
OAuth Working Group Y. Sheffer
Internet-Draft Intuit
Intended status: Best Current Practice D. Hardt
Expires: December 9, 2019
 M. Jones
 Microsoft
 June 07, 2019

JSON Web Token Best Current Practices
draft-ietf-oauth-jwt-bcp-06

Abstract

 JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security
 tokens that contain a set of claims that can be signed and/or
 encrypted. JWTs are being widely used and deployed as a simple
 security token format in numerous protocols and applications, both in
 the area of digital identity, and in other application areas. The
 goal of this Best Current Practices document is to provide actionable
 guidance leading to secure implementation and deployment of JWTs.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 9, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Sheffer, et al. Expires December 9, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft JWT BCP June 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Target Audience . 4
1.2. Conventions used in this document 4

2. Threats and Vulnerabilities 4
2.1. Weak Signatures and Insufficient Signature Validation . . 4
2.2. Weak symmetric keys 5
2.3. Incorrect Composition of Encryption and Signature 5

 2.4. Plaintext Leakage through Analysis of Ciphertext Length . 5
2.5. Insecure Use of Elliptic Curve Encryption 5
2.6. Multiplicity of JSON encodings 5
2.7. Substitution Attacks 6
2.8. Cross-JWT Confusion 6
2.9. Indirect Attacks on the Server 6

3. Best Practices . 6
3.1. Perform Algorithm Verification 7
3.2. Use Appropriate Algorithms 7
3.3. Validate All Cryptographic Operations 8
3.4. Validate Cryptographic Inputs 8
3.5. Ensure Cryptographic Keys have Sufficient Entropy 8
3.6. Avoid Length-Dependent Encryption Inputs 8
3.7. Use UTF-8 . 9
3.8. Validate Issuer and Subject 9
3.9. Use and Validate Audience 9
3.10. Do Not Trust Received Claims 9
3.11. Use Explicit Typing 10

 3.12. Use Mutually Exclusive Validation Rules for Different
 Kinds of JWTs . 10

4. Security Considerations 11
5. IANA Considerations . 11
6. Acknowledgements . 11
7. References . 12
7.1. Normative References 12
7.2. Informative References 13

Appendix A. Document History 15
A.1. draft-ietf-oauth-jwt-bcp-06 15
A.2. draft-ietf-oauth-jwt-bcp-05 15
A.3. draft-ietf-oauth-jwt-bcp-04 15
A.4. draft-ietf-oauth-jwt-bcp-03 15
A.5. draft-ietf-oauth-jwt-bcp-02 15
A.6. draft-ietf-oauth-jwt-bcp-01 15

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-06
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-05
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-04
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-02
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-01

Sheffer, et al. Expires December 9, 2019 [Page 2]

Internet-Draft JWT BCP June 2019

A.7. draft-ietf-oauth-jwt-bcp-00 15
A.8. draft-sheffer-oauth-jwt-bcp-01 15
A.9. draft-sheffer-oauth-jwt-bcp-00 15

 Authors' Addresses . 15

1. Introduction

 JSON Web Tokens, also known as JWTs [RFC7519], are URL-safe JSON-
 based security tokens that contain a set of claims that can be signed
 and/or encrypted. The JWT specification has seen rapid adoption
 because it encapsulates security-relevant information in one, easy to
 protect location, and because it is easy to implement using widely-
 available tools. One application area in which JWTs are commonly
 used is representing digital identity information, such as OpenID
 Connect ID Tokens [OpenID.Core] and OAuth 2.0 [RFC6749] access tokens
 and refresh tokens, the details of which are deployment-specific.

 Since the JWT specification was published, there have been several
 widely published attacks on implementations and deployments. Such
 attacks are the result of under-specified security mechanisms, as
 well as incomplete implementations and incorrect usage by
 applications.

 The goal of this document is to facilitate secure implementation and
 deployment of JWTs. Many of the recommendations in this document
 will actually be about implementation and use of the cryptographic
 mechanisms underlying JWTs that are defined by JSON Web Signature
 (JWS) [RFC7515], JSON Web Encryption (JWE) [RFC7516], and JSON Web
 Algorithms (JWA) [RFC7518]. Others will be about use of the JWT
 claims themselves.

 These are intended to be minimum recommendations for the use of JWTs
 in the vast majority of implementation and deployment scenarios.
 Other specifications that reference this document can have stricter
 requirements related to one or more aspects of the format, based on
 their particular circumstances; when that is the case, implementers
 are advised to adhere to those stricter requirements. Furthermore,
 this document provides a floor, not a ceiling, so stronger options
 are always allowed (e.g., depending on differing evaluations of the
 importance of cryptographic strength vs. computational load).

 Community knowledge about the strength of various algorithms and
 feasible attacks can change quickly, and experience shows that a Best
 Current Practice (BCP) document about security is a point-in-time
 statement. Readers are advised to seek out any errata or updates
 that apply to this document.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-00
https://datatracker.ietf.org/doc/html/draft-sheffer-oauth-jwt-bcp-01
https://datatracker.ietf.org/doc/html/draft-sheffer-oauth-jwt-bcp-00
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7518

Sheffer, et al. Expires December 9, 2019 [Page 3]

Internet-Draft JWT BCP June 2019

1.1. Target Audience

 The targets of this document are:

 - Implementers of JWT libraries (and the JWS and JWE libraries used
 by them),

 - Implementers of code that uses such libraries (to the extent that
 some mechanisms may not be provided by libraries, or until they
 are), and

 - Developers of specifications that rely on JWTs, both inside and
 outside the IETF.

1.2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Threats and Vulnerabilities

 This section lists some known and possible problems with JWT
 implementations and deployments. Each problem description is
 followed by references to one or more mitigations to those problems.

2.1. Weak Signatures and Insufficient Signature Validation

 Signed JSON Web Tokens carry an explicit indication of the signing
 algorithm, in the form of the "alg" header parameter, to facilitate
 cryptographic agility. This, in conjunction with design flaws in
 some libraries and applications, have led to several attacks:

 - The algorithm can be changed to "none" by an attacker, and some
 libraries would trust this value and "validate" the JWT without
 checking any signature.

 - An "RS256" (RSA, 2048 bit) parameter value can be changed into
 "HS256" (HMAC, SHA-256), and some libraries would try to validate
 the signature using HMAC-SHA256 and using the RSA public key as
 the HMAC shared secret (see [McLean] and CVE-2015-9235).

 For mitigations, see Section 3.1 and Section 3.2.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Sheffer, et al. Expires December 9, 2019 [Page 4]

Internet-Draft JWT BCP June 2019

2.2. Weak symmetric keys

 In addition, some applications sign tokens using a weak symmetric key
 and a keyed MAC algorithm such as "HS256". In most cases, these keys
 are human memorable passwords that are vulnerable to dictionary
 attacks [Langkemper].

 For mitigations, see Section 3.5.

2.3. Incorrect Composition of Encryption and Signature

 Some libraries that decrypt a JWE-encrypted JWT to obtain a JWS-
 signed object do not always validate the internal signature.

 For mitigations, see Section 3.3.

2.4. Plaintext Leakage through Analysis of Ciphertext Length

 Many encryption algorithms leak information about the length of the
 plaintext, with a varying amount of leakage depending on the
 algorithm and mode of operation. This problem is exacerbated when
 the plaintext is initially compressed, because the length of the
 compressed plaintext and thus, the ciphertext, depends not only on
 the length of the original plaintext but also on its content. See
 [Kelsey] for general background on compression and encryption, and
 [Alawatugoda] for a specific example of attacks on HTTP cookies.

 For mitigations, see Section 3.6.

2.5. Insecure Use of Elliptic Curve Encryption

 Per [Sanso], several JOSE libraries fail to validate their inputs
 correctly when performing elliptic curve key agreement (the "ECDH-ES"
 algorithm). An attacker that is able to send JWEs of its choosing
 that use invalid curve points and observe the cleartext outputs
 resulting from decryption with the invalid curve points can use this
 vulnerability to recover the recipient's private key.

 For mitigations, see Section 3.4.

2.6. Multiplicity of JSON encodings

 Previous versions of the JSON format such as the obsoleted [RFC7159]
 allowed several different character encodings: UTF-8, UTF-16 and UTF-
 32. This is not the case anymore, with the latest standard [RFC8259]
 only allowing UTF-8. However older implementations may result in the
 JWT being misinterpreted by its recipient, and this could be used by
 a malicious sender to bypass the recipient's validation checks.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc8259

Sheffer, et al. Expires December 9, 2019 [Page 5]

Internet-Draft JWT BCP June 2019

 For mitigations, see Section 3.7.

2.7. Substitution Attacks

 There are attacks in which one recipient will have a JWT intended for
 it and attempt to use it at a different recipient that it was not
 intended for. If not caught, these attacks can result in the
 attacker gaining access to resources that it is not entitled to
 access. For instance, if an OAuth 2.0 [RFC6749] access token is
 presented to an OAuth 2.0 protected resource that it is intended for,
 that protected resource might then attempt to gain access to a
 different protected resource by presenting that same access token to
 the different protected resource, which the access token is not
 intended for.

 For mitigations, see Section 3.8 and Section 3.9.

2.8. Cross-JWT Confusion

 As JWTs are being used by more different protocols in diverse
 application areas, it becomes increasingly important to prevent cases
 of JWT tokens that have been issued for one purpose being subverted
 and used for another. Note that this is a specific type of
 substitution attack. If the JWT could be used in an application
 context in which it could be confused with other kinds of JWTs, then
 mitigations MUST be employed to prevent these substitution attacks.

 For mitigations, see Section 3.8, Section 3.9, Section 3.11, and
Section 3.12.

2.9. Indirect Attacks on the Server

 Various JWT claims are used by the recipient to perform lookup
 operations, e.g. database and LDAP searches. Others include URLs
 that are similarly looked up by the server. Any of these claims can
 be used by an attacker as vectors for injection attacks or server-
 side request forgery (SSRF) attacks.

 For mitigations, see Section 3.10.

3. Best Practices

 The best practices listed below should be applied by practitioners to
 mitigate the threats listed in the preceding section.

https://datatracker.ietf.org/doc/html/rfc6749

Sheffer, et al. Expires December 9, 2019 [Page 6]

Internet-Draft JWT BCP June 2019

3.1. Perform Algorithm Verification

 Libraries MUST enable the caller to specify a supported set of
 algorithms and MUST NOT use any other algorithms when performing
 cryptographic operations. The library MUST ensure that the "alg" or
 "enc" header specifies the same algorithm that is used for the
 cryptographic operation. Moreover, each key MUST be used with
 exactly one algorithm, and this MUST be checked when the
 cryptographic operation is performed.

3.2. Use Appropriate Algorithms

 As Section 5.2 of [RFC7515] says, "it is an application decision
 which algorithms may be used in a given context. Even if a JWS can
 be successfully validated, unless the algorithm(s) used in the JWS
 are acceptable to the application, it SHOULD consider the JWS to be
 invalid."

 Therefore, applications MUST only allow the use of cryptographically
 current algorithms that meet the security requirements of the
 application. This set will vary over time as new algorithms are
 introduced and existing algorithms are deprecated due to discovered
 cryptographic weaknesses. Applications MUST therefore be designed to
 enable cryptographic agility.

 That said, if a JWT is cryptographically protected by a transport
 layer, such as TLS using cryptographically current algorithms, there
 may be no need to apply another layer of cryptographic protections to
 the JWT. In such cases, the use of the "none" algorithm can be
 perfectly acceptable. The "none" algorithm should only be used when
 the JWT is cryptographically protected by other means. JWTs using
 "none" are often used in application contexts in which the content is
 optionally signed; then the URL-safe claims representation and
 processing can be the same in both the signed and unsigned cases.
 JWT libraries SHOULD NOT generate JWTs using "none" unless explicitly
 requested to do by the caller.

 Applications SHOULD follow these algorithm-specific recommendations:

 - Avoid all RSA-PKCS1 v1.5 [RFC2313] encryption algorithms,
 preferring RSA-OAEP ([RFC8017], Sec. 7.1).

 - ECDSA signatures [ANSI-X962-2005] require a unique random value
 for every message that is signed. If even just a few bits of the
 random value are predictable across multiple messages then the
 security of the signature scheme may be compromised. In the worst
 case, the private key may be recoverable by an attacker. To
 counter these attacks, JWT libraries SHOULD implement ECDSA using

https://datatracker.ietf.org/doc/html/rfc7515#section-5.2
https://datatracker.ietf.org/doc/html/rfc2313
https://datatracker.ietf.org/doc/html/rfc8017

Sheffer, et al. Expires December 9, 2019 [Page 7]

Internet-Draft JWT BCP June 2019

 the deterministic approach defined in [RFC6979]. This approach is
 completely compatible with existing ECDSA verifiers and so can be
 implemented without new algorithm identifiers being required.

3.3. Validate All Cryptographic Operations

 All cryptographic operations used in the JWT MUST be validated and
 the entire JWT MUST be rejected if any of them fail to validate.
 This is true not only of JWTs with a single set of Header Parameters
 but also for Nested JWTs, in which both outer and inner operations
 MUST be validated using the keys and algorithms supplied by the
 application.

3.4. Validate Cryptographic Inputs

 Some cryptographic operations, such as Elliptic Curve Diffie-Hellman
 key agreement ("ECDH-ES") take inputs that may contain invalid
 values, such as points not on the specified elliptic curve or other
 invalid points (see e.g. [Valenta], Sec. 7.1). Either the JWS/JWE
 library itself must validate these inputs before using them or it
 must use underlying cryptographic libraries that do so (or both!).

 ECDH-ES ephemeral public key (epk) inputs should be validated
 according to the recipient's chosen elliptic curve. For the NIST
 prime-order curves P-256, P-384 and P-521, validation MUST be
 performed according to Section 5.6.2.3.4 "ECC Partial Public-Key
 Validation Routine" of NIST Special Publication 800-56A revision 3
 [nist-sp-800-56a-r3]. Likewise, if the "X25519" or "X448" [RFC8037]
 algorithms are used, then the security considerations in [RFC8037]
 apply.

3.5. Ensure Cryptographic Keys have Sufficient Entropy

 The Key Entropy and Random Values advice in Section 10.1 of [RFC7515]
 and the Password Considerations in Section 8.8 of [RFC7518] MUST be
 followed. In particular, human-memorizable passwords MUST NOT be
 directly used as the key to a keyed-MAC algorithm such as "HS256".
 In particular, passwords should only be used to perform key
 encryption, rather than content encryption, as described in

Section 4.8 of [RFC7518]. Note that even when used for key
 encryption, password-based encryption is still subject to brute-force
 attacks.

3.6. Avoid Length-Dependent Encryption Inputs

 It is RECOMMENDED to avoid any compression of data before encryption
 since such compression often reveals information about the plaintext.

https://datatracker.ietf.org/doc/html/rfc6979
https://datatracker.ietf.org/doc/html/rfc8037
https://datatracker.ietf.org/doc/html/rfc8037
https://datatracker.ietf.org/doc/html/rfc7515#section-10.1
https://datatracker.ietf.org/doc/html/rfc7518#section-8.8
https://datatracker.ietf.org/doc/html/rfc7518#section-4.8

Sheffer, et al. Expires December 9, 2019 [Page 8]

Internet-Draft JWT BCP June 2019

3.7. Use UTF-8

 [RFC7515], [RFC7516], and [RFC7519] all specify that UTF-8 be used
 for encoding and decoding JSON used in Header Parameters and JWT
 Claims Sets. This is also in line with the latest JSON specification
 [RFC8259]. Implementations and applications MUST do this, and not
 use or admit the use of other Unicode encodings for these purposes.

3.8. Validate Issuer and Subject

 When a JWT contains an "iss" (issuer) claim, the application MUST
 validate that the cryptographic keys used for the cryptographic
 operations in the JWT belong to the issuer. If they do not, the
 application MUST reject the JWT.

 The means of determining the keys owned by an issuer is application-
 specific. As one example, OpenID Connect [OpenID.Core] issuer values
 are "https" URLs that reference a JSON metadata document that
 contains a "jwks_uri" value that is an "https" URL from which the
 issuer's keys are retrieved as a JWK Set [RFC7517]. This same
 mechanism is used by [RFC8414]. Other applications may use different
 means of binding keys to issuers.

 Similarly, when the JWT contains a "sub" (subject) claim, the
 application MUST validate that the subject value corresponds to a
 valid subject and/or issuer/subject pair at the application. This
 may include confirming that the issuer is trusted by the application.
 If the issuer, subject, or the pair are invalid, the application MUST
 reject the JWT.

3.9. Use and Validate Audience

 If the same issuer can issue JWTs that are intended for use by more
 than one relying party or application, the JWT MUST contain an "aud"
 (audience) claim that can be used to determine whether the JWT is
 being used by an intended party or was substituted by an attacker at
 an unintended party. Furthermore, the relying party or application
 MUST validate the audience value and if the audience value is not
 present or not associated with the recipient, it MUST reject the JWT.

3.10. Do Not Trust Received Claims

 The "kid" (key ID) header is used by the relying application to
 perform key lookup. Applications should ensure that this does not
 create SQL or LDAP injection vulnerabilities, by validating and/or
 sanitizing the received value.

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc8414

Sheffer, et al. Expires December 9, 2019 [Page 9]

Internet-Draft JWT BCP June 2019

 Similarly, blindly following a "jku" (JWK set URL) or "x5u" (X.509
 URL) header, which may contain an arbitrary URL, could result in
 server-side request forgery (SSRF) attacks. Applications should
 protect against such attacks, e.g., by matching the URL to a
 whitelist of allowed locations, and ensuring no cookies are sent in
 the GET request.

3.11. Use Explicit Typing

 Confusion of one kind of JWT for another can be prevented by having
 all the kinds of JWTs that could otherwise potentially be confused
 include an explicit JWT type value and include checking the type
 value in their validation rules. Explicit JWT typing is accomplished
 by using the "typ" header parameter. For instance, the [RFC8417]
 specification uses the "application/secevent+jwt" media type to
 perform explicit typing of Security Event Tokens (SETs).

 Per the definition of "typ" in Section 4.1.9 of [RFC7515], it is
 RECOMMENDED that the "application/" prefix be omitted from the "typ"
 value. Therefore, for example, the "typ" value used to explicitly
 include a type for a SET SHOULD be "secevent+jwt". When explicit
 typing is employed for a JWT, it is RECOMMENDED that a media type
 name of the format "application/example+jwt" be used, where "example"
 is replaced by the identifier for the specific kind of JWT.

 When applying explicit typing to a Nested JWT, the "typ" header
 parameter containing the explicit type value MUST be present in the
 inner JWT of the Nested JWT (the JWT whose payload is the JWT Claims
 Set). The same "typ" header parameter value MAY be present in the
 outer JWT as well, to explicitly type the entire Nested JWT.

 Note that the use of explicit typing may not achieve disambiguation
 from existing kinds of JWTs, as the validation rules for existing
 kinds JWTs often do not use the "typ" header parameter value.
 Explicit typing is RECOMMENDED for new uses of JWTs.

3.12. Use Mutually Exclusive Validation Rules for Different Kinds of
 JWTs

 Each application of JWTs defines a profile specifying the required
 and optional JWT claims and the validation rules associated with
 them. If more than one kind of JWT can be issued by the same issuer,
 the validation rules for those JWTs MUST be written such that they
 are mutually exclusive, rejecting JWTs of the wrong kind. To prevent
 substitution of JWTs from one context into another, a number of
 strategies may be employed:

https://datatracker.ietf.org/doc/html/rfc8417
https://datatracker.ietf.org/doc/html/rfc7515#section-4.1.9

Sheffer, et al. Expires December 9, 2019 [Page 10]

Internet-Draft JWT BCP June 2019

 - Use explicit typing for different kinds of JWTs. Then the
 distinct "typ" values can be used to differentiate between the
 different kinds of JWTs.

 - Use different sets of required claims or different required claim
 values. Then the validation rules for one kind of JWT will reject
 those with different claims or values.

 - Use different sets of required header parameters or different
 required header parameter values. Then the validation rules for
 one kind of JWT will reject those with different header parameters
 or values.

 - Use different keys for different kinds of JWTs. Then the keys
 used to validate one kind of JWT will fail to validate other kinds
 of JWTs.

 - Use different "aud" values for different uses of JWTs from the
 same issuer. Then audience validation will reject JWTs
 substituted into inappropriate contexts.

 - Use different issuers for different kinds of JWTs. Then the
 distinct "iss" values can be used to segregate the different kinds
 of JWTs.

 Given the broad diversity of JWT usage and applications, the best
 combination of types, required claims, values, header parameters, key
 usages, and issuers to differentiate among different kinds of JWTs
 will, in general, be application specific. For new JWT applications,
 the use of explicit typing is RECOMMENDED.

4. Security Considerations

 This entire document is about security considerations when
 implementing and deploying JSON Web Tokens.

5. IANA Considerations

 This document requires no IANA actions.

6. Acknowledgements

 Thanks to Antonio Sanso for bringing the "ECDH-ES" invalid point
 attack to the attention of JWE and JWT implementers. Tim McLean
 [McLean] published the RSA/HMAC confusion attack. Thanks to Nat
 Sakimura for advocating the use of explicit typing. Thanks to Neil
 Madden for his numerous comments, and to Carsten Bormann, Brian

Sheffer, et al. Expires December 9, 2019 [Page 11]

Internet-Draft JWT BCP June 2019

 Campbell, Brian Carpenter, Roman Danyliw and Eric Rescorla for their
 reviews.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
 Algorithm (DSA) and Elliptic Curve Digital Signature
 Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August
 2013, <https://www.rfc-editor.org/info/rfc6979>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <https://www.rfc-editor.org/info/rfc7516>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8037] Liusvaara, I., "CFRG Elliptic Curve Diffie-Hellman (ECDH)
 and Signatures in JSON Object Signing and Encryption
 (JOSE)", RFC 8037, DOI 10.17487/RFC8037, January 2017,
 <https://www.rfc-editor.org/info/rfc8037>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6979
https://www.rfc-editor.org/info/rfc6979
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://datatracker.ietf.org/doc/html/rfc8037
https://www.rfc-editor.org/info/rfc8037
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Sheffer, et al. Expires December 9, 2019 [Page 12]

Internet-Draft JWT BCP June 2019

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

7.2. Informative References

 [Alawatugoda]
 Alawatugoda, J., Stebila, D., and C. Boyd, "Protecting
 Encrypted Cookies from Compression Side-Channel Attacks",
 Financial Cryptography and Data Security pp. 86-106,
 DOI 10.1007/978-3-662-47854-7_6, 2015.

 [ANSI-X962-2005]
 "American National Standard X9.62: The Elliptic Curve
 Digital Signature Algorithm (ECDSA)", November 2005.

 [Kelsey] Kelsey, J., "Compression and Information Leakage of
 Plaintext", Fast Software Encryption pp. 263-276,
 DOI 10.1007/3-540-45661-9_21, 2002.

 [Langkemper]
 Langkemper, S., "Attacking JWT Authentication", September
 2016, <https://www.sjoerdlangkemper.nl/2016/09/28/

attacking-jwt-authentication/>.

 [McLean] McLean, T., "Critical vulnerabilities in JSON Web Token
 libraries", March 2015, <https://auth0.com/blog/

critical-vulnerabilities-in-json-web-token-libraries//>.

 [nist-sp-800-56a-r3]
 Barker, E., Chen, L., Keller, S., Roginsky, A., Vassilev,
 A., and R. Davis, "Recommendation for Pair-Wise Key
 Establishment Schemes Using Discrete Logarithm
 Cryptography, Draft NIST Special Publication 800-56A
 Revision 3", April 2018,
 <https://doi.org/10.6028/NIST.SP.800-56Ar3>.

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., Medeiros, B., and C.
 Mortimore, "OpenID Connect Core 1.0", November 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC2313] Kaliski, B., "PKCS #1: RSA Encryption Version 1.5",
RFC 2313, DOI 10.17487/RFC2313, March 1998,

 <https://www.rfc-editor.org/info/rfc2313>.

https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/
https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries//
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries//
https://doi.org/10.6028/NIST.SP.800-56Ar3
http://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/rfc2313
https://www.rfc-editor.org/info/rfc2313

Sheffer, et al. Expires December 9, 2019 [Page 13]

Internet-Draft JWT BCP June 2019

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

 [RFC8417] Hunt, P., Ed., Jones, M., Denniss, W., and M. Ansari,
 "Security Event Token (SET)", RFC 8417,
 DOI 10.17487/RFC8417, July 2018,
 <https://www.rfc-editor.org/info/rfc8417>.

 [Sanso] Sanso, A., "Critical Vulnerability Uncovered in JSON
 Encryption", March 2017,
 <https://blogs.adobe.com/security/2017/03/

critical-vulnerability-uncovered-in-json-encryption.html>.

 [Valenta] Valenta, L., Sullivan, N., Sanso, A., and N. Heninger, "In
 search of CurveSwap: Measuring elliptic curve
 implementations in the wild", March 2018,
 <https://ia.cr/2018/298>.

https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://datatracker.ietf.org/doc/html/rfc8417
https://www.rfc-editor.org/info/rfc8417
https://blogs.adobe.com/security/2017/03/critical-vulnerability-uncovered-in-json-encryption.html
https://blogs.adobe.com/security/2017/03/critical-vulnerability-uncovered-in-json-encryption.html
https://ia.cr/2018/298

Sheffer, et al. Expires December 9, 2019 [Page 14]

Internet-Draft JWT BCP June 2019

Appendix A. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

A.1. draft-ietf-oauth-jwt-bcp-06

 - Second AD review.

 - Removed unworkable recommendation to pad encrypted passwords.

A.2. draft-ietf-oauth-jwt-bcp-05

 - Genart review comments.

A.3. draft-ietf-oauth-jwt-bcp-04

 - AD review comments.

A.4. draft-ietf-oauth-jwt-bcp-03

 - Acknowledgements.

A.5. draft-ietf-oauth-jwt-bcp-02

 - Implemented WGLC feedback.

A.6. draft-ietf-oauth-jwt-bcp-01

 - Feedback from Brian Campbell.

A.7. draft-ietf-oauth-jwt-bcp-00

 - Initial WG draft. No change from the latest individual version.

A.8. draft-sheffer-oauth-jwt-bcp-01

 - Added explicit typing.

A.9. draft-sheffer-oauth-jwt-bcp-00

 - Initial version.

Authors' Addresses

 Yaron Sheffer
 Intuit

 EMail: yaronf.ietf@gmail.com

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-06
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-05
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-04
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-02
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-01
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bcp-00
https://datatracker.ietf.org/doc/html/draft-sheffer-oauth-jwt-bcp-01
https://datatracker.ietf.org/doc/html/draft-sheffer-oauth-jwt-bcp-00

Sheffer, et al. Expires December 9, 2019 [Page 15]

Internet-Draft JWT BCP June 2019

 Dick Hardt

 EMail: dick.hardt@gmail.com

 Michael B. Jones
 Microsoft

 EMail: mbj@microsoft.com
 URI: http://self-issued.info/

Sheffer, et al. Expires December 9, 2019 [Page 16]

http://self-issued.info/

