
OAuth Working Group W. Denniss
Internet-Draft Google
Intended status: Best Current Practice J. Bradley
Expires: August 7, 2016 Ping Identity
 February 04, 2016

OAuth 2.0 for Native Apps
draft-ietf-oauth-native-apps-00

Abstract

 OAuth 2.0 authorization requests from native apps should only be made
 through external user-agents such as the system browser (including
 via an in-app browser tab). This specification details the security
 and usability reasons why this is the case, and how native apps and
 authorization servers can implement this best practice.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 7, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Denniss & Bradley Expires August 7, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft oauth_mobile February 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3
1.2. Terminology . 3
1.3. Overview . 4

2. Using Inter-app URI Communication for OAuth 6
3. Initiating the Authorization Request 6
4. Receiving the Authorization Response 7
4.1. App-declared Custom URI Scheme Redirection 7
4.2. App-claimed HTTPS URI Redirection 9
4.3. Localhost-based URI Redirection 9

5. Security Considerations 10
5.1. Embedded User-Agents 10
5.2. Protecting the Authorization Code 11
5.3. Phishing . 12
5.4. Limitations of Non-verifiable Clients 12

6. Other External User Agents 12
7. Client Authentication . 13
8. References . 13
8.1. Normative References 13
8.2. Informative References 13

Appendix A. Operating System Specific Implementation Details . . 15
A.1. iOS Implementation Details 15
A.2. Android Implementation Details 15

Appendix B. Acknowledgements 15
 Authors' Addresses . 16

1. Introduction

 The OAuth 2.0 [RFC6749] authorization framework, documents two
 approaches in Section 9 for native apps to interact with the
 authorization endpoint: via an embedded user-agent, or an external
 user-agent.

 This document recommends external user-agents like in-app browser
 tabs as the only secure and usable choice for OAuth. It documents
 how native apps can implement authorization flows with such agents,
 and the additional requirements of authorization servers needed to
 support such usage.

https://datatracker.ietf.org/doc/html/rfc6749

Denniss & Bradley Expires August 7, 2016 [Page 2]

Internet-Draft oauth_mobile February 2016

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in Key
 words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
 these words are used without being spelled in uppercase then they are
 to be interpreted with their normal natural language meanings.

1.2. Terminology

 In addition to the terms defined in referenced specifications, this
 document uses the following terms:

 "app" A native application, such as one on a mobile device or
 desktop operating system.

 "app store" An ecommerce store where users can download and purchase
 apps. Typically with quality-control measures to protect users
 from malicious developers.

 "system browser" The operating system's default browser, typically
 pre-installed as part of the operating system, or installed and
 set as default by the user.

 "browser tab" An open page of the system browser. Browser typically
 have multiple "tabs" representing various open pages.

 "in-app browser tab" A full page browser with limited navigation
 capabilities that is displayed inside a host app, but retains the
 full security properties and authentication state of the system
 browser. Has different platform-specific product names, such as
 SFSafariViewController on iOS 9, and Chrome Custom Tab on Android.

 "Claimed HTTPS URL" Some platforms allow apps to claim a domain name
 by hosting a file that proves the link between site and app.
 Typically this means that URLs opened by the system will be opened
 in the app instead of the browser.

 "web-view" A web browser UI component that can be embedded in apps
 to render web pages, used to create embedded user-agents.

 "reverse domain name notation" A naming convention based on the
 domain name system, but where where the domain components are
 reversed, for example "app.example.com" becomes "com.example.app".

 "custom URI scheme" A URI scheme (as defined by [RFC3986]) that the
 app creates and registers with the OS (and is not a standard URI

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986

Denniss & Bradley Expires August 7, 2016 [Page 3]

Internet-Draft oauth_mobile February 2016

 scheme like "https:" or "tel:"). Requests to such a scheme
 results in the app which registered it being launched by the OS.
 For example, "myapp:", "com.example.myapp:" are both custom URI
 schemes.

 "inter-app communication" Communication between two apps on a
 device.

 "OAuth" In this document, OAuth refers to OAuth 2.0 [RFC6749].

1.3. Overview

 At the time of writing, many native apps are still using web-views, a
 type of embedded user-agent, for OAuth. That approach has multiple
 drawbacks, including the client app being able to eavesdrop user
 credentials, and is a suboptimal user experience as the
 authentication session can't be shared, and users need to sign-in to
 each app separately.

 OAuth flows between a native app and the system browser (or another
 external user-agent) are more secure, and take advantage of the
 shared authentication state to enable single sign-on. The in-app
 browser tab pattern makes this approach even more viable, as apps can
 present the system browser without the user switching context
 something that could previously only be achieved by a web-view on
 most platforms.

 Inter-process communication, such as OAuth flows between a native app
 and the system browser can be achieved through URI-based
 communication. As this is exactly how OAuth works for web-based
 OAuth flows between RP and IDP websites, OAuth can be used for native
 app auth with very little modification.

1.3.1. Authorization Flow for Native Apps

https://datatracker.ietf.org/doc/html/rfc6749

Denniss & Bradley Expires August 7, 2016 [Page 4]

Internet-Draft oauth_mobile February 2016

 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
 | User Device |
 | |
 | +---------------------------+ | +-----------+
 | | | | (4) Authz Grant | |
 | | Client App |----------------------->| Authz |
 | | |<-----------------------| Server |
 | +---------------------------+ | (5) Access Token | |
 | | ^ | +-----------+
 | | | |
 | | | |
 | | (1) | (3) |
 | | Authz | Authz |
 | | Request | Grant |
 | | "https://" | "app:/" |
 | | | |
 | v | |
 | +---------------------------+ | +-----------+
 | | | | (2) User | |
 | | System Browser Tab | | authenticated | Identity |
 | | |<---------------------->| Provider |
 | +---------------------------+ | | |
 | | +-----------+
 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+

 Figure 1: Native App Authorization via External User-agent

 Figure 1 illustrates the interaction of the native app with the
 system browser to authorize the user via an external user-agent.

 1) The client app opens a system browser with the authorization
 request (e.g. https://idp.example.com/oauth2/auth...)

 2) Server authenticates the end-user, potentially chaining to another
 authentication system, and issues Authorization Code Grant on
 success

 3) Browser switches focus back to the client app using a URI with a
 custom scheme or claimed HTTPS URL, passing the code as a URI
 parameter.

 4) Client presents the OAuth 2.0 authorization code and PKCE
 [RFC7636] proof of possession verifier.

 5) Server issues the tokens requested.

https://datatracker.ietf.org/doc/html/rfc7636

Denniss & Bradley Expires August 7, 2016 [Page 5]

Internet-Draft oauth_mobile February 2016

2. Using Inter-app URI Communication for OAuth

 Just as URIs are used for OAuth 2.0 [RFC6749] on the web to initiate
 the authorization request and return the authorization response to
 the requesting website, URIs can be used by native apps to initiate
 the authorization request in the device's system browser and return
 the response to the requesting native app.

 By applying the same principles from the web to native apps, we gain
 similar benefits like the usability of a single sign-on session, and
 the security by a separate authentication context. It also reduces
 the implementation complexity by reusing the same flows as the web,
 and increases interoperability by relying on standards-based web
 flows that are not specific to a particular platform.

 It is RECOMMENDED that native apps use the URI-based communication
 functionality of the operating system to perform OAuth flows in an
 external user-agent, typically the system browser.

 For usability, it is RECOMMENDED that native apps perform OAuth using
 the system browser by presenting an in-app browser tab where
 possible. This affords the benefits of the system browser, while
 allowing the user to remain in the app.

 It is possible to create an external user-agent for OAuth that is a
 native app provided by the authorization server, as opposed to the
 system browser. This approach shares a lot of similarity with using
 the system browser as both use URIs for inter-app communication and
 is able to provide a secure, shared authentication session, and thus
 MAY be used for secure native OAuth, applying most of the techniques
 described here. However it is NOT RECOMMENDED due to the increased
 complexity and requirement for the user to have the AS app installed.
 While much of the advice and security considerations are applicable
 to such clients, they are out of scope for this specification.

3. Initiating the Authorization Request

 The authorization request is created as per OAuth 2.0 [RFC6749], and
 opened in the system browser. Where the operating system supports
 in-app browser tabs, those should be preferred over switching to the
 system browser, to improve usability.

 The function of the redirect URI for a native app authorization
 request is similar to that of a web-based authorization request.
 Rather than returning the authorization code to the OAuth client's
 server, it returns it to the native app. The various options for a
 redirect URI that will return the code to the native app are

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Denniss & Bradley Expires August 7, 2016 [Page 6]

Internet-Draft oauth_mobile February 2016

 documented in Section 4. Any redirect URI that allows the app to
 receive the URI and inspect its parameters is viable.

4. Receiving the Authorization Response

 There are three main approaches to redirection URIs for native apps:
 custom URI schemes, app-claimed HTTP URI schemes, and

http://localhost redirects.

4.1. App-declared Custom URI Scheme Redirection

 Most major mobile and desktop computing platforms support inter-app
 communication via URIs by allowing apps to register custom URI
 schemes. When the system browser or another app attempts to follow a
 URI with a custom scheme, the app that registered it is launched to
 handle the request. This document is only relevant on platforms that
 support this pattern.

 In particular, the custom URI scheme pattern is supported on the
 mobile platforms Android [Android.URIScheme], iOS [iOS.URIScheme],
 and Windows Phone [WindowsPhone.URIScheme]. Desktop operating
 systems Windows [Windows.URIScheme] and OS X [OSX.URIScheme] also
 support custom URI schemes.

4.1.1. Using Custom URI Schemes for Redirection

 To perform an OAuth 2.0 Authorization Request on a supported
 platform, the native app launches the system browser with a normal
 OAuth 2.0 Authorization Request, but provides a redirection URI that
 utilizes a custom URI scheme that is registered by the calling app.

 When the authentication server completes the request, it redirects to
 the client's redirection URI like it would any redirect URI, but as
 the redirection URI uses a custom scheme, this results in the OS
 launching the native app passing in the URI. The native app extracts
 the code from the query parameters from the URI just like a web
 client would, and exchanges the Authorization Code like a regular
 OAuth 2.0 client.

4.1.2. Custom URI Scheme Namespace Considerations

 When selecting which URI scheme to associate with the app, apps
 SHOULD pick a scheme that is globally unique, and which they can
 assert ownership over.

 To avoid clashing with existing schemes in use, using a scheme that
 follows the reverse domain name pattern applied to a domain under the
 app publishers control is RECOMMENDED. Such a scheme can be based on

http://localhost

Denniss & Bradley Expires August 7, 2016 [Page 7]

Internet-Draft oauth_mobile February 2016

 a domain they control, or the OAuth client identifier in cases where
 the authorization server issues client identifiers that are also
 valid DNS subdomains. The chosen scheme MUST NOT clash with any IANA
 registered scheme [IANA.URISchemes]. You SHOULD also ensure that no
 other app by the same publisher uses the same scheme.

 Schemes using reverse domain name notation are hardened against
 collision. They are unlikely to clash with an officially registered
 scheme [IANA.URISchemes] or unregistered de-facto scheme, as these
 generally don't include a period character, and are unlikely to match
 your domain name in any case. They are guaranteed not to clash with
 any OAuth client following these naming guidelines in full.

 Some platforms use globally unique bundle or package names that
 follow the reverse domain name notation pattern. In these cases, the
 app SHOULD register that bundle id as the custom scheme. If an app
 has a bundle id or package name that doesn't match a domain name
 under the control of the app, the app SHOULD NOT register that as a
 scheme, and instead create a URI scheme based off one of their domain
 names.

 For example, an app whose publisher owns the top level domain name
 "example.com" can register "com.example.app:/" as their custom
 scheme. An app whose authorization server issues client identifiers
 that are also valid domain names, for example
 "client1234.usercontent.idp.com", can use the reverse domain name
 notation of that domain as the scheme, i.e.
 "com.idp.usercontent.client1234:/". Each of these examples are URI
 schemes which are likely to be unique, and where the publisher can
 assert ownership.

 As a counter-example, using a simple custom scheme like "myapp:/" is
 not guaranteed to be unique and is NOT RECOMMENDED.

 In addition to uniqueness, basing the URI scheme off a name that is
 under the control of the app's publisher can help to prove ownership
 in the event of a dispute where two apps register the same custom
 scheme (such as if an app is acting maliciously). For example, if
 two apps registered "com.example.app:", the true owner of
 "example.com" could petition the app store operator to remove the
 counterfeit app. This petition is harder to prove if a generic URI
 scheme was chosen.

4.1.3. Registration of App Redirection URIs

 As recommended in Section 3.1.2.2 of OAuth 2.0 [RFC6749], the
 authorization server SHOULD require the client to pre-register the

https://datatracker.ietf.org/doc/html/rfc6749

Denniss & Bradley Expires August 7, 2016 [Page 8]

Internet-Draft oauth_mobile February 2016

 redirection URI. This remains true for app redirection URIs that use
 custom schemes.

 Additionally, authorization servers MAY request the inclusion of
 other platform-specific information, such as the app package or
 bundle name, or other information used to associate the app that may
 be useful for verifying the calling app's identity, on operating
 systems that support such functions.

 Authorizations servers SHOULD support the ability for native apps to
 register Redirection URIs that utilize custom URI schemes.
 Authorization servers SHOULD enforce the recommendation in

Section 4.1.2 that apps follow naming guidelines for URI schemes.

4.2. App-claimed HTTPS URI Redirection

 Some operating systems allow apps to claim HTTPS URLs of their
 domains. When the browser sees such a claimed URL, instead of the
 page being loaded in the browser, the native app is launched instead
 with the URL given as input.

 Where the operating environment provided app-claimed HTTPS URIs in a
 usable fashion, these URIs should be used as the OAuth redirect, as
 they allow the identity of the destination app to be guaranteed by
 the operating system.

 Apps on platforms that allow the user to disable this functionality,
 present it in a user-unfriendly way, or lack it altogether MUST
 fallback to using custom URI schemes.

 The authorization server MUST allow the registration of HTTPS
 redirect URIs for non-confidential native clients to support app-
 claimed HTTPS redirect URIs.

4.3. Localhost-based URI Redirection

 More applicable to desktop operating systems, some environments allow
 the app to create a local server and listen for redirect URIs that.
 This is an acceptable redirect URI choice for native apps on
 compatible platforms.

 Authorization servers SHOULD support redirect URIs on the localhost
 host, and HTTP scheme, that is redirect URIs beginning with

http://localhost (NB. in this case, HTTP is acceptable, as the
 request never leaves the device).

http://localhost

Denniss & Bradley Expires August 7, 2016 [Page 9]

Internet-Draft oauth_mobile February 2016

 When an app is registered with such a redirect, it SHOULD be able to
 specify any port in the authorization request, meaning that a request
 with http://localhost:*/* as the redirect should be considered valid.

5. Security Considerations

5.1. Embedded User-Agents

 Embedded user-agents, commonly implemented with web-views, are an
 alternative method for authorizing native apps. They are however
 unsafe for use by third-parties by definition. They involve the user
 signing in with their full login credentials, only to have them
 downscoped to less powerful OAuth credentials.

 Even when used by trusted first-party apps, embedded user-agents
 violate the principle of least privilege by obtaining more powerful
 credentials than they need, potentially increasing the attack
 surface.

 In typical web-view based implementations of embedded user-agents,
 the host application can: log every keystroke entered in the form to
 capture usernames and passwords; automatically submit forms and
 bypass user-consent; copy session cookies and use them to perform
 authenticated actions as the user.

 Encouraging users to enter credentials in an embedded web-view
 without the usual address bar and other identity features that
 browsers have makes it impossible for the user to know if they are
 signing in to the legitimate site, and even when they are, it trains
 them that it's OK to enter credentials without validating the site
 first.

 Aside from the security concerns, web-views do not share the
 authentication state with other apps or the system browser, requiring
 the user to login for every authorization request and leading to a
 poor user experience.

 Due to the above, use of embedded user-agents is NOT RECOMMENDED,
 except where a trusted first-party app acts as the external user-
 agent for other apps, or provides single sign-on for multiple first-
 party apps.

 Authorization servers SHOULD consider taking steps to detect and
 block logins via embedded user-agents that are not their own, where
 possible.

Denniss & Bradley Expires August 7, 2016 [Page 10]

Internet-Draft oauth_mobile February 2016

5.2. Protecting the Authorization Code

 A limitation of custom URI schemes is that multiple apps can
 typically register the same scheme, which makes it indeterminate as
 to which app will receive the Authorization Code Grant. This is not
 an issue for HTTPS redirection URIs (i.e. standard web URLs) due to
 the fact the HTTPS URI scheme is enforced by the authority (as
 defined by [RFC3986]), the domain name system, which does not allow
 multiple entities to own the same domain.

 If multiple apps register the same scheme, it is possible that the
 authorization code will be sent to the wrong app (generally the
 operating system makes no guarantee of which app will handle the URI
 when multiple register the same scheme). PKCE [RFC7636] details how
 this limitation can be used to execute a code interception attack
 (see Figure 1). This attack vector applies to public clients
 (clients that are unable to maintain a client secret) which is
 typical of most native apps.

 While Section 4.1.2 details ways that this can be mitigated through
 policy enforcement (through being able to report and have removed any
 offending apps), we can also protect the authorization code grant
 from being used in cases where it was intercepted.

 The Proof Key for Code Exchange by OAuth Public Clients (PKCE
 [RFC7636]) standard was created specifically to mitigate against this
 attack. It is a Proof of Possession extension to OAuth 2.0 that
 protects the code grant from being used if it is intercepted. It
 achieves this by having the client generate a secret verifier which
 it passes in the initial authorization request, and which it must
 present later when redeeming the authorization code grant. An app
 that intercepted the authorization code would not be in possession of
 this secret, rendering the code useless.

 Both the client and the Authorization Server MUST support PKCE
 [RFC7636] to use custom URI schemes, or localhost redirects.
 Authorization Servers SHOULD reject authorization requests using a
 custom scheme, or localhost as part of the redirection URI if the
 required PKCE parameters are not present, returning the error message
 as defined in Section 4.4.1 of PKCE [RFC7636]. It is RECOMMENDED to
 use PKCE [RFC7636] for app-claimed HTTPS redirect URIs, even though
 these are not generally subject to interception, to protect against
 attacks on inter-app communication.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636

Denniss & Bradley Expires August 7, 2016 [Page 11]

Internet-Draft oauth_mobile February 2016

5.3. Phishing

 While in-app browser tabs provide a secure authentication context, as
 the user initiates the flow from a native app, it is possible for
 that native app to completely fake an in-app browser tab.

 This can't be prevented directly - once the user is in the native
 app, that app is fully in control of what it can render, however
 there are several mitigating factors.

 Importantly, such an attack that uses a web-view to fake an in-app
 browser tab will always start with no authentication state. If all
 native apps use the techniques described in this best practice, users
 will not need to sign-in frequently and thus should be suspicious of
 any sign-in request when they should have already been signed-in.

 This is true even for authorization servers that require frequent or
 occasional re-authentication, as such servers can preserve some user
 identifiable information from the old request, like the email address
 or avatar. To help mitigate against phishing, it is RECOMMENDED to
 show the user some hint that they were previously logged in, as an
 attacking app would not be capable of doing this.

 Users who are particularly concerned about their security may also
 take the additional step of opening the request in the system browser
 from the in-app browser tab, and completing the authorization there,
 as most implementations of the in-app browser tab pattern offer such
 functionality. This is not expected to be common user behavior,
 however.

5.4. Limitations of Non-verifiable Clients

 As stated in Section 10.2 of RFC 6749, the authorization server
 SHOULD NOT process authorization requests automatically without user
 consent or interaction, except when the identity of the client can be
 assured. Measures such as claimed HTTPS redirects can be used by
 native apps to prove their identity to the authorization server, and
 some operating systems may offer alternative platform-specific
 identity features which may be used, as appropriate.

6. Other External User Agents

 This best practice recommends a particular type of external user-
 agent: the in-app browser tab. Other external user-agents patterns
 may also be viable for secure and usable OAuth. This document makes
 no comment on those patterns.

https://datatracker.ietf.org/doc/html/rfc6749#section-10.2

Denniss & Bradley Expires August 7, 2016 [Page 12]

Internet-Draft oauth_mobile February 2016

7. Client Authentication

 Secrets that are statically included as part of an app distributed to
 multiple users should not be treated as confidential secrets, as one
 user may inspect their copy and learn the secret of all users. For
 this reason it is NOT RECOMMENDED for authorization servers to
 require client authentication of native apps using a secret shared by
 multiple installs of the app, as this serves no value beyond client
 identification which is already provided by the client_id request
 parameter. If an authorization server requires a client secret for
 native apps, it MUST NOT assume that it is actually secret, unless
 some method is being used to dynamically provision a unique secret to
 each installation.

8. References

8.1. Normative References

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <http://www.rfc-editor.org/info/rfc7636>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

8.2. Informative References

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <http://www.rfc-editor.org/info/rfc6819>.

https://datatracker.ietf.org/doc/html/rfc6749
http://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc7636
http://www.rfc-editor.org/info/rfc7636
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6819
http://www.rfc-editor.org/info/rfc6819

Denniss & Bradley Expires August 7, 2016 [Page 13]

Internet-Draft oauth_mobile February 2016

 [iOS.URIScheme]
 "Inter-App Communication", February 2015, <https://develop
 er.apple.com/library/ios/documentation/iPhone/Conceptual/
 iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-
 AppCommunication.html>.

 [OSX.URIScheme]
 "Launch Services Concepts", February 2015, <https://develo
 per.apple.com/library/mac/documentation/Carbon/Conceptual/
 LaunchServicesConcepts/LSCConcepts/LSCConcepts.html#//appl
 e_ref/doc/uid/TP30000999-CH202-CIHFEEAD>.

 [Android.URIScheme]
 "Intents and Intent Filters", February 2015,
 <http://developer.android.com/guide/components/

intents-filters.html#ires>.

 [WindowsPhone.URIScheme]
 "Auto-launching apps using file and URI associations for
 Windows Phone 8", February 2015,
 <https://msdn.microsoft.com/en-us/library/windows/apps/
 jj206987(v=vs.105).aspx>.

 [Windows.URIScheme]
 "Registering an Application to a URI Scheme", February
 2015, <https://msdn.microsoft.com/en-us/library/ie/

aa767914%28v=vs.85%29.aspx>.

 [IANA.URISchemes]
 "Uniform Resource Identifier (URI) Schemes", February
 2015, <http://www.iana.org/assignments/uri-schemes/

uri-schemes.xhtml>.

 [ChromeCustomTab]
 "Chrome Custom Tabs", July 2015,
 <https://developer.chrome.com/multidevice/android/

customtabs>.

 [SFSafariViewController]
 "SafariServices Changes", July 2015, <https://developer.ap

ple.com/library/prerelease/ios/releasenotes/General/
iOS90APIDiffs/frameworks/SafariServices.html>.

 [Android.AppLinks]
 "App Links", July 2015,
 <https://developer.android.com/preview/features/app-

linking.html>.

https://develop
https://develo
http://developer.android.com/guide/components/intents-filters.html#ires
http://developer.android.com/guide/components/intents-filters.html#ires
https://msdn.microsoft.com/en-us/library/windows/apps/
https://msdn.microsoft.com/en-us/library/ie/aa767914%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/ie/aa767914%28v=vs.85%29.aspx
http://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
http://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://developer.chrome.com/multidevice/android/customtabs
https://developer.chrome.com/multidevice/android/customtabs
https://developer.apple.com/library/prerelease/ios/releasenotes/General/iOS90APIDiffs/frameworks/SafariServices.html
https://developer.apple.com/library/prerelease/ios/releasenotes/General/iOS90APIDiffs/frameworks/SafariServices.html
https://developer.apple.com/library/prerelease/ios/releasenotes/General/iOS90APIDiffs/frameworks/SafariServices.html
https://developer.android.com/preview/features/app-linking.html
https://developer.android.com/preview/features/app-linking.html

Denniss & Bradley Expires August 7, 2016 [Page 14]

Internet-Draft oauth_mobile February 2016

Appendix A. Operating System Specific Implementation Details

 Most of this document attempts to lay out best practices in an
 generic manner, referencing technology available on most operating
 systems. This non-normative section contains OS-specific
 implementation details that are accurate at the time of authorship.

 It is expected that this OS-specific information will change, but
 that the overall principles described in this document for using
 external user-agents will remain valid for longer.

A.1. iOS Implementation Details

 From iOS 9, apps can invoke the system browser without the user
 leaving the app through SFSafariViewController
 [SFSafariViewController], which implements the browser-view pattern.
 This class has all the properties of the system browser, and is
 considered an 'external user-agent', even though it is presented
 within the host app. Regardless of whether the system browser is
 opened, or SFSafariViewController, the return of the token goes
 through the same system.

A.2. Android Implementation Details

 Chrome 45 introduced the concept of Chrome Custom Tab
 [ChromeCustomTab], which follows the browser-view pattern and allows
 authentication without the user leaving the app.

 The return of the token can go through the custom URI scheme or
 claimed HTTPS URI (including those registered with the App Link
 [Android.AppLinks] system), or the navigation events can be observed
 by the host app. It is RECOMMENDED that the custom URI, or claimed
 HTTPS URI options be used for better portability, to allow the user
 to open the authorization request in the Chrome app, and to prevent
 accidental observation of intermediate tokens on URI parameters.

 At the time of writing, Android does allow apps to claim HTTPs links
 (App Links), but not in a way that is usable for OAuth, the native
 app is only opened if the intent is fired from outside the browser.

Appendix B. Acknowledgements

 The author would like to acknowledge the work of Marius Scurtescu,
 and Ben Wiley Sittler whose design for using custom URI schemes in
 native OAuth 2.0 clients formed the basis of Section 4.1.

 The following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

Denniss & Bradley Expires August 7, 2016 [Page 15]

Internet-Draft oauth_mobile February 2016

 Naveen Agarwal, John Bradley, Brian Campbell, Adam Dawes, Hannes
 Tschofenig, Ashish Jain, Paul Madsen, Breno de Medeiros, Eric Sachs,
 Nat Sakimura, Steve Wright, Erik Wahlstrom, Andy Zmolek.

Authors' Addresses

 William Denniss
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 USA

 Phone: +1 650-253-0000
 Email: wdenniss@google.com
 URI: http://google.com/

 John Bradley
 Ping Identity

 Phone: +1 202-630-5272
 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/

http://google.com/
http://www.thread-safe.com/

Denniss & Bradley Expires August 7, 2016 [Page 16]

