
OAuth Working Group B. Campbell
Internet-Draft Ping Identity
Intended status: Standards Track J. Bradley
Expires: November 7, 2018 Yubico
 N. Sakimura
 Nomura Research Institute
 T. Lodderstedt
 YES Europe AG
 May 6, 2018

OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access
 Tokens

draft-ietf-oauth-mtls-08

Abstract

 This document describes OAuth client authentication and certificate
 bound access tokens using mutual Transport Layer Security (TLS)
 authentication with X.509 certificates. OAuth clients are provided a
 mechanism for authentication to the authorization sever using mutual
 TLS, based on either single certificates or public key infrastructure
 (PKI). OAuth authorization servers are provided a mechanism for
 binding access tokens to a client's mutual TLS certificate, and OAuth
 protected resources are provided a method for ensuring that such an
 access token presented to it was issued to the client presenting the
 token.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 7, 2018.

Campbell, et al. Expires November 7, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-08
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OAuth Mutual TLS May 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Notation and Conventions 4
1.2. Terminology . 4

2. Mutual TLS for OAuth Client Authentication 4
2.1. PKI Mutual TLS OAuth Client Authentication Method 5
2.1.1. PKI Authentication Method Metadata Value 5
2.1.2. Client Registration Metadata 5

 2.2. Self-Signed Certificate Mutual TLS OAuth Client
 Authentication Method 6
 2.2.1. Self-Signed Certificate Authentication Method
 Metadata Value 6

2.2.2. Client Registration Metadata 6
3. Mutual TLS Client Certificate Bound Access Tokens 7

 3.1. X.509 Certificate Thumbprint Confirmation Method for JWT 7
3.2. Confirmation Method for Token Introspection 8
3.3. Authorization Server Metadata 9
3.4. Client Registration Metadata 10

4. Implementation Considerations 10
4.1. Authorization Server 10
4.2. Resource Server . 10

 4.3. Certificate Bound Access Tokens Without Client
 Authentication . 10

4.4. Certificate Bound Access Tokens 11
4.5. Implicit Grant Unsupported 11
4.6. TLS Termination . 12

5. Security Considerations 12
5.1. TLS Versions and Best Practices 12
5.2. X.509 Certificate Spoofing 12
5.3. X.509 Certificate Parsing and Validation Complexity . . . 12

6. IANA Considerations . 13
6.1. JWT Confirmation Methods Registration 13

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Campbell, et al. Expires November 7, 2018 [Page 2]

Internet-Draft OAuth Mutual TLS May 2018

6.2. OAuth Authorization Server Metadata Registration 13
6.3. Token Endpoint Authentication Method Registration 13
6.4. OAuth Token Introspection Response Registration 14

 6.5. OAuth Dynamic Client Registration Metadata Registration . 14
7. References . 14
7.1. Normative References 14
7.2. Informative References 15

Appendix A. Relationship to Token Binding 17
Appendix B. Acknowledgements 17
Appendix C. Document(s) History 18

 Authors' Addresses . 21

1. Introduction

 This document describes OAuth client authentication and certificate
 bound access tokens using mutual TLS [RFC5246] authentication with
 X.509 certificates. OAuth clients are provided mechanisms for
 authentication to the authorization sever using mutual TLS. OAuth
 authorization servers are provided a mechanism for binding access
 tokens to a client's mutual TLS certificate, and OAuth protected
 resources are provided a method for ensuring that such an access
 token presented to it was issued to the client presenting the token.

 The OAuth 2.0 Authorization Framework [RFC6749] defines a shared
 secret method of client authentication but also allows for the
 definition and use of additional client authentication mechanisms
 when interacting directly with the authorization server. This
 document describes an additional mechanism of client authentication
 utilizing mutual TLS certificate-based authentication, which provides
 better security characteristics than shared secrets. While [RFC6749]
 documents client authentication for requests to the token endpoint,
 extensions to OAuth 2.0 (such as Introspection [RFC7662] and
 Revocation [RFC7009]) define endpoints that also utilize client
 authentication and the mutual TLS methods defined herein are
 applicable to those endpoints as well.

 Mutual TLS certificate bound access tokens ensure that only the party
 in possession of the private key corresponding to the certificate can
 utilize the token to access the associated resources. Such a
 constraint is sometimes referred to as key confirmation, proof-of-
 possession, or holder-of-key and is unlike the case of the bearer
 token described in [RFC6750], where any party in possession of the
 access token can use it to access the associated resources. Binding
 an access token to the client's certificate prevents the use of
 stolen access tokens or replay of access tokens by unauthorized
 parties.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7009
https://datatracker.ietf.org/doc/html/rfc6750

Campbell, et al. Expires November 7, 2018 [Page 3]

Internet-Draft OAuth Mutual TLS May 2018

 Mutual TLS certificate bound access tokens and mutual TLS client
 authentication are distinct mechanisms, which are complementary but
 don't necessarily need to be deployed or used together.

1.1. Requirements Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 Mutual TLS refers to the process whereby a client presents its X.509
 certificate and proves possession of the corresponding private key to
 a server when negotiating a TLS session. In TLS 1.2 [RFC5246] this
 requires the client to send Client Certificate and Certificate Verify
 messages during the TLS handshake and for the server to verify these
 messages.

2. Mutual TLS for OAuth Client Authentication

 This section defines, as an extension of OAuth 2.0, Section 2.3
 [RFC6749], two distinct methods of using mutual TLS X.509 client
 certificates as client credentials. The requirement of mutual TLS
 for client authentication is determined by the authorization server
 based on policy or configuration for the given client (regardless of
 whether the client was dynamically registered, statically configured,
 or otherwise established).

 In order to utilize TLS for OAuth client authentication, the TLS
 connection between the client and the authorization server MUST have
 been established or reestablished with mutual TLS X.509 certificate
 authentication (i.e. the Client Certificate and Certificate Verify
 messages are sent during the TLS Handshake [RFC5246]).

 For all requests to the authorization server utilizing mutual TLS
 client authentication, the client MUST include the "client_id"
 parameter, described in OAuth 2.0, Section 2.2 [RFC6749]. The
 presence of the "client_id" parameter enables the authorization
 server to easily identify the client independently from the content
 of the certificate. The authorization server can locate the client
 configuration using the client identifier and check the certificate
 presented in the TLS Handshake against the expected credentials for
 that client. The authorization server MUST enforce the binding of a
 certificate to a specific client as described in either Section 2.1
 or Section 2.2 below.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749#section-2.3
https://datatracker.ietf.org/doc/html/rfc6749#section-2.3
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749#section-2.2

Campbell, et al. Expires November 7, 2018 [Page 4]

Internet-Draft OAuth Mutual TLS May 2018

2.1. PKI Mutual TLS OAuth Client Authentication Method

 The PKI (public key infrastructure) method of mutual TLS OAuth client
 authentication uses a subject distinguished name (DN) and validated
 certificate chain to identify the client. The TLS handshake is
 utilized to validate the client's possession of the private key
 corresponding to the public key in the certificate and to validate
 the corresponding certificate chain. The client is successfully
 authenticated if the subject information in the certificate matches
 the expected DN configured or registered for that particular client
 (note that a predictable treatment of DN values, such as the
 distinguishedNameMatch rule from [RFC4517], is needed in comparing
 the certificate's subject DN to the client's registered DN). If and
 how to check a certificate's revocation status is a deployment
 decision at the discretion of the authorization server. The PKI
 method facilitates the way X.509 certificates are traditionally being
 used for authentication. It also allows the client to rotate its
 X.509 certificates without the need to modify its respective
 authentication data at the authorization server by obtaining a new
 certificate with the same subject DN from a trusted certificate
 authority (CA).

2.1.1. PKI Authentication Method Metadata Value

 For the PKI method of mutual TLS client authentication, this
 specification defines and registers the following authentication
 method metadata value into the "OAuth Token Endpoint Authentication
 Methods" registry [IANA.OAuth.Parameters].

 tls_client_auth
 Indicates that client authentication to the authorization server
 will occur with mutual TLS utilizing the PKI method of associating
 a certificate to a client.

2.1.2. Client Registration Metadata

 The following metadata parameter is introduced for the OAuth 2.0
 Dynamic Client Registration Protocol [RFC7591] in support of the PKI
 method of binding a certificate to a client:

 tls_client_auth_subject_dn
 An [RFC4514] string representation of the expected subject
 distinguished name of the certificate the OAuth client will use in
 mutual TLS authentication.

https://datatracker.ietf.org/doc/html/rfc4517
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc4514

Campbell, et al. Expires November 7, 2018 [Page 5]

Internet-Draft OAuth Mutual TLS May 2018

2.2. Self-Signed Certificate Mutual TLS OAuth Client Authentication
 Method

 This method of mutual TLS OAuth client authentication is intended to
 support client authentication using self-signed certificates. As
 pre-requisite, the client registers an X.509 certificate or a trusted
 source for its X.509 certificates (such as the "jwks_uri" defined in
 [RFC7591] that references a JSON Web Key [RFC7517] Set containing the
 client's certificates and public keys) with the authorization server.
 During authentication, TLS is utilized to validate the client's
 possession of the private key corresponding to the public key
 presented within the certificate in the respective TLS handshake. In
 contrast to the PKI method, the client's certificate chain is not
 validated by the server in this case. The client is successfully
 authenticated if the subject public key info of the certificate
 matches the subject public key info of one of the certificates
 configured or registered for that particular client. The Self-Signed
 Certificate method allows to use mutual TLS to authenticate clients
 without the need to maintain a PKI. When used in conjunction with a
 "jwks_uri" for the client, it also allows the client to rotate its
 X.509 certificates without the need to change its respective
 authentication data directly with the authorization server.

2.2.1. Self-Signed Certificate Authentication Method Metadata Value

 For the Self-Signed Certificate method of mutual TLS client
 authentication, this specification defines and registers the
 following authentication method metadata value into the "OAuth Token
 Endpoint Authentication Methods" registry [IANA.OAuth.Parameters].

 self_signed_tls_client_auth
 Indicates that client authentication to the authorization server
 will occur using mutual TLS with the client utilizing a self-
 signed certificate.

2.2.2. Client Registration Metadata

 For the Self-Signed Certificate method of binding a certificate to a
 client using mutual TLS client authentication, the existing
 "jwks_uri" or "jwks" metadata parameters from [RFC7591] are used to
 convey the client's certificates and public keys, where the X.509
 certificates are represented using the JSON Web Key (JWK) [RFC7517]
 "x5c" parameter (note that Sec 4.7 of RFC 7517 requires that the key
 in the first certificate of the "x5c" parameter must match the public
 key represented by other members of the JWK).

https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7517

Campbell, et al. Expires November 7, 2018 [Page 6]

Internet-Draft OAuth Mutual TLS May 2018

3. Mutual TLS Client Certificate Bound Access Tokens

 When mutual TLS is used by the client on the connection to the token
 endpoint, the authorization server is able to bind the issued access
 token to the client certificate. Such a binding is accomplished by
 associating the certificate with the token in a way that can be
 accessed by the protected resource, such as embedding the certificate
 hash in the issued access token directly, using the syntax described
 in Section 3.1, or through token introspection as described in

Section 3.2. Binding the access token to the client certificate in
 that fashion has the benefit of decoupling that binding from the
 client's authentication with the authorization server, which enables
 mutual TLS during protected resource access to serve purely as a
 proof-of-possession mechanism. Other methods of associating a
 certificate with an access token are possible, per agreement by the
 authorization server and the protected resource, but are beyond the
 scope of this specification.

 The client makes protected resource requests as described in
 [RFC6750], however, those requests MUST be made over a mutually
 authenticated TLS connection using the same certificate that was used
 for mutual TLS at the token endpoint.

 The protected resource MUST obtain the client certificate used for
 mutual TLS authentication and MUST verify that the certificate
 matches the certificate associated with the access token. If they do
 not match, the resource access attempt MUST be rejected with an error
 per [RFC6750] using an HTTP 401 status code and the "invalid_token"
 error code.

 Metadata to convey server and client capabilities for mutual TLS
 client certificate bound access tokens is defined in Section 3.3 and

Section 3.4 respectively.

3.1. X.509 Certificate Thumbprint Confirmation Method for JWT

 When access tokens are represented as JSON Web Tokens (JWT)[RFC7519],
 the certificate hash information SHOULD be represented using the
 "x5t#S256" confirmation method member defined herein.

 To represent the hash of a certificate in a JWT, this specification
 defines the new JWT Confirmation Method [RFC7800] member "x5t#S256"
 for the X.509 Certificate SHA-256 Thumbprint. The value of the
 "x5t#S256" member is the SHA-256[SHS] hash (a.k.a. thumbprint,
 fingerprint or digest) of the DER encoding of the X.509 certificate
 [RFC5280] base64url-encoded [RFC4648] with with all trailing pad '='
 characters omitted and without the inclusion of any line breaks,
 whitespace, or other additional characters.

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4648

Campbell, et al. Expires November 7, 2018 [Page 7]

Internet-Draft OAuth Mutual TLS May 2018

 The following is an example of a JWT payload containing an "x5t#S256"
 certificate thumbprint confirmation method.

 {
 "iss": "https://server.example.com",
 "sub": "ty.webb@example.com",
 "exp": 1493726400,
 "nbf": 1493722800,
 "cnf":{
 "x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
 }

 Figure 1: Example JWT Claims Set with an X.509 Certificate Thumbprint
 Confirmation Method

 If, in the future, certificate thumbprints need to be computed using
 hash functions other than SHA-256, it is suggested that additional
 related JWT confirmation methods members be defined for that purpose.
 For example, a new "x5t#S512" (X.509 Certificate Thumbprint using
 SHA-512) confirmation method member could be defined by registering
 it in the the IANA "JWT Confirmation Methods" registry
 [IANA.JWT.Claims] for JWT "cnf" member values established by
 [RFC7800].

3.2. Confirmation Method for Token Introspection

 OAuth 2.0 Token Introspection [RFC7662] defines a method for a
 protected resource to query an authorization server about the active
 state of an access token as well as to determine meta-information
 about the token.

 For a mutual TLS client certificate bound access token, the hash of
 the certificate to which the token is bound is conveyed to the
 protected resource as meta-information in a token introspection
 response. The hash is conveyed using the same structure as the
 certificate SHA-256 thumbprint confirmation method, described in

Section 3.1, as a top-level member of the introspection response
 JSON. The protected resource compares that certificate hash to a
 hash of the client certificate used for mutual TLS authentication and
 rejects the request, if they do not match.

 Proof-of-Possession Key Semantics for JSON Web Tokens [RFC7800]
 defined the "cnf" (confirmation) claim, which enables confirmation
 key information to be carried in a JWT. However, the same proof-of-
 possession semantics are also useful for introspected access tokens
 whereby the protected resource obtains the confirmation key data as
 meta-information of a token introspection response and uses that

https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7800

Campbell, et al. Expires November 7, 2018 [Page 8]

Internet-Draft OAuth Mutual TLS May 2018

 information in verifying proof-of-possession. Therefore this
 specification defines and registers proof-of-possession semantics for
 OAuth 2.0 Token Introspection [RFC7662] using the "cnf" structure.
 When included as a top-level member of an OAuth token introspection
 response, "cnf" has the same semantics and format as the claim of the
 same name defined in [RFC7800]. While this specification only
 explicitly uses the "x5t#S256" confirmation method member, it needed
 to define and register the higher level "cnf" structure as an
 introspection response member in order to define and use the more
 specific certificate thumbprint confirmation method.

 The following is an example of an introspection response for an
 active token with an "x5t#S256" certificate thumbprint confirmation
 method.

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "active": true,
 "iss": "https://server.example.com",
 "sub": "ty.webb@example.com",
 "exp": 1493726400,
 "nbf": 1493722800,
 "cnf":{
 "x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
 }

 Figure 2: Example Introspection Response for a Certificate Bound
 Access Token

3.3. Authorization Server Metadata

 This document introduces the following new authorization server
 metadata parameter to signal the server's capability to issue
 certificate bound access tokens:

 tls_client_certificate_bound_access_tokens
 OPTIONAL. Boolean value indicating server support for mutual TLS
 client certificate bound access tokens. If omitted, the default
 value is "false".

https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7800

Campbell, et al. Expires November 7, 2018 [Page 9]

Internet-Draft OAuth Mutual TLS May 2018

3.4. Client Registration Metadata

 The following new client metadata parameter is introduced to convey
 the client's intention to use certificate bound access tokens:

 tls_client_certificate_bound_access_tokens
 OPTIONAL. Boolean value used to indicate the client's intention
 to use mutual TLS client certificate bound access tokens. If
 omitted, the default value is "false".

4. Implementation Considerations

4.1. Authorization Server

 The authorization server needs to set up its TLS configuration
 appropriately for the binding methods it supports.

 If the authorization server wants to support mutual TLS client
 authentication and other client authentication methods in parallel,
 it should make mutual TLS optional.

 If the authorization server supports the Self-Signed Certificate
 method, it should configure the TLS stack in a way that it does not
 verify whether the certificate presented by the client during the
 handshake is signed by a trusted CA certificate.

 The authorization server may also consider hosting the token
 endpoint, and other endpoints requiring client authentication, on a
 separate host name or port in order to prevent unintended impact on
 the TLS behavior of its other endpoints, e.g. the authorization
 endpoint.

4.2. Resource Server

 Since the resource server relies on the authorization server to
 perform client authentication, there is no need for the resource
 server to validate the trust chain of the client's certificate in any
 of the methods defined in this document. Mutual TLS is used only as
 a proof-of-possession mechanism during protected resource access.
 The resource server should therefore configure the TLS stack in a way
 that it does not verify whether the certificate presented by the
 client during the handshake is signed by a trusted CA certificate.

4.3. Certificate Bound Access Tokens Without Client Authentication

 Mutual TLS OAuth client authentication and mutual TLS client
 certificate bound access tokens can be used independently of each
 other. Use of certificate bound access tokens without mutual TLS

Campbell, et al. Expires November 7, 2018 [Page 10]

Internet-Draft OAuth Mutual TLS May 2018

 OAuth client authentication, for example, is possible in support of
 binding access tokens to a TLS client certificate for public clients
 or clients utilizing other methods of authentication to the
 authorization server. The authorization server would configure the
 TLS stack in the same manner as for the Self-Signed Certificate
 method such that it does not verify that the certificate presented by
 the client during the handshake is signed by a trusted CA.
 Individual instances of a client would create a self-signed
 certificate for mutual TLS with both the authorization server and
 resource server. The authorization server would not use the mutual
 TLS certificate to authenticate the client at the OAuth layer but
 would bind the issued access token to that certificate, which the
 client has proven possession of the corresponding private key. The
 access token is then bound to the certificate and can only be used by
 the client possessing the certificate and corresponding private key
 and utilizing them to negotiate mutual TLS on connections to the
 resource server.

4.4. Certificate Bound Access Tokens

 As described in Section 3, an access token is bound to a specific
 client certificate, which means that the same certificate must be
 used for mutual TLS on protected resource access. It also implies
 that access tokens are invalidated when a client updates the
 certificate, which can be handled similar to expired access tokens
 where the client requests a new access token (typically with a
 refresh token) and retries the protected resource request.

4.5. Implicit Grant Unsupported

 This document describes binding an access token to the client
 certificate presented on the TLS connection from the client to the
 authorization server's token endpoint, however, such binding of
 access tokens issued directly from the authorization endpoint via the
 implicit grant flow is explicitly out of scope. End users interact
 directly with the authorization endpoint using a web browser and the
 use of client certificates in user's browsers bring operational and
 usability issues, which make it undesirable to support certificate
 bound access tokens issued in the implicit grant flow.
 Implementations wanting to employ certificate bound access tokens
 should utilize grant types that involve the client making an access
 token request directly to the token endpoint (e.g. the authorization
 code and refresh token grant types).

Campbell, et al. Expires November 7, 2018 [Page 11]

Internet-Draft OAuth Mutual TLS May 2018

4.6. TLS Termination

 An authorization server or resource server MAY choose to terminate
 TLS connections at a load balancer, reverse proxy, or other network
 intermediary. How the client certificate metadata is securely
 communicated between the intermediary and the application server in
 this case is out of scope of this specification.

5. Security Considerations

5.1. TLS Versions and Best Practices

 TLS 1.2 [RFC5246] is cited in this document because, at the time of
 writing, it is the latest version that is widely deployed. However,
 this document is applicable with other TLS versions supporting
 certificate-based client authentication. Implementation security
 considerations for TLS, including version recommendations, can be
 found in Recommendations for Secure Use of Transport Layer Security
 (TLS) and Datagram Transport Layer Security (DTLS) [BCP195].

5.2. X.509 Certificate Spoofing

 If the PKI method of client authentication is used, an attacker could
 try to impersonate a client using a certificate with the same subject
 DN but issued by a different CA, which the authorization server
 trusts. To cope with that threat, the authorization server should
 only accept as trust anchors a limited number of CAs whose
 certificate issuance policy meets its security requirements. There
 is an assumption then that the client and server agree on the set of
 trust anchors that the server uses to create and validate the
 certificate chain. Without this assumption the use of a Subject DN
 to identify the client certificate would open the server up to
 certificate spoofing attacks.

5.3. X.509 Certificate Parsing and Validation Complexity

 Parsing and validation of X.509 certificates and certificate chains
 is complex and implementation mistakes have previously exposed
 security vulnerabilities. Complexities of validation include (but
 are not limited to) [X509Pitfalls] [DangerousCode] [RFC5280]:

 o checking of Basic Constraints, basic and extended Key Usage
 constraints, validity periods, and critical extensions;

 o handling of null-terminator bytes and non-canonical string
 representations in subject names;

 o handling of wildcard patterns in subject names;

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280

Campbell, et al. Expires November 7, 2018 [Page 12]

Internet-Draft OAuth Mutual TLS May 2018

 o recursive verification of certificate chains and checking
 certificate revocation.

 For these reasons, implementors SHOULD use an established and well-
 tested X.509 library (such as one used by an established TLS library)
 for validation of X.509 certificate chains and SHOULD NOT attempt to
 write their own X.509 certificate validation procedures.

6. IANA Considerations

6.1. JWT Confirmation Methods Registration

 This specification requests registration of the following value in
 the IANA "JWT Confirmation Methods" registry [IANA.JWT.Claims] for
 JWT "cnf" member values established by [RFC7800].

 o Confirmation Method Value: "x5t#S256"
 o Confirmation Method Description: X.509 Certificate SHA-256
 Thumbprint
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this specification]]

6.2. OAuth Authorization Server Metadata Registration

 This specification requests registration of the following value in
 the IANA "OAuth Authorization Server Metadata" registry
 [IANA.OAuth.Parameters] established by [I-D.ietf-oauth-discovery].

 o Metadata Name: "tls_client_certificate_bound_access_tokens"
 o Metadata Description: Indicates authorization server support for
 mutual TLS client certificate bound access tokens.
 o Change Controller: IESG
 o Specification Document(s): Section 3.3 of [[this specification]]

6.3. Token Endpoint Authentication Method Registration

 This specification requests registration of the following value in
 the IANA "OAuth Token Endpoint Authentication Methods" registry
 [IANA.OAuth.Parameters] established by [RFC7591].

 o Token Endpoint Authentication Method Name: "tls_client_auth"
 o Change Controller: IESG
 o Specification Document(s): Section 2.1.1 of [[this specification
]]

 o Token Endpoint Authentication Method Name:
 "self_signed_tls_client_auth"
 o Change Controller: IESG

https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc7591

Campbell, et al. Expires November 7, 2018 [Page 13]

Internet-Draft OAuth Mutual TLS May 2018

 o Specification Document(s): Section 2.2.1 of [[this specification
]]

6.4. OAuth Token Introspection Response Registration

 This specification requests registration of the following value in
 the IANA "OAuth Token Introspection Response" registry
 [IANA.OAuth.Parameters] established by [RFC7662].

 o Claim Name: "cnf"
 o Claim Description: Confirmation
 o Change Controller: IESG
 o Specification Document(s): Section 3.2 of [[this specification]]

6.5. OAuth Dynamic Client Registration Metadata Registration

 This specification requests registration of the following client
 metadata definitions in the IANA "OAuth Dynamic Client Registration
 Metadata" registry [IANA.OAuth.Parameters] established by [RFC7591]:

 o Client Metadata Name: "tls_client_certificate_bound_access_tokens"
 o Client Metadata Description: Indicates the client's intention to
 use mutual TLS client certificate bound access tokens.
 o Change Controller: IESG
 o Specification Document(s): Section 3.4 of [[this specification]]

 o Client Metadata Name: "tls_client_auth_subject_dn"
 o Client Metadata Description: String value specifying the expected
 subject distinguished name of the client certificate.
 o Change Controller: IESG
 o Specification Document(s): Section 2.1.2 of [[this specification
]]

7. References

7.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/bcp195>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/bcp195
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Campbell, et al. Expires November 7, 2018 [Page 14]

Internet-Draft OAuth Mutual TLS May 2018

 [RFC4514] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names",

RFC 4514, DOI 10.17487/RFC4514, June 2006,
 <https://www.rfc-editor.org/info/rfc4514>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",

RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

7.2. Informative References

 [DangerousCode]
 Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh,
 D., and V. Shmatikov, "The Most Dangerous Code in the
 World: Validating SSL Certificates in Non-Browser
 Software",
 <http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf>.

https://datatracker.ietf.org/doc/html/rfc4514
https://www.rfc-editor.org/info/rfc4514
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc7800
https://www.rfc-editor.org/info/rfc7800
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf

Campbell, et al. Expires November 7, 2018 [Page 15]

Internet-Draft OAuth Mutual TLS May 2018

 [I-D.ietf-oauth-discovery]
 Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", draft-ietf-oauth-

discovery-10 (work in progress), March 2018.

 [I-D.ietf-oauth-token-binding]
 Jones, M., Campbell, B., Bradley, J., and W. Denniss,
 "OAuth 2.0 Token Binding", draft-ietf-oauth-token-

binding-06 (work in progress), March 2018.

 [IANA.JWT.Claims]
 IANA, "JSON Web Token Claims",
 <http://www.iana.org/assignments/jwt>.

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [RFC4517] Legg, S., Ed., "Lightweight Directory Access Protocol
 (LDAP): Syntaxes and Matching Rules", RFC 4517,
 DOI 10.17487/RFC4517, June 2006,
 <https://www.rfc-editor.org/info/rfc4517>.

 [RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
 2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
 August 2013, <https://www.rfc-editor.org/info/rfc7009>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery-10
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery-10
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-06
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-06
http://www.iana.org/assignments/jwt
http://www.iana.org/assignments/oauth-parameters
https://datatracker.ietf.org/doc/html/rfc4517
https://www.rfc-editor.org/info/rfc4517
https://datatracker.ietf.org/doc/html/rfc7009
https://www.rfc-editor.org/info/rfc7009
https://datatracker.ietf.org/doc/html/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7591
https://www.rfc-editor.org/info/rfc7591
https://datatracker.ietf.org/doc/html/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Campbell, et al. Expires November 7, 2018 [Page 16]

Internet-Draft OAuth Mutual TLS May 2018

 [X509Pitfalls]
 Wong, D., "Common x509 certificate validation/creation
 pitfalls", September 2016,
 <https://www.cryptologie.net/article/374/

common-x509-certificate-validationcreation-pitfalls>.

Appendix A. Relationship to Token Binding

 OAuth 2.0 Token Binding [I-D.ietf-oauth-token-binding] enables the
 application of Token Binding to the various artifacts and tokens
 employed throughout OAuth. That includes binding of an access token
 to a Token Binding key, which bears some similarities in motivation
 and design to the mutual TLS client certificate bound access tokens
 defined in this document. Both documents define what is often called
 a proof-of-possession security mechanism for access tokens, whereby a
 client must demonstrate possession of cryptographic keying material
 when accessing a protected resource. The details differ somewhat
 between the two documents but both have the authorization server bind
 the access token that it issues to an asymmetric key pair held by the
 client. The client then proves possession of the private key from
 that pair with respect to the TLS connection over which the protected
 resource is accessed.

 Token Binding uses bare keys that are generated on the client, which
 avoids many of the difficulties of creating, distributing, and
 managing certificates used in this specification. However, at the
 time of writing, Token Binding is fairly new and there is relatively
 little support for it in available application development platforms
 and tooling. Until better support for the underlying core Token
 Binding specifications exists, practical implementations of OAuth 2.0
 Token Binding are infeasible. Mutual TLS, on the other hand, has
 been around for some time and enjoys widespread support in web
 servers and development platforms. As a consequence, OAuth 2.0
 Mutual TLS Client Authentication and Certificate Bound Access Tokens
 can be built and deployed now using existing platforms and tools. In
 the future, the two specifications are likely to be deployed in
 parallel for solving similar problems in different environments.
 Authorization servers may even support both specifications
 simultaneously using different proof-of-possession mechanisms for
 tokens issued to different clients.

Appendix B. Acknowledgements

 Scott "not Tomlinson" Tomilson and Matt Peterson were involved in
 design and development work on a mutual TLS OAuth client
 authentication implementation, which predates this document.
 Experience and learning from that work informed some of the content
 of this document.

https://www.cryptologie.net/article/374/common-x509-certificate-validationcreation-pitfalls
https://www.cryptologie.net/article/374/common-x509-certificate-validationcreation-pitfalls

Campbell, et al. Expires November 7, 2018 [Page 17]

Internet-Draft OAuth Mutual TLS May 2018

 Additionally, the authors would like to thank the following people
 for their input and contributions to the specification: Sergey
 Beryozkin, Vladimir Dzhuvinov, Samuel Erdtman, Leif Johansson,
 Michael Jones, Phil Hunt, Benjamin Kaduk, Takahiko Kawasaki, Sean
 Leonard, Kepeng Li, Neil Madden, James Manger, Jim Manico, Nov
 Matake, Sascha Preibisch, Justin Richer, Dave Tonge, and Hannes
 Tschofenig.

Appendix C. Document(s) History

 [[to be removed by the RFC Editor before publication as an RFC]]

draft-ietf-oauth-mtls-08

 o Incorporate clarifications and editorial improvements from Justin
 Richer's WGLC review
 o Drop the use of the "sender constrained" terminology per WGLC
 feedback from Neil Madden (including changing the metadata
 parameters from mutual_tls_sender_constrained_access_tokens to
 tls_client_certificate_bound_access_tokens)
 o Add a new security considerations section on X.509 parsing and
 validation per WGLC feedback from Neil Madden and Benjamin Kaduk
 o Note that a server can terminate TLS at a load balancer, reverse
 proxy, etc. but how the client certificate metadata is securely
 communicated to the backend is out of scope per WGLC feedback
 o Note that revocation checking is at the discretion of the AS per
 WGLC feedback
 o Editorial updates and clarifications
 o Update draft-ietf-oauth-discovery reference to -10 and draft-ietf-

oauth-token-binding to -06
 o Add folks involved in WGLC feedback to the acknowledgements list

draft-ietf-oauth-mtls-07

 o Update to use the boilerplate from RFC 8174

draft-ietf-oauth-mtls-06

 o Add an appendix section describing the relationship of this
 document to OAuth Token Binding as requested during the the
 Singapore meeting https://datatracker.ietf.org/doc/minutes-

100-oauth/
 o Add an explicit note that the implicit flow is not supported for
 obtaining certificate bound access tokens as discussed at the
 Singapore meeting https://datatracker.ietf.org/doc/minutes-

100-oauth/

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-07
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-06
https://datatracker.ietf.org/doc/minutes-100-oauth/
https://datatracker.ietf.org/doc/minutes-100-oauth/
https://datatracker.ietf.org/doc/minutes-100-oauth/
https://datatracker.ietf.org/doc/minutes-100-oauth/

Campbell, et al. Expires November 7, 2018 [Page 18]

Internet-Draft OAuth Mutual TLS May 2018

 o Add/incorporate text to the Security Considerations on Certificate
 Spoofing as suggested https://mailarchive.ietf.org/arch/msg/oauth/

V26070X-6OtbVSeUz_7W2k94vCo
 o Changed the title to be more descriptive
 o Move the Security Considerations section to before the IANA
 Considerations
 o Elaborated on certificate bound access tokens a bit more in the
 Abstract
 o Update draft-ietf-oauth-discovery reference to -08

draft-ietf-oauth-mtls-05

 o Editorial fixes

draft-ietf-oauth-mtls-04

 o Change the name of the 'Public Key method' to the more accurate
 'Self-Signed Certificate method' and also change the associated
 authentication method metadata value to
 "self_signed_tls_client_auth".
 o Removed the "tls_client_auth_root_dn" client metadata field as
 discussed in https://mailarchive.ietf.org/arch/msg/oauth/

swDV2y0be6o8czGKQi1eJV-g8qc
 o Update draft-ietf-oauth-discovery reference to -07
 o Clarify that MTLS client authentication isn't exclusive to the
 token endpoint and can be used with other endpoints, e.g. RFC

7009 revocation and 7662 introspection, that utilize client
 authentication as discussed in

https://mailarchive.ietf.org/arch/msg/oauth/
bZ6mft0G7D3ccebhOxnEYUv4puI

 o Reorganize the document somewhat in an attempt to more clearly
 make a distinction between mTLS client authentication and
 certificate bound access tokens as well as a more clear
 delineation between the two (PKI/Public key) methods for client
 authentication
 o Editorial fixes and clarifications

draft-ietf-oauth-mtls-03

 o Introduced metadata and client registration parameter to publish
 and request support for mutual TLS sender constrained access
 tokens
 o Added description of two methods of binding the cert and client,
 PKI and Public Key.
 o Indicated that the "tls_client_auth" authentication method is for
 the PKI method and introduced "pub_key_tls_client_auth" for the
 Public Key method

https://mailarchive.ietf.org/arch/msg/oauth/V26070X-6OtbVSeUz_7W2k94vCo
https://mailarchive.ietf.org/arch/msg/oauth/V26070X-6OtbVSeUz_7W2k94vCo
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-05
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-04
https://mailarchive.ietf.org/arch/msg/oauth/swDV2y0be6o8czGKQi1eJV-g8qc
https://mailarchive.ietf.org/arch/msg/oauth/swDV2y0be6o8czGKQi1eJV-g8qc
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery
https://datatracker.ietf.org/doc/html/rfc7009
https://datatracker.ietf.org/doc/html/rfc7009
https://mailarchive.ietf.org/arch/msg/oauth/bZ6mft0G7D3ccebhOxnEYUv4puI
https://mailarchive.ietf.org/arch/msg/oauth/bZ6mft0G7D3ccebhOxnEYUv4puI
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-03

Campbell, et al. Expires November 7, 2018 [Page 19]

Internet-Draft OAuth Mutual TLS May 2018

 o Added implementation considerations, mainly regarding TLS stack
 configuration and trust chain validation, as well as how to to do
 binding of access tokens to a TLS client certificate for public
 clients, and considerations around certificate bound access tokens
 o Added new section to security considerations on cert spoofing
 o Add text suggesting that a new cnf member be defined in the
 future, if hash function(s) other than SHA-256 need to be used for
 certificate thumbprints

draft-ietf-oauth-mtls-02

 o Fixed editorial issue https://mailarchive.ietf.org/arch/msg/oauth/
U46UMEh8XIOQnvXY9pHFq1MKPns

 o Changed the title (hopefully "Mutual TLS Profile for OAuth 2.0" is
 better than "Mutual TLS Profiles for OAuth Clients").

draft-ietf-oauth-mtls-01

 o Added more explicit details of using RFC 7662 token introspection
 with mutual TLS sender constrained access tokens.
 o Added an IANA OAuth Token Introspection Response Registration
 request for "cnf".
 o Specify that tls_client_auth_subject_dn and
 tls_client_auth_root_dn are RFC 4514 String Representation of
 Distinguished Names.
 o Changed tls_client_auth_issuer_dn to tls_client_auth_root_dn.
 o Changed the text in the Section 3 to not be specific about using a
 hash of the cert.
 o Changed the abbreviated title to 'OAuth Mutual TLS' (previously
 was the acronym MTLSPOC).

draft-ietf-oauth-mtls-00

 o Created the initial working group version from draft-campbell-
oauth-mtls

draft-campbell-oauth-mtls-01

 o Fix some typos.
 o Add to the acknowledgements list.

draft-campbell-oauth-mtls-00

 o Add a Mutual TLS sender constrained protected resource access
 method and a x5t#S256 cnf method for JWT access tokens (concepts
 taken in part from draft-sakimura-oauth-jpop-04).
 o Fixed "token_endpoint_auth_methods_supported" to
 "token_endpoint_auth_method" for client metadata.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-02
https://mailarchive.ietf.org/arch/msg/oauth/U46UMEh8XIOQnvXY9pHFq1MKPns
https://mailarchive.ietf.org/arch/msg/oauth/U46UMEh8XIOQnvXY9pHFq1MKPns
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-01
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-00
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls-01
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls-00
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-jpop-04

Campbell, et al. Expires November 7, 2018 [Page 20]

Internet-Draft OAuth Mutual TLS May 2018

 o Add "tls_client_auth_subject_dn" and "tls_client_auth_issuer_dn"
 client metadata parameters and mention using "jwks_uri" or "jwks".
 o Say that the authentication method is determined by client policy
 regardless of whether the client was dynamically registered or
 statically configured.
 o Expand acknowledgements to those that participated in discussions
 around draft-campbell-oauth-tls-client-auth-00
 o Add Nat Sakimura and Torsten Lodderstedt to the author list.

draft-campbell-oauth-tls-client-auth-00

 o Initial draft.

Authors' Addresses

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com

 John Bradley
 Yubico

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Nat Sakimura
 Nomura Research Institute

 Email: n-sakimura@nri.co.jp
 URI: https://nat.sakimura.org/

 Torsten Lodderstedt
 YES Europe AG

 Email: torsten@lodderstedt.net

https://datatracker.ietf.org/doc/html/draft-campbell-oauth-tls-client-auth-00
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-tls-client-auth-00
http://www.thread-safe.com/
https://nat.sakimura.org/

Campbell, et al. Expires November 7, 2018 [Page 21]

