
OAuth Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track J. Bradley
Expires: September 19, 2014 Ping Identity
 N. Sakimura
 NRI
 March 18, 2014

JSON Web Token (JWT)
draft-ietf-oauth-json-web-token-19

Abstract

 JSON Web Token (JWT) is a compact URL-safe means of representing
 claims to be transferred between two parties. The claims in a JWT
 are encoded as a JavaScript Object Notation (JSON) object that is
 used as the payload of a JSON Web Signature (JWS) structure or as the
 plaintext of a JSON Web Encryption (JWE) structure, enabling the
 claims to be digitally signed or MACed and/or encrypted.

 The suggested pronunciation of JWT is the same as the English word
 "jot".

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 19, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Jones, et al. Expires September 19, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft JSON Web Token (JWT) March 2014

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Notational Conventions 4

2. Terminology . 4
3. JSON Web Token (JWT) Overview 6
3.1. Example JWT . 6

4. JWT Claims . 8
4.1. Registered Claim Names 8
4.1.1. "iss" (Issuer) Claim 8
4.1.2. "sub" (Subject) Claim 9
4.1.3. "aud" (Audience) Claim 9
4.1.4. "exp" (Expiration Time) Claim 9
4.1.5. "nbf" (Not Before) Claim 9
4.1.6. "iat" (Issued At) Claim 9
4.1.7. "jti" (JWT ID) Claim 10

4.2. Public Claim Names . 10
4.3. Private Claim Names 10

5. JWT Header . 10
5.1. "typ" (Type) Header Parameter 11
5.2. "cty" (Content Type) Header Parameter 11
5.3. Replicating Claims as Header Parameters 11

6. Plaintext JWTs . 12
6.1. Example Plaintext JWT 12

7. Rules for Creating and Validating a JWT 13
7.1. String Comparison Rules 14

8. Implementation Requirements 15
9. URI for Declaring that Content is a JWT 15
10. IANA Considerations . 16
10.1. JSON Web Token Claims Registry 16
10.1.1. Registration Template 17
10.1.2. Initial Registry Contents 17

 10.2. Sub-Namespace Registration of
 urn:ietf:params:oauth:token-type:jwt 18

10.2.1. Registry Contents 18
10.3. Media Type Registration 18
10.3.1. Registry Contents 18

10.4. Registration of JWE Header Parameter Names 19
10.4.1. Registry Contents 19

http://trustee.ietf.org/license-info

Jones, et al. Expires September 19, 2014 [Page 2]

Internet-Draft JSON Web Token (JWT) March 2014

11. Security Considerations 19
12. References . 20
12.1. Normative References 20
12.2. Informative References 21

Appendix A. JWT Examples . 22
A.1. Example Encrypted JWT 22
A.2. Example Nested JWT . 23

Appendix B. Relationship of JWTs to SAML Assertions 25
Appendix C. Relationship of JWTs to Simple Web Tokens (SWTs) . . 26
Appendix D. Acknowledgements 26
Appendix E. Document History 26

 Authors' Addresses . 31

Jones, et al. Expires September 19, 2014 [Page 3]

Internet-Draft JSON Web Token (JWT) March 2014

1. Introduction

 JSON Web Token (JWT) is a compact claims representation format
 intended for space constrained environments such as HTTP
 Authorization headers and URI query parameters. JWTs encode claims
 to be transmitted as a JavaScript Object Notation (JSON) [RFC7159]
 object that is used as the payload of a JSON Web Signature (JWS)
 [JWS] structure or as the plaintext of a JSON Web Encryption (JWE)
 [JWE] structure, enabling the claims to be digitally signed or MACed
 and/or encrypted. JWTs are always represented using the JWS Compact
 Serialization or the JWE Compact Serialization.

 The suggested pronunciation of JWT is the same as the English word
 "jot".

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in Key
 words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
 these words are used without being spelled in uppercase then they are
 to be interpreted with their normal natural language meanings.

2. Terminology

 JSON Web Token (JWT)
 A string representing a set of claims as a JSON object that is
 encoded in a JWS or JWE, enabling the claims to be digitally
 signed or MACed and/or encrypted.

 Base64url Encoding
 Base64 encoding using the URL- and filename-safe character set
 defined in Section 5 of RFC 4648 [RFC4648], with all trailing '='
 characters omitted (as permitted by Section 3.2) and without the
 inclusion of any line breaks, white space, or other additional
 characters. (See Appendix C of [JWS] for notes on implementing
 base64url encoding without padding.)

 JWT Header
 A JSON object that describes the cryptographic operations applied
 to the JWT. When the JWT is digitally signed or MACed, the JWT
 Header is a JWS Header. When the JWT is encrypted, the JWT Header
 is a JWE Header.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc4648

Jones, et al. Expires September 19, 2014 [Page 4]

Internet-Draft JSON Web Token (JWT) March 2014

 Header Parameter
 A name/value pair that is member of the JWT Header.

 Header Parameter Name
 The name of a member of the JWT Header.

 Header Parameter Value
 The value of a member of the JWT Header.

 JWT Claims Set
 A JSON object that contains the Claims conveyed by the JWT.

 Claim
 A piece of information asserted about a subject. A Claim is
 represented as a name/value pair consisting of a Claim Name and a
 Claim Value.

 Claim Name
 The name portion of a Claim representation. A Claim Name is
 always a string.

 Claim Value
 The value portion of a Claim representation. A Claim Value can be
 any JSON value.

 Encoded JWT Header
 Base64url encoding of the JWT Header.

 Nested JWT
 A JWT in which nested signing and/or encryption are employed. In
 nested JWTs, a JWT is used as the payload or plaintext value of an
 enclosing JWS or JWE structure, respectively.

 Plaintext JWT
 A JWT whose Claims are not integrity protected or encrypted.

 Collision-Resistant Name
 A name in a namespace that enables names to be allocated in a
 manner such that they are highly unlikely to collide with other
 names. Examples of collision-resistant namespaces include: Domain
 Names, Object Identifiers (OIDs) as defined in the ITU-T X.660 and
 X.670 Recommendation series, and Universally Unique IDentifiers
 (UUIDs) [RFC4122]. When using an administratively delegated
 namespace, the definer of a name needs to take reasonable
 precautions to ensure they are in control of the portion of the
 namespace they use to define the name.

https://datatracker.ietf.org/doc/html/rfc4122

Jones, et al. Expires September 19, 2014 [Page 5]

Internet-Draft JSON Web Token (JWT) March 2014

 StringOrURI
 A JSON string value, with the additional requirement that while
 arbitrary string values MAY be used, any value containing a ":"
 character MUST be a URI [RFC3986]. StringOrURI values are
 compared as case-sensitive strings with no transformations or
 canonicalizations applied.

 IntDate
 A JSON numeric value representing the number of seconds from 1970-
 01-01T0:0:0Z UTC until the specified UTC date/time. See RFC 3339
 [RFC3339] for details regarding date/times in general and UTC in
 particular.

3. JSON Web Token (JWT) Overview

 JWTs represent a set of claims as a JSON object that is encoded in a
 JWS and/or JWE structure. This JSON object is the JWT Claims Set. As
 per Section 4 of [RFC7159], the JSON object consists of zero or more
 name/value pairs (or members), where the names are strings and the
 values are arbitrary JSON values. These members are the claims
 represented by the JWT.

 The member names within the JWT Claims Set are referred to as Claim
 Names. The corresponding values are referred to as Claim Values.

 The contents of the JWT Header describe the cryptographic operations
 applied to the JWT Claims Set. If the JWT Header is a JWS Header, the
 JWT is represented as a JWS, and the claims are digitally signed or
 MACed, with the JWT Claims Set being the JWS Payload. If the JWT
 Header is a JWE Header, the JWT is represented as a JWE, and the
 claims are encrypted, with the JWT Claims Set being the input
 Plaintext. A JWT may be enclosed in another JWE or JWS structure to
 create a Nested JWT, enabling nested signing and encryption to be
 performed.

 A JWT is represented as a sequence of URL-safe parts separated by
 period ('.') characters. Each part contains a base64url encoded
 value. The number of parts in the JWT is dependent upon the
 representation of the resulting JWS or JWE object using the JWS
 Compact Serialization or the JWE Compact Serialization.

3.1. Example JWT

 The following example JWT Header declares that the encoded object is
 a JSON Web Token (JWT) and the JWT is a JWS that is MACed using the
 HMAC SHA-256 algorithm:

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc7159#section-4

Jones, et al. Expires September 19, 2014 [Page 6]

Internet-Draft JSON Web Token (JWT) March 2014

 {"typ":"JWT",
 "alg":"HS256"}

 The following octet sequence is the UTF-8 representation of the JWT
 Header/JWS Header above:

 [123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32,
 34, 97, 108, 103, 34, 58, 34, 72, 83, 50, 53, 54, 34, 125]

 Base64url encoding the octets of the UTF-8 representation of the JWT
 Header yields this Encoded JWT Header value (which is also the
 underlying encoded JWS Header value):

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

 The following is an example of a JWT Claims Set:

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

 The following octet sequence, which is the UTF-8 representation of
 the JWT Claims Set above, is the JWS Payload:

 [123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10,
 32, 34, 101, 120, 112, 34, 58, 49, 51, 48, 48, 56, 49, 57, 51, 56,
 48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47, 101, 120, 97,
 109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111,
 111, 116, 34, 58, 116, 114, 117, 101, 125]

 Base64url encoding the JWS Payload yields this encoded JWS Payload
 (with line breaks for display purposes only):

 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly
 9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 Computing the MAC of the encoded JWS Header and encoded JWS Payload
 with the HMAC SHA-256 algorithm and base64url encoding the HMAC value
 in the manner specified in [JWS], yields this encoded JWS Signature:

 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 Concatenating these encoded parts in this order with period ('.')
 characters between the parts yields this complete JWT (with line
 breaks for display purposes only):

Jones, et al. Expires September 19, 2014 [Page 7]

Internet-Draft JSON Web Token (JWT) March 2014

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .
 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 This computation is illustrated in more detail in Appendix A.1 of
 [JWS]. See Appendix A.1 for an example of an encrypted JWT.

4. JWT Claims

 The JWT Claims Set represents a JSON object whose members are the
 claims conveyed by the JWT. The Claim Names within a JWT Claims Set
 MUST be unique; recipients MUST either reject JWTs with duplicate
 Claim Names or use a JSON parser that returns only the lexically last
 duplicate member name, as specified in Section 15.12 (The JSON
 Object) of ECMAScript 5.1 [ECMAScript].

 The set of claims that a JWT must contain to be considered valid is
 context-dependent and is outside the scope of this specification.
 Specific applications of JWTs will require implementations to
 understand and process some claims in particular ways. However, in
 the absence of such requirements, all claims that are not understood
 by implementations MUST be ignored.

 There are three classes of JWT Claim Names: Registered Claim Names,
 Public Claim Names, and Private Claim Names.

4.1. Registered Claim Names

 The following Claim Names are registered in the IANA JSON Web Token
 Claims registry defined in Section 10.1. None of the claims defined
 below are intended to be mandatory to use or implement in all cases,
 but rather, provide a starting point for a set of useful,
 interoperable claims. Applications using JWTs should define which
 specific claims they use and when they are required or optional. All
 the names are short because a core goal of JWTs is for the
 representation to be compact.

4.1.1. "iss" (Issuer) Claim

 The "iss" (issuer) claim identifies the principal that issued the
 JWT. The processing of this claim is generally application specific.
 The "iss" value is a case-sensitive string containing a StringOrURI
 value. Use of this claim is OPTIONAL.

Jones, et al. Expires September 19, 2014 [Page 8]

Internet-Draft JSON Web Token (JWT) March 2014

4.1.2. "sub" (Subject) Claim

 The "sub" (subject) claim identifies the principal that is the
 subject of the JWT. The Claims in a JWT are normally statements
 about the subject. The subject value MAY be scoped to be locally
 unique in the context of the issuer or MAY be globally unique. The
 processing of this claim is generally application specific. The
 "sub" value is a case-sensitive string containing a StringOrURI
 value. Use of this claim is OPTIONAL.

4.1.3. "aud" (Audience) Claim

 The "aud" (audience) claim identifies the recipients that the JWT is
 intended for. Each principal intended to process the JWT MUST
 identify itself with a value in the audience claim. If the principal
 processing the claim does not identify itself with a value in the
 "aud" claim when this claim is present, then the JWT MUST be
 rejected. In the general case, the "aud" value is an array of case-
 sensitive strings, each containing a StringOrURI value. In the
 special case when the JWT has one audience, the "aud" value MAY be a
 single case-sensitive string containing a StringOrURI value. The
 interpretation of audience values is generally application specific.
 Use of this claim is OPTIONAL.

4.1.4. "exp" (Expiration Time) Claim

 The "exp" (expiration time) claim identifies the expiration time on
 or after which the JWT MUST NOT be accepted for processing. The
 processing of the "exp" claim requires that the current date/time
 MUST be before the expiration date/time listed in the "exp" claim.
 Implementers MAY provide for some small leeway, usually no more than
 a few minutes, to account for clock skew. Its value MUST be a number
 containing an IntDate value. Use of this claim is OPTIONAL.

4.1.5. "nbf" (Not Before) Claim

 The "nbf" (not before) claim identifies the time before which the JWT
 MUST NOT be accepted for processing. The processing of the "nbf"
 claim requires that the current date/time MUST be after or equal to
 the not-before date/time listed in the "nbf" claim. Implementers MAY
 provide for some small leeway, usually no more than a few minutes, to
 account for clock skew. Its value MUST be a number containing an
 IntDate value. Use of this claim is OPTIONAL.

4.1.6. "iat" (Issued At) Claim

 The "iat" (issued at) claim identifies the time at which the JWT was
 issued. This claim can be used to determine the age of the JWT. Its

Jones, et al. Expires September 19, 2014 [Page 9]

Internet-Draft JSON Web Token (JWT) March 2014

 value MUST be a number containing an IntDate value. Use of this
 claim is OPTIONAL.

4.1.7. "jti" (JWT ID) Claim

 The "jti" (JWT ID) claim provides a unique identifier for the JWT.
 The identifier value MUST be assigned in a manner that ensures that
 there is a negligible probability that the same value will be
 accidentally assigned to a different data object. The "jti" claim
 can be used to prevent the JWT from being replayed. The "jti" value
 is a case-sensitive string. Use of this claim is OPTIONAL.

4.2. Public Claim Names

 Claim Names can be defined at will by those using JWTs. However, in
 order to prevent collisions, any new Claim Name should either be
 registered in the IANA JSON Web Token Claims registry defined in

Section 10.1 or be a Public Name: a value that contains a Collision-
 Resistant Name. In each case, the definer of the name or value needs
 to take reasonable precautions to make sure they are in control of
 the part of the namespace they use to define the Claim Name.

4.3. Private Claim Names

 A producer and consumer of a JWT MAY agree to use Claim Names that
 are Private Names: names that are not Registered Claim Names

Section 4.1 or Public Claim Names Section 4.2. Unlike Public Claim
 Names, Private Claim Names are subject to collision and should be
 used with caution.

5. JWT Header

 The members of the JSON object represented by the JWT Header describe
 the cryptographic operations applied to the JWT and optionally,
 additional properties of the JWT. The member names within the JWT
 Header are referred to as Header Parameter Names. These names MUST
 be unique; recipients MUST either reject JWTs with duplicate Header
 Parameter Names or use a JSON parser that returns only the lexically
 last duplicate member name, as specified in Section 15.12 (The JSON
 Object) of ECMAScript 5.1 [ECMAScript]. The corresponding values are
 referred to as Header Parameter Values.

 JWS Header Parameters are defined by [JWS]. JWE Header Parameters
 are defined by [JWE]. This specification further specifies the use
 of the following Header Parameters in both the cases where the JWT is
 a JWS and where it is a JWE.

Jones, et al. Expires September 19, 2014 [Page 10]

Internet-Draft JSON Web Token (JWT) March 2014

5.1. "typ" (Type) Header Parameter

 The "typ" (type) Header Parameter defined by [JWS] and [JWE] is used
 to declare the MIME Media Type [IANA.MediaTypes] of this complete JWT
 in contexts where this is useful to the application. This parameter
 has no effect upon the JWT processing. If present, it is RECOMMENDED
 that its value be "JWT" to indicate that this object is a JWT. While
 media type names are not case-sensitive, it is RECOMMENDED that "JWT"
 always be spelled using uppercase characters for compatibility with
 legacy implementations. Use of this Header Parameter is OPTIONAL.

5.2. "cty" (Content Type) Header Parameter

 The "cty" (content type) Header Parameter defined by [JWS] and [JWE]
 is used by this specification to convey structural information about
 the JWT.

 In the normal case where nested signing or encryption operations are
 not employed, the use of this Header Parameter is NOT RECOMMENDED.
 In the case that nested signing or encryption is employed, this
 Header Parameter MUST be present; in this case, the value MUST be
 "JWT", to indicate that a Nested JWT is carried in this JWT. While
 media type names are not case-sensitive, it is RECOMMENDED that "JWT"
 always be spelled using uppercase characters for compatibility with
 legacy implementations. See Appendix A.2 for an example of a Nested
 JWT.

5.3. Replicating Claims as Header Parameters

 In some applications using encrypted JWTs, it is useful to have an
 unencrypted representation of some Claims. This might be used, for
 instance, in application processing rules to determine whether and
 how to process the JWT before it is decrypted.

 This specification allows Claims present in the JWT Claims Set to be
 replicated as Header Parameters in a JWT that is a JWE, as needed by
 the application. If such replicated Claims are present, the
 application receiving them SHOULD verify that their values are
 identical, unless the application defines other specific processing
 rules for these Claims. It is the responsibility of the application
 to ensure that only claims that are safe to be transmitted in an
 unencrypted manner are replicated as Header Parameter Values in the
 JWT.

Section 10.4.1 of this specification registers the "iss" (issuer),
 "sub" (subject), and "aud" (audience) Header Parameter Names for the
 purpose of providing unencrypted replicas of these Claims in
 encrypted JWTs for applications that need them. Other specifications

Jones, et al. Expires September 19, 2014 [Page 11]

Internet-Draft JSON Web Token (JWT) March 2014

 MAY similarly register other names that are registered Claim Names as
 Header Parameter Names, as needed.

6. Plaintext JWTs

 To support use cases where the JWT content is secured by a means
 other than a signature and/or encryption contained within the JWT
 (such as a signature on a data structure containing the JWT), JWTs
 MAY also be created without a signature or encryption. A plaintext
 JWT is a JWS using the "none" JWS "alg" Header Parameter Value
 defined in JSON Web Algorithms (JWA) [JWA]; it is a JWS with the
 empty string for its JWS Signature value.

6.1. Example Plaintext JWT

 The following example JWT Header declares that the encoded object is
 a Plaintext JWT:

 {"alg":"none"}

 Base64url encoding the octets of the UTF-8 representation of the JWT
 Header yields this Encoded JWT Header:

 eyJhbGciOiJub25lIn0

 The following is an example of a JWT Claims Set:

 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

 Base64url encoding the octets of the UTF-8 representation of the JWT
 Claims Set yields this encoded JWS Payload (with line breaks for
 display purposes only):

 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 The encoded JWS Signature is the empty string.

 Concatenating these encoded parts in this order with period ('.')
 characters between the parts yields this complete JWT (with line
 breaks for display purposes only):

Jones, et al. Expires September 19, 2014 [Page 12]

Internet-Draft JSON Web Token (JWT) March 2014

 eyJhbGciOiJub25lIn0
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .

7. Rules for Creating and Validating a JWT

 To create a JWT, the following steps MUST be taken. The order of the
 steps is not significant in cases where there are no dependencies
 between the inputs and outputs of the steps.

 1. Create a JWT Claims Set containing the desired claims. Note that
 white space is explicitly allowed in the representation and no
 canonicalization need be performed before encoding.

 2. Let the Message be the octets of the UTF-8 representation of the
 JWT Claims Set.

 3. Create a JWT Header containing the desired set of Header
 Parameters. The JWT MUST conform to either the [JWS] or [JWE]
 specifications. Note that white space is explicitly allowed in
 the representation and no canonicalization need be performed
 before encoding.

 4. Depending upon whether the JWT is a JWS or JWE, there are two
 cases:

 * If the JWT is a JWS, create a JWS using the JWT Header as the
 JWS Header and the Message as the JWS Payload; all steps
 specified in [JWS] for creating a JWS MUST be followed.

 * Else, if the JWT is a JWE, create a JWE using the JWT Header
 as the JWE Header and the Message as the JWE Plaintext; all
 steps specified in [JWE] for creating a JWE MUST be followed.

 5. If a nested signing or encryption operation will be performed,
 let the Message be the JWS or JWE, and return to Step 3, using a
 "cty" (content type) value of "JWT" in the new JWT Header created
 in that step.

 6. Otherwise, let the resulting JWT be the JWS or JWE.

 When validating a JWT, the following steps MUST be taken. The order
 of the steps is not significant in cases where there are no
 dependencies between the inputs and outputs of the steps. If any of
 the listed steps fails then the JWT MUST be rejected for processing.

Jones, et al. Expires September 19, 2014 [Page 13]

Internet-Draft JSON Web Token (JWT) March 2014

 1. The JWT MUST contain at least one period ('.') character.

 2. Let the Encoded JWT Header be the portion of the JWT before the
 first period ('.') character.

 3. The Encoded JWT Header MUST be successfully base64url decoded
 following the restriction given in this specification that no
 padding characters have been used.

 4. The resulting JWT Header MUST be completely valid JSON syntax
 conforming to [RFC7159].

 5. The resulting JWT Header MUST be validated to only include
 parameters and values whose syntax and semantics are both
 understood and supported or that are specified as being ignored
 when not understood.

 6. Determine whether the JWT is a JWS or a JWE using any of the
 methods described in Section 9 of [JWE].

 7. Depending upon whether the JWT is a JWS or JWE, there are two
 cases:

 * If the JWT is a JWS, all steps specified in [JWS] for
 validating a JWS MUST be followed. Let the Message be the
 result of base64url decoding the JWS Payload.

 * Else, if the JWT is a JWE, all steps specified in [JWE] for
 validating a JWE MUST be followed. Let the Message be the
 JWE Plaintext.

 8. If the JWT Header contains a "cty" (content type) value of
 "JWT", then the Message is a JWT that was the subject of nested
 signing or encryption operations. In this case, return to Step
 1, using the Message as the JWT.

 9. Otherwise, let the JWT Claims Set be the Message.

 10. The JWT Claims Set MUST be completely valid JSON syntax
 conforming to [RFC7159].

7.1. String Comparison Rules

 Processing a JWT inevitably requires comparing known strings to
 values in JSON objects. For example, in checking what the algorithm
 is, the Unicode string encoding "alg" will be checked against the
 member names in the JWT Header to see if there is a matching Header
 Parameter Name.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Jones, et al. Expires September 19, 2014 [Page 14]

Internet-Draft JSON Web Token (JWT) March 2014

 Comparisons between JSON strings and other Unicode strings MUST be
 performed by comparing Unicode code points without normalization, as
 specified in the String Comparison Rules in Section 5.3 of [JWS].

8. Implementation Requirements

 This section defines which algorithms and features of this
 specification are mandatory to implement. Applications using this
 specification can impose additional requirements upon implementations
 that they use. For instance, an application might require support
 for encrypted JWTs and Nested JWTs; another might require support for
 signing JWTs with ECDSA using the P-256 curve and the SHA-256 hash
 algorithm ("ES256").

 Of the signature and MAC algorithms specified in JSON Web Algorithms
 (JWA) [JWA], only HMAC SHA-256 ("HS256") and "none" MUST be
 implemented by conforming JWT implementations. It is RECOMMENDED
 that implementations also support RSASSA-PKCS1-V1_5 with the SHA-256
 hash algorithm ("RS256") and ECDSA using the P-256 curve and the SHA-
 256 hash algorithm ("ES256"). Support for other algorithms and key
 sizes is OPTIONAL.

 Support for encrypted JWTs is OPTIONAL. If an implementation
 provides encryption capabilities, of the encryption algorithms
 specified in [JWA], only RSAES-PKCS1-V1_5 with 2048 bit keys
 ("RSA1_5"), AES Key Wrap with 128 and 256 bit keys ("A128KW" and
 "A256KW"), and the composite authenticated encryption algorithm using
 AES CBC and HMAC SHA-2 ("A128CBC-HS256" and "A256CBC-HS512") MUST be
 implemented by conforming implementations. It is RECOMMENDED that
 implementations also support using ECDH-ES to agree upon a key used
 to wrap the Content Encryption Key ("ECDH-ES+A128KW" and
 "ECDH-ES+A256KW") and AES in Galois/Counter Mode (GCM) with 128 bit
 and 256 bit keys ("A128GCM" and "A256GCM"). Support for other
 algorithms and key sizes is OPTIONAL.

 Support for Nested JWTs is OPTIONAL.

9. URI for Declaring that Content is a JWT

 This specification registers the URN
 "urn:ietf:params:oauth:token-type:jwt" for use by applications that
 declare content types using URIs (rather than, for instance, MIME
 Media Types) to indicate that the content referred to is a JWT.

Jones, et al. Expires September 19, 2014 [Page 15]

Internet-Draft JSON Web Token (JWT) March 2014

10. IANA Considerations

10.1. JSON Web Token Claims Registry

 This specification establishes the IANA JSON Web Token Claims
 registry for JWT Claim Names. The registry records the Claim Name
 and a reference to the specification that defines it. This
 specification registers the Claim Names defined in Section 4.1.

 Values are registered with a Specification Required [RFC5226] after a
 two-week review period on the [TBD]@ietf.org mailing list, on the
 advice of one or more Designated Experts. However, to allow for the
 allocation of values prior to publication, the Designated Expert(s)
 may approve registration once they are satisfied that such a
 specification will be published.

 Registration requests must be sent to the [TBD]@ietf.org mailing list
 for review and comment, with an appropriate subject (e.g., "Request
 for access token type: example"). [[Note to the RFC Editor: The name
 of the mailing list should be determined in consultation with the
 IESG and IANA. Suggested name: jwt-reg-review.]]

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful. Registration requests that are undetermined for a period
 longer than 21 days can be brought to the IESG's attention (using the
 iesg@iesg.org mailing list) for resolution.

 Criteria that should be applied by the Designated Expert(s) includes
 determining whether the proposed registration duplicates existing
 functionality, determining whether it is likely to be of general
 applicability or whether it is useful only for a single application,
 and whether the registration makes sense.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

 It is suggested that multiple Designated Experts be appointed who are
 able to represent the perspectives of different applications using
 this specification, in order to enable broadly-informed review of
 registration decisions. In cases where a registration decision could
 be perceived as creating a conflict of interest for a particular
 Expert, that Expert should defer to the judgment of the other
 Expert(s).

https://datatracker.ietf.org/doc/html/rfc5226

Jones, et al. Expires September 19, 2014 [Page 16]

Internet-Draft JSON Web Token (JWT) March 2014

10.1.1. Registration Template

 Claim Name:
 The name requested (e.g., "example"). Because a core goal of this
 specification is for the resulting representations to be compact,
 it is RECOMMENDED that the name be short -- not to exceed 8
 characters without a compelling reason to do so. This name is
 case-sensitive. Names may not match other registered names in a
 case-insensitive manner unless the Designated Expert(s) state that
 there is a compelling reason to allow an exception in this
 particular case.

 Claim Description:
 Brief description of the Claim (e.g., "Example description").

 Change Controller:
 For Standards Track RFCs, state "IESG". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification Document(s):
 Reference to the document(s) that specify the parameter,
 preferably including URI(s) that can be used to retrieve copies of
 the document(s). An indication of the relevant sections may also
 be included but is not required.

10.1.2. Initial Registry Contents

 o Claim Name: "iss"
 o Claim Description: Issuer
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.1 of [[this document]]

 o Claim Name: "sub"
 o Claim Description: Subject
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.2 of [[this document]]

 o Claim Name: "aud"
 o Claim Description: Audience
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.3 of [[this document]]

 o Claim Name: "exp"
 o Claim Description: Expiration Time
 o Change Controller: IESG

Jones, et al. Expires September 19, 2014 [Page 17]

Internet-Draft JSON Web Token (JWT) March 2014

 o Specification Document(s): Section 4.1.4 of [[this document]]

 o Claim Name: "nbf"
 o Claim Description: Not Before
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.5 of [[this document]]

 o Claim Name: "iat"
 o Claim Description: Issued At
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.6 of [[this document]]

 o Claim Name: "jti"
 o Claim Description: JWT ID
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.7 of [[this document]]

10.2. Sub-Namespace Registration of
 urn:ietf:params:oauth:token-type:jwt

10.2.1. Registry Contents

 This specification registers the value "token-type:jwt" in the IANA
 urn:ietf:params:oauth registry established in An IETF URN Sub-
 Namespace for OAuth [RFC6755], which can be used to indicate that the
 content is a JWT.

 o URN: urn:ietf:params:oauth:token-type:jwt
 o Common Name: JSON Web Token (JWT) Token Type
 o Change Controller: IESG
 o Specification Document(s): [[this document]]

10.3. Media Type Registration

10.3.1. Registry Contents

 This specification registers the "application/jwt" Media Type
 [RFC2046] in the MIME Media Types registry [IANA.MediaTypes], which
 can be used to indicate that the content is a JWT.

 o Type Name: application
 o Subtype Name: jwt
 o Required Parameters: n/a
 o Optional Parameters: n/a
 o Encoding considerations: 8bit; JWT values are encoded as a series
 of base64url encoded values (some of which may be the empty
 string) separated by period ('.') characters.

https://datatracker.ietf.org/doc/html/rfc6755
https://datatracker.ietf.org/doc/html/rfc2046

Jones, et al. Expires September 19, 2014 [Page 18]

Internet-Draft JSON Web Token (JWT) March 2014

 o Security Considerations: See the Security Considerations section
 of [[this document]]
 o Interoperability Considerations: n/a
 o Published Specification: [[this document]]
 o Applications that use this media type: OpenID Connect, Mozilla
 Persona, Salesforce, Google, numerous others
 o Additional Information: Magic number(s): n/a, File extension(s):
 n/a, Macintosh file type code(s): n/a
 o Person & email address to contact for further information: Michael
 B. Jones, mbj@microsoft.com
 o Intended Usage: COMMON
 o Restrictions on Usage: none
 o Author: Michael B. Jones, mbj@microsoft.com
 o Change Controller: IESG

10.4. Registration of JWE Header Parameter Names

 This specification registers specific Claim Names defined in
Section 4.1 in the IANA JSON Web Signature and Encryption Header

 Parameters registry defined in [JWS] for use by Claims replicated as
 Header Parameters, per Section 5.3.

10.4.1. Registry Contents

 o Header Parameter Name: "iss"
 o Header Parameter Description: Issuer
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.1 of [[this document]]

 o Header Parameter Name: "sub"
 o Header Parameter Description: Subject
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.2 of [[this document]]

 o Header Parameter Name: "aud"
 o Header Parameter Description: Audience
 o Header Parameter Usage Location(s): JWE
 o Change Controller: IESG
 o Specification Document(s): Section 4.1.3 of [[this document]]

11. Security Considerations

 All of the security issues faced by any cryptographic application
 must be faced by a JWT/JWS/JWE/JWK agent. Among these issues are
 protecting the user's private and symmetric keys, preventing various

Jones, et al. Expires September 19, 2014 [Page 19]

Internet-Draft JSON Web Token (JWT) March 2014

 attacks, and helping the user avoid mistakes such as inadvertently
 encrypting a message for the wrong recipient. The entire list of
 security considerations is beyond the scope of this document.

 All the security considerations in the JWS specification also apply
 to JWT, as do the JWE security considerations when encryption is
 employed. In particular, the JWS JSON Security Considerations and
 Unicode Comparison Security Considerations apply equally to the JWT
 Claims Set in the same manner that they do to the JWS Header.

 While syntactically, the signing and encryption operations for Nested
 JWTs may be applied in any order, normally senders should sign the
 message and then encrypt the result (thus encrypting the signature).
 This prevents attacks in which the signature is stripped, leaving
 just an encrypted message, as well as providing privacy for the
 signer. Furthermore, signatures over encrypted text are not
 considered valid in many jurisdictions.

 Note that potential concerns about security issues related to the
 order of signing and encryption operations are already addressed by
 the underlying JWS and JWE specifications; in particular, because JWE
 only supports the use of authenticated encryption algorithms,
 cryptographic concerns about the potential need to sign after
 encryption that apply in many contexts do not apply to this
 specification.

 The contents of a JWT cannot be relied upon in a trust decision
 unless its contents have been cryptographically secured and bound to
 the context necessary for the trust decision. In particular, the
 key(s) used to sign and/or encrypt the JWT will typically need to
 verifiably be under the control of the party identified as the issuer
 of the JWT.

12. References

12.1. Normative References

 [ECMAScript]
 Ecma International, "ECMAScript Language Specification,
 5.1 Edition", ECMA 262, June 2011.

 [IANA.MediaTypes]
 Internet Assigned Numbers Authority (IANA), "MIME Media
 Types", 2005.

 [JWA] Jones, M., "JSON Web Algorithms (JWA)",
draft-ietf-jose-json-web-algorithms (work in progress),

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms

Jones, et al. Expires September 19, 2014 [Page 20]

Internet-Draft JSON Web Token (JWT) March 2014

 March 2014.

 [JWE] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
draft-ietf-jose-json-web-encryption (work in progress),

 March 2014.

 [JWK] Jones, M., "JSON Web Key (JWK)",
draft-ietf-jose-json-web-key (work in progress),

 March 2014.

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature (work
 in progress), March 2014.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

12.2. Informative References

 [CanvasApp]
 Facebook, "Canvas Applications", 2010.

 [JSS] Bradley, J. and N. Sakimura (editor), "JSON Simple Sign",
 September 2010.

 [MagicSignatures]
 Panzer (editor), J., Laurie, B., and D. Balfanz, "Magic
 Signatures", January 2011.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc7159

Jones, et al. Expires September 19, 2014 [Page 21]

Internet-Draft JSON Web Token (JWT) March 2014

 [RFC3275] Eastlake, D., Reagle, J., and D. Solo, "(Extensible Markup
 Language) XML-Signature Syntax and Processing", RFC 3275,
 March 2002.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 July 2005.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, October 2012.

 [SWT] Hardt, D. and Y. Goland, "Simple Web Token (SWT)",
 Version 0.9.5.1, November 2009.

 [W3C.CR-xml11-20021015]
 Cowan, J., "Extensible Markup Language (XML) 1.1", W3C
 CR CR-xml11-20021015, October 2002.

 [W3C.REC-xml-c14n-20010315]
 Boyer, J., "Canonical XML Version 1.0", World Wide Web
 Consortium Recommendation REC-xml-c14n-20010315,
 March 2001,
 <http://www.w3.org/TR/2001/REC-xml-c14n-20010315>.

Appendix A. JWT Examples

 This section contains examples of JWTs. For other example JWTs, see
Section 6.1 and Appendices A.1, A.2, and A.3 of [JWS].

A.1. Example Encrypted JWT

 This example encrypts the same claims as used in Section 3.1 to the
 recipient using RSAES-PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256.

 The following example JWE Header (with line breaks for display
 purposes only) declares that:

 o the Content Encryption Key is encrypted to the recipient using the
 RSAES-PKCS1-V1_5 algorithm to produce the JWE Encrypted Key and

https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc6755
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Jones, et al. Expires September 19, 2014 [Page 22]

Internet-Draft JSON Web Token (JWT) March 2014

 o the Plaintext is encrypted using the AES_128_CBC_HMAC_SHA_256
 algorithm to produce the Ciphertext.

 {"alg":"RSA1_5","enc":"A128CBC-HS256"}

 Other than using the octets of the UTF-8 representation of the JWT
 Claims Set from Section 3.1 as the plaintext value, the computation
 of this JWT is identical to the computation of the JWE in Appendix

A.2 of [JWE], including the keys used.

 The final result in this example (with line breaks for display
 purposes only) is:

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.
 QR1Owv2ug2WyPBnbQrRARTeEk9kDO2w8qDcjiHnSJflSdv1iNqhWXaKH4MqAkQtM
 oNfABIPJaZm0HaA415sv3aeuBWnD8J-Ui7Ah6cWafs3ZwwFKDFUUsWHSK-IPKxLG
 TkND09XyjORj_CHAgOPJ-Sd8ONQRnJvWn_hXV1BNMHzUjPyYwEsRhDhzjAD26ima
 sOTsgruobpYGoQcXUwFDn7moXPRfDE8-NoQX7N7ZYMmpUDkR-Cx9obNGwJQ3nM52
 YCitxoQVPzjbl7WBuB7AohdBoZOdZ24WlN1lVIeh8v1K4krB8xgKvRU8kgFrEn_a
 1rZgN5TiysnmzTROF869lQ.
 AxY8DCtDaGlsbGljb3RoZQ.
 MKOle7UQrG6nSxTLX6Mqwt0orbHvAKeWnDYvpIAeZ72deHxz3roJDXQyhxx0wKaM
 HDjUEOKIwrtkHthpqEanSBNYHZgmNOV7sln1Eu9g3J8.
 fiK51VwhsxJ-siBMR-YFiA

A.2. Example Nested JWT

 This example shows how a JWT can be used as the payload of a JWE or
 JWS to create a Nested JWT. In this case, the JWT Claims Set is
 first signed, and then encrypted.

 The inner signed JWT is identical to the example in Appendix A.2 of
 [JWS]. Therefore, its computation is not repeated here. This
 example then encrypts this inner JWT to the recipient using RSAES-
 PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256.

 The following example JWE Header (with line breaks for display
 purposes only) declares that:

 o the Content Encryption Key is encrypted to the recipient using the
 RSAES-PKCS1-V1_5 algorithm to produce the JWE Encrypted Key,

 o the Plaintext is encrypted using the AES_128_CBC_HMAC_SHA_256
 algorithm to produce the Ciphertext, and

 o the Plaintext is itself a JWT.

Jones, et al. Expires September 19, 2014 [Page 23]

Internet-Draft JSON Web Token (JWT) March 2014

 {"alg":"RSA1_5","enc":"A128CBC-HS256","cty":"JWT"}

 Base64url encoding the octets of the UTF-8 representation of the JWE
 Header yields this encoded JWE Header value:

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwiY3R5IjoiSldUIn0

 The computation of this JWT is identical to the computation of the
 JWE in Appendix A.2 of [JWE], other than that different JWE Header,
 Plaintext, Initialization Vector, and Content Encryption Key values
 are used. (The RSA key used is the same.)

 The Payload used is the octets of the ASCII representation of the JWT
 at the end of Appendix Section A.2.1 of [JWS] (with all whitespace
 and line breaks removed), which is a sequence of 458 octets.

 The Initialization Vector value used is:

 [82, 101, 100, 109, 111, 110, 100, 32, 87, 65, 32, 57, 56, 48, 53,
 50]

 This example uses the Content Encryption Key represented in JSON Web
 Key [JWK] format below:

 {"kty":"oct",
 "k":"GawgguFyGrWKav7AX4VKUg"
 }

 The final result for this Nested JWT (with line breaks for display
 purposes only) is:

Jones, et al. Expires September 19, 2014 [Page 24]

Internet-Draft JSON Web Token (JWT) March 2014

 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2IiwiY3R5IjoiSldU
 In0.
 g_hEwksO1Ax8Qn7HoN-BVeBoa8FXe0kpyk_XdcSmxvcM5_P296JXXtoHISr_DD_M
 qewaQSH4dZOQHoUgKLeFly-9RI11TG-_Ge1bZFazBPwKC5lJ6OLANLMd0QSL4fYE
 b9ERe-epKYE3xb2jfY1AltHqBO-PM6j23Guj2yDKnFv6WO72tteVzm_2n17SBFvh
 DuR9a2nHTE67pe0XGBUS_TK7ecA-iVq5COeVdJR4U4VZGGlxRGPLRHvolVLEHx6D
 YyLpw30Ay9R6d68YCLi9FYTq3hIXPK_-dmPlOUlKvPr1GgJzRoeC9G5qCvdcHWsq
 JGTO_z3Wfo5zsqwkxruxwA.
 UmVkbW9uZCBXQSA5ODA1Mg.
 VwHERHPvCNcHHpTjkoigx3_ExK0Qc71RMEParpatm0X_qpg-w8kozSjfNIPPXiTB
 BLXR65CIPkFqz4l1Ae9w_uowKiwyi9acgVztAi-pSL8GQSXnaamh9kX1mdh3M_TT
 -FZGQFQsFhu0Z72gJKGdfGE-OE7hS1zuBD5oEUfk0Dmb0VzWEzpxxiSSBbBAzP10
 l56pPfAtrjEYw-7ygeMkwBl6Z_mLS6w6xUgKlvW6ULmkV-uLC4FUiyKECK4e3WZY
 Kw1bpgIqGYsw2v_grHjszJZ-_I5uM-9RA8ycX9KqPRp9gc6pXmoU_-27ATs9XCvr
 ZXUtK2902AUzqpeEUJYjWWxSNsS-r1TJ1I-FMJ4XyAiGrfmo9hQPcNBYxPz3GQb2
 8Y5CLSQfNgKSGt0A4isp1hBUXBHAndgtcslt7ZoQJaKe_nNJgNliWtWpJ_ebuOpE
 l8jdhehdccnRMIwAmU1n7SPkmhIl1HlSOpvcvDfhUN5wuqU955vOBvfkBOh5A11U
 zBuo2WlgZ6hYi9-e3w29bR0C2-pp3jbqxEDw3iWaf2dc5b-LnR0FEYXvI_tYk5rd
 _J9N0mg0tQ6RbpxNEMNoA9QWk5lgdPvbh9BaO195abQ.
 AVO9iT5AV4CzvDJCdhSFlQ

Appendix B. Relationship of JWTs to SAML Assertions

 SAML 2.0 [OASIS.saml-core-2.0-os] provides a standard for creating
 security tokens with greater expressivity and more security options
 than supported by JWTs. However, the cost of this flexibility and
 expressiveness is both size and complexity. SAML's use of XML
 [W3C.CR-xml11-20021015] and XML DSIG [RFC3275] contributes to the
 size of SAML assertions; its use of XML and especially XML
 Canonicalization [W3C.REC-xml-c14n-20010315] contributes to their
 complexity.

 JWTs are intended to provide a simple security token format that is
 small enough to fit into HTTP headers and query arguments in URIs.
 It does this by supporting a much simpler token model than SAML and
 using the JSON [RFC7159] object encoding syntax. It also supports
 securing tokens using Message Authentication Codes (MACs) and digital
 signatures using a smaller (and less flexible) format than XML DSIG.

 Therefore, while JWTs can do some of the things SAML assertions do,
 JWTs are not intended as a full replacement for SAML assertions, but
 rather as a token format to be used when ease of implementation or
 compactness are considerations.

 SAML Assertions are always statements made by an entity about a
 subject. JWTs are often used in the same manner, with the entity
 making the statements being represented by the "iss" (issuer) claim,

https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc7159

Jones, et al. Expires September 19, 2014 [Page 25]

Internet-Draft JSON Web Token (JWT) March 2014

 and the subject being represented by the "sub" (subject) claim.
 However, with these claims being optional, other uses of the JWT
 format are also permitted.

Appendix C. Relationship of JWTs to Simple Web Tokens (SWTs)

 Both JWTs and Simple Web Tokens SWT [SWT], at their core, enable sets
 of claims to be communicated between applications. For SWTs, both
 the claim names and claim values are strings. For JWTs, while claim
 names are strings, claim values can be any JSON type. Both token
 types offer cryptographic protection of their content: SWTs with HMAC
 SHA-256 and JWTs with a choice of algorithms, including signature,
 MAC, and encryption algorithms.

Appendix D. Acknowledgements

 The authors acknowledge that the design of JWTs was intentionally
 influenced by the design and simplicity of Simple Web Tokens [SWT]
 and ideas for JSON tokens that Dick Hardt discussed within the OpenID
 community.

 Solutions for signing JSON content were previously explored by Magic
 Signatures [MagicSignatures], JSON Simple Sign [JSS], and Canvas
 Applications [CanvasApp], all of which influenced this draft.

 This specification is the work of the OAuth Working Group, which
 includes dozens of active and dedicated participants. In particular,
 the following individuals contributed ideas, feedback, and wording
 that influenced this specification:

 Dirk Balfanz, Richard Barnes, Brian Campbell, Breno de Medeiros, Dick
 Hardt, Joe Hildebrand, Jeff Hodges, Edmund Jay, Yaron Y. Goland, Ben
 Laurie, James Manger, Prateek Mishra, Tony Nadalin, Axel Nennker,
 John Panzer, Emmanuel Raviart, David Recordon, Eric Rescorla, Jim
 Schaad, Paul Tarjan, Hannes Tschofenig, and Sean Turner.

 Hannes Tschofenig and Derek Atkins chaired the OAuth working group
 and Sean Turner and Stephen Farrell served as Security area directors
 during the creation of this specification.

Appendix E. Document History

 [[to be removed by the RFC Editor before publication as an RFC]]

 -19

Jones, et al. Expires September 19, 2014 [Page 26]

Internet-Draft JSON Web Token (JWT) March 2014

 o Specified that support for Nested JWTs is optional and that
 applications using this specification can impose additional
 requirements upon implementations that they use.

 o Updated the JSON reference to RFC 7159.

 -18

 o Clarified that the base64url encoding includes no line breaks,
 white space, or other additional characters.

 o Removed circularity in the audience claim definition.

 o Clarified that it is entirely up to applications which claims to
 use.

 o Changed "SHOULD" to "MUST" in "in the absence of such
 requirements, all claims that are not understood by
 implementations MUST be ignored".

 o Clarified that applications can define their own processing rules
 for claims replicated in header parameters, rather than always
 requiring that they be identical in the JWT Header and JWT Claims
 Set.

 o Removed a JWT creation step that duplicated a step in the
 underlying JWS or JWE creation.

 o Added security considerations about using JWTs in trust decisions.

 -17

 o Corrected RFC 2119 terminology usage.

 o Replaced references to draft-ietf-json-rfc4627bis with RFC 7158.

 -16

 o Changed some references from being normative to informative, per
 JOSE issue #90.

 -15

 o Replaced references to RFC 4627 with draft-ietf-json-rfc4627bis.

 -14

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-json-rfc4627bis
https://datatracker.ietf.org/doc/html/rfc7158
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/draft-ietf-json-rfc4627bis

Jones, et al. Expires September 19, 2014 [Page 27]

Internet-Draft JSON Web Token (JWT) March 2014

 o Referenced the JWE section on Distinguishing between JWS and JWE
 Objects.

 -13

 o Added Claim Description registry field.

 o Used Header Parameter Description registry field.

 o Removed the phrases "JWA signing algorithms" and "JWA encryption
 algorithms".

 o Removed the term JSON Text Object.

 -12

 o Tracked the JOSE change refining the "typ" and "cty" definitions
 to always be MIME Media Types, with the omission of "application/"
 prefixes recommended for brevity. For compatibility with legacy
 implementations, it is RECOMMENDED that "JWT" always be spelled
 using uppercase characters when used as a "typ" or "cty" value.
 As side effects, this change removed the "typ" Claim definition
 and narrowed the uses of the URI
 "urn:ietf:params:oauth:token-type:jwt".

 o Updated base64url definition to match JOSE definition.

 o Changed terminology from "Reserved Claim Name" to "Registered
 Claim Name" to match JOSE terminology change.

 o Applied other editorial changes to track parallel JOSE changes.

 o Clarified that the subject value may be scoped to be locally
 unique in the context of the issuer or may be globally unique.

 -11

 o Added a Nested JWT example.

 o Added "sub" to the list of Claims registered for use as Header
 Parameter values when an unencrypted representation is required in
 an encrypted JWT.

 -10

 o Allowed Claims to be replicated as Header Parameters in encrypted
 JWTs as needed by applications that require an unencrypted
 representation of specific Claims.

Jones, et al. Expires September 19, 2014 [Page 28]

Internet-Draft JSON Web Token (JWT) March 2014

 -09

 o Clarified that the "typ" header parameter is used in an
 application-specific manner and has no effect upon the JWT
 processing.

 o Stated that recipients MUST either reject JWTs with duplicate
 Header Parameter Names or with duplicate Claim Names or use a JSON
 parser that returns only the lexically last duplicate member name.

 -08

 o Tracked a change to how JWEs are computed (which only affected the
 example encrypted JWT value).

 -07

 o Defined that the default action for claims that are not understood
 is to ignore them unless otherwise specified by applications.

 o Changed from using the term "byte" to "octet" when referring to 8
 bit values.

 o Tracked encryption computation changes in the JWE specification.

 -06

 o Changed the name of the "prn" claim to "sub" (subject) both to
 more closely align with SAML name usage and to use a more
 intuitive name.

 o Allow JWTs to have multiple audiences.

 o Applied editorial improvements suggested by Jeff Hodges, Prateek
 Mishra, and Hannes Tschofenig. Many of these simplified the
 terminology used.

 o Explained why Nested JWTs should be signed and then encrypted.

 o Clarified statements of the form "This claim is OPTIONAL" to "Use
 of this claim is OPTIONAL".

 o Referenced String Comparison Rules in JWS.

 o Added seriesInfo information to Internet Draft references.

 -05

Jones, et al. Expires September 19, 2014 [Page 29]

Internet-Draft JSON Web Token (JWT) March 2014

 o Updated values for example AES CBC calculations.

 -04

 o Promoted Initialization Vector from being a header parameter to
 being a top-level JWE element. This saves approximately 16 bytes
 in the compact serialization, which is a significant savings for
 some use cases. Promoting the Initialization Vector out of the
 header also avoids repeating this shared value in the JSON
 serialization.

 o Applied changes made by the RFC Editor to RFC 6749's registry
 language to this specification.

 o Reference RFC 6755 -- An IETF URN Sub-Namespace for OAuth.

 -03

 o Added statement that "StringOrURI values are compared as case-
 sensitive strings with no transformations or canonicalizations
 applied".

 o Indented artwork elements to better distinguish them from the body
 text.

 -02

 o Added an example of an encrypted JWT.

 o Added this language to Registration Templates: "This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted."

 o Applied editorial suggestions.

 -01

 o Added the "cty" (content type) header parameter for declaring type
 information about the secured content, as opposed to the "typ"
 (type) header parameter, which declares type information about
 this object. This significantly simplified nested JWTs.

 o Moved description of how to determine whether a header is for a
 JWS or a JWE from the JWT spec to the JWE spec.

 o Changed registration requirements from RFC Required to
 Specification Required with Expert Review.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6755

Jones, et al. Expires September 19, 2014 [Page 30]

Internet-Draft JSON Web Token (JWT) March 2014

 o Added Registration Template sections for defined registries.

 o Added Registry Contents sections to populate registry values.

 o Added "Collision Resistant Namespace" to the terminology section.

 o Numerous editorial improvements.

 -00

 o Created the initial IETF draft based upon
draft-jones-json-web-token-10 with no normative changes.

Authors' Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 John Bradley
 Ping Identity

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Nat Sakimura
 Nomura Research Institute

 Email: n-sakimura@nri.co.jp
 URI: http://nat.sakimura.org/

https://datatracker.ietf.org/doc/html/draft-jones-json-web-token-10
http://self-issued.info/
http://www.thread-safe.com/
http://nat.sakimura.org/

Jones, et al. Expires September 19, 2014 [Page 31]

