
OAuth Working Group B. Campbell
Internet-Draft Ping Identity
Intended status: Standards Track J. Bradley
Expires: July 19, 2018 Yubico
 N. Sakimura
 Nomura Research Institute
 T. Lodderstedt
 YES Europe AG
 January 15, 2018

OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access
 Tokens

draft-ietf-oauth-mtls-06

Abstract

 This document describes Transport Layer Security (TLS) mutual
 authentication using X.509 certificates as a mechanism for OAuth
 client authentication to the authorization sever as well as for
 certificate bound sender constrained access tokens as a method for a
 protected resource to ensure that an access token presented to it by
 a given client was issued to that client by the authorization server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 19, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Campbell, et al. Expires July 19, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-06
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft OAuth Mutual TLS January 2018

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Notation and Conventions 3
1.2. Terminology . 4

2. Mutual TLS for OAuth Client Authentication 4
2.1. PKI Mutual TLS OAuth Client Authentication Method 5
2.1.1. PKI Authentication Method Metadata Value 5
2.1.2. Client Registration Metadata 5

 2.2. Self-Signed Certificate Mutual TLS OAuth Client
 Authentication Method 6
 2.2.1. Self-Signed Certificate Authentication Method
 Metadata Value 6

2.2.2. Client Registration Metadata 6
3. Mutual TLS Sender Constrained Resources Access 7

 3.1. X.509 Certificate Thumbprint Confirmation Method for JWT 7
3.2. Confirmation Method for Token Introspection 8
3.3. Authorization Server Metadata 9
3.4. Client Registration Metadata 9

4. Implementation Considerations 10
4.1. Authorization Server 10
4.2. Resource Server . 10

 4.3. Sender Constrained Access Tokens Without Client
 Authentication . 10

4.4. Certificate Bound Access Tokens 11
4.5. Implicit Grant Unsupported 11

5. Security Considerations 11
5.1. TLS Versions and Best Practices 11
5.2. X.509 Certificate Spoofing 12

6. IANA Considerations . 12
6.1. JWT Confirmation Methods Registration 12
6.2. OAuth Authorization Server Metadata Registration 12
6.3. Token Endpoint Authentication Method Registration 12
6.4. OAuth Token Introspection Response Registration 13

 6.5. OAuth Dynamic Client Registration Metadata Registration . 13
7. References . 13
7.1. Normative References 13
7.2. Informative References 15

Appendix A. Relationship to Token Binding 16
Appendix B. Acknowledgements 16

https://trustee.ietf.org/license-info

Campbell, et al. Expires July 19, 2018 [Page 2]

Internet-Draft OAuth Mutual TLS January 2018

Appendix C. Document(s) History 17
 Authors' Addresses . 19

1. Introduction

 This document describes Transport Layer Security (TLS) mutual
 authentication using X.509 certificates as a mechanism for OAuth
 client authentication to the authorization sever as well as for
 sender constrained access to OAuth protected resources.

 The OAuth 2.0 Authorization Framework [RFC6749] defines a shared
 secret method of client authentication but also allows for the
 definition and use of additional client authentication mechanisms
 when interacting directly with the authorization server. This
 document describes an additional mechanism of client authentication
 utilizing mutual TLS [RFC5246] certificate-based authentication,
 which provides better security characteristics than shared secrets.
 While [RFC6749] documents client authentication for requests to the
 token endpoint, extensions to OAuth 2.0 (such as Introspection
 [RFC7662] and Revocation [RFC7009]) define endpoints that also
 utilize client authentication and the mutual TLS methods defined
 herein are applicable to those endpoints as well.

 Mutual TLS sender constrained access to protected resources ensures
 that only the party in possession of the private key corresponding to
 the certificate can utilize the access token to get access to the
 associated resources. Such a constraint is unlike the case of the
 basic bearer token described in [RFC6750], where any party in
 possession of the access token can use it to access the associated
 resources. Mutual TLS sender constrained access binds the access
 token to the client's certificate thus preventing the use of stolen
 access tokens or replay of access tokens by unauthorized parties.

 Mutual TLS sender constrained access tokens and mutual TLS client
 authentication are distinct mechanisms, which are complementary but
 don't necessarily need to be deployed together.

1.1. Requirements Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7009
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Campbell, et al. Expires July 19, 2018 [Page 3]

Internet-Draft OAuth Mutual TLS January 2018

1.2. Terminology

 This specification uses the following phrases interchangeably:

 Transport Layer Security (TLS) Mutual Authentication

 Mutual TLS

 These phrases all refer to the process whereby a client presents its
 X.509 certificate and proves possession of the corresponding private
 key to a server when negotiating a TLS session. In TLS 1.2 [RFC5246]
 this requires the client to send Client Certificate and Certificate
 Verify messages during the TLS handshake and for the server to verify
 these messages.

2. Mutual TLS for OAuth Client Authentication

 This section defines, as an extension of OAuth 2.0, Section 2.3
 [RFC6749], two distinct methods of using mutual TLS X.509 client
 certificates as client credentials. The requirement of mutual TLS
 for client authentication is determined by the authorization server
 based on policy or configuration for the given client (regardless of
 whether the client was dynamically registered or statically
 configured or otherwise established).

 In order to utilize TLS for OAuth client authentication, the TLS
 connection between the client and the authorization server MUST have
 been established or reestablished with mutual X.509 certificate
 authentication (i.e. the Client Certificate and Certificate Verify
 messages are sent during the TLS Handshake [RFC5246]).

 For all requests to the authorization server utilizing mutual TLS
 client authentication, the client MUST include the "client_id"
 parameter, described in OAuth 2.0, Section 2.2 [RFC6749]. The
 presence of the "client_id" parameter enables the authorization
 server to easily identify the client independently from the content
 of the certificate. The authorization server can locate the client
 configuration using the client identifier and check the certificate
 presented in the TLS Handshake against the expected credentials for
 that client. The authorization server MUST enforce some method of
 binding a certificate to a client. Sections Section 2.1 and

Section 2.2 below define two ways of binding a certificate to a
 client as two distinct client authentication methods.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749#section-2.3
https://datatracker.ietf.org/doc/html/rfc6749#section-2.3
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749#section-2.2

Campbell, et al. Expires July 19, 2018 [Page 4]

Internet-Draft OAuth Mutual TLS January 2018

2.1. PKI Mutual TLS OAuth Client Authentication Method

 The PKI (public key infrastructure) method of mutual TLS OAuth client
 authentication uses a subject distinguished name (DN) and validated
 certificate chain to identify the client. The TLS handshake is
 utilized to validate the client's possession of the private key
 corresponding to the public key in the certificate and to validate
 the corresponding certificate chain. The client is successfully
 authenticated if the subject information in the certificate matches
 the expected DN configured or registered for that particular client.
 The PKI method facilitates the way X.509 certificates are
 traditionally being used for authentication. It also allows the
 client to rotate its X.509 certificates without the need to modify
 its respective authentication data at the authorization server by
 obtaining a new certificate with the same subject DN from a trusted
 certificate authority (CA).

2.1.1. PKI Authentication Method Metadata Value

 The "OAuth Token Endpoint Authentication Methods" registry
 [IANA.OAuth.Parameters] contains values, each of which specify a
 method of authenticating a client to the authorization server. The
 values are used to indicate supported and utilized client
 authentication methods in authorization server metadata, such as
 OpenID Connect Discovery [OpenID.Discovery] and OAuth 2.0
 Authorization Server Metadata [I-D.ietf-oauth-discovery], and in the
 OAuth 2.0 Dynamic Client Registration Protocol [RFC7591]. For the
 PKI method of mutual TLS client authentication, this specification
 defines and registers the following authentication method metadata
 value.

 tls_client_auth
 Indicates that client authentication to the authorization server
 will occur with mutual TLS utilizing the PKI method of associating
 a certificate to a client.

2.1.2. Client Registration Metadata

 The following metadata parameter is introduced for the OAuth 2.0
 Dynamic Client Registration Protocol [RFC7591] in support of the PKI
 method of binding a certificate to a client:

 tls_client_auth_subject_dn
 An [RFC4514] string representation of the expected subject
 distinguished name of the certificate the OAuth client will use in
 mutual TLS authentication.

https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc4514

Campbell, et al. Expires July 19, 2018 [Page 5]

Internet-Draft OAuth Mutual TLS January 2018

2.2. Self-Signed Certificate Mutual TLS OAuth Client Authentication
 Method

 This method of mutual TLS OAuth client authentication is intended to
 support client authentication using self-signed certificates. As
 pre-requisite, the client registers an X.509 certificate or a trusted
 source for its X.509 certificates (such as the "jwks_uri" as defined
 in [RFC7591]) with the authorization server. During authentication,
 TLS is utilized to validate the client's possession of the private
 key corresponding to the public key presented within the certificate
 in the respective TLS handshake. In contrast to the PKI method, the
 certificate chain is not validated in this case. The client is
 successfully authenticated, if the subject public key info of the
 certificate matches the subject public key info of one of the
 certificates configured or registered for that particular client.
 The Self-Signed Certificate method allows to use mutual TLS to
 authenticate clients without the need to maintain a PKI. When used
 in conjunction with a "jwks_uri" for the client, it also allows the
 client to rotate its X.509 certificates without the need to change
 its respective authentication data directly with the authorization
 server.

2.2.1. Self-Signed Certificate Authentication Method Metadata Value

 The "OAuth Token Endpoint Authentication Methods" registry
 [IANA.OAuth.Parameters] contains values, each of which specify a
 method of authenticating a client to the authorization server. The
 values are used to indicate supported and utilized client
 authentication methods in authorization server metadata, such as
 OpenID Connect Discovery [OpenID.Discovery] and OAuth 2.0
 Authorization Server Metadata [I-D.ietf-oauth-discovery], and in the
 OAuth 2.0 Dynamic Client Registration Protocol [RFC7591]. For the
 Self-Signed Certificate method of binding a certificate to a client
 using mutual TLS client authentication, this specification defines
 and registers the following authentication method metadata value.

 self_signed_tls_client_auth
 Indicates that client authentication to the authorization server
 will occur using mutual TLS with the client utilizing a self-
 signed certificate.

2.2.2. Client Registration Metadata

 For the Self-Signed Certificate method of binding a certificate to a
 client using mutual TLS client authentication, the existing
 "jwks_uri" or "jwks" metadata parameters from [RFC7591] are used to
 convey the client's certificates and public keys, where the X.509
 certificates are represented using the JSON Web Key (JWK) [RFC7517]

https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7517

Campbell, et al. Expires July 19, 2018 [Page 6]

Internet-Draft OAuth Mutual TLS January 2018

 "x5c" parameter (note that Sec 4.7 of RFC 7517 requires that the key
 in the first certificate of the "x5c" parameter must match the public
 key represented by other members of the JWK).

3. Mutual TLS Sender Constrained Resources Access

 When mutual TLS is used by the client on the connection to the token
 endpoint, the authorization server is able to bind the issued access
 token to the client certificate. Such a binding is accomplished by
 associating the certificate with the token in a way that can be
 accessed by the protected resource, such as embedding the certificate
 hash in the issued access token directly, using the syntax described
 in Section 3.1, or through token introspection as described in

Section 3.2. Other methods of associating a certificate with an
 access token are possible, per agreement by the authorization server
 and the protected resource, but are beyond the scope of this
 specification.

 The client makes protected resource requests as described in
 [RFC6750], however, those requests MUST be made over a mutually
 authenticated TLS connection using the same certificate that was used
 for mutual TLS at the token endpoint.

 The protected resource MUST obtain the client certificate used for
 mutual TLS authentication and MUST verify that the certificate
 matches the certificate associated with the access token. If they do
 not match, the resource access attempt MUST be rejected with an error
 per [RFC6750] using an HTTP 401 status code and the "invalid_token"
 error code.

 Metadata to convey server and client capabilities for mutual TLS
 sender constrained access tokens is defined in Section 3.3 and

Section 3.4 respectively.

3.1. X.509 Certificate Thumbprint Confirmation Method for JWT

 When access tokens are represented as JSON Web Tokens (JWT)[RFC7519],
 the certificate hash information SHOULD be represented using the
 "x5t#S256" confirmation method member defined herein.

 To represent the hash of a certificate in a JWT, this specification
 defines the new JWT Confirmation Method RFC 7800 [RFC7800] member
 "x5t#S256" for the X.509 Certificate SHA-256 Thumbprint. The value
 of the "x5t#S256" member is a base64url-encoded SHA-256[SHS] hash
 (a.k.a. thumbprint or digest) of the DER encoding of the X.509
 certificate[RFC5280] (note that certificate thumbprints are also
 sometimes known as certificate fingerprints).

https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc7800

Campbell, et al. Expires July 19, 2018 [Page 7]

Internet-Draft OAuth Mutual TLS January 2018

 The following is an example of a JWT payload containing an "x5t#S256"
 certificate thumbprint confirmation method.

 {
 "iss": "https://server.example.com",
 "sub": "ty.webb@example.com",
 "exp": 1493726400,
 "nbf": 1493722800,
 "cnf":{
 "x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
 }

 Figure 1: Example claims of a Certificate Thumbprint Constrained JWT

 If, in the future, certificate thumbprints need to be computed using
 hash functions other than SHA-256, it is suggested that additional
 related JWT confirmation methods members be defined for that purpose.
 For example, a new "x5t#S512" (X.509 Certificate Thumbprint using
 SHA-512) confirmation method member could be defined by registering
 it in the the IANA "JWT Confirmation Methods" registry
 [IANA.JWT.Claims] for JWT "cnf" member values established by
 [RFC7800].

3.2. Confirmation Method for Token Introspection

 OAuth 2.0 Token Introspection [RFC7662] defines a method for a
 protected resource to query an authorization server about the active
 state of an access token as well as to determine meta-information
 about the token.

 For a mutual TLS sender constrained access token, the hash of the
 certificate to which the token is bound is conveyed to the protected
 resource as meta-information in a token introspection response. The
 hash is conveyed using the same structure as the certificate SHA-256
 thumbprint confirmation method, described in Section 3.1, as a top-
 level member of the introspection response JSON. The protected
 resource compares that certificate hash to a hash of the client
 certificate used for mutual TLS authentication and rejects the
 request, if they do not match.

 Proof-of-Possession Key Semantics for JSON Web Tokens [RFC7800]
 defined the "cnf" (confirmation) claim, which enables confirmation
 key information to be carried in a JWT. However, the same proof-of-
 possession semantics are also useful for introspected access tokens
 whereby the protected resource obtains the confirmation key data as
 meta-information of a token introspection response and uses that
 information in verifying proof-of-possession. Therefore this

https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7800

Campbell, et al. Expires July 19, 2018 [Page 8]

Internet-Draft OAuth Mutual TLS January 2018

 specification defines and registers proof-of-possession semantics for
 OAuth 2.0 Token Introspection [RFC7662] using the "cnf" structure.
 When included as a top-level member of an OAuth token introspection
 response, "cnf" has the same semantics and format as the claim of the
 same name defined in [RFC7800]. While this specification only
 explicitly uses the "x5t#S256" confirmation method member, it needed
 to define and register the higher level "cnf" structure as an
 introspection response member in order to define and use its more
 specific "x5t#S256" confirmation method.

 The following is an example of an introspection response for an
 active token with an "x5t#S256" certificate thumbprint confirmation
 method.

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "active": true,
 "iss": "https://server.example.com",
 "sub": "ty.webb@example.com",
 "exp": 1493726400,
 "nbf": 1493722800,
 "cnf":{
 "x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
 }

 Figure 2: Example Introspection Response for a Certificate
 Constrained Access Token

3.3. Authorization Server Metadata

 This document introduces the following new authorization server
 metadata parameter to signal the server's capability to issue
 certificate bound access tokens:

 mutual_tls_sender_constrained_access_tokens
 OPTIONAL. Boolean value indicating server support for mutual TLS
 sender constrained access tokens. If omitted, the default value
 is "false".

3.4. Client Registration Metadata

 The following new client metadata parameter is introduced to convey
 the client's intention to use certificate bound access tokens:

https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7800

Campbell, et al. Expires July 19, 2018 [Page 9]

Internet-Draft OAuth Mutual TLS January 2018

 mutual_tls_sender_constrained_access_tokens
 OPTIONAL. Boolean value used to indicate the client's intention
 to use mutual TLS sender constrained access tokens. If omitted,
 the default value is "false".

4. Implementation Considerations

4.1. Authorization Server

 The authorization server needs to setup its TLS configuration
 appropriately for the binding methods it supports.

 If the authorization server wants to support mutual TLS client
 authentication and other client authentication methods in parallel,
 it should make mutual TLS optional.

 If the authorization server supports the Self-Signed Certificate
 method, it should configure the TLS stack in a way that it does not
 verify whether the certificate presented by the client during the
 handshake is signed by a trusted CA certificate.

 The authorization server may also consider hosting the token
 endpoint, and other endpoints requiring client authentication, on a
 separate host name in order to prevent unintended impact on the TLS
 behavior of its other endpoints, e.g. authorization or registration.

4.2. Resource Server

 From the perspective of the resource server, TLS client
 authentication is used as a proof of possession method only. For the
 purpose of client authentication, the resource server may completely
 rely on the authorization server. So there is no need to validate
 the trust chain of the client's certificate in any of the methods
 defined in this document. The resource server should therefore
 configure the TLS stack in a way that it does not verify whether the
 certificate presented by the client during the handshake is signed by
 a trusted CA certificate.

4.3. Sender Constrained Access Tokens Without Client Authentication

 This document allows use of client authentication only or client
 authentication in combination with sender constraint access tokens.
 Use of mutual TLS sender constrained access tokens without client
 authentication (e.g. to support binding access tokens to a TLS client
 certificate for public clients) is also possible. The authorization
 server would configure the TLS stack in the same manner as for the
 Self-Signed Certificate method such that it does not verify that the
 certificate presented by the client during the handshake is signed by

Campbell, et al. Expires July 19, 2018 [Page 10]

Internet-Draft OAuth Mutual TLS January 2018

 a trusted CA. Individual instances of a public client would then
 create a self-signed certificate for mutual TLS with the
 authorization server and resource server. The authorization server
 would not authenticate the client at the OAuth layer but would bind
 issued access tokens to the certificate, which the client has proven
 possession of the corresponding private key. The access token is
 then mutual TLS sender constrained and can only be used by the client
 possessing the certificate and private key and utilizing them to
 negotiate mutual TLS on connections to the resource server.

4.4. Certificate Bound Access Tokens

 As described in Section 3, an access token is bound to a specific
 client certificate, which means that the same certificate must be
 used for mutual TLS on protected resource access. It also implies
 that access tokens are invalidated when a client updates the
 certificate, which can be handled similar to expired access tokens
 where the client requests a new access token (typically with a
 refresh token) and retries the protected resource request.

4.5. Implicit Grant Unsupported

 This document describes binding an access token to the client
 certificate presented on the TLS connection from the client to the
 authorization server's token endpoint, however, certificate binding
 of access tokens issued directly from the authorization endpoint via
 the implicit grant flow is explicitly out of scope. End users
 interact directly with the authorization endpoint using a web browser
 and the use of client certificates in user's browsers bring
 operational and usability issues, which make it undesirable to
 support certificate bound access tokens issued in the implicit grant
 flow. Implementations wanting to employ certificate bound sender
 constrained access tokens should utilize grant types that involve the
 client making an access token request directly to the token endpoint
 (e.g. the authorization code and refresh token grant types).

5. Security Considerations

5.1. TLS Versions and Best Practices

 TLS 1.2 [RFC5246] is cited in this document because, at the time of
 writing, it is the latest version that is widely deployed. However,
 this document is applicable with other TLS versions supporting
 certificate-based client authentication. Implementation security
 considerations for TLS, including version recommendations, can be
 found in Recommendations for Secure Use of Transport Layer Security
 (TLS) and Datagram Transport Layer Security (DTLS) [BCP195].

https://datatracker.ietf.org/doc/html/rfc5246

Campbell, et al. Expires July 19, 2018 [Page 11]

Internet-Draft OAuth Mutual TLS January 2018

5.2. X.509 Certificate Spoofing

 If the PKI method of client authentication is used, an attacker could
 try to impersonate a client using a certificate with the same subject
 DN but issued by a different CA, which the authorization server
 trusts. To cope with that threat, the authorization server should
 only accept as trust anchors a limited number of CAs whose
 certificate issuance policy meets its security requirements. There
 is an assumption then that the client and server agree on the set of
 trust anchors that the server uses to create and validate the
 certificate chain. Without this assumption the use of a Subject DN
 to identify the client certificate would open the server up to
 certificate spoofing attacks.

6. IANA Considerations

6.1. JWT Confirmation Methods Registration

 This specification requests registration of the following value in
 the IANA "JWT Confirmation Methods" registry [IANA.JWT.Claims] for
 JWT "cnf" member values established by [RFC7800].

 o Confirmation Method Value: "x5t#S256"
 o Confirmation Method Description: X.509 Certificate SHA-256
 Thumbprint
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this specification]]

6.2. OAuth Authorization Server Metadata Registration

 This specification requests registration of the following value in
 the IANA "OAuth Authorization Server Metadata" registry
 [IANA.OAuth.Parameters] established by [I-D.ietf-oauth-discovery].

 o Metadata Name: "mutual_tls_sender_constrained_access_tokens"
 o Metadata Description: Indicates authorization server support for
 mutual TLS sender constrained access tokens.
 o Change Controller: IESG
 o Specification Document(s): Section 3.3 of [[this specification]]

6.3. Token Endpoint Authentication Method Registration

 This specification requests registration of the following value in
 the IANA "OAuth Token Endpoint Authentication Methods" registry
 [IANA.OAuth.Parameters] established by [RFC7591].

 o Token Endpoint Authentication Method Name: "tls_client_auth"
 o Change Controller: IESG

https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc7591

Campbell, et al. Expires July 19, 2018 [Page 12]

Internet-Draft OAuth Mutual TLS January 2018

 o Specification Document(s): Section 2.1.1 of [[this specification
]]

 o Token Endpoint Authentication Method Name:
 "self_signed_tls_client_auth"
 o Change Controller: IESG
 o Specification Document(s): Section 2.2.1 of [[this specification
]]

6.4. OAuth Token Introspection Response Registration

 This specification requests registration of the following value in
 the IANA "OAuth Token Introspection Response" registry
 [IANA.OAuth.Parameters] established by [RFC7662].

 o Claim Name: "cnf"
 o Claim Description: Confirmation
 o Change Controller: IESG
 o Specification Document(s): Section 3.2 of [[this specification]]

6.5. OAuth Dynamic Client Registration Metadata Registration

 This specification requests registration of the following client
 metadata definitions in the IANA "OAuth Dynamic Client Registration
 Metadata" registry [IANA.OAuth.Parameters] established by [RFC7591]:

 o Client Metadata Name:
 "mutual_tls_sender_constrained_access_tokens"
 o Client Metadata Description: Indicates the client's intention to
 use mutual TLS sender constrained access tokens.
 o Change Controller: IESG
 o Specification Document(s): Section 3.4 of [[this specification]]

 o Client Metadata Name: "tls_client_auth_subject_dn"
 o Client Metadata Description: String value specifying the expected
 subject distinguished name of the client certificate.
 o Change Controller: IESG
 o Specification Document(s): Section 2.1.2 of [[this specification
]]

7. References

7.1. Normative References

https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7591

Campbell, et al. Expires July 19, 2018 [Page 13]

Internet-Draft OAuth Mutual TLS January 2018

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/bcp195>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4514] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names",

RFC 4514, DOI 10.17487/RFC4514, June 2006,
 <https://www.rfc-editor.org/info/rfc4514>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",

RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/bcp195
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4514
https://www.rfc-editor.org/info/rfc4514
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc7800
https://www.rfc-editor.org/info/rfc7800
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Campbell, et al. Expires July 19, 2018 [Page 14]

Internet-Draft OAuth Mutual TLS January 2018

7.2. Informative References

 [I-D.ietf-oauth-discovery]
 Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", draft-ietf-oauth-

discovery-08 (work in progress), November 2017.

 [I-D.ietf-oauth-token-binding]
 Jones, M., Campbell, B., Bradley, J., and W. Denniss,
 "OAuth 2.0 Token Binding", draft-ietf-oauth-token-

binding-05 (work in progress), October 2017.

 [IANA.JWT.Claims]
 IANA, "JSON Web Token Claims",
 <http://www.iana.org/assignments/jwt>.

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [OpenID.Discovery]
 Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
 Connect Discovery 1.0", August 2015,
 <http://openid.net/specs/

openid-connect-discovery-1_0.html>.

 [RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
 2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
 August 2013, <https://www.rfc-editor.org/info/rfc7009>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <https://www.rfc-editor.org/info/rfc7662>.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-05
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-05
http://www.iana.org/assignments/jwt
http://www.iana.org/assignments/oauth-parameters
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
https://datatracker.ietf.org/doc/html/rfc7009
https://www.rfc-editor.org/info/rfc7009
https://datatracker.ietf.org/doc/html/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7591
https://www.rfc-editor.org/info/rfc7591
https://datatracker.ietf.org/doc/html/rfc7662
https://www.rfc-editor.org/info/rfc7662

Campbell, et al. Expires July 19, 2018 [Page 15]

Internet-Draft OAuth Mutual TLS January 2018

Appendix A. Relationship to Token Binding

 OAuth 2.0 Token Binding [I-D.ietf-oauth-token-binding] enables the
 application of Token Binding to the various artifacts and tokens
 employed throughout OAuth. That includes binding of an access token
 to a Token Binding key, which bears some similarities in motivation
 and design to the mutual TLS sender constrained resources access
 defined in this document. Both documents define what is often called
 a proof-of-possession security mechanism for access tokens, whereby a
 client must demonstrate possession of cryptographic keying material
 when accessing a protected resource. The details differ somewhat
 between the two documents but both have the authorization server bind
 the access token it issues to an asymmetric key pair on the client.
 The client then proves possession of the private key from that pair
 on the TLS connection over which the protected resource is accessed.

 The two documents then are effectively competing specifications, at
 least with respect to the binding of access tokens. Token Binding
 uses bare keys that are generated on the client, which avoids many of
 the difficulties of creating, distributing, and managing certificates
 and has the potential to see wider scale adoption and deployment.
 However, at the time of writing, Token Binding is fairly new and
 there is relatively little support for it in available application
 development platforms and tooling. Until better support for the
 underlying core Token Binding specifications exists, practical
 implementations of OAuth 2.0 Token Binding are infeasible. Despite
 its name, Token Binding doesn't have a monopoly on the binding of
 tokens. Mutual TLS, on the other hand, has been around for some time
 and enjoys widespread support in web servers and development
 platforms. Mutual TLS for OAuth 2.0 can be built and deployed now
 using existing platforms and tools. There are emerging and immediate
 scenarios, such as OAuth enabled financial transactions motivated by
 regulatory requirements in some cases, which demand the additional
 security protections of proof-of-possession access tokens. This
 document aspires to provide standardized and expeditious solution for
 those scenarios.

Appendix B. Acknowledgements

 Scott "not Tomlinson" Tomilson and Matt Peterson were involved in
 design and development work on a mutual TLS OAuth client
 authentication implementation that informed some of the content of
 this document.

 Additionally, the authors would like to thank the following people
 for their input and contributions to the specification: Sergey
 Beryozkin, Vladimir Dzhuvinov, Samuel Erdtman, Leif Johansson, Phil
 Hunt, Takahiko Kawasaki, Sean Leonard, Kepeng Li, James Manger, Jim

Campbell, et al. Expires July 19, 2018 [Page 16]

Internet-Draft OAuth Mutual TLS January 2018

 Manico, Nov Matake, Sascha Preibisch, Justin Richer, Dave Tonge, and
 Hannes Tschofenig.

Appendix C. Document(s) History

 [[to be removed by the RFC Editor before publication as an RFC]]

draft-ietf-oauth-mtls-06

 o Add an appendix section describing the relationship of this
 document to OAuth Token Binding as requested during the the
 Singapore meeting https://datatracker.ietf.org/doc/minutes-

100-oauth/
 o Add an explicit note that the implicit flow is not supported for
 obtaining certificate bound access tokens as discussed at the
 Singapore meeting https://datatracker.ietf.org/doc/minutes-

100-oauth/
 o Add/incorporate text to the Security Considerations on Certificate
 Spoofing as suggested https://mailarchive.ietf.org/arch/msg/oauth/

V26070X-6OtbVSeUz_7W2k94vCo
 o Changed the title to be more descriptive
 o Move the Security Considerations section to before the IANA
 Considerations
 o Elaborated on certificate bound access tokens a bit more in the
 Abstract
 o Update draft-ietf-oauth-discovery reference to -08

draft-ietf-oauth-mtls-05

 o Editorial fixes

draft-ietf-oauth-mtls-04

 o Change the name of the 'Public Key method' to the more accurate
 'Self-Signed Certificate method' and also change the associated
 authentication method metadata value to
 "self_signed_tls_client_auth".
 o Removed the "tls_client_auth_root_dn" client metadata field as
 discussed in https://mailarchive.ietf.org/arch/msg/oauth/

swDV2y0be6o8czGKQi1eJV-g8qc
 o Update draft-ietf-oauth-discovery reference to -07
 o Clarify that MTLS client authentication isn't exclusive to the
 token endpoint and can be used with other endpoints, e.g. RFC

7009 revocation and 7662 introspection, that utilize client
 authentication as discussed in

https://mailarchive.ietf.org/arch/msg/oauth/
bZ6mft0G7D3ccebhOxnEYUv4puI

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-06
https://datatracker.ietf.org/doc/minutes-100-oauth/
https://datatracker.ietf.org/doc/minutes-100-oauth/
https://datatracker.ietf.org/doc/minutes-100-oauth/
https://datatracker.ietf.org/doc/minutes-100-oauth/
https://mailarchive.ietf.org/arch/msg/oauth/V26070X-6OtbVSeUz_7W2k94vCo
https://mailarchive.ietf.org/arch/msg/oauth/V26070X-6OtbVSeUz_7W2k94vCo
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-05
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-04
https://mailarchive.ietf.org/arch/msg/oauth/swDV2y0be6o8czGKQi1eJV-g8qc
https://mailarchive.ietf.org/arch/msg/oauth/swDV2y0be6o8czGKQi1eJV-g8qc
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery
https://datatracker.ietf.org/doc/html/rfc7009
https://datatracker.ietf.org/doc/html/rfc7009
https://mailarchive.ietf.org/arch/msg/oauth/bZ6mft0G7D3ccebhOxnEYUv4puI
https://mailarchive.ietf.org/arch/msg/oauth/bZ6mft0G7D3ccebhOxnEYUv4puI

Campbell, et al. Expires July 19, 2018 [Page 17]

Internet-Draft OAuth Mutual TLS January 2018

 o Reorganize the document somewhat in an attempt to more clearly
 make a distinction between mTLS client authentication and
 certificate bound access tokens as well as a more clear
 delineation between the two (PKI/Public key) methods for client
 authentication
 o Editorial fixes and clarifications

draft-ietf-oauth-mtls-03

 o Introduced metadata and client registration parameter to publish
 and request support for mutual TLS sender constrained access
 tokens
 o Added description of two methods of binding the cert and client,
 PKI and Public Key.
 o Indicated that the "tls_client_auth" authentication method is for
 the PKI method and introduced "pub_key_tls_client_auth" for the
 Public Key method
 o Added implementation considerations, mainly regarding TLS stack
 configuration and trust chain validation, as well as how to to do
 binding of access tokens to a TLS client certificate for public
 clients, and considerations around certificate bound access tokens
 o Added new section to security considerations on cert spoofing
 o Add text suggesting that a new cnf member be defined in the
 future, if hash function(s) other than SHA-256 need to be used for
 certificate thumbprints

draft-ietf-oauth-mtls-02

 o Fixed editorial issue https://mailarchive.ietf.org/arch/msg/oauth/
U46UMEh8XIOQnvXY9pHFq1MKPns

 o Changed the title (hopefully "Mutual TLS Profile for OAuth 2.0" is
 better than "Mutual TLS Profiles for OAuth Clients").

draft-ietf-oauth-mtls-01

 o Added more explicit details of using RFC 7662 token introspection
 with mutual TLS sender constrained access tokens.
 o Added an IANA OAuth Token Introspection Response Registration
 request for "cnf".
 o Specify that tls_client_auth_subject_dn and
 tls_client_auth_root_dn are RFC 4514 String Representation of
 Distinguished Names.
 o Changed tls_client_auth_issuer_dn to tls_client_auth_root_dn.
 o Changed the text in the Section 3 to not be specific about using a
 hash of the cert.
 o Changed the abbreviated title to 'OAuth Mutual TLS' (previously
 was the acronym MTLSPOC).

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-02
https://mailarchive.ietf.org/arch/msg/oauth/U46UMEh8XIOQnvXY9pHFq1MKPns
https://mailarchive.ietf.org/arch/msg/oauth/U46UMEh8XIOQnvXY9pHFq1MKPns
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-01
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc4514

Campbell, et al. Expires July 19, 2018 [Page 18]

Internet-Draft OAuth Mutual TLS January 2018

draft-ietf-oauth-mtls-00

 o Created the initial working group version from draft-campbell-
oauth-mtls

draft-campbell-oauth-mtls-01

 o Fix some typos.
 o Add to the acknowledgements list.

draft-campbell-oauth-mtls-00

 o Add a Mutual TLS sender constrained protected resource access
 method and a x5t#S256 cnf method for JWT access tokens (concepts
 taken in part from draft-sakimura-oauth-jpop-04).
 o Fixed "token_endpoint_auth_methods_supported" to
 "token_endpoint_auth_method" for client metadata.
 o Add "tls_client_auth_subject_dn" and "tls_client_auth_issuer_dn"
 client metadata parameters and mention using "jwks_uri" or "jwks".
 o Say that the authentication method is determined by client policy
 regardless of whether the client was dynamically registered or
 statically configured.
 o Expand acknowledgements to those that participated in discussions
 around draft-campbell-oauth-tls-client-auth-00
 o Add Nat Sakimura and Torsten Lodderstedt to the author list.

draft-campbell-oauth-tls-client-auth-00

 o Initial draft.

Authors' Addresses

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com

 John Bradley
 Yubico

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-00
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls-01
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls-00
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-jpop-04
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-tls-client-auth-00
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-tls-client-auth-00
http://www.thread-safe.com/

Campbell, et al. Expires July 19, 2018 [Page 19]

Internet-Draft OAuth Mutual TLS January 2018

 Nat Sakimura
 Nomura Research Institute

 Email: n-sakimura@nri.co.jp
 URI: https://nat.sakimura.org/

 Torsten Lodderstedt
 YES Europe AG

 Email: torsten@lodderstedt.net

Campbell, et al. Expires July 19, 2018 [Page 20]

https://nat.sakimura.org/

