OAuth Working Group N. Sakimura

Internet-Draft Nomura Research Institute
Intended status: Standards Track J. Bradley
Expires: April 24, 2019 Yubico

October 21, 2018

The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request
(JAR)
draft-ietf-oauth-jwsreq-17

Abstract

The authorization request in OAuth 2.0 described in RFC 6749 utilizes
query parameter serialization, which means that Authorization Request
parameters are encoded in the URI of the request and sent through
user agents such as web browsers. While it is easy to implement, it
means that (a) the communication through the user agents are not
integrity protected and thus the parameters can be tainted, and (b)
the source of the communication is not authenticated. Because of
these weaknesses, several attacks to the protocol have now been put
forward.

This document introduces the ability to send request parameters in a
JSON Web Token (JWT) instead, which allows the request to be signed
with JSON Web Signature (JWS) and encrypted with JSON Web Encryption
(JWE) so that the integrity, source authentication and
confidentiality property of the Authorization Request is attained.
The request can be sent by value or by reference.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 24, 2019.

Sakimura & Bradley Expires April 24, 2019 [Page 1]


https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwsreq-17
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OAuth JAR October 2018

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
1.1. Requirements Language 5
2. Terminology 5
2.1. Request Object S
2.2. Request Object URI 6
3. Symbols and abbreviated terms 6
4. Request Object 6
5. Authorization Request . 8
5.1. Passing a Request Object by Value 9
5.2. Passing a Request Object by Reference 9
5.2.1. URI Referencing the Request Object 11
5.2.2. Request using the "request_uri" Request Parameter 11
5.2.3. Authorization Server Fetches Request Object 11

6. Validating JWT-Based Requests 12
6.1. Encrypted Request Object 12
6.2 JWS Signed Request Object . 13
6.3. Request Parameter Assembly and Valldatlon 13
7. Authorization Server Response 13
8. TLS Requirements 13
9. 1IANA Considerations 14
10. Security Considerations 14
10.1. Choice of Algorithms . 14
10.2. Request Source Authentication 15
10.3. Explicit Endpoints e 15
10.4. Risks Associated with request_uri .o 16
10.4.1. DDoS Attack on the Authorization Server 16
10.4.2. Request URI Rewrite 16

11. TLS security considerations 17
12. Privacy Considerations 17
12.1. Collection limitation 17
12.2. Disclosure Limitation 18


https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Sakimura & Bradley Expires April 24, 2019 [Page 2]



Internet-Draft OAuth JAR October 2018

(=

12.2.1. Request Disclosure e
12.2.2. Tracking using Request Object URI
13. Acknowledgements
14. Revision History
15. References

15.1. Normative References
15.2. Informative References
Authors' Addresses

NN NN R R R R
RERER k&

Introduction

The Authorization Request in OAuth 2.0 [REC6749] utilizes query
parameter serialization and is typically sent through user agents
such as web browsers.

For example, the parameters "response_type", "client_id", "state",
and "redirect_uri" are encoded in the URI of the request:

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

While it is easy to implement, the encoding in the URI does not allow
application layer security with confidentiality and integrity
protection to be used. While TLS is used to offer communication
security between the Client and the user-agent as well as the user-
agent and the Authorization Server, TLS sessions are terminated in
the user-agent. 1In addition, TLS sessions may be terminated
prematurely at some middlebox (such as a load balancer).

As the result, the Authorization Request of [RFC6749] has
shortcomings in that:

(a) the communication through the user agents are not integrity
protected and thus the parameters can be tainted (integrity
protection failure)

(b) the source of the communication is not authenticated (source
authentication failure)

(c) the communication through the user agents can be monitored
(containment / confidentiality failure).

Due to these inherent weaknesses, several attacks against the
protocol, such as Redirection URI rewriting and Mix-up attack [FETT],

have been identified.

The use of application layer security mitigates these issues.


https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires April 24, 2019 [Page 3]



Internet-Draft OAuth JAR October 2018

The use of application layer security allows requests to be prepared
by a third party so that a client application cannot request more
permissions than previously agreed. This offers an additional degree
of privacy protection.

Furthermore, the request by reference allows the reduction of over-
the-wire overhead.

The JWT [REC7519] encoding has been chosen because of

(1) its close relationship with JSON, which is used as OAuth's
response format

(2) its developer friendliness due to its textual nature
(3) its relative compactness compared to XML

(4) 1its development status that it is an RFC and so is its
associated signing and encryption methods as [RFC7515] and
[REC7516]

(5) the relative ease of JWS and JWE compared to XML Signature and
Encryption.

The parameters "request" and "request_uri" are introduced as
additional authorization request parameters for the OAuth 2.0
[REC6749] flows. The "request" parameter is a JSON Web Token (JWT)
[REC7519] whose JWT Claims Set holds the JSON encoded OAuth 2.0
authorization request parameters. This JWT is integrity protected
and source authenticated using JWS.

The JWT [REC7519] can be passed to the authorization endpoint by
reference, in which case the parameter "request_uri" is used instead
of the "request".

Using JWT [REC7519] as the request encoding instead of query
parameters has several advantages:

(a) (integrity protection) The request can be signed so that the
integrity of the request can be checked.

(b) (source authentication) The request can be signed so that the
signer can be authenticated.

(c) (confidentiality protection) The request can be encrypted so
that end-to-end confidentiality can be provided even if the TLS
connection is terminated at one point or another.


https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519

Sakimura & Bradley Expires April 24, 2019 [Page 4]



Internet-Draft OAuth JAR October 2018

N

(d) (collection minimization) The request can be signed by a third
party attesting that the authorization request is compliant with
a certain policy. For example, a request can be pre-examined by
a third party that all the personal data requested is strictly
necessary to perform the process that the end-user asked for,
and statically signed by that third party. The authorization
server then examines the signature and shows the conformance
status to the end-user, who would have some assurance as to the
legitimacy of the request when authorizing it. In some cases,
it may even be desirable to skip the authorization dialogue
under such circumstances.

There are a few cases that request by reference is useful such as:

1. When it is desirable to reduce the size of transmitted request.
The use of application layer security increases the size of the
request, particularly when public key cryptography is used.

2. When the client does not want to do the crypto. The
Authorization Server may provide an endpoint to accept the
Authorization Request through direct communication with the
Client so that the Client is authenticated and the channel is TLS
protected.

This capability is in use by OpenID Connect [OpenID.Core].

.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

Terminology

For the purposes of this specification, the following terms and
definitions in addition to what is defined in OAuth 2.0 Framework
[REC6749], JSON Web Signature [RFC7515], and JSON Web Encryption
[REC7519] apply.

.1. Request Object

JWT [REC7519] that holds an OAuth 2.0 authorization request as JWT
Claims Set


https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519

Sakimura & Bradley Expires April 24, 2019 [Page 5]



Internet-Draft OAuth JAR October 2018

[eM]

[

2.2.

Request Object URI

Absolute URI from which the Request Object (Section 2.1) can be
obtained

Symbols and abbreviated terms

The following abbreviations are common to this specification.
JSON Javascript Object Notation

JWT JSON Web Token

JWS JSON Web Signature

JWE JSON Web Encryption

URI Uniform Resource Identifier

URL Uniform Resource Locator

Request Object

A Request Object (Section 2.1) is used to provide authorization
request parameters for an OAuth 2.0 authorization request. It MUST
contains all the OAuth 2.0 [REC6749] authorization request parameters
including extension parameters. The parameters are represented as
the JWT claims. Parameter names and string values MUST be included
as JSON strings. Since Request Objects are handled across domains
and potentially outside of a closed ecosystem, per section 8.1 of

[RFC8259], these JSON strings MUST be encoded using UTF-8 [REC3629].

Numerical values MUST be included as JSON numbers. It MAY include
any extension parameters. This JSON [RFC7159] constitutes the JWT
Claims Set defined in JWT [REC7519]. The JWT Claims Set is then
signed or signed and encrypted.

To sign, JSON Web Signature (JWS) [REC7515] is used. The result is a
JWS signed JWT [REC7519]. If signed, the Authorization Request
Object SHOULD contain the Claims "iss" (issuer) and "aud" (audience)
as members, with their semantics being the same as defined in the JWT
[REC7519] specification.

To encrypt, JWE [REC7516] is used. When both signature and
encryption are being applied, the JWT MUST be signed then encrypted
as advised in the section 11.2 of [RFC7519]. The result is a Nested
JWT, as defined in [RFEC7519].



https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc8259#section-8.1
https://datatracker.ietf.org/doc/html/rfc8259#section-8.1
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7519#section-11.2
https://datatracker.ietf.org/doc/html/rfc7519

Sakimura & Bradley Expires April 24, 2019 [Page 6]



Internet-Draft OAuth JAR October 2018

The Authorization Request Object MAY be sent by value as described in
Section 5.1 or by reference as described in Section 5.2.

"request" and "request_uri" parameters MUST NOT be included in
Request Objects.

The following is an example of the Claims in a Request Object before
base64url encoding and signing. Note that it includes extension
variables such as '"nonce" and "max_age".

{
"iss": "s6BhdRkqt3",
"aud": "https://server.example.com",
"response_type": "code id_token",
"client_id": "s6BhdRkqt3",
"redirect_uri": "https://client.example.org/ch",
"scope": "openid",

"state": "af@ifjsldkj",
"nonce": "n-0S6_WzA2Mj",
"max_age": 86400

}

Signing it with the "RS256" algorithm results in this Request Object
value (with line wraps within values for display purposes only):

eyJhbGci0iJSUzIINiIsImtpZCI6ImSyYmMRjInO.ewOKICIpc3MiOiAiczZCaGRSa3
FOMyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGx1LmNvbSIsDQogInJdl
C3BvbnNN1X3R5cGUi0iA1Y29kZSBpZF90b2t1biIsDQogImNsawWVudF9pZCIBICIzNK
JOZFJrcXQzIiwNCiAicmVkaXJ1Y3RfdXJIpIjogImhOdHBz0i8vY2XpZW50LmMVAYW1w
bGUUb3JINL2NiIiwNCiAic2NvcGUi0iAib3B1lbmlkIiwNCiAic3RhdGUi0iAIYWYwaW
Z2qc2xka20ilAOKICJIub25jZSIBICIULTBTNIOXekEyTWoiLAOGKICJItYXhfYWd1Ijog
ODYOMDASDQogImMNSYW1ltcyI6IAOKICB7DQogICAidXN1lcmluZm8i0iANCiAgICB7DQ
0gICAgICInaxXZ1lbl9uYwW1ilIjogeyJ1lc3NlbnRpYWwiOiBOcnV1fSwWNCiAgICAgIm5p
Y2tuYW11lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJ1c3N1lbnRpYWwiOiBOcnV1fS
WNCiAgICAgImVtYWlsX3ZlcmlmawVkIjogeyJ1c3N1lbnRpYWwiOiBOcnV1fSWNCiAg
ICAgINBpY3R1cmUi0iBudWxsDQogICAgTFSWNCiAgICIpZF90b2t1biI6IAOKICAQIH
SNCiAgQICAgImdlbmR1ciI6IG51bGwsDQogICAgICIiaXJ0aGRhdGUi0iB7ImVzc2Vu
dG1hbCI6IHRYdWVOLAOGKICAGICALIYWNYIjogeyJ2YWx1ZXMi0iBbInVybjptYWN1Om
1uY29tbW9uOmlhcDpzaWx2ZXIiXXONCiAgICBODQOgIHONCNO . nwwnNskl-Zkbmnvs
F6zTHM8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF
KzuMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrGLluRTX
OGXxFbuPbj96tVujl1pTnmFCUR6IEOXKYr7iGOCRB3btfJhMO_AKQUfgKnR1rRscc8K
01-cSLWoYE915QqholImzjT_cMNNIZnWOE7CDYWXTsO070xnB4SKG6pXTLSjLLIXmPG
iyon_-Te111V8UE83I1zCYIb_NMXvtTIVc1jpspnTSD7xMbpL-2QgwUSAIMGzw



Sakimura & Bradley Expires April 24, 2019 [Page 7]



Internet-Draft OAuth JAR October 2018

5.

The following RSA public key, represented in JwWK format, can be used
to validate the Request Object signature in this and subsequent
Request Object examples (with line wraps within values for display
purposes only):

{
"kty":"RSA",
"kid":"k2bdc",
"n":"y9Lqv4fCp6Ei-u2-ZCKq83YVbFEk6JIMs_pSj76eMkddWRUWX2aBKGHAtK1ESP
7_vn__PCKZWePt3vGkB6ePgzAFUO8NmKemwESbQIQe6kIChtt_6KzT50aaXDF
I6qCLJImk51Cc4VYFaxggevMncYrzaw_50mZ1yGSFIQzLYP8bijAHGVjdEFgZa
ZEN91lsn_GdwWLaJpHrB3RO1S50E45wxr1g9xMncVb8gDPuXZarvghLLOHZzOUYR
adBJVoWZowDNTpKpk2Rk1Z7QaBO7XDv3uR7s_sf2g-bAjSYxYUGSqKNA9b3xV
W53am_UZzZ3tZbFTIh557JICWKH1Wj5uzeJXaw",
"e":"AQAB"
}

Authorization Request

The client constructs the authorization request URI by adding one of
the following parameters but not both to the query component of the
authorization endpoint URI using the "application/x-www-form-
urlencoded" format:

request The Request Object (Section 2.1) that holds authorization
request parameters stated in section 4 of OAuth 2.0 [REC6749].

request_uri The absolute URI as defined by RFC3986 [RFC3986] that
points to the Request Object (Section 2.1) that holds
authorization request parameters stated in section 4 of OAuth 2.0
[REC6749].

The client directs the resource owner to the constructed URI using an
HTTP redirection response, or by other means available to it via the
user-agent.

For example, the client directs the end user's user-agent to make the
following HTTPS request:

GET /authz?request=eyJhbG..A1MGzw HTTP/1.1
Host: server.example.com

The value for the request parameter is abbreviated for brevity.
The authorization request object MUST be one of the following:

(a) JWS signed


https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires April 24, 2019 [Page 8]



Internet-Draft OAuth JAR October 2018

(b) JWS signed and JWE encrypted

The client MAY send the parameters included in the request object
duplicated in the query parameters as well for the backward
compatibility etc. However, the authorization server supporting this
specification MUST only use the parameters included in the request
object.

5.1. Passing a Request Object by Value

The Client sends the Authorization Request as a Request Object to the
Authorization Endpoint as the "request" parameter value.

The following is an example of an Authorization Request using the
"request" parameter (with line wraps within values for display
purposes only):

https://server.example.com/authorize?

request=eyJhbGci0iJSUzIINiIsImtpZCI6ImsyYmMRjInO®.ewOKICIpc3MiOiA
iczZCaGRSa3FOMyIsDQogImF1ZCI6ICJodHRwczovL3N1cnzZlci5leGFtcGx1LmN
vbSIsDQogInJ1lc3BvbnN1IX3R5cGUi01A1Y29kZSBpZF90b2t1biIsDQogImNsawV
UdF9pZCIBICIzNkJIOZFJIrcXQzIiwNCiAicmVkaXJ1lY3RfdXJIpIjogImhO@dHBz018
VY2XpZW50LmV4YW1wbGUUb3JInL2NiIiwNCiAic2NvcGUi0iAib3B1bmlkIiwNCiA
ic3RhdGUi0iAiYWYwaWZqc2xka20iLAOKICJub25jZSI6ICIJULTBTN19XekEyTWO
iLAGKICJItYXhfYWd1IjogODYOMDASDQogImMNSYW1ltcyI6IAOKICB7DQogICAidXN
1cmluzZm8i0iANCiAgICB7DQogICAgICJInaxXzZ1lbl9uYwW1ilIjogeyJ1c3NlbnRpYWw
10iBOcnV1fSWNCiAgICAgImM5pY2tuYW1lIjogbnVsbCwNCiAgICAgImMVtYW1sIjo
geyJ1lc3N1bnRpYWwiO0iBOcnV1fSWNCiAgICAgImVtYW1lsX3Z1lcmlmawVvkIjogeyd
1c3N1bnRpYWwi0iBOcnV1fSWNCiAgICAgINBpY3R1cmUi0iBudWxsDQogICAgTSw
NCiAgICJpZF90b2t1biI6IAOKICAgIHSNCiAgICAgImdlbmR1ciI6IG51bGwsDQo
gICAgICJiaXJ0aGRhdGUi0iB7ImVzc2VudGlhbCI6IHRYdWVILAGKICAgICALYWN
yIjogeyJ2YWx1ZXMi0iBbInVybjptYWN1OmluY29tbW9uOmlhcDpzaWx2ZXIiXX0
NCiAgICB9DQOgIHONCNO.nwwnNskl-ZkbmnvsF6zTHM8CHERFMGQPhos-EJcaH4H
h-sMgk8ePrGhw_trPYs8KQxsn6ROEmMo_wHwajyFKzuMXZFSZ3p6Mb8dkxtVyjoy?2
GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1luRTX0GXFbuPbj96tVujlipTnmFC
URBIEOXKYr7iGOCRB3btfJIhMO_AKQUTgKnR1rRscc8Kol-cSLWoYE915QqholImz
JT_cMNNIznWOE7CDYyWXTs070xnB4SkG6pXfLSjLLIxmPGiyon_-Tell1V8uUuE83I1
ZCYIb_NMXvtTIVcljpspnTSD7xMbpL-2QgwUSA1MGzw

5.2. Passing a Request Object by Reference

The "request_uri" Authorization Request parameter enables OAuth
authorization requests to be passed by reference, rather than by
value. This parameter is used identically to the "request"
parameter, other than that the Request Object value is retrieved from
the resource identified by the specified URI rather than passed by
value.



Sakimura & Bradley Expires April 24, 2019 [Page 9]



Internet-Draft OAuth JAR October 2018

The entire Request URI MUST NOT exceed 512 ASCII characters. There
are three reasons for this restriction.

1. Many phones in the market as of this writing still do not accept
large payloads. The restriction is typically either 512 or 1024
ASCII characters.

2. The maximum URL length supported by older versions of Internet
Explorer is 2083 ASCII characters.

3. O0On a slow connection such as 2G mobile connection, a large URL
would cause the slow response and therefore the use of such is
not advisable from the user experience point of view.

The contents of the resource referenced by the URI MUST be a Request
Object. The "request_uri" value MUST be either URN as defined in
RFC8141 [RFC8141] or "https" URI, as defined in 2.7.2 of RFC7230
[REC7230] . The "request_uri" value MUST be reachable by the
Authorization Server.

The following is an example of the contents of a Request Object
resource that can be referenced by a "request_uri" (with line wraps
within values for display purposes only):

eyJhbGci0iJSUzIINIISImtpZCI6ImSyYmMRjInO.ewOKICIpc3MiOiAiczZCaGRSa3
FOMyIsDQogImF1ZCI6ICJodHRwWczovL3N1lcnZlci5leGFtcGx1LmNvbSIsDQogInJdl
c3BvbnN1X3R5cGUi0iA1Y29kZSBpZF90b2t1biIsDQogImNsawWVudF9pZCIBICIzNkK
JOZFJrcXQzIiwNCiAicmVkaXJ1Y3RfdXJIpIjogImhOdHBz0i8vY2XpZW50LmMVA4YW1w
bGUUb3JINL2NiIiwNCiAic2NvcGUi0iAib3B1lbmlkIiwNCiAic3RhdGUi0OiAiYWYwaW
Z9c2xka20iLAOKICJIJub25jZSI6ICIJULTBTN19XekEyTWoiLAOKICItYXhfYWd1lIjog
ODYOMDASDQogImMNSYW1ltcyI6IAOKICB7DQogICAidXNlcmluZm8i0iANCiAgICB7DQ
0gICAgICJInaxzZ1lbl9uYwW1lIjogeyJ1lc3N1bnRpYWwiOiBOcnV1fSWNCiAgICAgImSp
Y2tuYW11lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJ1c3N1bnRpYWwiOiBOcnV1fS
WNCiAgICAgImVtYWlsX3ZlcmlmawVkIjogeyJ1c3N1lbnRpYWwi0iBOcnV1fSWNCiAg
ICAgINnBpY3R1cmUi0iBudwWxsDQogICAgfSWNCiAgICJIpZF90b2t1biI6IAOKICAQIH
SNCiAgQICAgImd1lbmR1ciI6IG51bGwsDQogICAgICIiaXJ0aGRhdGUi0iB7ImVzc2Vu
dG1hbCI6IHRYdWVILAGKICAgICAiIYWNYIjogeyJ2YWXx1ZXMi0iBbInVybjptYWN1Om
1uY29tbwW9uOmlhcDpzaWx2ZXIiXXONCiAgICBODQOgIHONCNO . nwwnNskl-Zkbmnvs
F6zTHM8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9EmMo_wHwajyF
KZUMXZFSZ3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrGI1uRTX
OGxFbuPbj96tVujllpTnmFCURG6IEOXKYr7iGOCRB3btfJhMO_AKQUfgKnR1lrRscc8K
0l1-cSLWoYE915QqholImzjT_cMNNIZnW9E7CDYyWXTs070xnB4SKkG6pXTLSjLL1XmPG
iyon_-Tel111V8UE83I1zCYIb_NMXvtTIVcljpspnTSD7xMbpL-2QgwUSAIMGzw


https://datatracker.ietf.org/doc/html/rfc8141
https://datatracker.ietf.org/doc/html/rfc8141
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230

Sakimura & Bradley Expires April 24, 2019 [Page 10]



Internet-Draft OAuth JAR October 2018

5.2.1. URI Referencing the Request Object

2

5.2.

5.2.

The Client stores the Request Object resource either locally or
remotely at a URI the Authorization Server can access. Such facility
may be provided by the authorization server or a third party. For
example, the authorization server may provide a URL to which the
client POSTs the request object and obtains the Requiest URI. This
URI is the Request Object URI, "request_uri".

It is possible for the Request Object to include values that are to
be revealed only to the Authorization Server. As such, the
"request_uri" MUST have appropriate entropy for its lifetime. For
the guidance, refer to 5.1.4.2.2 of [RFC6819]. It is RECOMMENDED
that it be removed after a reasonable timeout unless access control
measures are taken.

The following is an example of a Request Object URI value (with line
wraps within values for display purposes only):

https://tfp.example.org/request. jwt#
GkurkKxf5TOY-mnPFCHQWOM1Z14VS138cQ0_V7PZHAdM

2. Request using the "request_uri" Request Parameter

The Client sends the Authorization Request to the Authorization
Endpoint.

The following is an example of an Authorization Request using the
"request_uri" parameter (with line wraps within values for display
purposes only):

https://server.example.com/authorize?
response_type=code%20id_token
&client_id=s6BhdRkqt3
&request_uri=https%3A%2F%2Ftfp.example.org%2Frequest. jwt
%23GKUrkxfs5TOY-mnPFCHQWOM1Zi4VS138cQ0_V7PZHAIM
&state=af0ifjsldkj

3. Authorization Server Fetches Request Object

Upon receipt of the Request, the Authorization Server MUST send an
HTTP "GET" request to the "request_uri" to retrieve the referenced
Request Object, unless it is stored in a way so that it can retrieve
it through other mechanism securely, and parse it to recreate the
Authorization Request parameters.


https://datatracker.ietf.org/doc/html/rfc6819

Sakimura & Bradley Expires April 24, 2019 [Page 11]



Internet-Draft OAuth JAR October 2018

The following is an example of this fetch process:

GET /request.jwt HTTP/1.1
Host: tfp.example.org

The following is an example of the fetch response:

HTTP/1.1 200 OK

Date: Thu, 16 Feb 2017 23:52:39 GMT

Server: Apache/2.2.22 (tfp.example.org)
Content-type: application/jwt
Content-Length: 1250

Last-Modified: Wed, 15 Feb 2017 23:52:32 GMT

eyJhbGci0iJSUzIAINiIsImtpZCI6ImsyYmMRjIn®.ewOKICIpc3MiOiAiczZCaGRSa3
FOMyIsDQogImF1ZCI6ICJodHRwczovL3NlcnZlci5leGFtcGx1LmNvbSIsDQogInJdl
C3BVbnNN1X3R5cGUi0iA1Y29kZSBpZF90b2t1biIsDQogImNsawWVudF9pZCIBICIzNkK
JOZFJrcXQzIiwNCiAicmVkaXJ1Y3RfdXJIpIjogImhOdHBz0i8vY2XpZW50LmMVAYW1w
bGUUb3JINL2NiIiwNCiAic2NvcGUi0iAib3B1lbmlkIiwNCiAic3RhdGUi0iALYWYwaW
Zqc2xka20iLAOKICJIJub25jZSI6ICIJULTBTN19XekEyTWOiLAOKICItYXhfYWd1lIjog
ODYOMDASDQogImMNSYW1ltcyI6TAOKICB7DQogICAidXNlcmluZm8i0iANCiAgICB7DQ
0gICAgICJInaxZ1lbl9uYW1lIjogeyJ1lc3N1lbnRpYWwiOiBOcnV1fSWNCiAgICAgIm5p
Y2tuYW11lIjogbnVsbCwNCiAgICAgImVtYWlsIjogeyJ1c3N1lbnRpYWwiOiBOcnV1fS
WNCiAgICAgImVtYWlsX3Z1lcmlmawVkIjogeyJ1c3N1lbnRpYWwiOiBOcnV1fSWNCiAg
ICAgQINnBpY3R1cmUi0iBudwWxsDQogICAgfSWNCiAgQICJIpZF90b2t1biI6TAOKICAQIH
SNCiAgICAgImd1lbmR1ciI6IG51bGwsDQogICAgICIiaXJ0aGRhdGUi0iB7ImVzc2Vu
dG1lhbCI6IHRYdWVOLAOKICAQICAiLYWNYIjogeyJ2YWX1ZXMi0iBbInVybjptYWN1Om
1uY29tbW9uOmlhcDpzaWx2ZXIiXXONCiAgICBODQOgIHONCNO . nwwnNskl1-Zkbmnvs
F6zTHM8CHERFMGQPhos-EJcaH4Hh-sMgk8ePrGhw_trPYs8KQxsn6R9Emo_wHwajyF
KzuMXZFSz3p6Mb8dkxtVyjoy2GIzvuJT_u7PkY2t8QU9hjBcHs68PkgjDVTrG1uRTX
OGXFbuPbj96tVujllpTnmFCUR6IEOXKYr7iGOCRB3btfJhMO_AKQUfgKnR1rRscc8K
01-cSLWoYE915QqholImzjT_cMnNNIznWOE7CDYyWXTsO070xnB4SKkG6pXfLSjLLIXmMPG
iyon_-Te111V8UE83I1zCYIb_NMXvtTIVc1jpspnTSD7xMbpL -2QgwUSAIMGzw

6. Validating JWT-Based Requests

6.1. Encrypted Request Object
If the request object is encrypted, the Authorization Server MUST
decrypt the JWT in accordance with the JSON Web Encryption [RFC7516]
specification.

The result is a signed request object.

If decryption fails, the Authorization Server MUST return an
"invalid_request_object" error.


https://datatracker.ietf.org/doc/html/rfc7516

Sakimura & Bradley Expires April 24, 2019 [Page 12]



Internet-Draft OAuth JAR October 2018

I~

lco

.3.

6.2.

JWS Signed Request Object

The Authorization Server MUST perform the signature validation of the
JSON Web Signature [REC7515] signed request object. For this, the
"alg" Header Parameter in its JOSE Header MUST match the value of the
pre-registered algorithm. The signature MUST be validated against
the appropriate key for that "client_id" and algorithm.

If signature validation fails, the Authorization Server MUST return
an "invalid_request_object" error.

Request Parameter Assembly and Validation

The Authorization Server MUST extract the set of Authorization
Request parameters from the Request Object value. The Authorization
Server MUST only use the parameters in the Request Object even if the
same parameter is provided in the query parameter. The Authorization
Server then validates the request as specified in OAuth 2.0
[REC6749].

If the validation fails, then the Authorization Server MUST return an
error as specified in OAuth 2.0 [RFC6749].

Authorization Server Response

Authorization Server Response is created and sent to the client as in
Section 4 of OAuth 2.0 [REC6749]

In addition, this document uses these additional error values:

invalid_request_uri The "request_uri" in the Authorization Request
returns an error or contains invalid data.

invalid_request_object The request parameter contains an invalid

Request Object.

request_not_supported The Authorization Server does not support the
use of the "request" parameter.

request_uri_not_supported The Authorization Server does not support
the use of the "request_uri" parameter.

TLS Requirements

Client implementations supporting the Request Object URI method MUST
support TLS following Recommendations for Secure Use of Transport
Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

[BCP195].


https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires April 24, 2019 [Page 13]



Internet-Draft OAuth JAR October 2018

[©

10.

To protect against information disclosure and tampering,
confidentiality protection MUST be applied using TLS with a cipher
suite that provides confidentiality and integrity protection.

HTTP clients MUST also verify the TLS server certificate, using
subjectAltName dNSName identities as described in [RFC6125], to avoid
man-in-the-middle attacks. The rules and guidelines defined in
[REC6125] apply here, with the following considerations:

0 Support for DNS-ID identifier type (that is, the dNSName identity
in the subjectAltName extension) is REQUIRED. Certification
authorities which issue server certificates MUST support the DNS-
ID identifier type, and the DNS-ID identifier type MUST be present
in server certificates.

o DNS names in server certificates MAY contain the wildcard
character "*".

0 Clients MUST NOT use CN-ID identifiers; a CN field may be present
in the server certificate's subject name, but MUST NOT be used for
authentication within the rules described in [BCP195]

0 SRV-ID and URI-ID as described in Section 6.5 of [RFC6125] MUST
NOT be used for comparison.

IANA Considerations
This specification requests no actions by IANA.
Security Considerations

In addition to the all the security considerations discussed in OAuth
2.0 [REC6819], the security considerations in [REC7515], [REC7516],
and [RFEC7518] needs to be considered. Also, there are several
academic papers such as [BASIN] that provide useful insight into the
security properties of protocols like OAuth.

In consideration of the above, this document advises taking the
following security considerations into account.

1. Choice of Algorithms
When sending the authorization request object through "request"

parameter, it MUST either be signed using JWS [REC7515] or encrypted
using JWE [RFC7516] with then considered appropriate algorithm.


https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125#section-6.5
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516

Sakimura & Bradley Expires April 24, 2019 [Page 14]



Internet-Draft OAuth JAR October 2018

10

10.

.2. Request Source Authentication

The source of the Authorization Request MUST always be verified.
There are several ways to do it in this specification.

(a) Verifying the JWS Signature of the Request Object.

(b) Verifying that the symmetric key for the JWE encryption is the
correct one if the JWE is using symmetric encryption.

(c) Verifying the TLS Server Identity of the Request Object URI. 1In
this case, the Authorization Server MUST know out-of-band that
the Client uses Request Object URI and only the Client is
covered by the TLS certificate. 1In general, it is not a
reliable method.

(d) Authorization Server is providing an endpoint that provides a
Request Object URI in exchange for a Request Object. 1In this
case, the Authorization Server MUST perform Client
Authentication to accept the Request Object and bind the Client
Identifier to the Request Object URI it is providing. Since
Request Object URI can be replayed, the lifetime of the Request
Object URI MUST be short and preferably one-time use. The
entropy of the Request Object URI MUST be sufficiently large.
The adequate shortness of the validity and the entropy of the
Request Object URI depends on the risk calculation based on the
value of the resource being protected. A general guidance for
the validity time would be less than a minute and the Request
Object URI is to include a cryptographic random value of 128bit
or more at the time of the writing of this specification.

(e) A third party, such as a Trust Framework Provider, provides an
endpoint that provides a Request Object URI in exchange for a
Request Object. The same requirements as (b) above apply. 1In
addition, the Authorization Server MUST know out-of-band that
the Client utilizes the Trust Framework Operator.

3. Explicit Endpoints

Although this specification does not require them, research such as
[BASIN] points out that it is a good practice to explicitly state the
intended interaction endpoints and the message position in the
sequence in a tamper evident manner so that the intent of the
initiator is unambiguous. The endpoints that come into question in
this specification are

(a) Protected Resources ("protected_resources")



Sakimura & Bradley Expires April 24, 2019 [Page 15]



Internet-Draft OAuth JAR October 2018

10.

(b) Authorization Endpoint ("authorization_endpoint")
(c) Redirection URI ("redirect_uri")
(d) Token Endpoint ("token_endpoint")

Further, if dynamic discovery is used, then the discovery related
endpoints also come into question.

In [RFC6749], while Redirection URI is included, others are not
included in the Authorization Request. As the result, the same
applies to Authorization Request Object.

The lack of the link among those endpoints are sited as the cause of
Cross-Phase Attacks introduced in [FETT]. An extension specification
should be created as a measure to address the risk.

4. Risks Associated with request_uri

The introduction of "request_uri" introduces several attack
possibilities.

.4.1. DDoS Attack on the Authorization Server

10

A set of malicious client can launch a DoS attack to the
authorization server by pointing the "request_uri" to a uri that
returns extremely large content or extremely slow to respond. Under
such an attack, the server may use up its resource and start failing.

Similarly, a malicious client can specify the "request_uri" value
that itself points to an authorization request URI that uses
"request_uri" to cause the recursive lookup.

To prevent such attack to succeed, the server should (a) check that
the value of "request_uri" parameter does not point to an unexpected
location, (b) check the content type of the response is "application/
jwt" (c) implement a time-out for obtaining the content of
"request_uri", and (d) do not perform recursive GET on the
"request_uri".

.4.2. Request URI Rewrite

10

The value of "request_uri" is not signed thus it can be tampered by
Man-in-the-browser attacker. Several attack possibilities rise
because of this, e.g., (a) attacker may create another file that the
rewritten URI points to making it possible to request extra scope (b)
attacker launches a DoS attack to a victim site by setting the value
of "request_uri" to be that of the victim.


https://datatracker.ietf.org/doc/html/rfc6749

Sakimura & Bradley Expires April 24, 2019 [Page 16]



Internet-Draft OAuth JAR October 2018

12

To prevent such attack to succeed, the server should (a) check that
the value of "request_uri" parameter does not point to an unexpected
location, (b) check the content type of the response is "application/
jwt" (c) implement a time-out for obtaining the content of
"request_uri".

TLS security considerations

Curent security considerations can be found in Recommendations for
Secure Use of TLS and DTLS [BCP195]. This supersedes the TLS version
recommendations in OAuth 2.0 [REC6749].

Privacy Considerations

When the Client is being granted access to a protected resource
containing personal data, both the Client and the Authorization
Server need to adhere to Privacy Principles. REC 6973 Privacy
Considerations for Internet Protocols [RFC6973] gives excellent
guidance on the enhancement of protocol design and implementation.
The provision listed in it should be followed.

Most of the provision would apply to The OAuth 2.0 Authorization
Framework [REC6749] and The OAuth 2.0 Authorization Framework: Bearer
Token Usage [RFC6750] and are not specific to this specification. 1In
what follows, only the specific provisions to this specification are
noted.

.1. Collection limitation

When the Client is being granted access to a protected resource
containing personal data, the Client SHOULD limit the collection of
personal data to that which is within the bounds of applicable law
and strictly necessary for the specified purpose(s).

It is often hard for the user to find out if the personal data asked
for is strictly necessary. A Trust Framework Provider can help the
user by examining the Client request and comparing to the proposed
processing by the Client and certifying the request. After the
certification, the Client, when making an Authorization Request, can
submit Authorization Request to the Trust Framework Provider to
obtain the Request Object URI.

Upon receiving such Request Object URI in the Authorization Request,
the Authorization Server first verifies that the authority portion of
the Request Object URI is a legitimate one for the Trust Framework
Provider. Then, the Authorization Server issues HTTP GET request to
the Request Object URI. Upon connecting, the Authorization Server
MUST verify the server identity represented in the TLS certificate is


https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6973
https://datatracker.ietf.org/doc/html/rfc6973
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750

Sakimura & Bradley Expires April 24, 2019 [Page 17]



Internet-Draft OAuth JAR October 2018

12.

legitimate for the Request Object URI. Then, the Authorization
Server can obtain the Request Object, which includes the "client_id"
representing the Client.

The Consent screen MUST indicate the Client and SHOULD indicate that
the request has been vetted by the Trust Framework Operator for the
adherence to the Collection Limitation principle.

2. Disclosure Limitation

12.2.1. Request Disclosure

12

This specification allows extension parameters. These may include
potentially sensitive information. Since URI query parameter may
leak through various means but most notably through referrer and
browser history, if the authorization request contains a potentially
sensitive parameter, the Client SHOULD JWE [RFC7516] encrypt the
request object.

Where Request Object URI method is being used, if the request object
contains personally identifiable or sensitive information, the
"request_uri" SHOULD be used only once, have a short validity period,
and MUST have large enough entropy deemed necessary with applicable
security policy unless the Request Object itself is JWE [RFC7516]
Encrypted. The adequate shortness of the validity and the entropy of
the Request Object URI depends on the risk calculation based on the
value of the resource being protected. A general guidance for the
validity time would be less than a minute and the Request Object URI
is to include a cryptographic random value of 128bit or more at the
time of the writing of this specification.

.2.2. Tracking using Request Object URI

Even if the protected resource does not include a personally
identifiable information, it is sometimes possible to identify the
user through the Request Object URI if persistent per-user Request
Object URI is used. A third party may observe it through browser
history etc. and start correlating the user's activity using it. 1In
a way, it is a data disclosure as well and should be avoided.

Therefore, per-user Request Object URI should be avoided.
Acknowledgements

The following people contributed to the creation of this document in
the OAuth WG. (Affiliations at the time of the contribution are
used.)


https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7516

Sakimura & Bradley Expires April 24, 2019 [Page 18]



Internet-Draft OAuth JAR October 2018

Sergey Beryozkin, Brian Campbell (Ping Identity), Vladimir Dzhuvinov
(Connect2id), Michael B. Jones (Microsoft), Torsten Lodderstedt
(YES) Jim Manico, Axel Nenker(Deutsche Telecom), Hannes Tschofenig
(ARM), Ben Campbell, Kathleen Moriarty (as AD), and Steve Kent (as
SECDIR).

The following people contributed to creating this document through
the OpenID Connect Core 1.0 [OpenID.Core].

Brian Campbell (Ping Identity), George Fletcher (AOL), Ryo Itou
(Mixi), Edmund Jay (Illumila), Michael B. Jones (Microsoft), Breno
de Medeiros (Google), Hideki Nara (TACT), Justin Richer (MITRE).

In addition, the following people contributed to this and previous
versions through the OAuth Working Group.

Dirk Balfanz (Google), James H. Manger (Telstra), John Panzer
(Google), David Recordon (Facebook), Marius Scurtescu (Google), Luke
Shepard (Facebook).

Revision History

Note to the RFC Editor: Please remove this section from the final
RFC.

-17

0 #78 Typos in content-type

-16

0 Treated remaining Ben Campbell comments.
-15

0 Removed further duplication

-14

0 #71 Reiterate dynamic params are included.
0 #70 Made clear that AS must return error.
0 #69 Inconsistency of the need to sign.

0o Fixed Mimetype.

0 #67 Incosistence in requiring HTTPS in request uri.



Sakimura & Bradley Expires April 24, 2019 [Page 19]



Internet-Draft

OAuth JAR October 2018

0 #66 Dropped ISO 29100 reference.

0o #25 Removed Encrypt only option.

0 #59 Same with #25.

-13

0 add TLS Security Consideration section

0 replace RFC7525 reference with BCP195

o moved front tag in FETT reference to fix XML structure

o changes reference from SoK to FETT

-12

o fixes #62

o fixes #48
items

o fixes #58

o fixes #57

o fixes #45

Alexey Melnikov

OPSDIR Review

DP Comments for
GENART - Remove

OPSDIR Review

or already opened

o fixes #49 - OPSDIR Review
after initial sentence of list items.

o fixes #53 - OPSDIR Review
Clarify JOSE Header

o fixes #42 - OPSDIR Review

confusing

o fixes #50 - OPSDIR Review

Discuss

General - delete semicolors after list

the Last Call
"non-normative ... " from examples.

Introduction - are attacks discovered

Introduction - Inconsistent colons

6.2 JWS Signed Request Object -

Introduction - readability of 'and' is

: Section 4 Request Object - Clarify

'signed, encrypted, or signed and encrypted'

o fixes #39 - OPSDIR Review

o fixed #50 - OPSDIR Review

: Abstract - Explain/Clarify JWS and JWE

: Section 4 Request Object - Clarify

'signed, encrypted, or signed and encrypted'


https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/bcp195

Sakimura & Bradley Expires April 24, 2019 [Page 20]



Internet-Draft OAuth JAR October 2018

o fixes #43 - OPSDIR Review : Introduction - 'properties' sounds
awkward and are not exactly 'properties'

o fixes #56 - OPSDIR Review : 12 Acknowledgements - 'contribution
is' => 'contribution are'

o fixes #55 - OPSDIR Review : 11.2.2 Privacy Considerations - ' It
is in a way' => 'In a way, it is'

o fixes #54 - OPSDIR Review : 11 Privacy Considerations - 'and not
specific' => 'and are not specific'

o fixes #51 - OPSDIR Review : Section 4 Request Object - 'It is
fine' => 'It is recommended'

o fixes #47 - OPSDIR Review : Introduction 'over- the- wire' =>

'over-the-wire'

o fixes #46 - OPSDIR Review : Introduction 'It allows' => 'The use

of application security' for

o fixes #44 - OPSDIR Review : Introduction 'has' => 'have'

o fixes #41 - OPSDIR Review : Introduction
'typically sent'

missing 'is' before

o fixes #38 - OPSDIR Review : Section 11 - Delete 'freely
accessible' regarding ISO 29100

-11

o s/bing/being/

0 Added history for -10

-10

0 #20: KM1 -- some wording that is awkward in the TLS section.

0 #21: KM2 - the additional attacks against OAuth 2.0 should also
have a pointer

0 #22: KM3 -- Nit: in the first line of 10.4:

0 #23: KM4 -- Mention RFC6973 in Section 11 in addition to ISO 29100

0 #24: SECDIR review: Section 4 -- Confusing requirements for
sign+encrypt


https://datatracker.ietf.org/doc/html/rfc6973

Sakimura & Bradley Expires April 24, 2019 [Page 21]



Internet-Draft OAuth JAR October 2018
0 #25: SECDIR review: Section 6 -- authentication and integrity need
not be provided if the requestor encrypts the token?

O #26: SECDIR Review: Section 10 -- why no reference for JWS
algorithms?

0 #27: SECDIR Review: Section 10.2 - how to do the agreement between
client and server "a priori"?

0 #28: SECDIR Review: Section 10.3 - Indication on '"large entropy"
and "short lifetime" should be indicated

0 #29: SECDIR Review: Section 10.3 - Typo
0 #30: SECDIR Review: Section 10.4 - typos and missing articles

0 #31: SECDIR Review: Section 10.4 - Clearer statement on the lack
of endpoint identifiers needed

0 #32: SECDIR Review: Section 11 IS029100 needs to be moved to

normative reference

0 #33: SECDIR Review: Section 11
language needed

Better English and Entropy

0 #34: Section 4: Typo
o #35: More Acknowledgment

o #36: DP - More precise qualification on Encryption needed.

0 Minor Editorial Nits.
o0 Section 10.4 added.

0 Explicit reference to Security consideration (10.2) added in
section 5 and section 5.2.

0 , (add yourself) removed from the acknowledgment.
-08
o Applied changes proposed by Hannes on 2016-06-29 on IETF OAuth

list recorded as https://bitbucket.org/Nat/oauth-jwsreq/
issues/12/.



https://bitbucket.org/Nat/oauth-jwsreq/issues/12/
https://bitbucket.org/Nat/oauth-jwsreq/issues/12/

Sakimura & Bradley Expires April 24, 2019 [Page 22]



Internet-Draft OAuth JAR October 2018

0 TLS requirements added.

0 Security Consideration reinforced.

0 Privacy Consideration added.

o Introduction improved.

-07

0 Changed the abbrev to OAuth JAR from oauth-jar.
0o Clarified sig and enc methods.

0 Better English.

o Removed claims from one of the example.

0 Re-worded the URI construction.

0o Changed the example to use request instead of request_uri.

0 Clarified that Request Object parameters take precedence
regardless of request or request_uri parameters were used.

0 Generalized the language in 4.2.1 to convey the intent more
clearly.

o Changed "Server" to "Authorization Server" as a clarification.

o Stopped talking about request_object_signing_alg.

0 IANA considerations now reflect the current status.

0 Added Brian Campbell to the contributors 1list. Made the lists
alphabetic order based on the last names. Clarified that the

affiliation is at the time of the contribution.

0 Added "older versions of " to the reference to IE uri length
limitations.

o Stopped talking about signed or unsigned JWS etc.
o 1.Introduction improved.
-06

o Added explanation on the 512 chars URL restriction.



Sakimura & Bradley Expires April 24, 2019 [Page 23]



Internet-Draft OAuth JAR October 2018

15.

15.

0 Updated Acknowledgements.

-05

0 More alignment with OpenID Connect.
-04

0o Fixed typos in examples. (request_url -> request_uri, cliend_id ->
client_id)

o Aligned the error messages with the OAuth IANA registry.
0 Added another rationale for having request object.
-03

0o Fixed the non-normative description about the advantage of static
signature.

0o Changed the requirement for the parameter values in the request
itself and the request object from 'MUST MATCH" to 'Req Obj takes
precedence.

-02

o Now that they are RFCs, replaced JWS, JWE, etc. with RFC numbers.

-01

o Copy Edits.

References

1. Normative References

[BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
"Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, REC 7525, May 2015.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.



https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Sakimura & Bradley Expires April 24, 2019 [Page 24]



Internet-Draft OAuth JAR October 2018

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
2003, <https://www.rfc-editor.org/info/rfc3629>.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
REC 3986, DOI 10.17487/RFC3986, January 2005,
<https://www.rfc-editor.org/info/rfc3986>.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
2011, <https://www.rfc-editor.org/info/rfc6125>.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,
<https://www.rfc-editor.org/info/rfc6749>.

[RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
Framework: Bearer Token Usage", RFC 6750,
DOI 10.17487/RFC6750, October 2012,
<https://www.rfc-editor.org/info/rfc6750>.

[RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
Threat Model and Security Considerations", RFEC 6819,
DOI 10.17487/RFC6819, January 2013,
<https://www.rfc-editor.org/info/rfc6819>.

[RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
Morris, J., Hansen, M., and R. Smith, "Privacy
Considerations for Internet Protocols", RFC 6973,
DOI 10.17487/RFC6973, July 2013,
<https://www.rfc-editor.org/info/rfc6973>.

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
2014, <https://www.rfc-editor.org/info/rfc7159>.

[RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing",
REC 7230, DOI 10.17487/RFC7230, June 2014,
<https://www.rfc-editor.org/info/rfc7230>.

[RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
2015, <https://www.rfc-editor.org/info/rfc7515>.



https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc6973
https://www.rfc-editor.org/info/rfc6973
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515

Sakimura & Bradley Expires April 24, 2019 [Page 25]



Internet-Draft

[RFC7516]

[RFC7518]

[RFC7519]

[RFC8141]

[RFC8259]

OAuth JAR October 2018

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,
<https://www.rfc-editor.org/info/rfc7516>.

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
DOI 10.17487/RFC7518, May 2015,
<https://www.rfc-editor.org/info/rfc7518>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
(JWT)", REC 7519, DOI 10.17487/RFC7519, May 2015,
<https://www.rfc-editor.org/info/rfc7519>.

Saint-Andre, P. and J. Klensin, "Uniform Resource Names
(URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,
<https://www.rfc-editor.org/info/rfc8141>.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8259,

DOI 10.17487/RFC8259, December 2017,
<https://www.rfc-editor.org/info/rfc8259>.

15.2. Informative References

[BASIN]

[FETT]

Basin, D., Cremers, C., and S. Meier, "Provably Repairing
the ISO/IEC 9798 Standard for Entity Authentication",
Journal of Computer Security - Security and Trust
Principles Volume 21 Issue 6, Pages 817-846, November
2013,
<https://www.cs.ox.ac.uk/people/cas.cremers/downloads/
papers/BCM2012-is09798. pdf>.

Fett, D., Kusters, R., and G. Schmitz, "A Comprehensive
Formal Security Analysis of OAuth 2.0", CCS '16
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security Pages 1204-1215 , October
2016, <https://infsec.uni-
trier.de/people/publications/paper/
FettKuestersSchmitz-CCS-2016.pdf>.

[OpenID.Core]

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
C. Mortimore, "OpenID Connect Core 1.0", OpenID

Foundation Standards, February 2014,
<http://openid.net/specs/openid-connect-core-1 0.html>.



https://datatracker.ietf.org/doc/html/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc8141
https://www.rfc-editor.org/info/rfc8141
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/BCM2012-iso9798.pdf
https://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/BCM2012-iso9798.pdf
https://infsec.uni-trier.de/people/publications/paper/FettKuestersSchmitz-CCS-2016.pdf
https://infsec.uni-trier.de/people/publications/paper/FettKuestersSchmitz-CCS-2016.pdf
https://infsec.uni-trier.de/people/publications/paper/FettKuestersSchmitz-CCS-2016.pdf
http://openid.net/specs/openid-connect-core-1_0.html

Sakimura & Bradley Expires April 24, 2019 [Page 26]



Internet-Draft OAuth JAR October 2018

Authors' Addresses

Nat Sakimura

Nomura Research Institute

Otemachi Financial City Grand Cube, 1-9-2 Otemachi
Chiyoda-ku, Tokyo 100-0004

Japan

Phone: +81-3-5533-2111
Email: n-sakimura@nri.co.jp
URI: http://nat.sakimura.org/

John Bradley

Yubico

Casilla 177, Sucursal Talagante
Talagante, RM

Chile

Phone: +1.202.630.5272
Email: ve7jtb@ve7jtb.com
URT: http://www.thread-safe.com/



http://nat.sakimura.org/
http://www.thread-safe.com/

Sakimura & Bradley Expires April 24, 2019 [Page 27]



