OAuth Working Group N. Sakimura, Ed.

Internet-Draft Nomura Research Institute
Intended status: Standards Track J. Bradley
Expires: April 16, 2016 Ping Identity

October 14, 2015

OAuth 2.0 JWT Authorization Request
draft-ietf-oauth-jwsreq-06

Abstract

The authorization request in RFC6749 utilizes query parameter
serialization. This specification defines the authorization request
using JWT serialization. The request is sent by value through
"request" parameter or by reference through "request_uri" parameter
that points to the JWT, allowing the request to be optionally signed
and encrypted.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 16, 2016.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

Sakimura & Bradley Expires April 16, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft oauth-jar October 2015

the Trust Legal Provisions and are provided without warranty as

described in the Simplified BSD License.

Table of Contents

=

(=

Introduction .o
1.1. Requirements Language
Terminology
2.1. Request Object
2.2. Request Object URI
Request Object
Authorization Request .
1. Passing a Request Object by Value
.2. Passing a Request Object by Reference
2.1. URL Referencing the Request Object .
4.2.2. Request using the "request_uri" Request Parameter
4.2.3. Authorization Server Fetches Request Object
Validating JWT-Based Requests
Encrypted Request Object
Signed Request Object
5.3. Request Parameter Assembly and Valldatlon
Authorization Server Response
IANA Considerations
Security Considerations
Acknowledgements
Revision History
References .
11.1. Normative References
11.2. Informative References
Authors' Addresses

N

[W
‘-b

‘ N
N

[&)]
9]
=

(6]
N

(6]
w

Blreene

Introduction

The parameters '"request" and "request_uri" are introduced as
additional authorization request parameters for the OAuth 2.0

[REC6749] flows. The "request" parameter is a JSON Web Token (JWT)
[REC7519] whose JWT Claims Set holds the JSON encoded OAuth 2.0

RPRRRERPERERERRRRRRRRR
‘m‘m‘b‘b‘w‘w‘M‘M‘N‘N‘H‘H‘H‘H‘O‘O\m\ﬂ\@\#\b\b\b\b\w

authorization request parameters. The JWT [REC7519] can be passed to
the authorization endpoint by reference, in which case the parameter

"request_uri" is used instead of the "request".

Using JWT [REC7519] as the request encoding instead of query
parameters has several advantages:

1. The request can be signed so that an integrity check can be
implemented. 1If a suitable algorithm is used for the signing,

then it will provide verification of the client making the
request.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519

Sakimura & Bradley Expires April 16, 2016 [Page 2]

Internet-Draft oauth-jar October 2015

The request may be encrypted so that end-to-end confidentiality
may be obtained even if in the case TLS connection is terminated
at a gateway or a similar device.

The request may be signed by a third party attesting that the
authorization request is compliant to certain policy. For
example, a request can be pre-examined by a third party that all
the personal data requested is strictly necessary to perform the
process that the end-user asked for, and statically signed by
that third party. The client would then send the request along
with dynamic parameters such as state. The authorization server
then examines the signature and show the conformance status to
the end-user, who would have some assurance as to the legitimacy
of the request when authorizing it. In some cases, it may even
be desirable to skip the authorization dialogue under such
circumstances.

There are a few cases that request by reference are useful such as:

1.

When it is detected that the User Agent does not support long
URLs: Some extensions may extend the URL. For example, the
client might want to send a public key with the request.

Static signature: The client can make a signed Request Object and
put it at a place that the Authorization Server can access. This
may just be done by a client utility or other process, so that
the private key does not have to reside on the client,
simplifying programming.

When the server wants the requests to be cacheable: The
request_uri may include a SHA-256 hash of the file, as defined in
FIPS180-2 [FIPS180-2], the server knows if the file has changed
without fetching it, so it does not have to re-fetch a same file,
which is a win as well.

When the client wants to simplify the implementation without
compromising the security. If the request parameters go through
the browser, they may be tampered in the browser even if TLS was
used. This implies we need to have signature on the request as
well. However, if HTTPS "request_uri" was used, it is not going
to be tampered, thus we now do not have to sign the request.
This simplifies the implementation.

This capability is in use by OpenID Connect [OpenID.Core].

Sakimura & Bradley Expires April 16, 2016 [Page 3]

Internet-Draft oauth-jar October 2015

N

2.

[eM]

.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Terminology

For the purposes of this specification, the following terms and
definitions apply.

.1. Request Object

JWT [REC7519] that holds an OAuth 2.0 authorization request as JWT
Claims Set

2. Request Object URI

Absolute URI from which the Request Object (Section 2.1) can be
obtained

Request Object

A Request Object (Section 2.1) is used to provide authorization
request parameters for an OAuth 2.0 authorization request. It
contains OAuth 2.0 [RFC6749] authorization request parameters
including extension parameters. It is a JSON Web Signature (JWS)
[REC7515] signed JWT [REC7519] . The parameters are represented as
the JWT claims. Parameter names and string values MUST be included
as JSON strings. Numerical values MUST be included as JSON numbers.
It MAY include any extension parameters. This JSON [REC7159]
constitutes the JWT [REC7519] Claims Set.

The Request Object MAY be signed or be an Unsecured JWS. When it 1is
an unsecured JWS, this is indicated by use of the "none" algorithm
JWA [REC7518] in the JWS header. If signed, the Authorization
Request Object SHOULD contain the Claims "iss" (issuer) and "aud"
(audience) as members, with their semantics being the same as defined
in the JWT [REC7519] specification.

The Request Object MAY also be encrypted using JWE [REC7516] and MAY
be encrypted without also being signed. If both signing and
encryption are performed, it MUST be signed then encrypted, with the
result being a Nested JWT, as defined in JWT [RFC7519].

The Authorization Request Object MAY alternatively be sent by
reference using the "request_uri" parameter.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7519

Sakimura & Bradley Expires April 16, 2016 [Page 4]

Internet-Draft oauth-jar October 2015

REQUIRED OAuth 2.0 Authorization Request parameters that are not
included in the Request Object MUST be sent as a query parameter. If
a required parameter is not present in neither the query parameter
nor the Request Object, it forms a malformed request.

"request" and "request_uri" parameters MUST NOT be included in
Request Objects.

If the parameter exists in both the query string and the
Authorization Request Object, the values in the Request Object takes
precedence. This means that if it intends to use a cached request
object, it cannot include such parameters like "state" that is
expected to differ in every request. It is fine to include them in
the request object if it is going to be prepared afresh every time.

The following is a non-normative example of the Claims in a Request
Object before base64url encoding and signing. Note that it includes
extension variables such as "nonce", "userinfo", and "id_token".

{
"iss": "s6BhdRkqt3",
"aud": "https://server.example.com",
"response_type": "code id_token",
"client_id": "s6BhdRkqt3",
"redirect_uri": "https://client.example.org/ch",
"scope": "openid",

"state": "afo@ifjsldkj",
"nonce": "n-0S6_WzA2Mj",
"max_age": 86400,
"claims":
{
"userinfo":
{
"given_name": {"essential": true},
"nickname": null,
"email": {"essential": true},
"email_verified": {"essential": true},
"picture": null

Xt
"id_token":
{
"gender": null,
"birthdate": {"essential": true},
"acr": {"values": ["urn:mace:incommon:iap:silver"]}
¥

Sakimura & Bradley Expires April 16, 2016 [Page 5]

Internet-Draft oauth-jar October 2015

4.

Signing it with the "RS256" algorithm results in this Request Object
value (with line wraps within values for display purposes only):

eyJhbGci0iJSUzIINiIsImtpZCI6ImsyYmMRjINO®.ewOKICIpc3MiOiAiczZCaGRSa3
FOMyIsDQogImF1ZCI6ICJodHRwWCczovL3N1cnZlci51leGFtcGx1LmNvbSIsDQogInJdl
C3BvbnNN1X3R5cGUi0iA1Y29kZSBpZF90b2t1biIsDQogImNsawWVudF9pZCIBICIzNkK
JOZFJrcXQzIiwNCiAicmVkaXJ1Y3RfdXJIpIjogImhOdHBz0i8VvY2XpZW50LmMV4YWiw
bGUUD3JINL2NiTiwNCiAic2NvcGUi1i0iAib3B1lbmlkIiwNCiAic3RhdGUiOiALYWYwaW
Z2qc2xka20iLAOKICJub25jZSI6ICIJULTBTN19XekEyTWOiLAOKICItYXhfYWd1Ijog
ODYGMDASDQogImNSYW1ltcyI6TAOKICB7DQogICAidXNlcmluZm8i0iANCiAgICB7DQ
0gICAgICJInaxZ1lbl9uYwW1lIjogeyJ1lc3N1bnRpYWwiOiBOcnV1fSWNCiAgICAgIm5p
Y2tuYW11lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJ1c3N1lbnRpYWwiOiBOcnV1fS
WNCiAgQICAgImMVtYW1lsX3Z1lcmlmaWVkIjogeyJ1c3N1bnRpYWwiOiBOcnV1fSwWNCiAg
ICAgQINnBpY3R1cmUi0iBudwWxsDQogICAgTSWNCiAgQICJIpZF90b2t1biI6TAOKICAQIH
SNCiAgICAgImdlbmR1ciI6IG51bGwsDQogICAgICJIiaXJ0aGRhdGUi0iB7ImVzc2Vu
dG1lhbCI6IHRYdWVOLAOKICAgICAiLIYWNYIjogeyJ2YWX1ZXMi0iBbInVybjptYWN1Om
1uY29tbW9uOmlhcDpzaWx2ZXIiXXONCiAgICBODQOgIHONCNO . nwwnNskl1-Zkbmnvs
F6zTHM8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6ROEmo_wHwajyF
KzuMXZFSz3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTX
OGXxFbuPbj96tVujl1pTnmFCURG6IEOXKYr7iGOCRB3btfJhMO_AKQUfgKnR1rRscc8K
01-cSLWoYE915QqholImzjT_cMNNIzZnWOE7CDYWXTsO070xnB4SKG6pXfLSjLL1XmPG
iyon_-Tel111V8UE83I1zCYIb_NMXvtTIVcljpspnTSD7xMbpL-2QgwUSAIMGzw

The following RSA public key, represented in JWK format, can be used

to validate the Request Object signature in this and subsequent
Request Object examples (with line wraps within values for display
purposes only):

{

"kty":"RSA",

"kid":"k2bdc",

"n":"y9Lqv4fCp6Ei-u2-ZCKq83YVbFEK6JIMs_pSj76eMkddWRUWX2aBKGHAtK1ESP
7_vn__PCKZWePt3vGkB6ePgzAFUO8NmKemwE5bQIQe6kIChtt 6KzT50aaXDF
I6qCLJImk51Cc4VYFaxggevMncYrzaw_50mZ1yGSFIQzLYP8bijAHGVjdEFgZa
ZEN91lsn_GdwWLaJpHrB3RO1S50E45wxr1g9xMncVb8gDPuXZarvghLLOHZzOUYR
adBJVoWZowDNTpKpk2Rk1Z7QaB07XDv3uR7s_sf2g-bAjSYxXYUGSqKNA9b3xV

W53am_UZZ3tZbFTIh557JICWKH1Wj5uzeJXaw",
Ilell : IIAQAB"
b

Authorization Request

The client constructs the authorization request URI by adding the
following parameters to the query component of the authorization
endpoint URI using the "application/x-www-form-urlencoded" format:

Sakimura & Bradley Expires April 16, 2016 [Page 6]

Internet-Draft oauth-jar October 2015

request REQUIRED unless "request_uri" is specified. The Request
Object (Section 3) that holds authorization request parameters
stated in the section 4 of OAuth 2.0 [RFEC6749].

request_uri REQUIRED unless "request" is specified. The absolute
URL that points to the Request Object (Section 3) that holds
authorization request parameters stated in the section 4 of OAuth
2.0 [RFC6749].

state RECOMMENDED. OAuth 2.0 [RFC6749] state.

The client directs the resource owner to the constructed URI using an
HTTP redirection response, or by other means available to it via the
user-agent.

For example, the client directs the end-user's user-agent to make the
following HTTPS request (line breaks are for display purposes only):

GET /authorize?request_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

The authorization request object MAY be signed AND/OR encrypted.

When the "request" parameter is used, the OAuth 2.0 request parameter
values contained in the JWT supersede those passed using the OAuth
2.0 request syntax. However, parameters MAY also be passed using the
OAuth 2.0 request syntax even when a Request Object is used; this
would typically be done to enable a cached, pre-signed (and possibly
pre-encrypted) Request Object value to be used containing the fixed
request parameters, while parameters that can vary with each request,
such as state and nonce, are passed as OAuth 2.0 parameters.

4.1. Passing a Request Object by Value

The Client sends the Authorization Request as a Request Object to the
Authorization Endpoint as the "request" parameter value.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires April 16, 2016 [Page 7]

Internet-Draft oauth-jar October 2015

The following is a non-normative example of an Authorization Request
using the "request" parameter (with line wraps within values for
display purposes only):

https://server.example.com/authorize?
response_type=code%20id_token
&client_id=s6BhdRkqt3
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
&scope=openid
&state=af0ifjsldkj
&nonce=n-0S6_WzA2Mj
&request=eyJhbGci0iJSUzIINiISImtpZCI6IMSYyYmMRFINO.ewdKICIpc3MiOiA
iczZCaGRSa3FOMyIsDQogImF1ZCI6ICJodHRwczovL3N1cnZlci5leGFtcGx1LmN
vbSIsDQogInJ1c3BvbnN1X3R5cGUi0iA1Y29kZSBpZF90b2t1biIsDQogImNsawV
UdF9pPZCIBICIzNKkJIOZFJIrcXQzIiwNCiAicmVkaXJ1Y3RfdXJIpIjogImh@dHBz01i8
VY2XpZW50LmV4YW1wbGUUb3JInL2NiIiwNCiAic2NvcGUi0iAib3B1bmlkIiwNCiA
ic3RhdGUi0iAiYWYwaWZqc2xka20iLAOKICJub25jZSI6ICIJULTBTN19XekEyTWoO
1LAGKICJItYXhfYWd1IjogODYOMDASDQogImMNsYW1ltcyI6IAOKICB7DQogICAidXN
1cmluzZm8i0iANCiAgICB7DQogICAgICInaxXzZ1bl9uYwWilIjogeyJ1c3N1lbnRpYWw
10iBOcnV1fSWNCiAgICAgIm5pY2tuYW11lIjogbnVsbCwNCiAgQICAgIMVtYW1sIjo
geyJ1c3N1bnRpYWwi0iBOcnV1FfSWNCiAgICAgImVtYWlsX3Z1cmlmaWVkIjogeyJd
1c3N1bnRpYWwi0iBOcnV1fSWNCiAgICAgINBpY3R1cmUiOiBudwxsDQogICAgTSw
NCiAgICJIpZF90b2t1biI6IAOKICAgIHSNCiAgICAgImdlbmR1ciI6IG51bGwsDQoO
gICAgICJiaXJ0aGRhdGUi0iB7ImVzc2VudGlhbCI6IHRYdWVILAGKICAgICALIYWN
yIjogeyJ2YWx1ZXMi0iBbInVybjptYWN1OmluY29tbwW9uOmlhcDpzaWx2ZXIiXX0e
NCiAgICB9DQOgIHONCNO. nwwnNskl-ZkbmnvsF6zTHmM8CHERFMGQPhos-EJcaH4H
h-sMgk8ePrGhw_trPYs8KQxsn6ROEmMo_wHwajyFKzuMXZFSZ3p6Mb8dkxtVyjoy2
GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1lUuRTX0GXFbuPbj96tVujlipTnmFC
URBIEOXKYr7iGOCRB3btfJhMO_AKQUfgKnR1lrRscc8Kol-cSLWoYE915QqholImz
JT_CMNNIzZnWOE7CDYWXTs070xnB4SKkG6pXfLSjLL1xmPGiyon_-Tell11V8UuE83I1
ZCYIb_NMXvtTIVcljpspnTSD7xMbpL-2QgwUsSA1MGzw

I

.2. Passing a Request Object by Reference

The "request_uri" Authorization Request parameter enables OAuth
authorization requests to be passed by reference, rather than by
value. This parameter is used identically to the "request"
parameter, other than that the Request Object value is retrieved from
the resource at the specified URL, rather than passed by value.

When the "request_uri" parameter is used, the OAuth 2.0 authorization
request parameter values contained in the referenced JWT supersede
those passed using the OAuth 2.0 request syntax. However, parameters
MAY also be passed using the OAuth 2.0 request syntax even when a
"request_uri" is used; this would typically be done to enable a
cached, pre-signed (and possibly pre-encrypted) Request Object value
to be used containing the fixed request parameters, while parameters

Sakimura & Bradley Expires April 16, 2016 [Page 8]

Internet-Draft oauth-jar October 2015

that can vary with each request, such as "state" and '"nonce", are
passed as OAuth 2.0 parameters.

Servers MAY cache the contents of the resources referenced by Request
URIs. If the contents of the referenced resource could ever change,
the URI SHOULD include the base64url encoded SHA-256 hash as defined
in FIPS180-2 [FIPS180-2] of the referenced resource contents as the
fragment component of the URI. If the fragment value used for a URI
changes, that signals the server that any cached value for that URI
with the old fragment value is no longer valid.

The entire Request URI MUST NOT exceed 512 ASCII characters. There
are three reasons for this restriction.

1. Many WAP / feature phones do not accept large payloads. The
restriction are typically either 512 or 1024 ASCII characters.

2. The maximum URL length supported by Internet Explorer is 2083
ASCII characters.

3. 0n a slow connection such as 2G mobile connection, a large URL
would cause the slow response and using such is not advisable
from the user experience point of view.

The contents of the resource referenced by the URL MUST be a Request
Object. The scheme used in the "request_uri" value MUST be "https",
unless the target Request Object is signed in a way that is
verifiable by the Authorization Server. The "request_uri" value MUST
be reachable by the Authorization Server, and SHOULD be reachable by
the Client.

Sakimura & Bradley Expires April 16, 2016 [Page 9]

Internet-Draft oauth-jar October 2015

Th
0b
wr

Th
re
UR

If
NO
th
is
us
me

Th
1i

Th
En

4.2.1.

4.2.2.

e following is a non-normative example of the contents of a Request
ject resource that can be referenced by a "request_uri" (with line
aps within values for display purposes only):

eyJhbGci0iJSUzIINIISImtpZCI6ImSyYmMRjINO.ewOKICIpc3MiOiAiczZCaGRSa3
FOMyIsDQogImF1ZCI6ICJodHRwczovL3N1lcnZlci51leGFtcGx1LmNvbSIsDQogInJdl
Cc3BvbnNN1X3R5cGUi0iA1Y29kZSBpZF90b2t1biIsDQogImNsawWVudF9pZCIBICIzNK
JOZFJrcXQzIiwNCiAicmVkaXJ1Y3RfdXJIpIjogImhOdHBz0i8vY2XpZW50LmMV4YW1w
bGUUb3JINL2NiIiwNCiAic2NvcGUi0iA1b3B1bmlkIiwNCiAic3RhdGUiOiAiYWYwaW
2qc2xka20iLAOKICJub25jZSI6ICIJULTBTN19XekEyTWOoiLAOKICItYXhfYWd1Ijog
ODYO®MDASDQogImMNSYW1ltcyI6IAOKICB7DQogICAidXNlcmluZm8i0iANCiAgICB7DQ
0gICAgICJInaxzZ1lbl9uYW1lIjogeyJ1lc3N1bnRpYWwiOiBOcnV1fSWNCiAgICAgImSp
Y2tuYW11lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJ1c3N1bnRpYWwiOiBOcnV1fS
WNC1AgICAgImVtYW1lsX3Z1lcmlmawWVkIjogeyJ1c3N1lbnRpYWwiOiBOcnV1fSwWNCiAg
ICAgINBpY3R1cmUi0iBudwWxsDQogICAgfSWNCiAgICIpZF90b2t1biI6IAOKICAGIH
SNCiAgICAgImd1lbmR1ciI6IG51bGwsDQOgICAgICJIiaXJ0aGRhdGUi0iB7ImVzc2Vu
dG1hbCI6IHRYdWVILAOKICAgICAiIYWNYIjogeyJ2YWXx1ZXMi0iBbInVybjptYWN1Om
1uY29tbwW9uOmlhcDpzaWx2ZXIiXXONCiAgICBODQOgIHONCNO . nwwnNskl-Zkbmnvs
F6zTHM8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF
KzuMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QUOhjBcHs68PkgjDVTrGluRTX
OGxFbuPbj96tVujllpTnmFCURG6IEOXKYr7iGOCRB3btfJhMO_AKQUfgKnR1rRscc8K
0l1-cSLWoYE915QqholImzjT_cMNNIZnWOE7CDYWXTs070xnB4SKkG6pXTLSjLL1XmPG
iyon_-Tel111V8UE83I1zCYIb_NMXvtTIVcljpspnTSD7xMbpL-2QgwUSAIMGzw

URL Referencing the Request Object

e Client stores the Request Object resource either locally or
motely at a URL the Server can access. This URL is the Request
I, "request_uri".

the Request Object includes requested values for Claims, it MUST
T be revealed to anybody but the Authorization Server. As such,
e "request_uri" MUST have appropriate entropy for its lifetime. It
RECOMMENDED that it be removed if it is known that it will not be
ed again or after a reasonable timeout unless access control
asures are taken.

e following is a non-normative example of a Request URI value (with
ne wraps within values for display purposes only):

https://client.example.org/request. jwt#
GKurkxf5TOY-mnPFCHQWOM1Zi4VS138cQ0_V7PZHAdM

Request using the "request_uri" Request Parameter

e Client sends the Authorization Request to the Authorization
dpoint.

Sakimura & Bradley Expires April 16, 2016 [Page 10]

Internet-Draft oauth-jar October 2015

4.2.3. Authorization Server Fetches Request Object

5.

5

The following is a non-normative example of an Authorization Request
using the "request_uri" parameter (with line wraps within values for
display purposes only):

https://server.example.com/authorize?
response_type=code%20id_token
&client_id=s6BhdRkqt3
&request_uri=https%3A%2F%2Fclient.example.org%2Frequest.jwt
%23GKUrkxf5TOY-mnPFCHQWOM1Zi4VS138cQ0_V7PZHAIM
&state=afoifjsldkj

Upon receipt of the Request, the Authorization Server MUST send an
HTTP "GET" request to the "request_uri" to retrieve the referenced
Request Object, unless it is already cached, and parse it to recreate
the Authorization Request parameters.

Note that the client SHOULD use a unique URI for each request
utilizing distinct parameters, or otherwise prevent the Authorization
Server from caching the "request_uri".

The following is a non-normative example of this fetch process:

GET /request.jwt HTTP/1.1
Host: client.example.org

Validating JWT-Based Requests

.1. Encrypted Request Object

The Authorization Server MUST decrypt the JWT in accordance with the
JSON Web Encryption [RFC7516] specification. The result MAY be
either a signed or unsigned (plaintext) Request Object. In the
former case, signature validation MUST be performed as defined in
Section 5.2.

The Authorization Server MUST return an error if decryption fails.

.2. Signed Request Object

To perform Signature Validation, the "alg" Header Parameter in the
JOSE Header MUST match the value of the "request_object_signing_alg"
set during Client Registration or a value that was pre-registered by
other means. The signature MUST be validated against the appropriate
key for that "client_id" and algorithm.

https://datatracker.ietf.org/doc/html/rfc7516

Sakimura & Bradley Expires April 16, 2016 [Page 11]

Internet-Draft oauth-jar October 2015

5.

o

I~

=]

The Authorization Server MUST return an error if signature validation
fails.

Request Parameter Assembly and Validation

The Authorization Server MUST assemble the set of Authorization
Request parameters to be used from the Request Object value and the
OAuth 2.0 Authorization Request parameters (minus the "request" or
"request_uri" parameters). If the same parameter exists both in the
Request Object and the OAuth Authorization Request parameters, the
parameter in the Request Object is used. Using the assembled set of
Authorization Request parameters, the Authorization Server then
validates the request as specified in OAuth 2.0 [REC6749].

Authorization Server Response

Authorization Server Response is created and sent to the client as in
Section 4 of OAuth 2.0 [RFEC6749]

In addition, this document defines additional error values as
follows:

invalid_request_uri The "request_uri" in the Authorization Request
returns an error or contains invalid data.

invalid_request_object The request parameter contains an invalid
Request Object.

request_not_supported The Authorization Server does not support the
use of the "request" parameter.

request_uri_not_supported The Authorization Server does not support
use of the "request_uri" parameter.

IANA Considerations
The request_object_signing_alg OAuth Dynamic Client Registration
Metadata is pending registration by OpenID Connect Dynamic
Registration specification.

Security Considerations

In addition to the all the security considerations discussed in OAuth
2.0 [REC6819], the following security considerations SHOULD be taken

into account.

When sending the authorization request object through "request"
parameter, it SHOULD be signed with then considered appropriate

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6819

Sakimura & Bradley Expires April 16, 2016 [Page 12]

Internet-Draft oauth-jar October 2015

[©

algorithm using [REC7515]. The "alg=none" SHOULD NOT be used in such
a case.

If the request object contains personally identifiable or sensitive
information, the "request_uri" MUST be of one-time use and MUST have
large enough entropy deemed necessary with applicable security
policy. For higher security requirement, using [RFC7516] is strongly
recommended.

Acknowledgements

Follwoing people contributed to the creation of this document in
OAuth WG.

Michael B. Jones (Microsoft), Axel Nenker(DT), Sergey Beryozkin, Jim
Manico, (add yourself).

Following people contributed to creating this document through the
OpenID Connect 1.0 [OpenID.Core].

Breno de Medeiros (Google), Hideki Nara (TACT), Ryo Itou (Yahoo!
Japan), George Fletcher (AOL), Justin Richer (MITRE), Edmund Jay
(I1lumila), Michael B. Jones (Microsoft), (add yourself).

In addition following people contributed to this and previous
versions through The OAuth Working Group.

David Recordon (Facebook), Luke Shepard (Facebook), James H. Manger
(Telstra), Marius Scurtescu (Google), John Panzer (Google), Dirk
Balfanz (Google), (add yourself).
Revision History
-06
o Added explanation on the 512 chars URL restriction.
0o Updated Acknowledgements.
-05
0 More alignment with OpenID Connect.

-04

0o Fixed typos in examples. (request_url -> request_uri, cliend_id ->
client_id)

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516

Sakimura & Bradley Expires April 16, 2016 [Page 13]

Internet-Draft oauth-jar October 2015

11.

11.

o Aligned the error messages with the OAuth IANA registry.
0o Added another rationale for having request object.
-03

o Fixed the non-normative description about the advantage of static
signature.

o Changed the requirement for the parameter values in the request
itself and the request object from 'MUST MATCH" to 'Req Obj takes
precedence.

-02

o Now that they are RFCs, replaced JwWS, JWE, etc. with RFC numbers.

-01

o Copy Edits.

References

1. Normative References

[FIPS180-2]
U.S. Department of Commerce and National Institute of
Standards and Technology, "Secure Hash Signature
Standard", FIPS 180-2, August 2002.

Defines Secure Hash Algorithm 256 (SHA256)

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
<http://www.rfc-editor.org/info/rfc5246>.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
<http://www.rfc-editor.org/info/rfc6749>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749
http://www.rfc-editor.org/info/rfc6749

Sakimura & Bradley Expires April 16, 2016 [Page 14]

Internet-Draft oauth-jar October 2015

[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations", RFC 6819,
DOI 10.17487/RFC6819, January 2013,
<http://www.rfc-editor.org/info/rfc6819>.

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
2014, <http://www.rfc-editor.org/info/rfc7159>.

[RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JwS)", REC 7515, DOI 10.17487/RFC7515, May
2015, <http://www.rfc-editor.org/info/rfc7515>.

[RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
REC 7516, DOI 10.17487/RFC7516, May 2015,
<http://www.rfc-editor.org/info/rfc7516>.

[RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
DOI 10.17487/RFC7518, May 2015,
<http://www.rfc-editor.org/info/rfc7518>.

[RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
(JWT)", REC 7519, DOI 10.17487/RFC7519, May 2015,
<http://www.rfc-editor.org/info/rfc7519>,

11.2. Informative References

[OpenID.Core]
Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
C. Mortimore, "OpenID Connect Core 1.0", February 2014.

Authors' Addresses

Nat Sakimura (editor)

Nomura Research Institute

1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
Chiyoda-ku, Tokyo 100-0005

Japan

Phone: +81-3-5533-2111
Email: n-sakimura@nri.co.jp
URI: http://nat.sakimura.org/

https://datatracker.ietf.org/doc/html/rfc6819
http://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
http://www.rfc-editor.org/info/rfc7516
https://datatracker.ietf.org/doc/html/rfc7518
http://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
http://www.rfc-editor.org/info/rfc7519
http://nat.sakimura.org/

Sakimura & Bradley Expires April 16, 2016 [Page 15]

Internet-Draft oauth-jar October 2015

John Bradley

Ping Identity

Casilla 177, Sucursal Talagante
Talagante, RM

Chile

Phone: +44 20 8133 3718
Email: ve7jtb@ve7jtb.com
URI: http://www.thread-safe.com/

Sakimura & Bradley Expires April 16, 2016 [Page 16]

http://www.thread-safe.com/

