
OAuth Working Group N. Sakimura, Ed.
Internet-Draft Nomura Research Institute
Intended status: Standards Track J. Bradley
Expires: January 23, 2016 Ping Identity
 July 22, 2015

OAuth 2.0 JWT Authorization Request
draft-ietf-oauth-jwsreq-05

Abstract

 The authorization request in OAuth 2.0 utilizes query parameter
 serialization. This specification defines the authorization request
 using JWT serialization. The request is sent through "request"
 parameter or by reference through "request_uri" parameter that points
 to the JWT, allowing the request to be optionally signed and
 encrypted.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 23, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Sakimura & Bradley Expires January 23, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft oauth-jar July 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 4

2. Terminology . 4
2.1. Request Object . 4
2.2. Request Object URI 4

3. Request Object . 4
4. Authorization Request . 6
4.1. Passing a Request Object by Value 7
4.2. Passing a Request Object by Reference 8
4.2.1. URL Referencing the Request Object 10
4.2.2. Request using the "request_uri" Request Parameter . . 10
4.2.3. Authorization Server Fetches Request Object 10

5. Validating JWT-Based Requests 11
5.1. Encrypted Request Object 11
5.2. Signed Request Object 11
5.3. Request Parameter Assembly and Validation 11

6. Authorization Server Response 11
7. IANA Considerations . 12
8. Security Considerations 12
9. Acknowledgements . 12
10. Revision History . 13
11. References . 13
11.1. Normative References 14
11.2. Informative References 15

 Authors' Addresses . 15

1. Introduction

 The parameters "request" and "request_uri" are introduced as
 additional authorization request parameters for the OAuth 2.0
 [RFC6749] flows. The "request" parameter is a JSON Web Token (JWT)
 [RFC7519] whose JWT Claims Set holds the JSON encoded OAuth 2.0
 authorization request parameters. The JWT [RFC7519] can be passed to
 the authorization endpoint by reference, in which case the parameter
 "request_uri" is used instead of the "request".

 Using JWT [RFC7519] as the request encoding instead of query
 parameters has several advantages:

 1. The request can be signed so that an integrity check can be
 implemented. If a suitable algorithm is used for the signing,
 then it will provide a good evidence of the approver.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519

Sakimura & Bradley Expires January 23, 2016 [Page 2]

Internet-Draft oauth-jar July 2015

 2. The request may be encrypted so that end-to-end confidentiality
 may be obtained even if in the case TLS connection is terminated
 at a gateway or a similar device.

 3. The request may be signed by a third party attesting that the
 authorization request is compliant to certain policy. For
 example, a request can be pre-examined by a third party that all
 the personal data requested is strictly necessary to perform the
 process that the end-user asked for, and statically signed by
 that third party. The client would then send the request along
 with dynamic parameters such as state. The authorization server
 then examines the signature and show the end-user the conformance
 status to the end-user, who would have some assurance as to the
 legitimacy of the request when authorizing it. In some cases, it
 may even be desirable to skip the authorization dialogue under
 such circumstances.

 There are a few cases that request by reference are useful such as:

 1. When it is detected that the User Agent does not support long
 URLs: Some extensions may extend the URL. For example, the
 client might want to send a public key with the request.

 2. Static signature: The client can make a signed Request Object and
 put it at a place that the Authorization Server can access. This
 may just be done by a client utility or other process, so that
 the private key does not have to reside on the client,
 simplifying programming.

 3. When the server wants the requests to be cacheable: The
 request_uri may include a SHA-256 hash of the file, as defined in
 FIPS180-2 [FIPS180-2], the server knows if the file has changed
 without fetching it, so it does not have to re-fetch a same file,
 which is a win as well.

 4. When the client wants to simplify the implementation without
 compromising the security. If the request parameters go through
 the browser, they may be tampered in the browser even if TLS was
 used. This implies we need to have signature on the request as
 well. However, if HTTPS "request_uri" was used, it is not going
 to be tampered, thus we now do not have to sign the request.
 This simplifies the implementation.

 This capability is in use by OpenID Connect [OpenID.Core].

Sakimura & Bradley Expires January 23, 2016 [Page 3]

Internet-Draft oauth-jar July 2015

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Terminology

 For the purposes of this specification, the following terms and
 definitions apply.

2.1. Request Object

 JWT [RFC7519] that holds an OAuth 2.0 authorization request as JWT
 Claims Set

2.2. Request Object URI

 Absolute URI from which the Request Object (Section 2.1) can be
 obtained

3. Request Object

 A Request Object (Section 2.1) is used to provide authorization
 request parameters for an OAuth 2.0 authorization request. It
 contains OAuth 2.0 [RFC6749] authorization request parameters
 including extension parameters. It is a JSON Web Signature (JWS)
 [RFC7515] signed JWT [RFC7519] . The parameters are represented as
 the JWT claims. Parameter names and string values MUST be included
 as JSON strings. Numerical values MUST be included as JSON numbers.
 It MAY include any extension parameters. This JSON [RFC7159]
 constitutes the JWT [RFC7519] Claims Set.

 The Request Object MAY be signed or be an Unsecured JWS. When it is
 an unsecured JWS, this is indicated by use of the "none" algorithm
 JWA [RFC7518] in the JWS header. If signed, the Authorization
 Request Object SHOULD contain the Claims "iss" (issuer) and "aud"
 (audience) as members, with their semantics being the same as defined
 in the JWT [RFC7519] specification.

 The Request Object MAY also be encrypted using JWE [RFC7516] and MAY
 be encrypted without also being signed. If both signing and
 encryption are performed, it MUST be signed then encrypted, with the
 result being a Nested JWT, as defined in JWT [RFC7519].

 The Authorization Request Object MAY alternatively be sent by
 reference using the "request_uri" parameter.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7519

Sakimura & Bradley Expires January 23, 2016 [Page 4]

Internet-Draft oauth-jar July 2015

 REQUIRED OAuth 2.0 Authorization Request parameters that are not
 included in the Request Object MUST be sent as a query parameter. If
 a required parameter is not present in neither the query parameter
 nor the Request Object, it forms a malformed request.

 "request" and "request_uri" parameters MUST NOT be included in
 Request Objects.

 If the parameter exists in both the query string and the
 Authorization Request Object, the values in the Request Object takes
 precedence. This means that if it intends to use a cached request
 object, it cannot include such parameters like "state" that is
 expected to differ in every request. It is fine to include them in
 the request object if it is going to be prepared afresh every time.

 The following is a non-normative example of the Claims in a Request
 Object before base64url encoding and signing. Note that it includes
 extension variables such as "nonce", "userinfo", and "id_token".

 {
 "iss": "s6BhdRkqt3",
 "aud": "https://server.example.com",
 "response_type": "code id_token",
 "client_id": "s6BhdRkqt3",
 "redirect_uri": "https://client.example.org/cb",
 "scope": "openid",
 "state": "af0ifjsldkj",
 "nonce": "n-0S6_WzA2Mj",
 "max_age": 86400,
 "claims":
 {
 "userinfo":
 {
 "given_name": {"essential": true},
 "nickname": null,
 "email": {"essential": true},
 "email_verified": {"essential": true},
 "picture": null
 },
 "id_token":
 {
 "gender": null,
 "birthdate": {"essential": true},
 "acr": {"values": ["urn:mace:incommon:iap:silver"]}
 }
 }
 }

Sakimura & Bradley Expires January 23, 2016 [Page 5]

Internet-Draft oauth-jar July 2015

 Signing it with the "RS256" algorithm results in this Request Object
 value (with line wraps within values for display purposes only):

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiAiczZCaGRSa3
 F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmNvbSIsDQogInJl
 c3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWVudF9pZCI6ICJzNk
 JoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8vY2xpZW50LmV4YW1w
 bGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiAic3RhdGUiOiAiYWYwaW
 Zqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWoiLA0KICJtYXhfYWdlIjog
 ODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXNlcmluZm8iOiANCiAgICB7DQ
 ogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgIm5p
 Y2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJlc3NlbnRpYWwiOiB0cnVlfS
 wNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAg
 ICAgInBpY3R1cmUiOiBudWxsDQogICAgfSwNCiAgICJpZF90b2tlbiI6IA0KICAgIH
 sNCiAgICAgImdlbmRlciI6IG51bGwsDQogICAgICJiaXJ0aGRhdGUiOiB7ImVzc2Vu
 dGlhbCI6IHRydWV9LA0KICAgICAiYWNyIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOm
 luY29tbW9uOmlhcDpzaWx2ZXIiXX0NCiAgICB9DQogIH0NCn0.nwwnNsk1-Zkbmnvs
 F6zTHm8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF
 KzuMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx
 0GxFbuPbj96tVuj11pTnmFCUR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8K
 ol-cSLWoYE9l5QqholImzjT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPG
 iyon_-Te111V8uE83IlzCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

 The following RSA public key, represented in JWK format, can be used
 to validate the Request Object signature in this and subsequent
 Request Object examples (with line wraps within values for display
 purposes only):

 {
 "kty":"RSA",
 "kid":"k2bdc",
 "n":"y9Lqv4fCp6Ei-u2-ZCKq83YvbFEk6JMs_pSj76eMkddWRuWX2aBKGHAtKlE5P
 7_vn__PCKZWePt3vGkB6ePgzAFu08NmKemwE5bQI0e6kIChtt_6KzT5OaaXDF
 I6qCLJmk51Cc4VYFaxgqevMncYrzaW_50mZ1yGSFIQzLYP8bijAHGVjdEFgZa
 ZEN9lsn_GdWLaJpHrB3ROlS50E45wxrlg9xMncVb8qDPuXZarvghLL0HzOuYR
 adBJVoWZowDNTpKpk2RklZ7QaBO7XDv3uR7s_sf2g-bAjSYxYUGsqkNA9b3xV
 W53am_UZZ3tZbFTIh557JICWKHlWj5uzeJXaw",
 "e":"AQAB"
 }

4. Authorization Request

 The client constructs the authorization request URI by adding the
 following parameters to the query component of the authorization
 endpoint URI using the "application/x-www-form-urlencoded" format:

Sakimura & Bradley Expires January 23, 2016 [Page 6]

Internet-Draft oauth-jar July 2015

 request REQUIRED unless "request_uri" is specified. The Request
 Object (Section 3) that holds authorization request parameters
 stated in the section 4 of OAuth 2.0 [RFC6749].

 request_uri REQUIRED unless "request" is specified. The absolute
 URL that points to the Request Object (Section 3) that holds
 authorization request parameters stated in the section 4 of OAuth
 2.0 [RFC6749].

 state RECOMMENDED. OAuth 2.0 [RFC6749] state.

 The client directs the resource owner to the constructed URI using an
 HTTP redirection response, or by other means available to it via the
 user-agent.

 For example, the client directs the end-user's user-agent to make the
 following HTTPS request (line breaks are for display purposes only):

GET /authorize?request_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

 The authorization request object MAY be signed AND/OR encrypted.

 When the "request" parameter is used, the OAuth 2.0 request parameter
 values contained in the JWT supersede those passed using the OAuth
 2.0 request syntax. However, parameters MAY also be passed using the
 OAuth 2.0 request syntax even when a Request Object is used; this
 would typically be done to enable a cached, pre-signed (and possibly
 pre-encrypted) Request Object value to be used containing the fixed
 request parameters, while parameters that can vary with each request,
 such as state and nonce, are passed as OAuth 2.0 parameters.

4.1. Passing a Request Object by Value

 The Client sends the Authorization Request as a Request Object to the
 Authorization Endpoint as the "request" parameter value.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires January 23, 2016 [Page 7]

Internet-Draft oauth-jar July 2015

 The following is a non-normative example of an Authorization Request
 using the "request" parameter (with line wraps within values for
 display purposes only):

 https://server.example.com/authorize?
 response_type=code%20id_token
 &client_id=s6BhdRkqt3
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &scope=openid
 &state=af0ifjsldkj
 &nonce=n-0S6_WzA2Mj
 &request=eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiA
 iczZCaGRSa3F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmN
 vbSIsDQogInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWV
 udF9pZCI6ICJzNkJoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8
 vY2xpZW50LmV4YW1wbGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiA
 ic3RhdGUiOiAiYWYwaWZqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWo
 iLA0KICJtYXhfYWdlIjogODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXN
 lcmluZm8iOiANCiAgICB7DQogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWw
 iOiB0cnVlfSwNCiAgICAgIm5pY2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjo
 geyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJ
 lc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgInBpY3R1cmUiOiBudWxsDQogICAgfSw
 NCiAgICJpZF90b2tlbiI6IA0KICAgIHsNCiAgICAgImdlbmRlciI6IG51bGwsDQo
 gICAgICJiaXJ0aGRhdGUiOiB7ImVzc2VudGlhbCI6IHRydWV9LA0KICAgICAiYWN
 yIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOmluY29tbW9uOmlhcDpzaWx2ZXIiXX0
 NCiAgICB9DQogIH0NCn0.nwwnNsk1-ZkbmnvsF6zTHm8CHERFMGQPhos-EJcaH4H
 h-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyFKzuMXZFSZ3p6Mb8dkxtVyjoy2
 GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx0GxFbuPbj96tVuj11pTnmFC
 UR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8Kol-cSLWoYE9l5QqholImz
 jT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPGiyon_-Te111V8uE83Il
 zCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

4.2. Passing a Request Object by Reference

 The "request_uri" Authorization Request parameter enables OAuth
 authorization requests to be passed by reference, rather than by
 value. This parameter is used identically to the "request"
 parameter, other than that the Request Object value is retrieved from
 the resource at the specified URL, rather than passed by value.

 When the "request_uri" parameter is used, the OAuth 2.0 authorization
 request parameter values contained in the referenced JWT supersede
 those passed using the OAuth 2.0 request syntax. However, parameters
 MAY also be passed using the OAuth 2.0 request syntax even when a
 "request_uri" is used; this would typically be done to enable a
 cached, pre-signed (and possibly pre-encrypted) Request Object value
 to be used containing the fixed request parameters, while parameters

Sakimura & Bradley Expires January 23, 2016 [Page 8]

Internet-Draft oauth-jar July 2015

 that can vary with each request, such as "state" and "nonce", are
 passed as OAuth 2.0 parameters.

 Servers MAY cache the contents of the resources referenced by Request
 URIs. If the contents of the referenced resource could ever change,
 the URI SHOULD include the base64url encoded SHA-256 hash as defined
 in FIPS180-2 [FIPS180-2] of the referenced resource contents as the
 fragment component of the URI. If the fragment value used for a URI
 changes, that signals the server that any cached value for that URI
 with the old fragment value is no longer valid.

 The entire Request URI MUST NOT exceed 512 ASCII characters.

 The contents of the resource referenced by the URL MUST be a Request
 Object. The scheme used in the "request_uri" value MUST be "https",
 unless the target Request Object is signed in a way that is
 verifiable by the Authorization Server. The "request_uri" value MUST
 be reachable by the Authorization Server, and SHOULD be reachable by
 the Client.

 The following is a non-normative example of the contents of a Request
 Object resource that can be referenced by a "request_uri" (with line
 wraps within values for display purposes only):

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiAiczZCaGRSa3
 F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmNvbSIsDQogInJl
 c3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWVudF9pZCI6ICJzNk
 JoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8vY2xpZW50LmV4YW1w
 bGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiAic3RhdGUiOiAiYWYwaW
 Zqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWoiLA0KICJtYXhfYWdlIjog
 ODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXNlcmluZm8iOiANCiAgICB7DQ
 ogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgIm5p
 Y2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJlc3NlbnRpYWwiOiB0cnVlfS
 wNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAg
 ICAgInBpY3R1cmUiOiBudWxsDQogICAgfSwNCiAgICJpZF90b2tlbiI6IA0KICAgIH
 sNCiAgICAgImdlbmRlciI6IG51bGwsDQogICAgICJiaXJ0aGRhdGUiOiB7ImVzc2Vu
 dGlhbCI6IHRydWV9LA0KICAgICAiYWNyIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOm
 luY29tbW9uOmlhcDpzaWx2ZXIiXX0NCiAgICB9DQogIH0NCn0.nwwnNsk1-Zkbmnvs
 F6zTHm8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF
 KzuMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx
 0GxFbuPbj96tVuj11pTnmFCUR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8K
 ol-cSLWoYE9l5QqholImzjT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPG
 iyon_-Te111V8uE83IlzCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

Sakimura & Bradley Expires January 23, 2016 [Page 9]

Internet-Draft oauth-jar July 2015

4.2.1. URL Referencing the Request Object

 The Client stores the Request Object resource either locally or
 remotely at a URL the Server can access. This URL is the Request
 URI, "request_uri".

 If the Request Object includes requested values for Claims, it MUST
 NOT be revealed to anybody but the Authorization Server. As such,
 the "request_uri" MUST have appropriate entropy for its lifetime. It
 is RECOMMENDED that it be removed if it is known that it will not be
 used again or after a reasonable timeout unless access control
 measures are taken.

 The following is a non-normative example of a Request URI value (with
 line wraps within values for display purposes only):

 https://client.example.org/request.jwt#
 GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM

4.2.2. Request using the "request_uri" Request Parameter

 The Client sends the Authorization Request to the Authorization
 Endpoint.

 The following is a non-normative example of an Authorization Request
 using the "request_uri" parameter (with line wraps within values for
 display purposes only):

 https://server.example.com/authorize?
 response_type=code%20id_token
 &client_id=s6BhdRkqt3
 &request_uri=https%3A%2F%2Fclient.example.org%2Frequest.jwt
 %23GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM
 &state=af0ifjsldkj

4.2.3. Authorization Server Fetches Request Object

 Upon receipt of the Request, the Authorization Server MUST send an
 HTTP "GET" request to the "request_uri" to retrieve the referenced
 Request Object, unless it is already cached, and parse it to recreate
 the Authorization Request parameters.

 Note that the client SHOULD use a unique URI for each request
 utilizing distinct parameters, or otherwise prevent the Authorization
 Server from caching the "request_uri".

Sakimura & Bradley Expires January 23, 2016 [Page 10]

Internet-Draft oauth-jar July 2015

 The following is a non-normative example of this fetch process:

 GET /request.jwt HTTP/1.1
 Host: client.example.org

5. Validating JWT-Based Requests

5.1. Encrypted Request Object

 The Authorization Server MUST decrypt the JWT in accordance with the
 JSON Web Encryption [RFC7516] specification. The result MAY be
 either a signed or unsigned (plaintext) Request Object. In the
 former case, signature validation MUST be performed as defined in

Section 5.2.

 The Authorization Server MUST return an error if decryption fails.

5.2. Signed Request Object

 To perform Signature Validation, the "alg" Header Parameter in the
 JOSE Header MUST match the value of the "request_object_signing_alg"
 set during Client Registration or a value that was pre-registered by
 other means. The signature MUST be validated against the appropriate
 key for that "client_id" and algorithm.

 The Authorization Server MUST return an error if signature validation
 fails.

5.3. Request Parameter Assembly and Validation

 The Authorization Server MUST assemble the set of Authorization
 Request parameters to be used from the Request Object value and the
 OAuth 2.0 Authorization Request parameters (minus the "request" or
 "request_uri" parameters). If the same parameter exists both in the
 Request Object and the OAuth Authorization Request parameters, the
 parameter in the Request Object is used. Using the assembled set of
 Authorization Request parameters, the Authorization Server then
 validates the request as specified in OAuth 2.0 [RFC6749].

6. Authorization Server Response

 Authorization Server Response is created and sent to the client as in
Section 4 of OAuth 2.0 [RFC6749] .

 In addition, this document defines additional error values as
 follows:

https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires January 23, 2016 [Page 11]

Internet-Draft oauth-jar July 2015

 invalid_request_uri The "request_uri" in the Authorization Request
 returns an error or contains invalid data.

 invalid_request_object The request parameter contains an invalid
 Request Object.

 request_not_supported The Authorization Server does not support the
 use of the "request" parameter.

 request_uri_not_supported The Authorization Server does not support
 use of the "request_uri" parameter.

7. IANA Considerations

 The request_object_signing_alg OAuth Dynamic Client Registration
 Metadata is pending registration by OpenID Connect Dynamic
 Registration specification.

8. Security Considerations

 In addition to the all the security considerations discussed in OAuth
 2.0 [RFC6819], the following security considerations SHOULD be taken
 into account.

 When sending the authorization request object through "request"
 parameter, it SHOULD be signed with then considered appropriate
 algorithm using [RFC7515]. The "alg=none" SHOULD NOT be used in such
 a case.

 If the request object contains personally identifiable or sensitive
 information, the "request_uri" MUST be of one-time use and MUST have
 large enough entropy deemed necessary with applicable security
 policy. For higher security requirement, using [RFC7516] is strongly
 recommended.

9. Acknowledgements

 Follwoing people contributed to the creation of this document in
 OAuth WG.

 John Bradley (Ping Identity), Michael B. Jones (Microsoft), Nat
 Sakimura (NRI), (add yourself).

 Following people contributed to creating this document through the
 OpenID Connect 1.0 [OpenID.Core].

 Breno de Medeiros (Google), Hideki Nara (TACT), John Bradley (Ping
 Identity) <author>, Nat Sakimura (NRI) <author/editor>, Ryo Itou

https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516

Sakimura & Bradley Expires January 23, 2016 [Page 12]

Internet-Draft oauth-jar July 2015

 (Yahoo! Japan), George Fletcher (AOL), Justin Richer (MITRE), Edmund
 Jay (Illumila), Michael B. Jones (Microsoft), (add yourself).

 In addition following people contributed to this and previous
 versions through The OAuth Working Group.

 David Recordon (Facebook), Luke Shepard (Facebook), James H. Manger
 (Telstra), Marius Scurtescu (Google), John Panzer (Google), Dirk
 Balfanz (Google), (add yourself).

10. Revision History

 -05

 o More alignment with OpenID Connect.

 -04

 o Fixed typos in examples. (request_url -> request_uri, cliend_id ->
 client_id)

 o Aligned the error messages with the OAuth IANA registry.

 o Added another rationale for having request object.

 -03

 o Fixed the non-normative description about the advantage of static
 signature.

 o Changed the requirement for the parameter values in the request
 itself and the request object from 'MUST MATCH" to 'Req Obj takes
 precedence.

 -02

 o Now that they are RFCs, replaced JWS, JWE, etc. with RFC numbers.

 -01

 o Copy Edits.

11. References

Sakimura & Bradley Expires January 23, 2016 [Page 13]

Internet-Draft oauth-jar July 2015

11.1. Normative References

 [FIPS180-2]
 U.S. Department of Commerce and National Institute of
 Standards and Technology, "Secure Hash Signature
 Standard", FIPS 180-2, August 2002.

 Defines Secure Hash Algorithm 256 (SHA256)

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <http://www.rfc-editor.org/info/rfc6819>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <http://www.rfc-editor.org/info/rfc7516>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <http://www.rfc-editor.org/info/rfc7518>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749
http://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819
http://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
http://www.rfc-editor.org/info/rfc7516
https://datatracker.ietf.org/doc/html/rfc7518
http://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
http://www.rfc-editor.org/info/rfc7519

Sakimura & Bradley Expires January 23, 2016 [Page 14]

Internet-Draft oauth-jar July 2015

11.2. Informative References

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", February 2014.

Authors' Addresses

 Nat Sakimura (editor)
 Nomura Research Institute
 1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
 Chiyoda-ku, Tokyo 100-0005
 Japan

 Phone: +81-3-5533-2111
 Email: n-sakimura@nri.co.jp
 URI: http://nat.sakimura.org/

 John Bradley
 Ping Identity
 Casilla 177, Sucursal Talagante
 Talagante, RM
 Chile

 Phone: +44 20 8133 3718
 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

http://nat.sakimura.org/
http://www.thread-safe.com/

Sakimura & Bradley Expires January 23, 2016 [Page 15]

