.

Appendix C. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -13

 o Fixed broken example text in registration request and in delete
 request
 o Added security discussion of separating clients of different grant
 types
 o Fixed error reference to point to RFC6750 instead of RFC6749
 o Clarified that servers must respond to all requests to
 configuration endpoint, even if it's just an error code
 o Lowercased all Terms to conform to style used in RFC6750

 -12

 o Improved definition of Initial Access Token
 o Changed developer registration scenario to have the Initial Access
 Token gotten through a normal OAuth 2.0 flow
 o Moved non-normative client lifecycle examples to appendix
 o Marked differentiating between auth servers as out of scope
 o Added protocol flow diagram
 o Added credential rotation discussion
 o Called out Client Registration Endpoint as an OAuth 2.0 Protected
 Resource
 o Cleaned up several pieces of text

 -11

 o Added localized text to registration request and response
 examples.
 o Removed "client_secret_jwt" and "private_key_jwt".
 o Clarified "tos_uri" and "policy_uri" definitions.
 o Added the OAuth Token Endpoint Authentication Methods registry for
 registering "token_endpoint_auth_method" metadata values.
 o Removed uses of non-ASCII characters, per RFC formatting rules.
 o Changed "expires_at" to "client_secret_expires_at" and "issued_at"
 to "client_id_issued_at" for greater clarity.
 o Added explanatory text for different credentials (Initial Access
 Token, Registration Access Token, Client Credentials) and what
 they're used for.
 o Added Client Lifecycle discussion and examples.
 o Defined Initial Access Token in Terminology section.

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires January 03, 2014 [Page 32]

Internet-Draft oauth-dyn-reg July 2013

 -10

 o Added language to point out that scope values are service-specific
 o Clarified normative language around client metadata
 o Added extensibility to token_endpoint_auth_method using absolute
 URIs
 o Added security consideration about registering redirect URIs
 o Changed erroneous 403 responses to 401's with notes about token
 handling
 o Added example for initial registration credential

 -09

 o Added method of internationalization for Client Metadata values
 o Fixed SAML reference

 -08

 o Collapsed jwk_uri, jwk_encryption_uri, x509_uri, and
 x509_encryption_uri into a single jwks_uri parameter
 o Renamed grant_type to grant_types since it's a plural value
 o Formalized name of "OAuth 2.0" throughout document
 o Added JWT Bearer Assertion and SAML 2 Bearer Assertion to example
 grant types
 o Added response_types parameter and explanatory text on its use
 with and relationship to grant_types

 -07

 o Changed registration_access_url to registration_client_uri
 o Fixed missing text in 5.1
 o Added Pragma: no-cache to examples
 o Changed "no such client" error to 403
 o Renamed Client Registration Access Endpoint to Client
 Configuration Endpoint
 o Changed all the parameter names containing "_url" to instead use
 "_uri"
 o Updated example text for forming Client Configuration Endpoint URL

 -06

 o Removed secret_rotation as a client-initiated action, including
 removing client secret rotation endpoint and parameters.
 o Changed _links structure to single value registration_access_url.
 o Collapsed create/update/read responses into client info response.
 o Changed return code of create action to 201.
 o Added section to describe suggested generation and composition of
 Client Registration Access URL.

Richer, et al. Expires January 03, 2014 [Page 33]

Internet-Draft oauth-dyn-reg July 2013

 o Added clarifying text to PUT and POST requests to specify JSON in
 the body.
 o Added Editor's Note to DELETE operation about its inclusion.
 o Added Editor's Note to registration_access_url about alternate
 syntax proposals.

 -05

 o changed redirect_uri and contact to lists instead of space
 delimited strings
 o removed operation parameter
 o added _links structure
 o made client update management more RESTful
 o split endpoint into three parts
 o changed input to JSON from form-encoded
 o added READ and DELETE operations
 o removed Requirements section
 o changed token_endpoint_auth_type back to
 token_endpoint_auth_method to match OIDC who changed to match us

 -04

 o removed default_acr, too undefined in the general OAuth2 case
 o removed default_max_auth_age, since there's no mechanism for
 supplying a non-default max_auth_age in OAuth2
 o clarified signing and encryption URLs
 o changed token_endpoint_auth_method to token_endpoint_auth_type to
 match OIDC

 -03

 o added scope and grant_type claims
 o fixed various typos and changed wording for better clarity
 o endpoint now returns the full set of client information
 o operations on client_update allow for three actions on metadata:
 leave existing value, clear existing value, replace existing value
 with new value

 -02

 o Reorganized contributors and references
 o Moved OAuth references to RFC
 o Reorganized model/protocol sections for clarity
 o Changed terminology to "client register" instead of "client
 associate"
 o Specified that client_id must match across all subsequent requests
 o Fixed RFC2XML formatting, especially on lists

Richer, et al. Expires January 03, 2014 [Page 34]

Internet-Draft oauth-dyn-reg July 2013

 -01

 o Merged UMA and OpenID Connect registrations into a single document
 o Changed to form-paramter inputs to endpoint
 o Removed pull-based registration

 -00

 o Imported original UMA draft specification

Authors' Addresses

 Justin Richer (editor)
 The MITRE Corporation

 Email: jricher@mitre.org

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Maciej Machulak
 Newcastle University

 Email: m.p.machulak@ncl.ac.uk
 URI: http://ncl.ac.uk/

http://self-issued.info/
http://ncl.ac.uk/

Richer, et al. Expires January 03, 2014 [Page 35]

