
OAuth Working Group B. Campbell
Internet-Draft Ping Identity
Intended status: Standards Track J. Bradley
Expires: January 4, 2020 Yubico
 N. Sakimura
 Nomura Research Institute
 T. Lodderstedt
 YES.com AG
 July 3, 2019

OAuth 2.0 Mutual TLS Client Authentication and Certificate-Bound
Access Tokens

draft-ietf-oauth-mtls-15

Abstract

 This document describes OAuth client authentication and certificate-
 bound access and refresh tokens using mutual Transport Layer Security
 (TLS) authentication with X.509 certificates. OAuth clients are
 provided a mechanism for authentication to the authorization server
 using mutual TLS, based on either self-signed certificates or public
 key infrastructure (PKI). OAuth authorization servers are provided a
 mechanism for binding access tokens to a client's mutual TLS
 certificate, and OAuth protected resources are provided a method for
 ensuring that such an access token presented to it was issued to the
 client presenting the token.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2020.

Campbell, et al. Expires January 4, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft OAuth Mutual TLS July 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Notation and Conventions 5
1.2. Terminology . 5

2. Mutual TLS for OAuth Client Authentication 5
2.1. PKI Mutual TLS Method 6
2.1.1. PKI Method Metadata Value 7
2.1.2. Client Registration Metadata 7

2.2. Self-Signed Certificate Mutual TLS Method 8
2.2.1. Self-Signed Method Metadata Value 8
2.2.2. Client Registration Metadata 8

3. Mutual TLS Client Certificate-Bound Access Tokens 9
3.1. JWT Certificate Thumbprint Confirmation Method 9
3.2. Confirmation Method for Token Introspection 10
3.3. Authorization Server Metadata 11
3.4. Client Registration Metadata 11

4. Public Clients and Certificate-Bound Tokens 12
5. Metadata for Mutual TLS Endpoint Aliases 12
6. Implementation Considerations 14
6.1. Authorization Server 14
6.2. Resource Server . 15
6.3. Certificate Expiration and Bound Access Tokens 15
6.4. Implicit Grant Unsupported 15
6.5. TLS Termination . 16

7. Security Considerations 16
7.1. Certificate-Bound Refresh Tokens 16
7.2. Certificate Thumbprint Binding 16
7.3. TLS Versions and Best Practices 17
7.4. X.509 Certificate Spoofing 17
7.5. X.509 Certificate Parsing and Validation Complexity . . . 17

8. Privacy Considerations 18
9. IANA Considerations . 18

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Campbell, et al. Expires January 4, 2020 [Page 2]

Internet-Draft OAuth Mutual TLS July 2019

9.1. JWT Confirmation Methods Registration 18
9.2. Authorization Server Metadata Registration 18
9.3. Token Endpoint Authentication Method Registration 19
9.4. Token Introspection Response Registration 19
9.5. Dynamic Client Registration Metadata Registration 20

10. References . 21
10.1. Normative References 21
10.2. Informative References 22

Appendix A. Example "cnf" Claim, Certificate and JWK 23
Appendix B. Relationship to Token Binding 24
Appendix C. Acknowledgements 25
Appendix D. Document(s) History 25

 Authors' Addresses . 30

1. Introduction

 The OAuth 2.0 Authorization Framework [RFC6749] enables third-party
 client applications to obtain delegated access to protected
 resources. In the prototypical abstract OAuth flow, illustrated in
 Figure 1, the client obtains an access token from an entity known as
 an authorization server and then uses that token when accessing
 protected resources, such as HTTPS APIs.

 +--------+ +---------------+
 | | | |
 | |<--(A)-- Get an access token --->| Authorization |
 | | | Server |
 | | | |
 | | +---------------+
 | | ^
 | | |
 | |
 | | (C) |
 | Client | Validate the
 | | access token |
 | |
 | | |
 | | v
 | | +---------------+
 | | | (C) |
 | | | |
 | |<--(B)-- Use the access token -->| Protected |
 | | | Resource |
 | | | |
 +--------+ +---------------+

 Figure 1: Abstract OAuth 2.0 Protocol Flow

https://datatracker.ietf.org/doc/html/rfc6749

Campbell, et al. Expires January 4, 2020 [Page 3]

Internet-Draft OAuth Mutual TLS July 2019

 The flow illustrated in Figure 1 includes the following steps:

 (A) The client makes an HTTPS "POST" request to the authorization
 server and presents a credential representing the authorization
 grant. For certain types of clients (those that have been
 issued or otherwise established a set of client credentials) the
 request must be authenticated. In the response, the
 authorization server issues an access token to the client.

 (B) The client includes the access token when making a request to
 access a protected resource.

 (C) The protected resource validates the access token in order to
 authorize the request. In some cases, such as when the token is
 self-contained and cryptographically secured, the validation can
 be done locally by the protected resource. While other cases
 require that the protected resource call out to the
 authorization server to determine the state of the token and
 obtain meta-information about it.

 Layering on the abstract flow above, this document standardizes
 enhanced security options for OAuth 2.0 utilizing client certificate
 based mutual TLS. Section 2 provides options for authenticating the
 request in step (A). While step (C) is supported with semantics to
 express the binding of the token to the client certificate for both
 local and remote processing in Section 3.1 and Section 3.2
 respectively. This ensures that, as described in Section 3,
 protected resource access in step (B) is only possible by the
 legitimate client bearing the access token and holding the private
 key corresponding to the certificate.

 OAuth 2.0 defines a shared secret method of client authentication but
 also allows for definition and use of additional client
 authentication mechanisms when interacting directly with the
 authorization server. This document describes an additional
 mechanism of client authentication utilizing mutual TLS certificate-
 based authentication, which provides better security characteristics
 than shared secrets. While [RFC6749] documents client authentication
 for requests to the token endpoint, extensions to OAuth 2.0 (such as
 Introspection [RFC7662], Revocation [RFC7009], and the Backchannel
 Authentication Endpoint in [OpenID.CIBA]) define endpoints that also
 utilize client authentication and the mutual TLS methods defined
 herein are applicable to those endpoints as well.

 Mutual TLS certificate-bound access tokens ensure that only the party
 in possession of the private key corresponding to the certificate can
 utilize the token to access the associated resources. Such a
 constraint is sometimes referred to as key confirmation, proof-of-

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7009

Campbell, et al. Expires January 4, 2020 [Page 4]

Internet-Draft OAuth Mutual TLS July 2019

 possession, or holder-of-key and is unlike the case of the bearer
 token described in [RFC6750], where any party in possession of the
 access token can use it to access the associated resources. Binding
 an access token to the client's certificate prevents the use of
 stolen access tokens or replay of access tokens by unauthorized
 parties.

 Mutual TLS certificate-bound access tokens and mutual TLS client
 authentication are distinct mechanisms, which are complementary but
 don't necessarily need to be deployed or used together.

 Additional client metadata parameters are introduced by this document
 in support of certificate-bound access tokens and mutual TLS client
 authentication. The authorization server can obtain client metadata
 via the Dynamic Client Registration Protocol [RFC7591], which defines
 mechanisms for dynamically registering OAuth 2.0 client metadata with
 authorization servers. Also the metadata defined by RFC7591, and
 registered extensions to it, imply a general data model for clients
 that is useful for authorization server implementations even when the
 Dynamic Client Registration Protocol isn't in play. Such
 implementations will typically have some sort of user interface
 available for managing client configuration.

1.1. Requirements Notation and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Terminology

 Throughout this document the term "mutual TLS" refers to the process
 whereby a client presents its X.509 certificate and proves possession
 of the corresponding private key to a server when negotiating a TLS
 session. In contemporary versions of TLS [RFC8446] [RFC5246] this
 requires that the client send the Certificate and CertificateVerify
 messages during the handshake and for the server to verify the
 CertificateVerify and Finished messages.

2. Mutual TLS for OAuth Client Authentication

 This section defines, as an extension of OAuth 2.0, Section 2.3
 [RFC6749], two distinct methods of using mutual TLS X.509 client
 certificates as client credentials. The requirement of mutual TLS
 for client authentication is determined by the authorization server
 based on policy or configuration for the given client (regardless of

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749#section-2.3
https://datatracker.ietf.org/doc/html/rfc6749#section-2.3

Campbell, et al. Expires January 4, 2020 [Page 5]

Internet-Draft OAuth Mutual TLS July 2019

 whether the client was dynamically registered, statically configured,
 or otherwise established).

 In order to utilize TLS for OAuth client authentication, the TLS
 connection between the client and the authorization server MUST have
 been established or reestablished with mutual TLS X.509 certificate
 authentication (i.e. the Client Certificate and Certificate Verify
 messages are sent during the TLS Handshake).

 For all requests to the authorization server utilizing mutual TLS
 client authentication, the client MUST include the "client_id"
 parameter, described in OAuth 2.0, Section 2.2 [RFC6749]. The
 presence of the "client_id" parameter enables the authorization
 server to easily identify the client independently from the content
 of the certificate. The authorization server can locate the client
 configuration using the client identifier and check the certificate
 presented in the TLS Handshake against the expected credentials for
 that client. The authorization server MUST enforce the binding
 between client and certificate as described in either Section 2.1 or

Section 2.2 below. If the presented certificate doesn't match that
 which is expected for the given "client_id", the authorization server
 returns a normal OAuth 2.0 error response per Section 5.2 of RFC6749
 [RFC6749] with the "invalid_client" error code to indicate failed
 client authentication.

2.1. PKI Mutual TLS Method

 The PKI (public key infrastructure) method of mutual TLS OAuth client
 authentication adheres to the way in which X.509 certificates are
 traditionally used for authentication. It relies on a validated
 certificate chain [RFC5280] and a single subject distinguished name
 (DN) or a single subject alternative name (SAN) to authenticate the
 client. Only one subject name value of any type is used for each
 client. The TLS handshake is utilized to validate the client's
 possession of the private key corresponding to the public key in the
 certificate and to validate the corresponding certificate chain. The
 client is successfully authenticated if the subject information in
 the certificate matches the single expected subject configured or
 registered for that particular client (note that a predictable
 treatment of DN values, such as the distinguishedNameMatch rule from
 [RFC4517], is needed in comparing the certificate's subject DN to the
 client's registered DN). Revocation checking is possible with the
 PKI method but if and how to check a certificate's revocation status
 is a deployment decision at the discretion of the authorization
 server. Clients can rotate their X.509 certificates without the need
 to modify the respective authentication data at the authorization
 server by obtaining a new certificate with the same subject from a
 trusted certificate authority (CA).

https://datatracker.ietf.org/doc/html/rfc6749#section-2.2
https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4517

Campbell, et al. Expires January 4, 2020 [Page 6]

Internet-Draft OAuth Mutual TLS July 2019

2.1.1. PKI Method Metadata Value

 For the PKI method of mutual TLS client authentication, this
 specification defines and registers the following authentication
 method metadata value into the "OAuth Token Endpoint Authentication
 Methods" registry [IANA.OAuth.Parameters].

 tls_client_auth
 Indicates that client authentication to the authorization server
 will occur with mutual TLS utilizing the PKI method of associating
 a certificate to a client.

2.1.2. Client Registration Metadata

 In order to convey the expected subject of the certificate, the
 following metadata parameters are introduced for the OAuth 2.0
 Dynamic Client Registration Protocol [RFC7591] in support of the PKI
 method of mutual TLS client authentication. A client using the
 "tls_client_auth" authentication method MUST use exactly one of the
 below metadata parameters to indicate the certificate subject value
 that the authorization server is to expect when authenticating the
 respective client.

 tls_client_auth_subject_dn
 An [RFC4514] string representation of the expected subject
 distinguished name of the certificate, which the OAuth client will
 use in mutual TLS authentication.

 tls_client_auth_san_dns
 A string containing the value of an expected dNSName SAN entry in
 the certificate, which the OAuth client will use in mutual TLS
 authentication.

 tls_client_auth_san_uri
 A string containing the value of an expected
 uniformResourceIdentifier SAN entry in the certificate, which the
 OAuth client will use in mutual TLS authentication.

 tls_client_auth_san_ip
 A string representation of an IP address in either dotted decimal
 notation (for IPv4) or colon-delimited hexadecimal (for IPv6, as
 defined in [RFC4291] section 2.2) that is expected to be present
 as an iPAddress SAN entry in the certificate, which the OAuth
 client will use in mutual TLS authentication.

 tls_client_auth_san_email

https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/rfc4291#section-2.2

Campbell, et al. Expires January 4, 2020 [Page 7]

Internet-Draft OAuth Mutual TLS July 2019

 A string containing the value of an expected rfc822Name SAN entry
 in the certificate, which the OAuth client will use in mutual TLS
 authentication.

2.2. Self-Signed Certificate Mutual TLS Method

 This method of mutual TLS OAuth client authentication is intended to
 support client authentication using self-signed certificates. As a
 prerequisite, the client registers its X.509 certificates (using
 "jwks" defined in [RFC7591]) or a reference to a trusted source for
 its X.509 certificates (using "jwks_uri" from [RFC7591]) with the
 authorization server. During authentication, TLS is utilized to
 validate the client's possession of the private key corresponding to
 the public key presented within the certificate in the respective TLS
 handshake. In contrast to the PKI method, the client's certificate
 chain is not validated by the server in this case. The client is
 successfully authenticated if the certificate that it presented
 during the handshake matches one of the certificates configured or
 registered for that particular client. The Self-Signed Certificate
 method allows the use of mutual TLS to authenticate clients without
 the need to maintain a PKI. When used in conjunction with a
 "jwks_uri" for the client, it also allows the client to rotate its
 X.509 certificates without the need to change its respective
 authentication data directly with the authorization server.

2.2.1. Self-Signed Method Metadata Value

 For the Self-Signed Certificate method of mutual TLS client
 authentication, this specification defines and registers the
 following authentication method metadata value into the "OAuth Token
 Endpoint Authentication Methods" registry [IANA.OAuth.Parameters].

 self_signed_tls_client_auth
 Indicates that client authentication to the authorization server
 will occur using mutual TLS with the client utilizing a self-
 signed certificate.

2.2.2. Client Registration Metadata

 For the Self-Signed Certificate method of binding a certificate with
 a client using mutual TLS client authentication, the existing
 "jwks_uri" or "jwks" metadata parameters from [RFC7591] are used to
 convey the client's certificates via JSON Web Key (JWK) in a JWK Set
 (JWKS) [RFC7517]. The "jwks" metadata parameter is a JWK Set
 containing the client's public keys as an array of JWKs while the
 "jwks_uri" parameter is a URL that references a client's JWK Set. A
 certificate is represented with the "x5c" parameter of an individual
 JWK within the set. Note that the members of the JWK representing

https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7517

Campbell, et al. Expires January 4, 2020 [Page 8]

Internet-Draft OAuth Mutual TLS July 2019

 the public key (e.g. "n" and "e" for RSA, "x" and "y" for EC) are
 required parameters per [RFC7518] so will be present even though they
 are not utilized in this context. Also note that that Section 4.7 of
 [RFC7517] requires that the key in the first certificate of the "x5c"
 parameter match the public key represented by those other members of
 the JWK.

3. Mutual TLS Client Certificate-Bound Access Tokens

 When mutual TLS is used by the client on the connection to the token
 endpoint, the authorization server is able to bind the issued access
 token to the client certificate. Such a binding is accomplished by
 associating the certificate with the token in a way that can be
 accessed by the protected resource, such as embedding the certificate
 hash in the issued access token directly, using the syntax described
 in Section 3.1, or through token introspection as described in

Section 3.2. Binding the access token to the client certificate in
 that fashion has the benefit of decoupling that binding from the
 client's authentication with the authorization server, which enables
 mutual TLS during protected resource access to serve purely as a
 proof-of-possession mechanism. Other methods of associating a
 certificate with an access token are possible, per agreement by the
 authorization server and the protected resource, but are beyond the
 scope of this specification.

 The client makes protected resource requests as described in
 [RFC6750], however, those requests MUST be made over a mutually
 authenticated TLS connection using the same certificate that was used
 for mutual TLS at the token endpoint.

 The protected resource MUST obtain, from its TLS implementation
 layer, the client certificate used for mutual TLS and MUST verify
 that the certificate matches the certificate associated with the
 access token. If they do not match, the resource access attempt MUST
 be rejected with an error per [RFC6750] using an HTTP 401 status code
 and the "invalid_token" error code.

 Metadata to convey server and client capabilities for mutual TLS
 client certificate-bound access tokens is defined in Section 3.3 and

Section 3.4 respectively.

3.1. JWT Certificate Thumbprint Confirmation Method

 When access tokens are represented as JSON Web Tokens (JWT)[RFC7519],
 the certificate hash information SHOULD be represented using the
 "x5t#S256" confirmation method member defined herein.

https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7517#section-4.7
https://datatracker.ietf.org/doc/html/rfc7517#section-4.7
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc7519

Campbell, et al. Expires January 4, 2020 [Page 9]

Internet-Draft OAuth Mutual TLS July 2019

 To represent the hash of a certificate in a JWT, this specification
 defines the new JWT Confirmation Method [RFC7800] member "x5t#S256"
 for the X.509 Certificate SHA-256 Thumbprint. The value of the
 "x5t#S256" member is a base64url-encoded [RFC4648] SHA-256 [SHS] hash
 (a.k.a. thumbprint, fingerprint or digest) of the DER encoding [X690]
 of the X.509 certificate [RFC5280]. The base64url-encoded value MUST
 omit all trailing pad '=' characters and MUST NOT include any line
 breaks, whitespace, or other additional characters.

 The following is an example of a JWT payload containing an "x5t#S256"
 certificate thumbprint confirmation method. The new JWT content
 introduced by this specification is the "cnf" confirmation method
 claim at the bottom of the example that has the "x5t#S256"
 confirmation method member containing the value that is the hash of
 the client certificate to which the access token is bound.

 {
 "iss": "https://server.example.com",
 "sub": "ty.webb@example.com",
 "exp": 1493726400,
 "nbf": 1493722800,
 "cnf":{
 "x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
 }

 Figure 2: Example JWT Claims Set with an X.509 Certificate Thumbprint
 Confirmation Method

3.2. Confirmation Method for Token Introspection

 OAuth 2.0 Token Introspection [RFC7662] defines a method for a
 protected resource to query an authorization server about the active
 state of an access token as well as to determine meta-information
 about the token.

 For a mutual TLS client certificate-bound access token, the hash of
 the certificate to which the token is bound is conveyed to the
 protected resource as meta-information in a token introspection
 response. The hash is conveyed using the same "cnf" with "x5t#S256"
 member structure as the certificate SHA-256 thumbprint confirmation
 method, described in Section 3.1, as a top-level member of the
 introspection response JSON. The protected resource compares that
 certificate hash to a hash of the client certificate used for mutual
 TLS authentication and rejects the request, if they do not match.

 The following is an example of an introspection response for an
 active token with an "x5t#S256" certificate thumbprint confirmation

https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc7662

Campbell, et al. Expires January 4, 2020 [Page 10]

Internet-Draft OAuth Mutual TLS July 2019

 method. The new introspection response content introduced by this
 specification is the "cnf" confirmation method at the bottom of the
 example that has the "x5t#S256" confirmation method member containing
 the value that is the hash of the client certificate to which the
 access token is bound.

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "active": true,
 "iss": "https://server.example.com",
 "sub": "ty.webb@example.com",
 "exp": 1493726400,
 "nbf": 1493722800,
 "cnf":{
 "x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
 }

 Figure 3: Example Introspection Response for a Certificate-Bound
 Access Token

3.3. Authorization Server Metadata

 This document introduces the following new authorization server
 metadata parameter to signal the server's capability to issue
 certificate bound access tokens:

 tls_client_certificate_bound_access_tokens
 OPTIONAL. Boolean value indicating server support for mutual TLS
 client certificate-bound access tokens. If omitted, the default
 value is "false".

3.4. Client Registration Metadata

 The following new client metadata parameter is introduced to convey
 the client's intention to use certificate bound access tokens:

 tls_client_certificate_bound_access_tokens
 OPTIONAL. Boolean value used to indicate the client's intention
 to use mutual TLS client certificate-bound access tokens. If
 omitted, the default value is "false".

Campbell, et al. Expires January 4, 2020 [Page 11]

Internet-Draft OAuth Mutual TLS July 2019

4. Public Clients and Certificate-Bound Tokens

 Mutual TLS OAuth client authentication and certificate-bound access
 tokens can be used independently of each other. Use of certificate-
 bound access tokens without mutual TLS OAuth client authentication,
 for example, is possible in support of binding access tokens to a TLS
 client certificate for public clients (those without authentication
 credentials associated with the "client_id"). The authorization
 server would configure the TLS stack in the same manner as for the
 Self-Signed Certificate method such that it does not verify that the
 certificate presented by the client during the handshake is signed by
 a trusted CA. Individual instances of a client would create a self-
 signed certificate for mutual TLS with both the authorization server
 and resource server. The authorization server would not use the
 mutual TLS certificate to authenticate the client at the OAuth layer
 but would bind the issued access token to that certificate, for which
 the client has proven possession of the corresponding private key.
 The access token is then bound to the certificate and can only be
 used by the client possessing the certificate and corresponding
 private key and utilizing them to negotiate mutual TLS on connections
 to the resource server. When the authorization server issues a
 refresh token to such a client, it SHOULD also bind the refresh token
 to the respective certificate. And check the binding when the
 refresh token is presented to get new access tokens. The
 implementation details of the binding the refresh token are at the
 discretion of the authorization server.

5. Metadata for Mutual TLS Endpoint Aliases

 The process of negotiating client certificate-based mutual TLS
 involves a TLS server requesting a certificate from the TLS client
 (the client does not provide one unsolicited). Although a server can
 be configured such that client certificates are optional, meaning
 that the connection is allowed to continue when the client does not
 provide a certificate, the act of a server requesting a certificate
 can result in undesirable behavior from some clients. This is
 particularly true of web browsers as TLS clients, which will
 typically present the end-user with an intrusive certificate
 selection interface when the server requests a certificate.

 Authorization servers supporting both clients using mutual TLS and
 conventional clients MAY chose to isolate the server side mutual TLS
 behaviour to only clients intending to do mutual TLS, thus avoiding
 any undesirable effects it might have on conventional clients. The
 following authorization server metadata parameter is introduced to
 facilitate such separation:

 mtls_endpoint_aliases

Campbell, et al. Expires January 4, 2020 [Page 12]

Internet-Draft OAuth Mutual TLS July 2019

 OPTIONAL. A JSON object containing alternative authorization
 server endpoints that, when present, an OAuth client intending to
 do mutual TLS uses in preference to the conventional endpoints.
 The parameter value itself consists of one or more endpoint
 parameters, such as "token_endpoint", "revocation_endpoint",
 "introspection_endpoint", etc., conventionally defined for the
 top-level of authorization server metadata. An OAuth client
 intending to do mutual TLS (for OAuth client authentication and/or
 to acquire or use certificate-bound tokens) when making a request
 directly to the authorization server MUST use the alias URL of the
 endpoint within the "mtls_endpoint_aliases", when present, in
 preference to the endpoint URL of the same name at top-level of
 metadata. When an endpoint is not present in
 "mtls_endpoint_aliases", then the client uses the conventional
 endpoint URL defined at the top-level of the authorization server
 metadata. Metadata parameters within "mtls_endpoint_aliases" that
 do not define endpoints to which an OAuth client makes a direct
 request have no meaning and SHOULD be ignored.

 Below is an example of an authorization server metadata document with
 the "mtls_endpoint_aliases" parameter, which indicates aliases for
 the token, revocation, and introspection endpoints that an OAuth
 client intending to do mutual TLS would in preference to the
 conventional token, revocation, and introspection endpoints. Note
 that the endpoints in "mtls_endpoint_aliases" use a different host
 than their conventional counterparts, which allows the authorization
 server (via SNI or actual distinct hosts) to differentiate its TLS
 behavior as appropriate.

Campbell, et al. Expires January 4, 2020 [Page 13]

Internet-Draft OAuth Mutual TLS July 2019

 {
 "issuer": "https://server.example.com",
 "authorization_endpoint": "https://server.example.com/authz",
 "token_endpoint": "https://server.example.com/token",
 "introspection_endpoint": "https://server.example.com/introspect",
 "revocation_endpoint": "https://server.example.com/revo",
 "jwks_uri": "https://server.example.com/jwks",
 "response_types_supported": ["code"],
 "response_modes_supported": ["fragment","query","form_post"],
 "grant_types_supported": ["authorization_code", "refresh_token"],
 "token_endpoint_auth_methods_supported":
 ["tls_client_auth","client_secret_basic","none"],
 "tls_client_certificate_bound_access_tokens": true
 "mtls_endpoint_aliases": {
 "token_endpoint": "https://mtls.example.com/token",
 "revocation_endpoint": "https://mtls.example.com/revo",
 "introspection_endpoint": "https://mtls.example.com/introspect"
 }
 }

 Figure 4: Example Authorization Server Metadata with Mutual TLS
 Endpoint Aliases

6. Implementation Considerations

6.1. Authorization Server

 The authorization server needs to set up its TLS configuration
 appropriately for the OAuth client authentication methods it
 supports.

 An authorization server that supports mutual TLS client
 authentication and other client authentication methods or public
 clients in parallel would make mutual TLS optional (i.e. allowing a
 handshake to continue after the server requests a client certificate
 but the client does not send one).

 In order to support the Self-Signed Certificate method, the
 authorization server would configure the TLS stack in such a way that
 it does not verify whether the certificate presented by the client
 during the handshake is signed by a trusted CA certificate.

 As described in Section 3, the authorization server binds the issued
 access token to the TLS client certificate, which means that it will
 only issue certificate-bound tokens for a certificate which the
 client has proven possession of the corresponding private key.

Campbell, et al. Expires January 4, 2020 [Page 14]

Internet-Draft OAuth Mutual TLS July 2019

 The authorization server may also consider hosting the token
 endpoint, and other endpoints requiring client authentication, on a
 separate host name or port in order to prevent unintended impact on
 the TLS behavior of its other endpoints, e.g. the authorization
 endpoint. As described in Section 5, it may further isolate any
 potential impact of the server requesting client certificates by
 offering a distinct set of endpoints on a separate host or port,
 which are aliases for the originals that a client intending to do
 mutual TLS will use in preference to the conventional endpoints.

6.2. Resource Server

 OAuth divides the roles and responsibilities such that the resource
 server relies on the authorization server to perform client
 authentication and obtain resource owner (end-user) authorization.
 The resource server makes authorization decisions based on the access
 token presented by the client but does not directly authenticate the
 client per se. The manner in which an access token is bound to the
 client certificate decouples it from the specific method that the
 client used to authenticate with the authorization server. Mutual
 TLS during protected resource access can therefore serve purely as a
 proof-of-possession mechanism. As such, it is not necessary for the
 resource server to validate the trust chain of the client's
 certificate in any of the methods defined in this document. The
 resource server would therefore configure the TLS stack in a way that
 it does not verify whether the certificate presented by the client
 during the handshake is signed by a trusted CA certificate.

6.3. Certificate Expiration and Bound Access Tokens

 As described in Section 3, an access token is bound to a specific
 client certificate, which means that the same certificate must be
 used for mutual TLS on protected resource access. It also implies
 that access tokens are invalidated when a client updates the
 certificate, which can be handled similar to expired access tokens
 where the client requests a new access token (typically with a
 refresh token) and retries the protected resource request.

6.4. Implicit Grant Unsupported

 This document describes binding an access token to the client
 certificate presented on the TLS connection from the client to the
 authorization server's token endpoint, however, such binding of
 access tokens issued directly from the authorization endpoint via the
 implicit grant flow is explicitly out of scope. End users interact
 directly with the authorization endpoint using a web browser and the
 use of client certificates in user's browsers bring operational and
 usability issues, which make it undesirable to support certificate-

Campbell, et al. Expires January 4, 2020 [Page 15]

Internet-Draft OAuth Mutual TLS July 2019

 bound access tokens issued in the implicit grant flow.
 Implementations wanting to employ certificate-bound access tokens
 should utilize grant types that involve the client making an access
 token request directly to the token endpoint (e.g. the authorization
 code and refresh token grant types).

6.5. TLS Termination

 An authorization server or resource server MAY choose to terminate
 TLS connections at a load balancer, reverse proxy, or other network
 intermediary. How the client certificate metadata is securely
 communicated between the intermediary and the application server in
 this case is out of scope of this specification.

7. Security Considerations

7.1. Certificate-Bound Refresh Tokens

 The OAuth 2.0 Authorization Framework [RFC6749] requires that an
 authorization server bind refresh tokens to the client to which they
 where issued and that confidential clients (those having established
 authentication credentials with the authorization server)
 authenticate to the AS when presenting a refresh token. As a result,
 refresh tokens are indirectly certificate-bound when issued to
 clients utilizing the "tls_client_auth" or
 "self_signed_tls_client_auth" methods of client authentication.

Section 4 describes certificate-bound refresh tokens issued to public
 clients (those without authentication credentials associated with the
 "client_id").

7.2. Certificate Thumbprint Binding

 The binding between the certificate and access token specified in
Section 3.1 uses a cryptographic hash of the certificate. It relies

 on the hash function having sufficient preimage and second-preimage
 resistance so as to make it computationally infeasible to find or
 create another certificate that produces to the same hash output
 value. The SHA-256 hash function was used because it meets the
 aforementioned requirement while being widely available. If, in the
 future, certificate thumbprints need to be computed using hash
 function(s) other than SHA-256, it is suggested that additional
 related JWT confirmation methods members be defined for that purpose
 and registered in the IANA "JWT Confirmation Methods" registry
 [IANA.JWT.Claims] for JWT "cnf" member values.

https://datatracker.ietf.org/doc/html/rfc6749

Campbell, et al. Expires January 4, 2020 [Page 16]

Internet-Draft OAuth Mutual TLS July 2019

7.3. TLS Versions and Best Practices

 In the abstract this document is applicable with any TLS version
 supporting certificate-based client authentication. Both TLS 1.3
 [RFC8446] and TLS 1.2 [RFC5246] are cited herein because, at the time
 of writing, 1.3 is the newest version while 1.2 is the most widely
 deployed. General implementation and security considerations for
 TLS, including version recommendations, can be found in [BCP195].

7.4. X.509 Certificate Spoofing

 If the PKI method of client authentication is used, an attacker could
 try to impersonate a client using a certificate with the same subject
 (DN or SAN) but issued by a different CA, which the authorization
 server trusts. To cope with that threat, the authorization server
 SHOULD only accept as trust anchors a limited number of CAs whose
 certificate issuance policy meets its security requirements. There
 is an assumption then that the client and server agree on the set of
 trust anchors that the server uses to create and validate the
 certificate chain. Without this assumption the use of a subject to
 identify the client certificate would open the server up to
 certificate spoofing attacks.

7.5. X.509 Certificate Parsing and Validation Complexity

 Parsing and validation of X.509 certificates and certificate chains
 is complex and implementation mistakes have previously exposed
 security vulnerabilities. Complexities of validation include (but
 are not limited to) [CX5P] [DCW] [RFC5280]:

 o checking of Basic Constraints, basic and extended Key Usage
 constraints, validity periods, and critical extensions;

 o handling of null-terminator bytes and non-canonical string
 representations in subject names;

 o handling of wildcard patterns in subject names;

 o recursive verification of certificate chains and checking
 certificate revocation.

 For these reasons, implementors SHOULD use an established and well-
 tested X.509 library (such as one used by an established TLS library)
 for validation of X.509 certificate chains and SHOULD NOT attempt to
 write their own X.509 certificate validation procedures.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280

Campbell, et al. Expires January 4, 2020 [Page 17]

Internet-Draft OAuth Mutual TLS July 2019

8. Privacy Considerations

 In TLS versions prior to 1.3, the client's certificate is sent
 unencrypted in the initial handshake and can potentially be used by
 third parties to monitor, track, and correlate client activity. This
 is likely of little concern for clients that act on behalf of a
 significant number of end-users because individual user activity will
 not be discernible amidst the client activity as a whole. However,
 clients that act on behalf of a single end-user, such as a native
 application on a mobile device, should use TLS version 1.3 whenever
 possible or consider the potential privacy implications of using
 mutual TLS on earlier versions.

9. IANA Considerations

9.1. JWT Confirmation Methods Registration

 This specification requests registration of the following value in
 the IANA "JWT Confirmation Methods" registry [IANA.JWT.Claims] for
 JWT "cnf" member values established by [RFC7800].

 o Confirmation Method Value: "x5t#S256"
 o Confirmation Method Description: X.509 Certificate SHA-256
 Thumbprint
 o Change Controller: IESG
 o Specification Document(s): Section 3.1 of [[this specification]]

9.2. Authorization Server Metadata Registration

 This specification requests registration of the following value in
 the IANA "OAuth Authorization Server Metadata" registry
 [IANA.OAuth.Parameters] established by [RFC8414].

 o Metadata Name: "tls_client_certificate_bound_access_tokens"
 o Metadata Description: Indicates authorization server support for
 mutual TLS client certificate-bound access tokens.
 o Change Controller: IESG
 o Specification Document(s): Section 3.3 of [[this specification]]

 o Metadata Name: "mtls_endpoint_aliases"
 o Metadata Description: JSON object containing alternative
 authorization server endpoints, which a client intending to do
 mutual TLS will use in preference to the conventional endpoints.
 o Change Controller: IESG
 o Specification Document(s): Section 5 of [[this specification]]

https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc8414

Campbell, et al. Expires January 4, 2020 [Page 18]

Internet-Draft OAuth Mutual TLS July 2019

9.3. Token Endpoint Authentication Method Registration

 This specification requests registration of the following value in
 the IANA "OAuth Token Endpoint Authentication Methods" registry
 [IANA.OAuth.Parameters] established by [RFC7591].

 o Token Endpoint Authentication Method Name: "tls_client_auth"
 o Change Controller: IESG
 o Specification Document(s): Section 2.1.1 of [[this specification
]]

 o Token Endpoint Authentication Method Name:
 "self_signed_tls_client_auth"
 o Change Controller: IESG
 o Specification Document(s): Section 2.2.1 of [[this specification
]]

9.4. Token Introspection Response Registration

 Proof-of-Possession Key Semantics for JSON Web Tokens [RFC7800]
 defined the "cnf" (confirmation) claim, which enables confirmation
 key information to be carried in a JWT. However, the same proof-of-
 possession semantics are also useful for introspected access tokens
 whereby the protected resource obtains the confirmation key data as
 meta-information of a token introspection response and uses that
 information in verifying proof-of-possession. Therefore this
 specification defines and registers proof-of-possession semantics for
 OAuth 2.0 Token Introspection [RFC7662] using the "cnf" structure.
 When included as a top-level member of an OAuth token introspection
 response, "cnf" has the same semantics and format as the claim of the
 same name defined in [RFC7800]. While this specification only
 explicitly uses the "x5t#S256" confirmation method member (see

Section 3.2), it needs to define and register the higher level "cnf"
 structure as an introspection response member in order to define and
 use the more specific certificate thumbprint confirmation method.

 As such, this specification requests registration of the following
 value in the IANA "OAuth Token Introspection Response" registry
 [IANA.OAuth.Parameters] established by [RFC7662].

 o Claim Name: "cnf"
 o Claim Description: Confirmation
 o Change Controller: IESG
 o Specification Document(s): [RFC7800] and [[this specification]]

https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7800
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7800

Campbell, et al. Expires January 4, 2020 [Page 19]

Internet-Draft OAuth Mutual TLS July 2019

9.5. Dynamic Client Registration Metadata Registration

 This specification requests registration of the following client
 metadata definitions in the IANA "OAuth Dynamic Client Registration
 Metadata" registry [IANA.OAuth.Parameters] established by [RFC7591]:

 o Client Metadata Name: "tls_client_certificate_bound_access_tokens"
 o Client Metadata Description: Indicates the client's intention to
 use mutual TLS client certificate-bound access tokens.
 o Change Controller: IESG
 o Specification Document(s): Section 3.4 of [[this specification]]

 o Client Metadata Name: "tls_client_auth_subject_dn"
 o Client Metadata Description: String value specifying the expected
 subject DN of the client certificate.
 o Change Controller: IESG
 o Specification Document(s): Section 2.1.2 of [[this specification
]]

 o Client Metadata Name: "tls_client_auth_san_dns"
 o Client Metadata Description: String value specifying the expected
 dNSName SAN entry in the client certificate.
 o Change Controller: IESG
 o Specification Document(s): Section 2.1.2 of [[this specification
]]

 o Client Metadata Name: "tls_client_auth_san_uri"
 o Client Metadata Description: String value specifying the expected
 uniformResourceIdentifier SAN entry in the client certificate.
 o Change Controller: IESG
 o Specification Document(s): Section 2.1.2 of [[this specification
]]

 o Client Metadata Name: "tls_client_auth_san_ip"
 o Client Metadata Description: String value specifying the expected
 iPAddress SAN entry in the client certificate.
 o Change Controller: IESG
 o Specification Document(s): Section 2.1.2 of [[this specification
]]

 o Client Metadata Name: "tls_client_auth_san_email"
 o Client Metadata Description: String value specifying the expected
 rfc822Name SAN entry in the client certificate.
 o Change Controller: IESG
 o Specification Document(s): Section 2.1.2 of [[this specification
]]

https://datatracker.ietf.org/doc/html/rfc7591

Campbell, et al. Expires January 4, 2020 [Page 20]

Internet-Draft OAuth Mutual TLS July 2019

10. References

10.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/bcp195>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4514] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names",

RFC 4514, DOI 10.17487/RFC4514, June 2006,
 <https://www.rfc-editor.org/info/rfc4514>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",

RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/info/rfc7800>.

https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/bcp195
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4514
https://www.rfc-editor.org/info/rfc4514
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc7800
https://www.rfc-editor.org/info/rfc7800

Campbell, et al. Expires January 4, 2020 [Page 21]

Internet-Draft OAuth Mutual TLS July 2019

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [SHS] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS PUB 180-4, March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

 [X690] International Telephone and Telegraph Consultative
 Committee, "ASN.1 encoding rules: Specification of basic
 encoding Rules (BER), Canonical encoding rules (CER) and
 Distinguished encoding rules (DER)", CCITT Recommendation
 X.690, July 2015.

10.2. Informative References

 [CX5P] Wong, D., "Common x509 certificate validation/creation
 pitfalls", September 2016,
 <https://www.cryptologie.net/article/374/

common-x509-certificate-validationcreation-pitfalls>.

 [DCW] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh,
 D., and V. Shmatikov, "The Most Dangerous Code in the
 World: Validating SSL Certificates in Non-Browser
 Software",
 <http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf>.

 [I-D.ietf-oauth-token-binding]
 Jones, M., Campbell, B., Bradley, J., and W. Denniss,
 "OAuth 2.0 Token Binding", draft-ietf-oauth-token-

binding-06 (work in progress), March 2018.

 [IANA.JWT.Claims]
 IANA, "JSON Web Token Claims",
 <http://www.iana.org/assignments/jwt>.

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [OpenID.CIBA]
 Fernandez, G., Walter, F., Nennker, A., Tonge, D., and B.
 Campbell, "OpenID Connect Client Initiated Backchannel
 Authentication Flow - Core 1.0", January 2019,
 <https://openid.net/specs/openid-client-initiated-

backchannel-authentication-core-1_0.html>.

https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://www.cryptologie.net/article/374/common-x509-certificate-validationcreation-pitfalls
https://www.cryptologie.net/article/374/common-x509-certificate-validationcreation-pitfalls
http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-06
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding-06
http://www.iana.org/assignments/jwt
http://www.iana.org/assignments/oauth-parameters
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html

Campbell, et al. Expires January 4, 2020 [Page 22]

Internet-Draft OAuth Mutual TLS July 2019

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4517] Legg, S., Ed., "Lightweight Directory Access Protocol
 (LDAP): Syntaxes and Matching Rules", RFC 4517,
 DOI 10.17487/RFC4517, June 2006,
 <https://www.rfc-editor.org/info/rfc4517>.

 [RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
 2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
 August 2013, <https://www.rfc-editor.org/info/rfc7009>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", RFC 8414,
 DOI 10.17487/RFC8414, June 2018,
 <https://www.rfc-editor.org/info/rfc8414>.

Appendix A. Example "cnf" Claim, Certificate and JWK

 For reference, an "x5t#S256" value and the X.509 Certificate from
 which it was calculated are provided in the following examples,
 Figure 5 and Figure 6 respectively. A JWK representation of the

https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc4517
https://www.rfc-editor.org/info/rfc4517
https://datatracker.ietf.org/doc/html/rfc7009
https://www.rfc-editor.org/info/rfc7009
https://datatracker.ietf.org/doc/html/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7591
https://www.rfc-editor.org/info/rfc7591
https://datatracker.ietf.org/doc/html/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8414
https://www.rfc-editor.org/info/rfc8414

Campbell, et al. Expires January 4, 2020 [Page 23]

Internet-Draft OAuth Mutual TLS July 2019

 certificate's public key along with the "x5c" member is also provided
 in Figure 7.

 "cnf":{"x5t#S256":"A4DtL2JmUMhAsvJj5tKyn64SqzmuXbMrJa0n761y5v0"}

 Figure 5: x5t#S256 Confirmation Claim

 -----BEGIN CERTIFICATE-----
 MIIBBjCBrAIBAjAKBggqhkjOPQQDAjAPMQ0wCwYDVQQDDARtdGxzMB4XDTE4MTAx
 ODEyMzcwOVoXDTIyMDUwMjEyMzcwOVowDzENMAsGA1UEAwwEbXRsczBZMBMGByqG
 SM49AgEGCCqGSM49AwEHA0IABNcnyxwqV6hY8QnhxxzFQ03C7HKW9OylMbnQZjjJ
 /Au08/coZwxS7LfA4vOLS9WuneIXhbGGWvsDSb0tH6IxLm8wCgYIKoZIzj0EAwID
 SQAwRgIhAP0RC1E+vwJD/D1AGHGzuri+hlV/PpQEKTWUVeORWz83AiEA5x2eXZOV
 bUlJSGQgjwD5vaUaKlLR50Q2DmFfQj1L+SY=
 -----END CERTIFICATE-----

 Figure 6: PEM Encoded Self-Signed Certificate

 {
 "kty":"EC",
 "x":"1yfLHCpXqFjxCeHHHMVDTcLscpb07KUxudBmOMn8C7Q",
 "y":"8_coZwxS7LfA4vOLS9WuneIXhbGGWvsDSb0tH6IxLm8",
 "crv":"P-256",
 "x5c":[
 "MIIBBjCBrAIBAjAKBggqhkjOPQQDAjAPMQ0wCwYDVQQDDARtdGxzMB4XDTE4MTA
 xODEyMzcwOVoXDTIyMDUwMjEyMzcwOVowDzENMAsGA1UEAwwEbXRsczBZMBMGBy
 qGSM49AgEGCCqGSM49AwEHA0IABNcnyxwqV6hY8QnhxxzFQ03C7HKW9OylMbnQZ
 jjJ/Au08/coZwxS7LfA4vOLS9WuneIXhbGGWvsDSb0tH6IxLm8wCgYIKoZIzj0E
 AwIDSQAwRgIhAP0RC1E+vwJD/D1AGHGzuri+hlV/PpQEKTWUVeORWz83AiEA5x2
 eXZOVbUlJSGQgjwD5vaUaKlLR50Q2DmFfQj1L+SY="
]
 }

 Figure 7: JSON Web Key

Appendix B. Relationship to Token Binding

 OAuth 2.0 Token Binding [I-D.ietf-oauth-token-binding] enables the
 application of Token Binding to the various artifacts and tokens
 employed throughout OAuth. That includes binding of an access token
 to a Token Binding key, which bears some similarities in motivation
 and design to the mutual TLS client certificate-bound access tokens
 defined in this document. Both documents define what is often called
 a proof-of-possession security mechanism for access tokens, whereby a
 client must demonstrate possession of cryptographic keying material
 when accessing a protected resource. The details differ somewhat
 between the two documents but both have the authorization server bind
 the access token that it issues to an asymmetric key pair held by the

Campbell, et al. Expires January 4, 2020 [Page 24]

Internet-Draft OAuth Mutual TLS July 2019

 client. The client then proves possession of the private key from
 that pair with respect to the TLS connection over which the protected
 resource is accessed.

 Token Binding uses bare keys that are generated on the client, which
 avoids many of the difficulties of creating, distributing, and
 managing certificates used in this specification. However, at the
 time of writing, Token Binding is fairly new and there is relatively
 little support for it in available application development platforms
 and tooling. Until better support for the underlying core Token
 Binding specifications exists, practical implementations of OAuth 2.0
 Token Binding are infeasible. Mutual TLS, on the other hand, has
 been around for some time and enjoys widespread support in web
 servers and development platforms. As a consequence, OAuth 2.0
 Mutual TLS Client Authentication and Certificate-Bound Access Tokens
 can be built and deployed now using existing platforms and tools. In
 the future, the two specifications are likely to be deployed in
 parallel for solving similar problems in different environments.
 Authorization servers may even support both specifications
 simultaneously using different proof-of-possession mechanisms for
 tokens issued to different clients.

Appendix C. Acknowledgements

 Scott "not Tomlinson" Tomilson and Matt Peterson were involved in
 design and development work on a mutual TLS OAuth client
 authentication implementation, which predates this document.
 Experience and learning from that work informed some of the content
 of this document.

 This specification was developed within the OAuth Working Group under
 the chairmanship of Hannes Tschofenig and Rifaat Shekh-Yusef with
 Eric Rescorla, Benjamin Kaduk, and Roman Danyliw serving as Security
 Area Directors. Additionally, the following individuals contributed
 ideas, feedback, and wording that helped shape this specification:
 Vittorio Bertocci, Sergey Beryozkin, Ralph Bragg, Sophie Bremer,
 Roman Danyliw, Vladimir Dzhuvinov, Samuel Erdtman, Evan Gilman, Leif
 Johansson, Michael Jones, Phil Hunt, Benjamin Kaduk, Takahiko
 Kawasaki, Sean Leonard, Kepeng Li, Neil Madden, James Manger, Jim
 Manico, Nov Matake, Sascha Preibisch, Eric Rescorla, Justin Richer,
 Filip Skokan, Dave Tonge, and Hannes Tschofenig.

Appendix D. Document(s) History

 [[to be removed by the RFC Editor before publication as an RFC]]

draft-ietf-oauth-mtls-15

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-15

Campbell, et al. Expires January 4, 2020 [Page 25]

Internet-Draft OAuth Mutual TLS July 2019

 o Editorial updates from second AD review.

draft-ietf-oauth-mtls-14

 o Editorial clarifications around there being only a single subject
 registered/configured per client for the tls_client_auth method.
 o Add a brief explanation about how, with tls_client_auth and
 self_signed_tls_client_auth, refresh tokens are certificate-bound
 indirectly via the client authentication.
 o Add mention of refresh tokens in the abstract.

draft-ietf-oauth-mtls-13

 o Add an abstract protocol flow and diagram to serve as an overview
 of OAuth in general and baseline to describe the various ways in
 which the mechanisms defined herein are intended to be used.
 o A little bit less of that German influence.
 o Rework the TLS references a bit and, in the Terminology section,
 clean up the description of what messages are sent and verified in
 the handshake to do 'mutual TLS'.
 o Move the explanation about "cnf" introspection registration into
 the IANA Considerations.
 o Add CIBA as an informational reference and additional example of
 an OAuth extension that defines an endpoint that utilizes client
 authentication.
 o Shorten a few of the section titles.
 o Add new client metadata values to allow for the use of a SAN in
 the PKI MTLS client authentication method.
 o Add privacy considerations attempting to discuss the implications
 of the client cert being sent in the clear in TLS 1.2.
 o Changed the 'Certificate Bound Access Tokens Without Client
 Authentication' section to 'Public Clients and Certificate-Bound
 Tokens' and moved it up to be a top level section while adding
 discussion of binding refresh tokens for public clients.
 o Reword/restructure the main PKI method section somewhat to
 (hopefully) improve readability.
 o Reword/restructure the Self-Signed method section a bit to
 (hopefully) make it more comprehensible.
 o Reword the AS and RS Implementation Considerations somewhat to
 (hopefully) improve readability.
 o Clarify that the protected resource obtains the client certificate
 used for mutual TLS from its TLS implementation layer.
 o Add Security Considerations section about the certificate
 thumbprint binding that includes the hash algorithm agility
 recommendation.
 o Add an "mtls_endpoint_aliases" AS metadata parameter that is a
 JSON object containing alternative authorization server endpoints,

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-14
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-13

Campbell, et al. Expires January 4, 2020 [Page 26]

Internet-Draft OAuth Mutual TLS July 2019

 which a client intending to do mutual TLS will use in preference
 to the conventional endpoints.
 o Minor editorial updates.

draft-ietf-oauth-mtls-12

 o Add an example certificate, JWK, and confirmation method claim.
 o Minor editorial updates based on implementer feedback.
 o Additional Acknowledgements.

draft-ietf-oauth-mtls-11

 o Editorial updates.
 o Mention/reference TLS 1.3 RFC8446 in the TLS Versions and Best
 Practices section.

draft-ietf-oauth-mtls-10

 o Update draft-ietf-oauth-discovery reference to RFC8414

draft-ietf-oauth-mtls-09

 o Change "single certificates" to "self-signed certificates" in the
 Abstract

draft-ietf-oauth-mtls-08

 o Incorporate clarifications and editorial improvements from Justin
 Richer's WGLC review
 o Drop the use of the "sender constrained" terminology per WGLC
 feedback from Neil Madden (including changing the metadata
 parameters from mutual_tls_sender_constrained_access_tokens to
 tls_client_certificate_bound_access_tokens)
 o Add a new security considerations section on X.509 parsing and
 validation per WGLC feedback from Neil Madden and Benjamin Kaduk
 o Note that a server can terminate TLS at a load balancer, reverse
 proxy, etc. but how the client certificate metadata is securely
 communicated to the backend is out of scope per WGLC feedback
 o Note that revocation checking is at the discretion of the AS per
 WGLC feedback
 o Editorial updates and clarifications
 o Update draft-ietf-oauth-discovery reference to -10 and draft-ietf-

oauth-token-binding to -06
 o Add folks involved in WGLC feedback to the acknowledgements list

draft-ietf-oauth-mtls-07

 o Update to use the boilerplate from RFC 8174

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-11
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-10
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery
https://datatracker.ietf.org/doc/html/rfc8414
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-09
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-token-binding
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-07
https://datatracker.ietf.org/doc/html/rfc8174

Campbell, et al. Expires January 4, 2020 [Page 27]

Internet-Draft OAuth Mutual TLS July 2019

draft-ietf-oauth-mtls-06

 o Add an appendix section describing the relationship of this
 document to OAuth Token Binding as requested during the Singapore
 meeting https://datatracker.ietf.org/doc/minutes-100-oauth/
 o Add an explicit note that the implicit flow is not supported for
 obtaining certificate bound access tokens as discussed at the
 Singapore meeting https://datatracker.ietf.org/doc/minutes-

100-oauth/
 o Add/incorporate text to the Security Considerations on Certificate
 Spoofing as suggested https://mailarchive.ietf.org/arch/msg/oauth/

V26070X-6OtbVSeUz_7W2k94vCo
 o Changed the title to be more descriptive
 o Move the Security Considerations section to before the IANA
 Considerations
 o Elaborated on certificate-bound access tokens a bit more in the
 Abstract
 o Update draft-ietf-oauth-discovery reference to -08

draft-ietf-oauth-mtls-05

 o Editorial fixes

draft-ietf-oauth-mtls-04

 o Change the name of the 'Public Key method' to the more accurate
 'Self-Signed Certificate method' and also change the associated
 authentication method metadata value to
 "self_signed_tls_client_auth".
 o Removed the "tls_client_auth_root_dn" client metadata field as
 discussed in https://mailarchive.ietf.org/arch/msg/oauth/

swDV2y0be6o8czGKQi1eJV-g8qc
 o Update draft-ietf-oauth-discovery reference to -07
 o Clarify that MTLS client authentication isn't exclusive to the
 token endpoint and can be used with other endpoints, e.g. RFC

7009 revocation and 7662 introspection, that utilize client
 authentication as discussed in

https://mailarchive.ietf.org/arch/msg/oauth/
bZ6mft0G7D3ccebhOxnEYUv4puI

 o Reorganize the document somewhat in an attempt to more clearly
 make a distinction between mTLS client authentication and
 certificate-bound access tokens as well as a more clear
 delineation between the two (PKI/Public key) methods for client
 authentication
 o Editorial fixes and clarifications

draft-ietf-oauth-mtls-03

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-06
https://datatracker.ietf.org/doc/minutes-100-oauth/
https://datatracker.ietf.org/doc/minutes-100-oauth/
https://datatracker.ietf.org/doc/minutes-100-oauth/
https://mailarchive.ietf.org/arch/msg/oauth/V26070X-6OtbVSeUz_7W2k94vCo
https://mailarchive.ietf.org/arch/msg/oauth/V26070X-6OtbVSeUz_7W2k94vCo
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-05
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-04
https://mailarchive.ietf.org/arch/msg/oauth/swDV2y0be6o8czGKQi1eJV-g8qc
https://mailarchive.ietf.org/arch/msg/oauth/swDV2y0be6o8czGKQi1eJV-g8qc
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery
https://datatracker.ietf.org/doc/html/rfc7009
https://datatracker.ietf.org/doc/html/rfc7009
https://mailarchive.ietf.org/arch/msg/oauth/bZ6mft0G7D3ccebhOxnEYUv4puI
https://mailarchive.ietf.org/arch/msg/oauth/bZ6mft0G7D3ccebhOxnEYUv4puI
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-03

Campbell, et al. Expires January 4, 2020 [Page 28]

Internet-Draft OAuth Mutual TLS July 2019

 o Introduced metadata and client registration parameter to publish
 and request support for mutual TLS sender constrained access
 tokens
 o Added description of two methods of binding the cert and client,
 PKI and Public Key.
 o Indicated that the "tls_client_auth" authentication method is for
 the PKI method and introduced "pub_key_tls_client_auth" for the
 Public Key method
 o Added implementation considerations, mainly regarding TLS stack
 configuration and trust chain validation, as well as how to to do
 binding of access tokens to a TLS client certificate for public
 clients, and considerations around certificate-bound access tokens
 o Added new section to security considerations on cert spoofing
 o Add text suggesting that a new cnf member be defined in the
 future, if hash function(s) other than SHA-256 need to be used for
 certificate thumbprints

draft-ietf-oauth-mtls-02

 o Fixed editorial issue https://mailarchive.ietf.org/arch/msg/oauth/
U46UMEh8XIOQnvXY9pHFq1MKPns

 o Changed the title (hopefully "Mutual TLS Profile for OAuth 2.0" is
 better than "Mutual TLS Profiles for OAuth Clients").

draft-ietf-oauth-mtls-01

 o Added more explicit details of using RFC 7662 token introspection
 with mutual TLS sender constrained access tokens.
 o Added an IANA OAuth Token Introspection Response Registration
 request for "cnf".
 o Specify that tls_client_auth_subject_dn and
 tls_client_auth_root_dn are RFC 4514 String Representation of
 Distinguished Names.
 o Changed tls_client_auth_issuer_dn to tls_client_auth_root_dn.
 o Changed the text in the Section 3 to not be specific about using a
 hash of the cert.
 o Changed the abbreviated title to 'OAuth Mutual TLS' (previously
 was the acronym MTLSPOC).

draft-ietf-oauth-mtls-00

 o Created the initial working group version from draft-campbell-
oauth-mtls

draft-campbell-oauth-mtls-01

 o Fix some typos.
 o Add to the acknowledgements list.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-02
https://mailarchive.ietf.org/arch/msg/oauth/U46UMEh8XIOQnvXY9pHFq1MKPns
https://mailarchive.ietf.org/arch/msg/oauth/U46UMEh8XIOQnvXY9pHFq1MKPns
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-01
https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc4514
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-00
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls-01

Campbell, et al. Expires January 4, 2020 [Page 29]

Internet-Draft OAuth Mutual TLS July 2019

draft-campbell-oauth-mtls-00

 o Add a Mutual TLS sender constrained protected resource access
 method and a x5t#S256 cnf method for JWT access tokens (concepts
 taken in part from draft-sakimura-oauth-jpop-04).
 o Fixed "token_endpoint_auth_methods_supported" to
 "token_endpoint_auth_method" for client metadata.
 o Add "tls_client_auth_subject_dn" and "tls_client_auth_issuer_dn"
 client metadata parameters and mention using "jwks_uri" or "jwks".
 o Say that the authentication method is determined by client policy
 regardless of whether the client was dynamically registered or
 statically configured.
 o Expand acknowledgements to those that participated in discussions
 around draft-campbell-oauth-tls-client-auth-00
 o Add Nat Sakimura and Torsten Lodderstedt to the author list.

draft-campbell-oauth-tls-client-auth-00

 o Initial draft.

Authors' Addresses

 Brian Campbell
 Ping Identity

 Email: brian.d.campbell@gmail.com

 John Bradley
 Yubico

 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

 Nat Sakimura
 Nomura Research Institute

 Email: n-sakimura@nri.co.jp
 URI: https://nat.sakimura.org/

 Torsten Lodderstedt
 YES.com AG

 Email: torsten@lodderstedt.net

https://datatracker.ietf.org/doc/html/draft-campbell-oauth-mtls-00
https://datatracker.ietf.org/doc/html/draft-sakimura-oauth-jpop-04
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-tls-client-auth-00
https://datatracker.ietf.org/doc/html/draft-campbell-oauth-tls-client-auth-00
http://www.thread-safe.com/
https://nat.sakimura.org/

Campbell, et al. Expires January 4, 2020 [Page 30]

