
OAuth Working Group J. Richer, Ed.
Internet-Draft
Intended status: Experimental M. Jones
Expires: August 13, 2015 Microsoft
 J. Bradley
 Ping Identity
 M. Machulak
 Newcastle University
 February 9, 2015

OAuth 2.0 Dynamic Client Registration Management Protocol
draft-ietf-oauth-dyn-reg-management-09

Abstract

 This specification defines methods for management of dynamic OAuth
 2.0 client registrations for use cases in which the properties of a
 registered client may need to be changed during the lifetime of the
 client. Not all authorization servers supporting dynamic client
 registration will support these management methods.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 13, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Richer, et al. Expires August 13, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 2
1.2. Terminology . 3
1.3. Protocol Flow . 3

2. Client Configuration Endpoint 5
2.1. Client Read Request 6
2.2. Client Update Request 6
2.3. Client Delete Request 9

3. Client Information Response 10
4. IANA Considerations . 11
5. Security Considerations 12
6. Normative References . 13
Appendix A. Acknowledgments 13
Appendix B. Registration Tokens and Client Credentials 14
B.1. Credential Rotation 15

Appendix C. Forming the Client Configuration Endpoint URL . . . 15
Appendix D. Document History 16

 Authors' Addresses . 17

1. Introduction

 In order for an OAuth 2.0 client to utilize an OAuth 2.0
 authorization server, the client needs specific information to
 interact with the server, including an OAuth 2.0 client identifier to
 use at that server. The OAuth 2.0 Dynamic Client Registration
 Protocol [OAuth.Registration] specification describes how an OAuth
 2.0 client can be dynamically registered with an authorization server
 to obtain this information and how metadata about the client can be
 registered with the server.

 This specification extends the core registration specification by
 defining a set of methods for management of dynamic OAuth 2.0 client
 registrations beyond those defined in the core registration
 specification.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Richer, et al. Expires August 13, 2015 [Page 2]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 This specification uses the terms "access token", "authorization
 code", "authorization endpoint", "authorization grant",
 "authorization server", "client", "client identifier", "client
 secret", "grant type", "protected resource", "redirection URI",
 "refresh token", "resource owner", "resource server", "response
 type", and "token endpoint" defined by OAuth 2.0 [RFC6749] and the
 terms defined by the OAuth 2.0 Client Dynamic Registration Protocol
 [OAuth.Registration].

 This specification defines the following terms:

 Client Configuration Endpoint
 OAuth 2.0 endpoint through which registration information for a
 registered client can be managed. This URL for this endpoint is
 returned by the authorization server in the client information
 response.

 Registration Access Token
 OAuth 2.0 bearer token issued by the authorization server through
 the client registration endpoint that is used to authenticate the
 caller when accessing the client's registration information at the
 client configuration endpoint. This access token is associated
 with a particular registered client.

1.3. Protocol Flow

https://datatracker.ietf.org/doc/html/rfc6749

Richer, et al. Expires August 13, 2015 [Page 3]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 This extends the flow in the OAuth 2.0 Dynamic Client Registration
 Protocol [OAuth.Registration] specification as follows:

 +--------(A)- Initial Access Token (OPTIONAL)
 |
 | +----(B)- Software Statement (OPTIONAL)
 | |
 v v
 +-----------+ +---------------+
 | |--(C)- Client Registration Request -->| Client |
 | | | Registration |
 | |<-(D)- Client Information Response ---| Endpoint |
 | | +---------------+
 | |
 | | +---------------+
 | Client or |--(E)- Read or Update Request ------->| |
 | Developer | | |
 | |<-(F)- Client Information Response ---| Client |
 | | | Configuration |
 | | | Endpoint |
 | | | |
 | |--(G)- Delete Request --------------->| |
 | | | |
 | |<-(H)- Delete Confirmation -----------| |
 +-----------+ +---------------+

 Figure 1: Abstract Extended Dynamic Client Registration Flow

 The abstract OAuth 2.0 client dynamic registration flow illustrated
 in Figure 1 describes the interaction between the client or developer
 and the endpoints defined in this specification and its parent. This
 figure does not demonstrate error conditions. This flow includes the
 following steps:

 (A) Optionally, the client or developer is issued an initial access
 token for use with the client registration endpoint. The method
 by which the initial access token is issued to the client or
 developer is out of scope for this specification.

 (B) Optionally, the client or developer is issued a software
 statement for use with the client registration endpoint. The
 method by which the software statement is issued to the client or
 developer is out of scope for this specification.

 (C) The client or developer calls the client registration endpoint
 with its desired registration metadata, optionally including the
 initial access token from (A) if one is required by the
 authorization server.

Richer, et al. Expires August 13, 2015 [Page 4]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 (D) The authorization server registers the client and returns the
 client's registered metadata, a client identifier that is unique
 at the server, a set of client credentials such as a client secret
 if applicable for this client, a URI pointing to the client
 configuration endpoint, and a registration access token to be used
 when calling the client configuration endpoint.

 (E) The client or developer optionally calls the client
 configuration endpoint with a read or update request using the
 registration access token issued in (D). An update request
 contains all of the client's registered metadata.

 (F) The authorization server responds with the client's current
 configuration, potentially including a new registration access
 token and a new set of client credentials such as a client secret
 if applicable for this client. If a new registration access token
 is issued, it replaces the token issued in (D) for all subsequent
 calls to the client configuration endpoint.

 (G) The client or developer optionally calls the client
 configuration endpoint with a delete request using the
 registration access token issued in (D).

 (H) The authorization server deprovisions the client and responds
 with a confirmation that the deletion has taken place.

2. Client Configuration Endpoint

 The client configuration endpoint is an OAuth 2.0 protected resource
 that is provisioned by the server to facilitate viewing, updating,
 and deleting a client's registered information. The location of this
 endpoint is communicated to the client through the
 "registration_client_uri" member of the client information response,
 as specified in Section 3. The client MUST use its registration
 access token in all calls to this endpoint as an OAuth 2.0 Bearer
 Token [RFC6750].

 The client configuration endpoint MUST require transport-layer
 security. The server MUST support TLS 1.2 RFC 5246 [RFC5246] and MAY
 support additional transport-layer mechanisms meeting its security
 requirements. When using TLS, the client MUST perform a TLS/SSL
 server certificate check, per RFC 6125 [RFC6125]. Implementation
 security considerations can be found in Recommendations for Secure
 Use of TLS and DTLS [TLS.BCP].

 Operations on this endpoint are switched through the use of different
 HTTP methods [RFC7231]. If an authorization server does not support

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc7231

Richer, et al. Expires August 13, 2015 [Page 5]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 a particular method on the client configuration endpoint, it MUST
 respond with the appropriate error code.

2.1. Client Read Request

 To read the current configuration of the client on the authorization
 server, the client makes an HTTP GET request to the client
 configuration endpoint, authenticating with its registration access
 token.

 Following is a non-normative example request (with line wraps for
 display purposes only):

 GET /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 Upon successful read of the information for a currently active
 client, the authorization server responds with an HTTP 200 OK with
 content type of "application/json" and a payload, as described in

Section 3. Some values in the response, including the
 "client_secret" and "registration_access_token", MAY be different
 from those in the initial registration response. If the
 authorization server includes a new client secret and/or registration
 access token in its response, the client MUST immediately discard its
 previous client secret and/or registration access token. The value
 of the "client_id" MUST NOT change from the initial registration
 response.

 If the registration access token used to make this request is not
 valid, the server MUST respond with an error as described in OAuth
 Bearer Token Usage [RFC6750].

 If the client does not exist on this server, the server MUST respond
 with HTTP 401 Unauthorized and the registration access token used to
 make this request SHOULD be immediately revoked.

 If the client does not have permission to read its record, the server
 MUST return an HTTP 403 Forbidden.

2.2. Client Update Request

 This operation updates a previously-registered client with new
 metadata at the authorization server. This request is authenticated
 by the registration access token issued to the client.

https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires August 13, 2015 [Page 6]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 The client sends an HTTP PUT to the client configuration endpoint
 with a content type of "application/json". The HTTP entity payload
 is a JSON [RFC7159] document consisting of a JSON object and all
 parameters as top- level members of that JSON object.

 This request MUST include all client metadata fields as returned to
 the client from a previous registration, read, or update operation.
 The client MUST NOT include the "registration_access_token",
 "registration_client_uri", "client_secret_expires_at", or
 "client_id_issued_at" fields described in Section 3.

 Valid values of client metadata fields in this request MUST replace,
 not augment, the values previously associated with this client.
 Omitted fields MUST be treated as null or empty values by the server,
 indicating the client's request to delete them from the client's
 registration. The authorization server MAY ignore any null or empty
 value in the request just as any other value.

 The client MUST include its "client_id" field in the request, and it
 MUST be the same as its currently-issued client identifier. If the
 client includes the "client_secret" field in the request, the value
 of this field MUST match the currently-issued client secret for that
 client. The client MUST NOT be allowed to overwrite its existing
 client secret with its own chosen value.

 For all metadata fields, the authorization server MAY replace any
 invalid values with suitable default values, and it MUST return any
 such fields to the client in the response.

 For example, a client could send the following request to the client
 registration endpoint to update the client registration in the above
 example with new information:

https://datatracker.ietf.org/doc/html/rfc7159

Richer, et al. Expires August 13, 2015 [Page 7]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 Following is a non-normative example request (with line wraps for
 display purposes only):

 PUT /register/s6BhdRkqt3 HTTP/1.1
 Accept: application/json
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 {
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/alt"],
 "grant_types": ["authorization_code", "refresh_token"],
 "token_endpoint_auth_method": "client_secret_basic",
 "jwks_uri": "https://client.example.org/my_public_keys.jwks",
 "client_name":"My New Example",
 "client_name#fr":"Mon Nouvel Exemple",
 "logo_uri":"https://client.example.org/newlogo.png",
 "logo_uri#fr":"https://client.example.org/fr/newlogo.png"
 }

 This example uses client metadata values defined in
 [OAuth.Registration].

 Upon successful update, the authorization server responds with an
 HTTP 200 OK Message with content type "application/json" and a
 payload, as described in Section 3. Some values in the response,
 including the "client_secret" and "registration_access_token", MAY be
 different from those in the initial registration response. If the
 authorization server includes a new client secret and/or registration
 access token in its response, the client MUST immediately discard its
 previous client secret and/or registration access token. The value
 of the "client_id" MUST NOT change from the initial registration
 response.

 If the registration access token used to make this request is not
 valid, the server MUST respond with an error as described in OAuth
 Bearer Token Usage [RFC6750].

 If the client does not exist on this server, the server MUST respond
 with HTTP 401 Unauthorized, and the registration access token used to
 make this request SHOULD be immediately revoked.

 If the client is not allowed to update its records, the server MUST
 respond with HTTP 403 Forbidden.

https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires August 13, 2015 [Page 8]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 If the client attempts to set an invalid metadata field and the
 authorization server does not set a default value, the authorization
 server responds with an error as described in [OAuth.Registration].

2.3. Client Delete Request

 To deprovision itself on the authorization server, the client makes
 an HTTP DELETE request to the client configuration endpoint. This
 request is authenticated by the registration access token issued to
 the client as described in [RFC6749].

 Following is a non-normative example request (with line wraps for
 display purposes only):

 DELETE /register/s6BhdRkqt3 HTTP/1.1
 Host: server.example.com
 Authorization: Bearer reg-23410913-abewfq.123483

 A successful delete action will invalidate the "client_id",
 "client_secret", and "registration_access_token" for this client,
 thereby preventing the "client_id" from being used at either the
 authorization endpoint or token endpoint of the authorization server.
 If possible, the authorization server SHOULD immediately invalidate
 all existing authorization grants and currently-active access tokens,
 refresh tokens, and other tokens associated with this client.

 If a client has been successfully deprovisioned, the authorization
 server MUST respond with an HTTP 204 No Content message.

 If the server does not support the delete method, the server MUST
 respond with an HTTP 405 Not Supported.

 If the registration access token used to make this request is not
 valid, the server MUST respond with an error as described in OAuth
 Bearer Token Usage [RFC6750].

 If the client does not exist on this server, the server MUST respond
 with HTTP 401 Unauthorized and the registration access token used to
 make this request SHOULD be immediately revoked.

 If the client is not allowed to delete itself, the server MUST
 respond with HTTP 403 Forbidden.

 Following is a non-normative example response:

 HTTP/1.1 204 No Content
 Cache-Control: no-store
 Pragma: no-cache

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires August 13, 2015 [Page 9]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

3. Client Information Response

 This specification extends the client information response defined in
 OAuth 2.0 Client Dynamic Registration [OAuth.Registration], which
 states that the response contains the client identifier as well as
 the client secret, if the client is a confidential client. When used
 with this specification, the client information response also
 contains the fully qualified URL of the client configuration endpoint
 (Section 2) for this specific client that the client or developer may
 use to manage the client's registration configuration, as well as a
 registration access token that is to be used by the client or
 developer to perform subsequent operations at the client
 configuration endpoint.

 registration_access_token
 REQUIRED. Access token used at the client configuration endpoint
 to perform subsequent operations upon the client registration.

 registration_client_uri
 REQUIRED. Fully qualified URL of the client configuration
 endpoint for this client.

 Additionally, the authorization server MUST return all registered
 metadata about this client, including any fields provisioned by the
 authorization server itself. The authorization server MAY reject or
 replace any of the client's requested metadata values submitted
 during the registration or update requests and substitute them with
 suitable values.

 The response is an "application/json" document with all parameters as
 top-level members of a JSON object [RFC7159].

https://datatracker.ietf.org/doc/html/rfc7159

Richer, et al. Expires August 13, 2015 [Page 10]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 Following is a non-normative example response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "registration_access_token": "reg-23410913-abewfq.123483",
 "registration_client_uri":
 "https://server.example.com/register/s6BhdRkqt3",
 "client_id":"s6BhdRkqt3",
 "client_secret": "cf136dc3c1fc93f31185e5885805d",
 "client_id_issued_at":2893256800,
 "client_secret_expires_at":2893276800,
 "client_name":"My Example Client",
 "client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/callback2"],
 "grant_types": ["authorization_code", "refresh_token"],
 "token_endpoint_auth_method": "client_secret_basic",
 "logo_uri": "https://client.example.org/logo.png",
 "jwks_uri": "https://client.example.org/my_public_keys.jwks"
 }

4. IANA Considerations

 This specification requests that IANA extend the OAuth Dynamic Client
 Metadata registry with the following entries:

 o Client Metadata Name: "registration_access_token"

 o Client Metadata Description: OAuth 2.0 bearer token used to access
 the client configuration endpoint

 o Change controller: IESG

 o Specification document(s): [[this document]]

 o Client Metadata Name: "registration_client_uri"

 o Client Metadata Description: Fully qualified URI of the client
 registration endpoint

 o Change controller: IESG

Richer, et al. Expires August 13, 2015 [Page 11]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 o Specification document(s): [[this document]]

5. Security Considerations

 While the client secret can expire, the registration access token
 SHOULD NOT expire while a client is still actively registered. If
 this token were to expire, a developer or client could be left in a
 situation where they have no means of retrieving or updating the
 client's registration information. Were that the case, a new
 registration would be required, thereby generating a new client
 identifier. However, to limit the exposure surface of the
 registration access token, the registration access token MAY be
 rotated when the developer or client does a read or update operation
 on the client's client configuration endpoint. As the registration
 access tokens are relatively long-term credentials, and since the
 registration access token is a Bearer token and acts as the sole
 authentication for use at the client configuration endpoint, it MUST
 be protected by the developer or client as described in OAuth 2.0
 Bearer Token Usage [RFC6750].

 Since requests to the client configuration endpoint result in the
 transmission of clear-text credentials (in the HTTP request and
 response), the authorization server MUST require the use of a
 transport-layer security mechanism when sending requests to the
 endpoint. The server MUST support TLS 1.2 RFC 5246 [RFC5246] and MAY
 support additional transport-layer mechanisms meeting its security
 requirements. When using TLS, the client MUST perform a TLS/SSL
 server certificate check, per RFC 6125 [RFC6125]. Implementation
 security considerations can be found in Recommendations for Secure
 Use of TLS and DTLS [TLS.BCP].

 Since the client configuration endpoint is an OAuth 2.0 protected
 resource, it SHOULD have some rate limiting on failures to prevent
 the registration access token from being disclosed though repeated
 access attempts.

 If a client is deprovisioned from a server, any outstanding
 registration access token for that client MUST be invalidated at the
 same time. Otherwise, this can lead to an inconsistent state wherein
 a client could make requests to the client configuration endpoint
 where the authentication would succeed but the action would fail
 because the client is no longer valid. To prevent accidental
 disclosure from such an erroneous situation, the authorization server
 MUST treat all such requests as if the registration access token was
 invalid (by returning an HTTP 401 Unauthorized error, as described).

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125

Richer, et al. Expires August 13, 2015 [Page 12]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

6. Normative References

 [OAuth.Registration]
 Richer, J., Jones, M., Bradley, J., Machulak, M., and P.
 Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

draft-ietf-oauth-dyn-reg (work in progress), August 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

 [TLS.BCP] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of TLS and DTLS", November
 2014.

Appendix A. Acknowledgments

 The authors thank the OAuth Working Group, the User-Managed Access
 Working Group, and the OpenID Connect Working Group participants for
 their input to this document. In particular, the following
 individuals have been instrumental in their review and contribution
 to various versions of this document: Amanda Anganes, Derek Atkins,
 Tim Bray, Domenico Catalano, Donald Coffin, Vladimir Dzhuvinov,
 George Fletcher, Thomas Hardjono, Phil Hunt, William Kim, Torsten
 Lodderstedt, Eve Maler, Josh Mandel, Nov Matake, Tony Nadalin, Nat
 Sakimura, Christian Scholz, and Hannes Tschofenig.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7231

Richer, et al. Expires August 13, 2015 [Page 13]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

Appendix B. Registration Tokens and Client Credentials

 Throughout the course of the dynamic registration protocol, there are
 three different classes of credentials in play, each with different
 properties and targets.

 o The initial access token is optionally used by the client or
 developer at the registration endpoint. This is an OAuth 2.0
 token that is used to authorize the initial client registration
 request. The content, structure, generation, and validation of
 this token are out of scope for this specification. The
 authorization server can use this token to verify that the
 presenter is allowed to dynamically register new clients. This
 token may be shared among multiple instances of a client to allow
 them to each register separately, thereby letting the
 authorization server use this token to tie multiple instances of
 registered clients (each with their own distinct client
 identifier) back to the party to whom the initial access token was
 issued, usually an application developer. This token is usually
 intended to be used only at the client registration endpoint.

 o The registration access token is used by the client or developer
 at the client configuration endpoint and represents the holder's
 authorization to manage the registration of a client. This is an
 OAuth 2.0 bearer token that is issued from the client registration
 endpoint in response to a client registration request and is
 returned in a client information response. The registration
 access token is uniquely bound to the client identifier and is
 required to be presented with all calls to the client
 configuration endpoint. The registration access token should be
 protected as described in [RFC6750] and should not be shared
 between instances of a client. If a registration access token is
 shared between client instances, one instance could change or
 delete registration values for all other instances of the client.
 The registration access token can be rotated through the use of
 the client read or update method on the client configuration
 endpoint. The registration access token is intended to be used
 only at the client configuration endpoint.

 o The client credentials (such as "client_secret") are optional
 depending on the type of client and are used to retrieve OAuth
 tokens. Client credentials are most often bound to particular
 instances of a client and should not be shared between instances.
 Note that since not all types of clients have client credentials,
 they cannot be used to manage client registrations at the client
 configuration endpoint. The client credentials can be rotated
 through the use of the client read or update method on the client

https://datatracker.ietf.org/doc/html/rfc6750

Richer, et al. Expires August 13, 2015 [Page 14]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 configuration endpoint. The client credentials are intended to be
 used only at the token endpoint.

B.1. Credential Rotation

 The authorization server may be configured to issue new registration
 access token and/or client credentials (such as a "client_secret")
 throughout the lifetime of the client. This map help minimize the
 impact of exposed credentials. The authorization server conveys new
 registration access tokens and client credentials (if applicable) to
 the client in the client information response of either a read or
 update request to the client configuration endpoint. The client's
 current registration access token and client credentials (if
 applicable) MUST be included in the client information response.

 The registration access token SHOULD be rotated only in response to a
 read or update request to the client configuration endpoint, at which
 point the new registration access token is returned to the client and
 the old registration access token MUST be discarded by the client and
 SHOULD be discarded by the server, if possible. If instead the
 registration access token were to expire or be invalidated outside of
 such requests, the client or developer might be locked out of
 managing the client's configuration.

 Note that the authorization server decides the frequency of the
 credential rotation and not the client. Methods by which the client
 can request credential rotation are outside the scope of this
 document.

Appendix C. Forming the Client Configuration Endpoint URL

 The authorization server MUST provide the client with the fully
 qualified URL in the "registration_client_uri" element of the Client
 Information Response, as specified in Section 3. The authorization
 server MUST NOT expect the client to construct or discover this URL
 on its own. The client MUST use the URL as given by the server and
 MUST NOT construct this URL from component pieces.

 Depending on deployment characteristics, the client configuration
 endpoint URL may take any number of forms. It is RECOMMENDED that
 this endpoint URL be formed through the use of a server-constructed
 URL string which combines the client registration endpoint's URL and
 the issued "client_id" for this client, with the latter as either a
 path parameter or a query parameter. For example, a client with the
 client identifier "s6BhdRkqt3" could be given a client configuration
 endpoint URL of "https://server.example.com/register/s6BhdRkqt3"
 (path parameter) or of "https://server.example.com/
 register?client_id=s6BhdRkqt3" (query parameter). In both of these

Richer, et al. Expires August 13, 2015 [Page 15]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 cases, the client simply uses the URL as given by the authorization
 server.

 These common patterns can help the server to more easily determine
 the client to which the request pertains, which MUST be matched
 against the client to which the registration access token was issued.
 If desired, the server MAY simply return the client registration
 endpoint URL as the client configuration endpoint URL and change
 behavior based on the authentication context provided by the
 registration access token.

Appendix D. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -09

 o Updated author information.

 -08

 o Updated HTTP RFC reference.

 -07

 o Editorial clarifications due to document shepherd feedback.

 -06

 o Removed TLS 1.0.

 o Moved several explanatory sections to the appendix.

 o Clarified read operations.

 o Added IANA request.

 -05

 o Removed Phil Hunt from authors list, per request.

 o Applied various minor editorial changes from working group
 comments.

 -04

 o Incorrect XML uploaded for -03

Richer, et al. Expires August 13, 2015 [Page 16]

Internet-Draft OAuth 2.0 Dynamic Registration Management February 2015

 -03

 o Changed draft to be Experimental instead of Standards Track.

 -02

 o Added more context information to the abstract.

 -01

 o Addressed issues that arose from last call comments on draft-ietf-
oauth-dyn-reg and draft-ietf-oauth-dyn-reg-metadata.

 -00

 o Created from draft-jones-oauth-dyn-reg-management-00.

Authors' Addresses

 Justin Richer (editor)

 Email: ietf@justin.richer.org

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com

 Maciej Machulak
 Newcastle University

 Email: m.p.machulak@ncl.ac.uk
 URI: http://ncl.ac.uk/

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg-metadata
https://datatracker.ietf.org/doc/html/draft-jones-oauth-dyn-reg-management-00
http://self-issued.info/
http://ncl.ac.uk/

Richer, et al. Expires August 13, 2015 [Page 17]

