
OAuth Working Group N. Sakimura
Internet-Draft Nomura Research Institute
Intended status: Standards Track J. Bradley
Expires: April 24, 2019 Yubico
 October 21, 2018

The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request
 (JAR)

draft-ietf-oauth-jwsreq-17

Abstract

 The authorization request in OAuth 2.0 described in RFC 6749 utilizes
 query parameter serialization, which means that Authorization Request
 parameters are encoded in the URI of the request and sent through
 user agents such as web browsers. While it is easy to implement, it
 means that (a) the communication through the user agents are not
 integrity protected and thus the parameters can be tainted, and (b)
 the source of the communication is not authenticated. Because of
 these weaknesses, several attacks to the protocol have now been put
 forward.

 This document introduces the ability to send request parameters in a
 JSON Web Token (JWT) instead, which allows the request to be signed
 with JSON Web Signature (JWS) and encrypted with JSON Web Encryption
 (JWE) so that the integrity, source authentication and
 confidentiality property of the Authorization Request is attained.
 The request can be sent by value or by reference.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2019.

Sakimura & Bradley Expires April 24, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwsreq-17
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OAuth JAR October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 5

2. Terminology . 5
2.1. Request Object . 5
2.2. Request Object URI 6

3. Symbols and abbreviated terms 6
4. Request Object . 6
5. Authorization Request . 8
5.1. Passing a Request Object by Value 9
5.2. Passing a Request Object by Reference 9
5.2.1. URI Referencing the Request Object 11
5.2.2. Request using the "request_uri" Request Parameter . . 11
5.2.3. Authorization Server Fetches Request Object 11

6. Validating JWT-Based Requests 12
6.1. Encrypted Request Object 12
6.2. JWS Signed Request Object 13
6.3. Request Parameter Assembly and Validation 13

7. Authorization Server Response 13
8. TLS Requirements . 13
9. IANA Considerations . 14
10. Security Considerations 14
10.1. Choice of Algorithms 14
10.2. Request Source Authentication 15
10.3. Explicit Endpoints 15
10.4. Risks Associated with request_uri 16
10.4.1. DDoS Attack on the Authorization Server 16
10.4.2. Request URI Rewrite 16

11. TLS security considerations 17
12. Privacy Considerations 17
12.1. Collection limitation 17
12.2. Disclosure Limitation 18

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Sakimura & Bradley Expires April 24, 2019 [Page 2]

Internet-Draft OAuth JAR October 2018

12.2.1. Request Disclosure 18
12.2.2. Tracking using Request Object URI 18

13. Acknowledgements . 18
14. Revision History . 19
15. References . 24
15.1. Normative References 24
15.2. Informative References 26

 Authors' Addresses . 27

1. Introduction

 The Authorization Request in OAuth 2.0 [RFC6749] utilizes query
 parameter serialization and is typically sent through user agents
 such as web browsers.

 For example, the parameters "response_type", "client_id", "state",
 and "redirect_uri" are encoded in the URI of the request:

 GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
 Host: server.example.com

 While it is easy to implement, the encoding in the URI does not allow
 application layer security with confidentiality and integrity
 protection to be used. While TLS is used to offer communication
 security between the Client and the user-agent as well as the user-
 agent and the Authorization Server, TLS sessions are terminated in
 the user-agent. In addition, TLS sessions may be terminated
 prematurely at some middlebox (such as a load balancer).

 As the result, the Authorization Request of [RFC6749] has
 shortcomings in that:

 (a) the communication through the user agents are not integrity
 protected and thus the parameters can be tainted (integrity
 protection failure)

 (b) the source of the communication is not authenticated (source
 authentication failure)

 (c) the communication through the user agents can be monitored
 (containment / confidentiality failure).

 Due to these inherent weaknesses, several attacks against the
 protocol, such as Redirection URI rewriting and Mix-up attack [FETT],
 have been identified.

 The use of application layer security mitigates these issues.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires April 24, 2019 [Page 3]

Internet-Draft OAuth JAR October 2018

 The use of application layer security allows requests to be prepared
 by a third party so that a client application cannot request more
 permissions than previously agreed. This offers an additional degree
 of privacy protection.

 Furthermore, the request by reference allows the reduction of over-
 the-wire overhead.

 The JWT [RFC7519] encoding has been chosen because of

 (1) its close relationship with JSON, which is used as OAuth's
 response format

 (2) its developer friendliness due to its textual nature

 (3) its relative compactness compared to XML

 (4) its development status that it is an RFC and so is its
 associated signing and encryption methods as [RFC7515] and
 [RFC7516]

 (5) the relative ease of JWS and JWE compared to XML Signature and
 Encryption.

 The parameters "request" and "request_uri" are introduced as
 additional authorization request parameters for the OAuth 2.0
 [RFC6749] flows. The "request" parameter is a JSON Web Token (JWT)
 [RFC7519] whose JWT Claims Set holds the JSON encoded OAuth 2.0
 authorization request parameters. This JWT is integrity protected
 and source authenticated using JWS.

 The JWT [RFC7519] can be passed to the authorization endpoint by
 reference, in which case the parameter "request_uri" is used instead
 of the "request".

 Using JWT [RFC7519] as the request encoding instead of query
 parameters has several advantages:

 (a) (integrity protection) The request can be signed so that the
 integrity of the request can be checked.

 (b) (source authentication) The request can be signed so that the
 signer can be authenticated.

 (c) (confidentiality protection) The request can be encrypted so
 that end-to-end confidentiality can be provided even if the TLS
 connection is terminated at one point or another.

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519

Sakimura & Bradley Expires April 24, 2019 [Page 4]

Internet-Draft OAuth JAR October 2018

 (d) (collection minimization) The request can be signed by a third
 party attesting that the authorization request is compliant with
 a certain policy. For example, a request can be pre-examined by
 a third party that all the personal data requested is strictly
 necessary to perform the process that the end-user asked for,
 and statically signed by that third party. The authorization
 server then examines the signature and shows the conformance
 status to the end-user, who would have some assurance as to the
 legitimacy of the request when authorizing it. In some cases,
 it may even be desirable to skip the authorization dialogue
 under such circumstances.

 There are a few cases that request by reference is useful such as:

 1. When it is desirable to reduce the size of transmitted request.
 The use of application layer security increases the size of the
 request, particularly when public key cryptography is used.

 2. When the client does not want to do the crypto. The
 Authorization Server may provide an endpoint to accept the
 Authorization Request through direct communication with the
 Client so that the Client is authenticated and the channel is TLS
 protected.

 This capability is in use by OpenID Connect [OpenID.Core].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Terminology

 For the purposes of this specification, the following terms and
 definitions in addition to what is defined in OAuth 2.0 Framework
 [RFC6749], JSON Web Signature [RFC7515], and JSON Web Encryption
 [RFC7519] apply.

2.1. Request Object

 JWT [RFC7519] that holds an OAuth 2.0 authorization request as JWT
 Claims Set

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519

Sakimura & Bradley Expires April 24, 2019 [Page 5]

Internet-Draft OAuth JAR October 2018

2.2. Request Object URI

 Absolute URI from which the Request Object (Section 2.1) can be
 obtained

3. Symbols and abbreviated terms

 The following abbreviations are common to this specification.

 JSON Javascript Object Notation

 JWT JSON Web Token

 JWS JSON Web Signature

 JWE JSON Web Encryption

 URI Uniform Resource Identifier

 URL Uniform Resource Locator

4. Request Object

 A Request Object (Section 2.1) is used to provide authorization
 request parameters for an OAuth 2.0 authorization request. It MUST
 contains all the OAuth 2.0 [RFC6749] authorization request parameters
 including extension parameters. The parameters are represented as
 the JWT claims. Parameter names and string values MUST be included
 as JSON strings. Since Request Objects are handled across domains
 and potentially outside of a closed ecosystem, per section 8.1 of
 [RFC8259], these JSON strings MUST be encoded using UTF-8 [RFC3629].
 Numerical values MUST be included as JSON numbers. It MAY include
 any extension parameters. This JSON [RFC7159] constitutes the JWT
 Claims Set defined in JWT [RFC7519]. The JWT Claims Set is then
 signed or signed and encrypted.

 To sign, JSON Web Signature (JWS) [RFC7515] is used. The result is a
 JWS signed JWT [RFC7519]. If signed, the Authorization Request
 Object SHOULD contain the Claims "iss" (issuer) and "aud" (audience)
 as members, with their semantics being the same as defined in the JWT
 [RFC7519] specification.

 To encrypt, JWE [RFC7516] is used. When both signature and
 encryption are being applied, the JWT MUST be signed then encrypted
 as advised in the section 11.2 of [RFC7519]. The result is a Nested
 JWT, as defined in [RFC7519].

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc8259#section-8.1
https://datatracker.ietf.org/doc/html/rfc8259#section-8.1
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7519#section-11.2
https://datatracker.ietf.org/doc/html/rfc7519

Sakimura & Bradley Expires April 24, 2019 [Page 6]

Internet-Draft OAuth JAR October 2018

 The Authorization Request Object MAY be sent by value as described in
Section 5.1 or by reference as described in Section 5.2.

 "request" and "request_uri" parameters MUST NOT be included in
 Request Objects.

 The following is an example of the Claims in a Request Object before
 base64url encoding and signing. Note that it includes extension
 variables such as "nonce" and "max_age".

 {
 "iss": "s6BhdRkqt3",
 "aud": "https://server.example.com",
 "response_type": "code id_token",
 "client_id": "s6BhdRkqt3",
 "redirect_uri": "https://client.example.org/cb",
 "scope": "openid",
 "state": "af0ifjsldkj",
 "nonce": "n-0S6_WzA2Mj",
 "max_age": 86400
 }

 Signing it with the "RS256" algorithm results in this Request Object
 value (with line wraps within values for display purposes only):

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiAiczZCaGRSa3
 F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmNvbSIsDQogInJl
 c3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWVudF9pZCI6ICJzNk
 JoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8vY2xpZW50LmV4YW1w
 bGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiAic3RhdGUiOiAiYWYwaW
 Zqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWoiLA0KICJtYXhfYWdlIjog
 ODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXNlcmluZm8iOiANCiAgICB7DQ
 ogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgIm5p
 Y2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJlc3NlbnRpYWwiOiB0cnVlfS
 wNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAg
 ICAgInBpY3R1cmUiOiBudWxsDQogICAgfSwNCiAgICJpZF90b2tlbiI6IA0KICAgIH
 sNCiAgICAgImdlbmRlciI6IG51bGwsDQogICAgICJiaXJ0aGRhdGUiOiB7ImVzc2Vu
 dGlhbCI6IHRydWV9LA0KICAgICAiYWNyIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOm
 luY29tbW9uOmlhcDpzaWx2ZXIiXX0NCiAgICB9DQogIH0NCn0.nwwnNsk1-Zkbmnvs
 F6zTHm8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF
 KzuMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx
 0GxFbuPbj96tVuj11pTnmFCUR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8K
 ol-cSLWoYE9l5QqholImzjT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPG
 iyon_-Te111V8uE83IlzCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

Sakimura & Bradley Expires April 24, 2019 [Page 7]

Internet-Draft OAuth JAR October 2018

 The following RSA public key, represented in JWK format, can be used
 to validate the Request Object signature in this and subsequent
 Request Object examples (with line wraps within values for display
 purposes only):

 {
 "kty":"RSA",
 "kid":"k2bdc",
 "n":"y9Lqv4fCp6Ei-u2-ZCKq83YvbFEk6JMs_pSj76eMkddWRuWX2aBKGHAtKlE5P
 7_vn__PCKZWePt3vGkB6ePgzAFu08NmKemwE5bQI0e6kIChtt_6KzT5OaaXDF
 I6qCLJmk51Cc4VYFaxgqevMncYrzaW_50mZ1yGSFIQzLYP8bijAHGVjdEFgZa
 ZEN9lsn_GdWLaJpHrB3ROlS50E45wxrlg9xMncVb8qDPuXZarvghLL0HzOuYR
 adBJVoWZowDNTpKpk2RklZ7QaBO7XDv3uR7s_sf2g-bAjSYxYUGsqkNA9b3xV
 W53am_UZZ3tZbFTIh557JICWKHlWj5uzeJXaw",
 "e":"AQAB"
 }

5. Authorization Request

 The client constructs the authorization request URI by adding one of
 the following parameters but not both to the query component of the
 authorization endpoint URI using the "application/x-www-form-
 urlencoded" format:

 request The Request Object (Section 2.1) that holds authorization
 request parameters stated in section 4 of OAuth 2.0 [RFC6749].

 request_uri The absolute URI as defined by RFC3986 [RFC3986] that
 points to the Request Object (Section 2.1) that holds
 authorization request parameters stated in section 4 of OAuth 2.0
 [RFC6749].

 The client directs the resource owner to the constructed URI using an
 HTTP redirection response, or by other means available to it via the
 user-agent.

 For example, the client directs the end user's user-agent to make the
 following HTTPS request:

 GET /authz?request=eyJhbG..AlMGzw HTTP/1.1
 Host: server.example.com

 The value for the request parameter is abbreviated for brevity.

 The authorization request object MUST be one of the following:

 (a) JWS signed

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires April 24, 2019 [Page 8]

Internet-Draft OAuth JAR October 2018

 (b) JWS signed and JWE encrypted

 The client MAY send the parameters included in the request object
 duplicated in the query parameters as well for the backward
 compatibility etc. However, the authorization server supporting this
 specification MUST only use the parameters included in the request
 object.

5.1. Passing a Request Object by Value

 The Client sends the Authorization Request as a Request Object to the
 Authorization Endpoint as the "request" parameter value.

 The following is an example of an Authorization Request using the
 "request" parameter (with line wraps within values for display
 purposes only):

 https://server.example.com/authorize?
 request=eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiA
 iczZCaGRSa3F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmN
 vbSIsDQogInJlc3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWV
 udF9pZCI6ICJzNkJoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8
 vY2xpZW50LmV4YW1wbGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiA
 ic3RhdGUiOiAiYWYwaWZqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWo
 iLA0KICJtYXhfYWdlIjogODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXN
 lcmluZm8iOiANCiAgICB7DQogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWw
 iOiB0cnVlfSwNCiAgICAgIm5pY2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjo
 geyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJ
 lc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgInBpY3R1cmUiOiBudWxsDQogICAgfSw
 NCiAgICJpZF90b2tlbiI6IA0KICAgIHsNCiAgICAgImdlbmRlciI6IG51bGwsDQo
 gICAgICJiaXJ0aGRhdGUiOiB7ImVzc2VudGlhbCI6IHRydWV9LA0KICAgICAiYWN
 yIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOmluY29tbW9uOmlhcDpzaWx2ZXIiXX0
 NCiAgICB9DQogIH0NCn0.nwwnNsk1-ZkbmnvsF6zTHm8CHERFMGQPhos-EJcaH4H
 h-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyFKzuMXZFSZ3p6Mb8dkxtVyjoy2
 GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx0GxFbuPbj96tVuj11pTnmFC
 UR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8Kol-cSLWoYE9l5QqholImz
 jT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPGiyon_-Te111V8uE83Il
 zCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

5.2. Passing a Request Object by Reference

 The "request_uri" Authorization Request parameter enables OAuth
 authorization requests to be passed by reference, rather than by
 value. This parameter is used identically to the "request"
 parameter, other than that the Request Object value is retrieved from
 the resource identified by the specified URI rather than passed by
 value.

Sakimura & Bradley Expires April 24, 2019 [Page 9]

Internet-Draft OAuth JAR October 2018

 The entire Request URI MUST NOT exceed 512 ASCII characters. There
 are three reasons for this restriction.

 1. Many phones in the market as of this writing still do not accept
 large payloads. The restriction is typically either 512 or 1024
 ASCII characters.

 2. The maximum URL length supported by older versions of Internet
 Explorer is 2083 ASCII characters.

 3. On a slow connection such as 2G mobile connection, a large URL
 would cause the slow response and therefore the use of such is
 not advisable from the user experience point of view.

 The contents of the resource referenced by the URI MUST be a Request
 Object. The "request_uri" value MUST be either URN as defined in

RFC8141 [RFC8141] or "https" URI, as defined in 2.7.2 of RFC7230
 [RFC7230] . The "request_uri" value MUST be reachable by the
 Authorization Server.

 The following is an example of the contents of a Request Object
 resource that can be referenced by a "request_uri" (with line wraps
 within values for display purposes only):

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiAiczZCaGRSa3
 F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmNvbSIsDQogInJl
 c3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWVudF9pZCI6ICJzNk
 JoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8vY2xpZW50LmV4YW1w
 bGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiAic3RhdGUiOiAiYWYwaW
 Zqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWoiLA0KICJtYXhfYWdlIjog
 ODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXNlcmluZm8iOiANCiAgICB7DQ
 ogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgIm5p
 Y2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJlc3NlbnRpYWwiOiB0cnVlfS
 wNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAg
 ICAgInBpY3R1cmUiOiBudWxsDQogICAgfSwNCiAgICJpZF90b2tlbiI6IA0KICAgIH
 sNCiAgICAgImdlbmRlciI6IG51bGwsDQogICAgICJiaXJ0aGRhdGUiOiB7ImVzc2Vu
 dGlhbCI6IHRydWV9LA0KICAgICAiYWNyIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOm
 luY29tbW9uOmlhcDpzaWx2ZXIiXX0NCiAgICB9DQogIH0NCn0.nwwnNsk1-Zkbmnvs
 F6zTHm8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF
 KzuMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx
 0GxFbuPbj96tVuj11pTnmFCUR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8K
 ol-cSLWoYE9l5QqholImzjT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPG
 iyon_-Te111V8uE83IlzCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

https://datatracker.ietf.org/doc/html/rfc8141
https://datatracker.ietf.org/doc/html/rfc8141
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230

Sakimura & Bradley Expires April 24, 2019 [Page 10]

Internet-Draft OAuth JAR October 2018

5.2.1. URI Referencing the Request Object

 The Client stores the Request Object resource either locally or
 remotely at a URI the Authorization Server can access. Such facility
 may be provided by the authorization server or a third party. For
 example, the authorization server may provide a URL to which the
 client POSTs the request object and obtains the Requiest URI. This
 URI is the Request Object URI, "request_uri".

 It is possible for the Request Object to include values that are to
 be revealed only to the Authorization Server. As such, the
 "request_uri" MUST have appropriate entropy for its lifetime. For
 the guidance, refer to 5.1.4.2.2 of [RFC6819]. It is RECOMMENDED
 that it be removed after a reasonable timeout unless access control
 measures are taken.

 The following is an example of a Request Object URI value (with line
 wraps within values for display purposes only):

 https://tfp.example.org/request.jwt#
 GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM

5.2.2. Request using the "request_uri" Request Parameter

 The Client sends the Authorization Request to the Authorization
 Endpoint.

 The following is an example of an Authorization Request using the
 "request_uri" parameter (with line wraps within values for display
 purposes only):

 https://server.example.com/authorize?
 response_type=code%20id_token
 &client_id=s6BhdRkqt3
 &request_uri=https%3A%2F%2Ftfp.example.org%2Frequest.jwt
 %23GkurKxf5T0Y-mnPFCHqWOMiZi4VS138cQO_V7PZHAdM
 &state=af0ifjsldkj

5.2.3. Authorization Server Fetches Request Object

 Upon receipt of the Request, the Authorization Server MUST send an
 HTTP "GET" request to the "request_uri" to retrieve the referenced
 Request Object, unless it is stored in a way so that it can retrieve
 it through other mechanism securely, and parse it to recreate the
 Authorization Request parameters.

https://datatracker.ietf.org/doc/html/rfc6819

Sakimura & Bradley Expires April 24, 2019 [Page 11]

Internet-Draft OAuth JAR October 2018

 The following is an example of this fetch process:

 GET /request.jwt HTTP/1.1
 Host: tfp.example.org

 The following is an example of the fetch response:

 HTTP/1.1 200 OK
 Date: Thu, 16 Feb 2017 23:52:39 GMT
 Server: Apache/2.2.22 (tfp.example.org)
 Content-type: application/jwt
 Content-Length: 1250
 Last-Modified: Wed, 15 Feb 2017 23:52:32 GMT

 eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiAiczZCaGRSa3
 F0MyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGxlLmNvbSIsDQogInJl
 c3BvbnNlX3R5cGUiOiAiY29kZSBpZF90b2tlbiIsDQogImNsaWVudF9pZCI6ICJzNk
 JoZFJrcXQzIiwNCiAicmVkaXJlY3RfdXJpIjogImh0dHBzOi8vY2xpZW50LmV4YW1w
 bGUub3JnL2NiIiwNCiAic2NvcGUiOiAib3BlbmlkIiwNCiAic3RhdGUiOiAiYWYwaW
 Zqc2xka2oiLA0KICJub25jZSI6ICJuLTBTNl9XekEyTWoiLA0KICJtYXhfYWdlIjog
 ODY0MDAsDQogImNsYWltcyI6IA0KICB7DQogICAidXNlcmluZm8iOiANCiAgICB7DQ
 ogICAgICJnaXZlbl9uYW1lIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAgICAgIm5p
 Y2tuYW1lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJlc3NlbnRpYWwiOiB0cnVlfS
 wNCiAgICAgImVtYWlsX3ZlcmlmaWVkIjogeyJlc3NlbnRpYWwiOiB0cnVlfSwNCiAg
 ICAgInBpY3R1cmUiOiBudWxsDQogICAgfSwNCiAgICJpZF90b2tlbiI6IA0KICAgIH
 sNCiAgICAgImdlbmRlciI6IG51bGwsDQogICAgICJiaXJ0aGRhdGUiOiB7ImVzc2Vu
 dGlhbCI6IHRydWV9LA0KICAgICAiYWNyIjogeyJ2YWx1ZXMiOiBbInVybjptYWNlOm
 luY29tbW9uOmlhcDpzaWx2ZXIiXX0NCiAgICB9DQogIH0NCn0.nwwnNsk1-Zkbmnvs
 F6zTHm8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF
 KzuMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTx
 0GxFbuPbj96tVuj11pTnmFCUR6IEOXKYr7iGOCRB3btfJhM0_AKQUfqKnRlrRscc8K
 ol-cSLWoYE9l5QqholImzjT_cMnNIznW9E7CDyWXTsO70xnB4SkG6pXfLSjLLlxmPG
 iyon_-Te111V8uE83IlzCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUsAlMGzw

6. Validating JWT-Based Requests

6.1. Encrypted Request Object

 If the request object is encrypted, the Authorization Server MUST
 decrypt the JWT in accordance with the JSON Web Encryption [RFC7516]
 specification.

 The result is a signed request object.

 If decryption fails, the Authorization Server MUST return an
 "invalid_request_object" error.

https://datatracker.ietf.org/doc/html/rfc7516

Sakimura & Bradley Expires April 24, 2019 [Page 12]

Internet-Draft OAuth JAR October 2018

6.2. JWS Signed Request Object

 The Authorization Server MUST perform the signature validation of the
 JSON Web Signature [RFC7515] signed request object. For this, the
 "alg" Header Parameter in its JOSE Header MUST match the value of the
 pre-registered algorithm. The signature MUST be validated against
 the appropriate key for that "client_id" and algorithm.

 If signature validation fails, the Authorization Server MUST return
 an "invalid_request_object" error.

6.3. Request Parameter Assembly and Validation

 The Authorization Server MUST extract the set of Authorization
 Request parameters from the Request Object value. The Authorization
 Server MUST only use the parameters in the Request Object even if the
 same parameter is provided in the query parameter. The Authorization
 Server then validates the request as specified in OAuth 2.0
 [RFC6749].

 If the validation fails, then the Authorization Server MUST return an
 error as specified in OAuth 2.0 [RFC6749].

7. Authorization Server Response

 Authorization Server Response is created and sent to the client as in
Section 4 of OAuth 2.0 [RFC6749] .

 In addition, this document uses these additional error values:

 invalid_request_uri The "request_uri" in the Authorization Request
 returns an error or contains invalid data.

 invalid_request_object The request parameter contains an invalid
 Request Object.

 request_not_supported The Authorization Server does not support the
 use of the "request" parameter.

 request_uri_not_supported The Authorization Server does not support
 the use of the "request_uri" parameter.

8. TLS Requirements

 Client implementations supporting the Request Object URI method MUST
 support TLS following Recommendations for Secure Use of Transport
 Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
 [BCP195].

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires April 24, 2019 [Page 13]

Internet-Draft OAuth JAR October 2018

 To protect against information disclosure and tampering,
 confidentiality protection MUST be applied using TLS with a cipher
 suite that provides confidentiality and integrity protection.

 HTTP clients MUST also verify the TLS server certificate, using
 subjectAltName dNSName identities as described in [RFC6125], to avoid
 man-in-the-middle attacks. The rules and guidelines defined in
 [RFC6125] apply here, with the following considerations:

 o Support for DNS-ID identifier type (that is, the dNSName identity
 in the subjectAltName extension) is REQUIRED. Certification
 authorities which issue server certificates MUST support the DNS-
 ID identifier type, and the DNS-ID identifier type MUST be present
 in server certificates.

 o DNS names in server certificates MAY contain the wildcard
 character "*".

 o Clients MUST NOT use CN-ID identifiers; a CN field may be present
 in the server certificate's subject name, but MUST NOT be used for
 authentication within the rules described in [BCP195] .

 o SRV-ID and URI-ID as described in Section 6.5 of [RFC6125] MUST
 NOT be used for comparison.

9. IANA Considerations

 This specification requests no actions by IANA.

10. Security Considerations

 In addition to the all the security considerations discussed in OAuth
 2.0 [RFC6819], the security considerations in [RFC7515], [RFC7516],
 and [RFC7518] needs to be considered. Also, there are several
 academic papers such as [BASIN] that provide useful insight into the
 security properties of protocols like OAuth.

 In consideration of the above, this document advises taking the
 following security considerations into account.

10.1. Choice of Algorithms

 When sending the authorization request object through "request"
 parameter, it MUST either be signed using JWS [RFC7515] or encrypted
 using JWE [RFC7516] with then considered appropriate algorithm.

https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125#section-6.5
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516

Sakimura & Bradley Expires April 24, 2019 [Page 14]

Internet-Draft OAuth JAR October 2018

10.2. Request Source Authentication

 The source of the Authorization Request MUST always be verified.
 There are several ways to do it in this specification.

 (a) Verifying the JWS Signature of the Request Object.

 (b) Verifying that the symmetric key for the JWE encryption is the
 correct one if the JWE is using symmetric encryption.

 (c) Verifying the TLS Server Identity of the Request Object URI. In
 this case, the Authorization Server MUST know out-of-band that
 the Client uses Request Object URI and only the Client is
 covered by the TLS certificate. In general, it is not a
 reliable method.

 (d) Authorization Server is providing an endpoint that provides a
 Request Object URI in exchange for a Request Object. In this
 case, the Authorization Server MUST perform Client
 Authentication to accept the Request Object and bind the Client
 Identifier to the Request Object URI it is providing. Since
 Request Object URI can be replayed, the lifetime of the Request
 Object URI MUST be short and preferably one-time use. The
 entropy of the Request Object URI MUST be sufficiently large.
 The adequate shortness of the validity and the entropy of the
 Request Object URI depends on the risk calculation based on the
 value of the resource being protected. A general guidance for
 the validity time would be less than a minute and the Request
 Object URI is to include a cryptographic random value of 128bit
 or more at the time of the writing of this specification.

 (e) A third party, such as a Trust Framework Provider, provides an
 endpoint that provides a Request Object URI in exchange for a
 Request Object. The same requirements as (b) above apply. In
 addition, the Authorization Server MUST know out-of-band that
 the Client utilizes the Trust Framework Operator.

10.3. Explicit Endpoints

 Although this specification does not require them, research such as
 [BASIN] points out that it is a good practice to explicitly state the
 intended interaction endpoints and the message position in the
 sequence in a tamper evident manner so that the intent of the
 initiator is unambiguous. The endpoints that come into question in
 this specification are :

 (a) Protected Resources ("protected_resources")

Sakimura & Bradley Expires April 24, 2019 [Page 15]

Internet-Draft OAuth JAR October 2018

 (b) Authorization Endpoint ("authorization_endpoint")

 (c) Redirection URI ("redirect_uri")

 (d) Token Endpoint ("token_endpoint")

 Further, if dynamic discovery is used, then the discovery related
 endpoints also come into question.

 In [RFC6749], while Redirection URI is included, others are not
 included in the Authorization Request. As the result, the same
 applies to Authorization Request Object.

 The lack of the link among those endpoints are sited as the cause of
 Cross-Phase Attacks introduced in [FETT]. An extension specification
 should be created as a measure to address the risk.

10.4. Risks Associated with request_uri

 The introduction of "request_uri" introduces several attack
 possibilities.

10.4.1. DDoS Attack on the Authorization Server

 A set of malicious client can launch a DoS attack to the
 authorization server by pointing the "request_uri" to a uri that
 returns extremely large content or extremely slow to respond. Under
 such an attack, the server may use up its resource and start failing.

 Similarly, a malicious client can specify the "request_uri" value
 that itself points to an authorization request URI that uses
 "request_uri" to cause the recursive lookup.

 To prevent such attack to succeed, the server should (a) check that
 the value of "request_uri" parameter does not point to an unexpected
 location, (b) check the content type of the response is "application/
 jwt" (c) implement a time-out for obtaining the content of
 "request_uri", and (d) do not perform recursive GET on the
 "request_uri".

10.4.2. Request URI Rewrite

 The value of "request_uri" is not signed thus it can be tampered by
 Man-in-the-browser attacker. Several attack possibilities rise
 because of this, e.g., (a) attacker may create another file that the
 rewritten URI points to making it possible to request extra scope (b)
 attacker launches a DoS attack to a victim site by setting the value
 of "request_uri" to be that of the victim.

https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires April 24, 2019 [Page 16]

Internet-Draft OAuth JAR October 2018

 To prevent such attack to succeed, the server should (a) check that
 the value of "request_uri" parameter does not point to an unexpected
 location, (b) check the content type of the response is "application/
 jwt" (c) implement a time-out for obtaining the content of
 "request_uri".

11. TLS security considerations

 Curent security considerations can be found in Recommendations for
 Secure Use of TLS and DTLS [BCP195]. This supersedes the TLS version
 recommendations in OAuth 2.0 [RFC6749].

12. Privacy Considerations

 When the Client is being granted access to a protected resource
 containing personal data, both the Client and the Authorization
 Server need to adhere to Privacy Principles. RFC 6973 Privacy
 Considerations for Internet Protocols [RFC6973] gives excellent
 guidance on the enhancement of protocol design and implementation.
 The provision listed in it should be followed.

 Most of the provision would apply to The OAuth 2.0 Authorization
 Framework [RFC6749] and The OAuth 2.0 Authorization Framework: Bearer
 Token Usage [RFC6750] and are not specific to this specification. In
 what follows, only the specific provisions to this specification are
 noted.

12.1. Collection limitation

 When the Client is being granted access to a protected resource
 containing personal data, the Client SHOULD limit the collection of
 personal data to that which is within the bounds of applicable law
 and strictly necessary for the specified purpose(s).

 It is often hard for the user to find out if the personal data asked
 for is strictly necessary. A Trust Framework Provider can help the
 user by examining the Client request and comparing to the proposed
 processing by the Client and certifying the request. After the
 certification, the Client, when making an Authorization Request, can
 submit Authorization Request to the Trust Framework Provider to
 obtain the Request Object URI.

 Upon receiving such Request Object URI in the Authorization Request,
 the Authorization Server first verifies that the authority portion of
 the Request Object URI is a legitimate one for the Trust Framework
 Provider. Then, the Authorization Server issues HTTP GET request to
 the Request Object URI. Upon connecting, the Authorization Server
 MUST verify the server identity represented in the TLS certificate is

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6973
https://datatracker.ietf.org/doc/html/rfc6973
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

Sakimura & Bradley Expires April 24, 2019 [Page 17]

Internet-Draft OAuth JAR October 2018

 legitimate for the Request Object URI. Then, the Authorization
 Server can obtain the Request Object, which includes the "client_id"
 representing the Client.

 The Consent screen MUST indicate the Client and SHOULD indicate that
 the request has been vetted by the Trust Framework Operator for the
 adherence to the Collection Limitation principle.

12.2. Disclosure Limitation

12.2.1. Request Disclosure

 This specification allows extension parameters. These may include
 potentially sensitive information. Since URI query parameter may
 leak through various means but most notably through referrer and
 browser history, if the authorization request contains a potentially
 sensitive parameter, the Client SHOULD JWE [RFC7516] encrypt the
 request object.

 Where Request Object URI method is being used, if the request object
 contains personally identifiable or sensitive information, the
 "request_uri" SHOULD be used only once, have a short validity period,
 and MUST have large enough entropy deemed necessary with applicable
 security policy unless the Request Object itself is JWE [RFC7516]
 Encrypted. The adequate shortness of the validity and the entropy of
 the Request Object URI depends on the risk calculation based on the
 value of the resource being protected. A general guidance for the
 validity time would be less than a minute and the Request Object URI
 is to include a cryptographic random value of 128bit or more at the
 time of the writing of this specification.

12.2.2. Tracking using Request Object URI

 Even if the protected resource does not include a personally
 identifiable information, it is sometimes possible to identify the
 user through the Request Object URI if persistent per-user Request
 Object URI is used. A third party may observe it through browser
 history etc. and start correlating the user's activity using it. In
 a way, it is a data disclosure as well and should be avoided.

 Therefore, per-user Request Object URI should be avoided.

13. Acknowledgements

 The following people contributed to the creation of this document in
 the OAuth WG. (Affiliations at the time of the contribution are
 used.)

https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7516

Sakimura & Bradley Expires April 24, 2019 [Page 18]

Internet-Draft OAuth JAR October 2018

 Sergey Beryozkin, Brian Campbell (Ping Identity), Vladimir Dzhuvinov
 (Connect2id), Michael B. Jones (Microsoft), Torsten Lodderstedt
 (YES) Jim Manico, Axel Nenker(Deutsche Telecom), Hannes Tschofenig
 (ARM), Ben Campbell, Kathleen Moriarty (as AD), and Steve Kent (as
 SECDIR).

 The following people contributed to creating this document through
 the OpenID Connect Core 1.0 [OpenID.Core].

 Brian Campbell (Ping Identity), George Fletcher (AOL), Ryo Itou
 (Mixi), Edmund Jay (Illumila), Michael B. Jones (Microsoft), Breno
 de Medeiros (Google), Hideki Nara (TACT), Justin Richer (MITRE).

 In addition, the following people contributed to this and previous
 versions through the OAuth Working Group.

 Dirk Balfanz (Google), James H. Manger (Telstra), John Panzer
 (Google), David Recordon (Facebook), Marius Scurtescu (Google), Luke
 Shepard (Facebook).

14. Revision History

 Note to the RFC Editor: Please remove this section from the final
 RFC.

 -17

 o #78 Typos in content-type

 -16

 o Treated remaining Ben Campbell comments.

 -15

 o Removed further duplication

 -14

 o #71 Reiterate dynamic params are included.

 o #70 Made clear that AS must return error.

 o #69 Inconsistency of the need to sign.

 o Fixed Mimetype.

 o #67 Incosistence in requiring HTTPS in request uri.

Sakimura & Bradley Expires April 24, 2019 [Page 19]

Internet-Draft OAuth JAR October 2018

 o #66 Dropped ISO 29100 reference.

 o #25 Removed Encrypt only option.

 o #59 Same with #25.

 -13

 o add TLS Security Consideration section

 o replace RFC7525 reference with BCP195

 o moved front tag in FETT reference to fix XML structure

 o changes reference from SoK to FETT

 -12

 o fixes #62 - Alexey Melnikov Discuss

 o fixes #48 - OPSDIR Review : General - delete semicolors after list
 items

 o fixes #58 - DP Comments for the Last Call

 o fixes #57 - GENART - Remove "non-normative ... " from examples.

 o fixes #45 - OPSDIR Review : Introduction - are attacks discovered
 or already opened

 o fixes #49 - OPSDIR Review : Introduction - Inconsistent colons
 after initial sentence of list items.

 o fixes #53 - OPSDIR Review : 6.2 JWS Signed Request Object -
 Clarify JOSE Header

 o fixes #42 - OPSDIR Review : Introduction - readability of 'and' is
 confusing

 o fixes #50 - OPSDIR Review : Section 4 Request Object - Clarify
 'signed, encrypted, or signed and encrypted'

 o fixes #39 - OPSDIR Review : Abstract - Explain/Clarify JWS and JWE

 o fixed #50 - OPSDIR Review : Section 4 Request Object - Clarify
 'signed, encrypted, or signed and encrypted'

https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/bcp195

Sakimura & Bradley Expires April 24, 2019 [Page 20]

Internet-Draft OAuth JAR October 2018

 o fixes #43 - OPSDIR Review : Introduction - 'properties' sounds
 awkward and are not exactly 'properties'

 o fixes #56 - OPSDIR Review : 12 Acknowledgements - 'contribution
 is' => 'contribution are'

 o fixes #55 - OPSDIR Review : 11.2.2 Privacy Considerations - ' It
 is in a way' => 'In a way, it is'

 o fixes #54 - OPSDIR Review : 11 Privacy Considerations - 'and not
 specific' => 'and are not specific'

 o fixes #51 - OPSDIR Review : Section 4 Request Object - 'It is
 fine' => 'It is recommended'

 o fixes #47 - OPSDIR Review : Introduction - 'over- the- wire' =>
 'over-the-wire'

 o fixes #46 - OPSDIR Review : Introduction - 'It allows' => 'The use
 of application security' for

 o fixes #44 - OPSDIR Review : Introduction - 'has' => 'have'

 o fixes #41 - OPSDIR Review : Introduction - missing 'is' before
 'typically sent'

 o fixes #38 - OPSDIR Review : Section 11 - Delete 'freely
 accessible' regarding ISO 29100

 -11

 o s/bing/being/

 o Added history for -10

 -10

 o #20: KM1 -- some wording that is awkward in the TLS section.

 o #21: KM2 - the additional attacks against OAuth 2.0 should also
 have a pointer

 o #22: KM3 -- Nit: in the first line of 10.4:

 o #23: KM4 -- Mention RFC6973 in Section 11 in addition to ISO 29100

 o #24: SECDIR review: Section 4 -- Confusing requirements for
 sign+encrypt

https://datatracker.ietf.org/doc/html/rfc6973

Sakimura & Bradley Expires April 24, 2019 [Page 21]

Internet-Draft OAuth JAR October 2018

 o #25: SECDIR review: Section 6 -- authentication and integrity need
 not be provided if the requestor encrypts the token?

 o #26: SECDIR Review: Section 10 -- why no reference for JWS
 algorithms?

 o #27: SECDIR Review: Section 10.2 - how to do the agreement between
 client and server "a priori"?

 o #28: SECDIR Review: Section 10.3 - Indication on "large entropy"
 and "short lifetime" should be indicated

 o #29: SECDIR Review: Section 10.3 - Typo

 o #30: SECDIR Review: Section 10.4 - typos and missing articles

 o #31: SECDIR Review: Section 10.4 - Clearer statement on the lack
 of endpoint identifiers needed

 o #32: SECDIR Review: Section 11 - ISO29100 needs to be moved to
 normative reference

 o #33: SECDIR Review: Section 11 - Better English and Entropy
 language needed

 o #34: Section 4: Typo

 o #35: More Acknowledgment

 o #36: DP - More precise qualification on Encryption needed.

 -09

 o Minor Editorial Nits.

 o Section 10.4 added.

 o Explicit reference to Security consideration (10.2) added in
section 5 and section 5.2.

 o , (add yourself) removed from the acknowledgment.

 -08

 o Applied changes proposed by Hannes on 2016-06-29 on IETF OAuth
 list recorded as https://bitbucket.org/Nat/oauth-jwsreq/

issues/12/.

https://bitbucket.org/Nat/oauth-jwsreq/issues/12/
https://bitbucket.org/Nat/oauth-jwsreq/issues/12/

Sakimura & Bradley Expires April 24, 2019 [Page 22]

Internet-Draft OAuth JAR October 2018

 o TLS requirements added.

 o Security Consideration reinforced.

 o Privacy Consideration added.

 o Introduction improved.

 -07

 o Changed the abbrev to OAuth JAR from oauth-jar.

 o Clarified sig and enc methods.

 o Better English.

 o Removed claims from one of the example.

 o Re-worded the URI construction.

 o Changed the example to use request instead of request_uri.

 o Clarified that Request Object parameters take precedence
 regardless of request or request_uri parameters were used.

 o Generalized the language in 4.2.1 to convey the intent more
 clearly.

 o Changed "Server" to "Authorization Server" as a clarification.

 o Stopped talking about request_object_signing_alg.

 o IANA considerations now reflect the current status.

 o Added Brian Campbell to the contributors list. Made the lists
 alphabetic order based on the last names. Clarified that the
 affiliation is at the time of the contribution.

 o Added "older versions of " to the reference to IE uri length
 limitations.

 o Stopped talking about signed or unsigned JWS etc.

 o 1.Introduction improved.

 -06

 o Added explanation on the 512 chars URL restriction.

Sakimura & Bradley Expires April 24, 2019 [Page 23]

Internet-Draft OAuth JAR October 2018

 o Updated Acknowledgements.

 -05

 o More alignment with OpenID Connect.

 -04

 o Fixed typos in examples. (request_url -> request_uri, cliend_id ->
 client_id)

 o Aligned the error messages with the OAuth IANA registry.

 o Added another rationale for having request object.

 -03

 o Fixed the non-normative description about the advantage of static
 signature.

 o Changed the requirement for the parameter values in the request
 itself and the request object from 'MUST MATCH" to 'Req Obj takes
 precedence.

 -02

 o Now that they are RFCs, replaced JWS, JWE, etc. with RFC numbers.

 -01

 o Copy Edits.

15. References

15.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, May 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Sakimura & Bradley Expires April 24, 2019 [Page 24]

Internet-Draft OAuth JAR October 2018

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc6973
https://www.rfc-editor.org/info/rfc6973
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515

Sakimura & Bradley Expires April 24, 2019 [Page 25]

Internet-Draft OAuth JAR October 2018

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <https://www.rfc-editor.org/info/rfc7516>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC8141] Saint-Andre, P. and J. Klensin, "Uniform Resource Names
 (URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,
 <https://www.rfc-editor.org/info/rfc8141>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

15.2. Informative References

 [BASIN] Basin, D., Cremers, C., and S. Meier, "Provably Repairing
 the ISO/IEC 9798 Standard for Entity Authentication",
 Journal of Computer Security - Security and Trust
 Principles Volume 21 Issue 6, Pages 817-846, November
 2013,
 <https://www.cs.ox.ac.uk/people/cas.cremers/downloads/

papers/BCM2012-iso9798.pdf>.

 [FETT] Fett, D., Kusters, R., and G. Schmitz, "A Comprehensive
 Formal Security Analysis of OAuth 2.0", CCS '16
 Proceedings of the 2016 ACM SIGSAC Conference on Computer
 and Communications Security Pages 1204-1215 , October
 2016, <https://infsec.uni-

trier.de/people/publications/paper/
FettKuestersSchmitz-CCS-2016.pdf>.

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", OpenID
 Foundation Standards, February 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

https://datatracker.ietf.org/doc/html/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc8141
https://www.rfc-editor.org/info/rfc8141
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/BCM2012-iso9798.pdf
https://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/BCM2012-iso9798.pdf
https://infsec.uni-trier.de/people/publications/paper/FettKuestersSchmitz-CCS-2016.pdf
https://infsec.uni-trier.de/people/publications/paper/FettKuestersSchmitz-CCS-2016.pdf
https://infsec.uni-trier.de/people/publications/paper/FettKuestersSchmitz-CCS-2016.pdf
http://openid.net/specs/openid-connect-core-1_0.html

Sakimura & Bradley Expires April 24, 2019 [Page 26]

Internet-Draft OAuth JAR October 2018

Authors' Addresses

 Nat Sakimura
 Nomura Research Institute
 Otemachi Financial City Grand Cube, 1-9-2 Otemachi
 Chiyoda-ku, Tokyo 100-0004
 Japan

 Phone: +81-3-5533-2111
 Email: n-sakimura@nri.co.jp
 URI: http://nat.sakimura.org/

 John Bradley
 Yubico
 Casilla 177, Sucursal Talagante
 Talagante, RM
 Chile

 Phone: +1.202.630.5272
 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

http://nat.sakimura.org/
http://www.thread-safe.com/

Sakimura & Bradley Expires April 24, 2019 [Page 27]

