
OAuth Working Group W. Denniss
Internet-Draft Google
Intended status: Best Current Practice J. Bradley
Expires: April 15, 2017 Ping Identity
 October 12, 2016

OAuth 2.0 for Native Apps
draft-ietf-oauth-native-apps-04

Abstract

 OAuth 2.0 authorization requests from native apps should only be made
 through external user-agents, primarily the user's browser. This
 specification details the security and usability reasons why this is
 the case, and how native apps and authorization servers can implement
 this best practice.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 15, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Denniss & Bradley Expires April 15, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft oauth_mobile October 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Notational Conventions 3
3. Terminology . 3
4. Overview . 4
4.1. Authorization Flow for Native Apps Using the Browser . . 5

5. Using Inter-app URI Communication for OAuth 6
6. Initiating the Authorization Request from a Native App . . . 6
7. Receiving the Authorization Response in a Native App 7
7.1. App-declared Custom URI Scheme Redirection 7
7.2. App-claimed HTTPS URI Redirection 8
7.3. Loopback URI Redirection 8

8. Security Considerations 9
8.1. Embedded User-Agents 9
8.2. Protecting the Authorization Code 10
8.3. Loopback Redirect Considerations 11
8.4. Registration of App Redirection URIs 11
8.5. OAuth Implicit Flow 11
8.6. Phishability of In-App Browser Tabs 12
8.7. Limitations of Non-verifiable Clients 12
8.8. Non-Browser External User Agents 12
8.9. Client Authentication 13
8.10. Cross-App Request Forgery Protections 13
8.11. Authorization Server Mix-Up Mitigation 13

9. IANA Considerations . 14
10. References . 14
10.1. Normative References 14
10.2. Informative References 14

Appendix A. Server Support Checklist 15
Appendix B. Operating System Specific Implementation Details . . 15
B.1. iOS Implementation Details 16
B.2. Android Implementation Details 16
B.3. Windows Implementation Details 16
B.4. macOS Implementation Details 17
B.5. Linux Implementation Details 17

Appendix C. Acknowledgements 17
 Authors' Addresses . 18

1. Introduction

 The OAuth 2.0 [RFC6749] authorization framework documents two
 approaches in Section 9 for native apps to interact with the
 authorization endpoint: an embedded user-agent, or an external user-
 agent.

https://datatracker.ietf.org/doc/html/rfc6749

Denniss & Bradley Expires April 15, 2017 [Page 2]

Internet-Draft oauth_mobile October 2016

 This best current practice recommends that only external user-agents
 like the browser are used for OAuth by native apps. It documents how
 native apps can implement authorization flows using the browser as
 the preferred external user-agent, and the requirements for
 authorization servers to support such usage.

 This practice is also known as the AppAuth pattern, in reference to
 open source libraries that implement it.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in Key
 words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
 these words are used without being spelled in uppercase then they are
 to be interpreted with their normal natural language meanings.

3. Terminology

 In addition to the terms defined in referenced specifications, this
 document uses the following terms:

 "native app" An application that is installed by the user to their
 device, as distinct from a web app that runs in the browser
 context only. Apps implemented using web-based technology but
 distributed as a native app, so-called hybrid apps, are considered
 equivalent to native apps for the purpose of this specification.

 "OAuth" In this document, OAuth refers to OAuth 2.0 [RFC6749].

 "app" Shorthand for "native app".

 "app store" An ecommerce store where users can download and purchase
 apps.

 "authz" Abbreviation of "authorization".

 "browser" The operating system's default browser, pre-installed as
 part of the operating system, or installed and set as default by
 the user.

 "browser tab" An open page of the browser. Browser typically have
 multiple "tabs" representing various open pages.

 "in-app browser tab" A full page browser with limited navigation
 capabilities that is displayed inside a host app, but retains the
 full security properties and authentication state of the browser.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749

Denniss & Bradley Expires April 15, 2017 [Page 3]

Internet-Draft oauth_mobile October 2016

 Has different platform-specific product names, such as
 SFSafariViewController on iOS, and Chrome Custom Tab on Android.

 "inter-app communication" Communication between two apps on a
 device.

 "claimed HTTPS URL" Some platforms allow apps to claim a HTTPS URL
 after proving ownership of the domain name. URLs claimed in such
 a way are then opened in the app instead of the browser.

 "custom URI scheme" A URI scheme (as defined by [RFC3986]) that the
 app creates and registers with the OS (and is not a standard URI
 scheme like "https:" or "tel:"). Requests to such a scheme
 results in the app which registered it being launched by the OS.

 "web-view" A web browser UI component that can be embedded in apps
 to render web pages, used to create embedded user-agents.

 "reverse domain name notation" A naming convention based on the
 domain name system, but where where the domain components are
 reversed, for example "app.example.com" becomes "com.example.app".

4. Overview

 The best current practice for authorizing users in native apps is to
 perform the OAuth authorization request in a browser (an external
 user-agent), rather than web-view (an embedded user-agent).

 Previously it was common for native apps to use web-views for OAuth
 authorization requests. That approach has many drawbacks, typically
 including the host app being able to copy user credentials and
 cookies, and the user needing to authenticate from scratch in each
 app. See Section 8.1 for a deeper analysis of using embedded user-
 agents for OAuth.

 Native app authorization requests that use the browser are more
 secure and can take advantage of the user's authentication state.
 Being able to use the existing authentication session in the browser
 enables single sign-on, as users don't need to authenticate to the
 authorization server each time they use a new app (unless required by
 authorization server policy).

 Supporting authorization flows between a native app and the browser
 is possible without changing the OAuth protocol itself, as the
 authorization request and response are already defined in terms of
 URIs, which emcompasses URIs that can be used for inter-process
 communication. Some OAuth server implementations that assume all
 clients are confidential web-clients will need to add an

https://datatracker.ietf.org/doc/html/rfc3986

Denniss & Bradley Expires April 15, 2017 [Page 4]

Internet-Draft oauth_mobile October 2016

 understanding of native app OAuth clients and the types of redirect
 URIs they use to support this best practice.

4.1. Authorization Flow for Native Apps Using the Browser

 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
 | User Device |
 | |
 | +---------------------------+ | +-----------+
			(5) Authz Code	
	Client App	----------------------->	Token	
		<-----------------------	Endpoint	
+---------------------------+	(6) Access Token,			
	^	Refresh Token +-----------+		
	(1)	(4)		
	Authz	Authz		
	Request	Code		
v				
+---------------------------+	+---------------+			
			(2) Authz Request	
	Browser	--------------------->	Authorization	
		<---------------------	Endpoint	
+---------------------------+	(3) Authz Code			
	+---------------+			
 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+

 Figure 1: Native App Authorization via External User-agent

 Figure 1 illustrates the interaction of the native app with the
 system browser to authorize the user via an external user-agent.

 1) The client app opens a browser tab with the authorization request.

 2) Authorization endpoint receives the authorization request,
 authenticates the user and obtains authorization. Authenticating
 the user may involve chaining to other authentication systems.

 3) Authorization server issues an authorization code to the redirect
 URI.

 4) Client receives the authorization code from the redirect URI.

 5) Client app presents the authorization code at the token endpoint.

Denniss & Bradley Expires April 15, 2017 [Page 5]

Internet-Draft oauth_mobile October 2016

 6) Token endpoint validates the authorization code and issues the
 tokens requested.

5. Using Inter-app URI Communication for OAuth

 Just as URIs are used for OAuth 2.0 [RFC6749] on the web to initiate
 the authorization request and return the authorization response to
 the requesting website, URIs can be used by native apps to initiate
 the authorization request in the device's browser and return the
 response to the requesting native app.

 By applying the same principles from the web to native apps, we gain
 similar benefits like the usability of a single sign-on session, and
 the security of a separate authentication context. It also reduces
 the implementation complexity by reusing the same flows as the web,
 and increases interoperability by relying on standards-based web
 flows that are not specific to a particular platform.

 Native apps MUST use an external user-agent to perform OAuth
 authentication requests. This is achieved by opening the
 authorization request in the browser (detailed in Section 6), and
 using a redirect URI that will return the authorization response back
 to the native app, as defined in Section 7.

 This best practice focuses on the browser as the RECOMMENDED external
 user-agent for native apps. Other external user-agents, such as a
 native app provided by the authorization server may meet the criteria
 set out in this best practice, including using the same redirection
 URI properties, but their use is out of scope for this specification.
 options for inter-app communication, offering similar security

6. Initiating the Authorization Request from a Native App

 The authorization request is created as per OAuth 2.0 [RFC6749], and
 opened in the user's browser using platform-specific APIs for that
 purpose.

 The function of the redirect URI for a native app authorization
 request is similar to that of a web-based authorization request.
 Rather than returning the authorization response to the OAuth
 client's server, the redirect URI used by a native app returns the
 response to the app. The various options for a redirect URI that
 will return the code to the native app are documented in Section 7.
 Any redirect URI that allows the app to receive the URI and inspect
 its parameters is viable.

 Some platforms support a browser feature known as in-app browser
 tabs, where an app can present a tab of the browser within the app

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Denniss & Bradley Expires April 15, 2017 [Page 6]

Internet-Draft oauth_mobile October 2016

 context without switching apps, but still retain key benefits of the
 browser such as a shared authentication state and security context.
 On platforms where they are supported, it is RECOMMENDED for
 usability reasons that apps use in-app browser tabs for the
 Authorization Request.

7. Receiving the Authorization Response in a Native App

 There are several redirect URI options available to native apps for
 receiving the authorization response from the browser, the
 availability and user experience of which varies by platform.

 To fully support this best practice, authorization servers MUST
 support the following three redirect URI options. Native apps MAY
 use whichever redirect option suits their needs best, taking into
 account platform specific implementation details.

7.1. App-declared Custom URI Scheme Redirection

 Many mobile and desktop computing platforms support inter-app
 communication via URIs by allowing apps to register custom URI
 schemes, like "com.example.app:". When the browser or another app
 attempts to load a URI with a custom scheme, the app that registered
 it is launched to handle the request.

 To perform an OAuth 2.0 Authorization Request on a supported
 platform, the native app launches the browser with a normal OAuth 2.0
 Authorization Request, but provides a redirection URI that utilizes a
 custom URI scheme registered with the operating system by the calling
 app.

 When the authentication server completes the request, it redirects to
 the client's redirection URI like it would any redirect URI, but as
 the redirection URI uses a custom scheme, this results in the OS
 launching the native app passing in the URI. The native app then
 processes the authorization response like any OAuth client.

7.1.1. Custom URI Scheme Namespace Considerations

 When choosing a URI scheme to associate with the app, apps MUST use a
 URI scheme based on a domain name under their control, expressed in
 reverse order, as recommended by Section 3.8 of [RFC7595] for
 private-use URI schemes.

 For example, an app that controls the domain name "app.example.com"
 can use "com.example.app:/" as their custom scheme. Some
 authorization servers assign client identifiers based on domain
 names, for example "client1234.usercontent.example.net", which can

https://datatracker.ietf.org/doc/html/rfc7595#section-3.8

Denniss & Bradley Expires April 15, 2017 [Page 7]

Internet-Draft oauth_mobile October 2016

 also be used as the domain name for the custom scheme, when reversed
 in the same manner, for example "net.example.usercontent.client1234".

 URI schemes not based on a domain name (for example "myapp:/") MUST
 NOT be used, as they are not collision resistant, and don't comply
 with Section 3.8 of [RFC7595].

 Care must be taken when there are multiple apps by the same publisher
 that each URI scheme is unique within that group. On platforms that
 use app identifiers that are also based on reverse order domain
 names, those can be re-used as the custom URI scheme for the OAuth
 redirect.

 In addition to the collision resistant properties, basing the URI
 scheme off a domain name that is under the control of the app can
 help to prove ownership in the event of a dispute where two apps
 claim the same custom scheme (such as if an app is acting
 maliciously). For example, if two apps claimed "com.example.app:",
 the owner of "example.com" could petition the app store operator to
 remove the counterfeit app. This petition is harder to prove if a
 generic URI scheme was used.

7.2. App-claimed HTTPS URI Redirection

 Some operating systems allow apps to claim HTTPS URLs in their
 domains. When the browser encounters a claimed URL, instead of the
 page being loaded in the browser, the native app is launched instead
 with the URL supplied as input.

 App-claimed HTTPS redirect URIs have some advantages in that the
 identity of the destination app is guaranteed by the operating
 system. Due to this reason, they SHOULD be used over the other
 redirect choices for native apps where possible.

 App-claimed HTTPS redirect URIs function exactly as normal HTTPS
 redirects from the perspective of the authorization server, though it
 is RECOMMENDED that the authorization server is able to distinguish
 between public native app clients that use app-claimed HTTPS redirect
 URIs and confidential web clients. A flag in the client registration
 information that indicates a public native app client is one such
 method for distinguishing client types.

7.3. Loopback URI Redirection

 Desktop operating systems allow native apps to listen on a local port
 for HTTP redirects. This can be used by native apps to receive OAuth
 authorization responses on compatible platforms.

https://datatracker.ietf.org/doc/html/rfc7595#section-3.8

Denniss & Bradley Expires April 15, 2017 [Page 8]

Internet-Draft oauth_mobile October 2016

 Loopback redirect URIs take the form of the loopback IP, any port
 (dynamically provided by the client), and a path component.
 Specifically: "http://127.0.0.1:{port}/{path}", and
 "http://[::1]:{port}/{path}".

 For loopback IP redirect URIs, the authorization server MUST allow
 any port to be specified at the time of the request, to accommodate
 clients that obtain an available port from the operating system at
 the time of the request. Other than that, the redirect is be treated
 like any other.

8. Security Considerations

8.1. Embedded User-Agents

 Embedded user-agents, commonly implemented with web-views, are an
 alternative method for authorizing native apps. They are however
 unsafe for use by third-parties by definition. They involve the user
 signing in with their full login credentials, only to have them
 downscoped to less powerful OAuth credentials.

 Even when used by trusted first-party apps, embedded user-agents
 violate the principle of least privilege by obtaining more powerful
 credentials than they need, potentially increasing the attack
 surface.

 In typical web-view based implementations of embedded user-agents,
 the host application can: log every keystroke entered in the form to
 capture usernames and passwords; automatically submit forms and
 bypass user-consent; copy session cookies and use them to perform
 authenticated actions as the user.

 Encouraging users to enter credentials in an embedded web-view
 without the usual address bar and visible certificate validation
 features that browsers have makes it impossible for the user to know
 if they are signing in to the legitimate site, and even when they
 are, it trains them that it's OK to enter credentials without
 validating the site first.

 Aside from the security concerns, web-views do not share the
 authentication state with other apps or the browser, requiring the
 user to login for every authorization request and leading to a poor
 user experience.

 Native apps MUST NOT use embedded user-agents for OAuth to third-
 parties.

Denniss & Bradley Expires April 15, 2017 [Page 9]

Internet-Draft oauth_mobile October 2016

 Authorization servers MAY take steps to detect and block
 authorization requests in third-party embedded user-agents.

8.2. Protecting the Authorization Code

 The redirect URI options documented in Section 7 share the benefit
 that only a native app on the same device can receive the
 authorization code, however code interception by a native app other
 than the intended recipient may be possible.

 A limitation of using custom URI schemes for redirect URIs is that
 multiple apps can typically register the same scheme, which makes it
 indeterminate as to which app will receive the Authorization Code
 Grant. This is not an issue for HTTPS redirection URIs (i.e.
 standard web URLs) due to the fact the HTTPS URI scheme is enforced
 by the authority (as defined by [RFC3986]), the domain name system,
 which does not allow multiple entities to own the same domain.

 If multiple apps register the same scheme, it is possible that the
 authorization code will be sent to the wrong app (generally the
 operating system makes no guarantee of which app will handle the URI
 when multiple register the same scheme). PKCE [RFC7636] details how
 this limitation can be used to execute a code interception attack
 (see Figure 1). This attack vector applies to public clients
 (clients that are unable to maintain a client secret) which is
 typical of most native apps.

 While Section 7.1.1 details ways that this can be mitigated through
 policy enforcement (through being able to report and have removed any
 offending apps), we can also protect the authorization code grant
 from being used in cases where it was intercepted.

 The Proof Key for Code Exchange by OAuth Public Clients (PKCE
 [RFC7636]) standard was created specifically to mitigate against this
 attack. It is a Proof of Possession extension to OAuth 2.0 that
 protects the code grant from being used if it is intercepted. It
 achieves this by having the client generate a secret verifier which
 it passes in the initial authorization request, and which it must
 present later when redeeming the authorization code grant. An app
 that intercepted the authorization code would not be in possession of
 this secret, rendering the code useless.

 Both the client and the Authorization Server MUST support PKCE
 [RFC7636] to use custom URI schemes, or loopback IP redirects.
 Authorization Servers SHOULD reject authorization requests using a
 custom scheme, or loopback IP as part of the redirection URI if the
 required PKCE parameters are not present, returning the error message
 as defined in Section 4.4.1 of PKCE [RFC7636]. It is RECOMMENDED to

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636

Denniss & Bradley Expires April 15, 2017 [Page 10]

Internet-Draft oauth_mobile October 2016

 use PKCE [RFC7636] for app-claimed HTTPS redirect URIs, even though
 these are not generally subject to interception, to protect against
 attacks on inter-app communication.

8.3. Loopback Redirect Considerations

 Loopback interface redirect URIs use the "http" scheme (i.e. without
 TLS). This is acceptable for loopback interface redirect URIs as the
 HTTP request never leaves the device.

 Clients should open the loopback port only when starting the
 authorization request, and close it once the response is returned.

 While redirect URIs using localhost (i.e. "http://localhost:{port}/"
 function similarly to loopback IP redirects described in Section 7.3,
 the use of "localhost" is NOT RECOMMENDED. Opening a port on the
 loopback interface is more secure as only apps on the local device
 can connect to it. It is also less susceptible to misconfigured
 routing, and interference by client side firewalls.

8.4. Registration of App Redirection URIs

 As recommended in Section 3.1.2.2 of OAuth 2.0 [RFC6749], the
 authorization server SHOULD require the client to pre-register the
 complete redirection URI. This applies and is RECOMMENDED for all
 redirection URIs used by native apps.

 For Custom URI scheme based redirects, authorization servers SHOULD
 enforce the requirement in Section 7.1.1 that clients use reverse
 domain name based schemes.

 Authorization servers MAY request the inclusion of other platform-
 specific information, such as the app package or bundle name, or
 other information used to associate the app that may be useful for
 verifying the calling app's identity, on operating systems that
 support such functions.

8.5. OAuth Implicit Flow

 The OAuth 2.0 Implicit Flow as defined in Section 4.2 of OAuth 2.0
 [RFC6749] generally works with the practice of performing the
 authorization request in the browser, and receiving the authorization
 response via URI-based inter-app communication. However, as the
 Implicit Flow cannot be protected by PKCE (which is a recommended in

Section 7.1.1), the use of the Implicit Flow with native apps is NOT
 RECOMMENDED.

https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Denniss & Bradley Expires April 15, 2017 [Page 11]

Internet-Draft oauth_mobile October 2016

 Tokens granted via the implicit flow also cannot be refreshed without
 user interaction making the code flow, with refresh tokens the more
 practical option for native app authorizations that require
 refreshing.

8.6. Phishability of In-App Browser Tabs

 While in-app browser tabs provide a secure authentication context, as
 the user initiates the flow from a native app, it is possible for
 that native app to completely fake an in-app browser tab.

 This can't be prevented directly - once the user is in the native
 app, that app is fully in control of what it can render, however
 there are several mitigating factors.

 Importantly, such an attack that uses a web-view to fake an in-app
 browser tab will always start with no authentication state. If all
 native apps use the techniques described in this best practice, users
 will not need to sign-in frequently and thus should be suspicious of
 any sign-in request when they should have already been signed-in.

 This is the case even for authorization servers that require
 occasional or frequent re-authentication, as such servers can
 preserve some user identifiable information from the old session,
 like the email address or profile picture and display that on the re-
 authentication.

 Users who are particularly concerned about their security may also
 take the additional step of opening the request in the browser from
 the in-app browser tab, and completing the authorization there, as
 most implementations of the in-app browser tab pattern offer such
 functionality.

8.7. Limitations of Non-verifiable Clients

 As stated in Section 10.2 of OAuth 2.0 [RFC6749], the authorization
 server SHOULD NOT process authorization requests automatically
 without user consent or interaction, except when the identity of the
 client can be assured. Measures such as claimed HTTPS redirects can
 be used by native apps to prove their identity to the authorization
 server, and some operating systems may offer alternative platform-
 specific identity features which may be used, as appropriate.

8.8. Non-Browser External User Agents

 This best practice recommends a particular type of external user-
 agent, the user's browser. Other external user-agents patterns may

https://datatracker.ietf.org/doc/html/rfc6749

Denniss & Bradley Expires April 15, 2017 [Page 12]

Internet-Draft oauth_mobile October 2016

 also be viable for secure and usable OAuth. This document makes no
 comment on those patterns.

8.9. Client Authentication

 Secrets that are statically included as part of an app distributed to
 multiple users should not be treated as confidential secrets, as one
 user may inspect their copy and learn the shared secret. For this
 reason, and those stated in Section 5.3.1 of [RFC6819], it is NOT
 RECOMMENDED for authorization servers to require client
 authentication of native apps using a shared secret, as this serves
 little value beyond client identification which is already provided
 by the "client_id" request parameter.

 Authorization servers that still require a shared secret for native
 app clients MUST treat the client as a public client, and not treat
 the secret as proof of the client's identity. In those cases, it is
 NOT RECOMMENDED to automatically issue tokens on the basis that the
 user has previously granted access to the same client, as there is no
 guarantee that the client is not counterfeit.

8.10. Cross-App Request Forgery Protections

Section 5.3.5 of [RFC6819] recommends using the 'state' parameter to
 link client requests and responses to prevent CSRF attacks.

 It is similarly RECOMMENDED for native apps to include a high entropy
 secure random number in the 'state' parameter of the authorization
 request, and reject any incoming authorization responses without a
 state value that matches a pending outgoing authorization request.

8.11. Authorization Server Mix-Up Mitigation

 To protect against a compromised or malicious authorization server
 attacking another authorization server used by the same app, it is
 RECOMMENDED that a unique redirect URI is used for each different
 authorization server used by the app (for example, by varying the
 path component), and that authorization responses are rejected if the
 redirect URI they were received on doesn't match the redirect URI in
 a pending outgoing authorization request.

 Authorization servers SHOULD allow the registration of a specific
 redirect URI, including path components, and reject authorization
 requests that specify a redirect URI that doesn't exactly match the
 one that was registered.

https://datatracker.ietf.org/doc/html/rfc6819#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc6819#section-5.3.5

Denniss & Bradley Expires April 15, 2017 [Page 13]

Internet-Draft oauth_mobile October 2016

9. IANA Considerations

 [RFC Editor: please do not remove this section.]

Section 7.1 specifies how private-use URI schemes are used for inter-
 app communication in OAuth protocol flows. This document requires in

Section 7.1.1 that such schemes are based on domain names owned or
 assigned to the app, as recommended in Section 3.8 of [RFC7595]. Per

section 6 of [RFC7595], registration of domain based URI schemes with
 IANA is not required. Therefore, this document has no IANA actions.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC7595] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
 and Registration Procedures for URI Schemes", BCP 35,

RFC 7595, DOI 10.17487/RFC7595, June 2015,
 <http://www.rfc-editor.org/info/rfc7595>.

 [RFC7636] Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
 for Code Exchange by OAuth Public Clients", RFC 7636,
 DOI 10.17487/RFC7636, September 2015,
 <http://www.rfc-editor.org/info/rfc7636>.

10.2. Informative References

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <http://www.rfc-editor.org/info/rfc6819>.

https://datatracker.ietf.org/doc/html/rfc7595#section-3.8
https://datatracker.ietf.org/doc/html/rfc7595#section-6
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6749
http://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/bcp35
https://datatracker.ietf.org/doc/html/rfc7595
http://www.rfc-editor.org/info/rfc7595
https://datatracker.ietf.org/doc/html/rfc7636
http://www.rfc-editor.org/info/rfc7636
https://datatracker.ietf.org/doc/html/rfc6819
http://www.rfc-editor.org/info/rfc6819

Denniss & Bradley Expires April 15, 2017 [Page 14]

Internet-Draft oauth_mobile October 2016

 [AppAuth.iOSmacOS]
 Wright, S., Denniss, W., and others, "AppAuth for iOS and
 macOS", February 2016, <https://github.com/openid/AppAuth-

iOS>.

 [AppAuth.Android]
 McGinniss, I., Denniss, W., and others, "AppAuth for
 Android", February 2016, <https://github.com/openid/

AppAuth-Android>.

 [SamplesForWindows]
 Denniss, W., "OAuth for Apps: Samples for Windows", July
 2016, <https://github.com/googlesamples/oauth-apps-for-

windows>.

Appendix A. Server Support Checklist

 OAuth servers that support native apps should:

 1. Support custom URI-scheme redirect URIs. This is required to
 support mobile operating systems. See Section 7.1.

 2. Support HTTPS redirect URIs for use with public native app
 clients. This is used by apps on advanced mobile operating
 systems that allow app-claimed HTTPS URIs. See Section 7.2.

 3. Support loopback IP redirect URIs. This is required to support
 desktop operating systems. See Section 7.3.

 4. Not assume native app clients can keep a secret. If secrets are
 distributed to multiple installs of the same native app, they
 should not be treated as confidential. See Section 8.9.

 5. Support PKCE. Recommended to protect authorization code grants
 transmitted to public clients over inter-app communication
 channels. See Section 8.2

Appendix B. Operating System Specific Implementation Details

 Most of this document defines best practices in an generic manner,
 referencing techniques commonly available in a variety of
 environments. This non-normative section contains OS-specific
 implementation details for the generic pattern, that are considered
 accurate at the time of publishing, but may change over time.

 It is expected that this OS-specific information will change, but
 that the overall principles described in this document for using
 external user-agents will remain valid.

https://github.com/openid/AppAuth-iOS
https://github.com/openid/AppAuth-iOS
https://github.com/openid/AppAuth-Android
https://github.com/openid/AppAuth-Android
https://github.com/googlesamples/oauth-apps-for-windows
https://github.com/googlesamples/oauth-apps-for-windows

Denniss & Bradley Expires April 15, 2017 [Page 15]

Internet-Draft oauth_mobile October 2016

B.1. iOS Implementation Details

 Apps can initiate an authorization request in the browser without the
 user leaving the app, through the SFSafariViewController class which
 implements the browser-view pattern. Safari can be used to handle
 requests on old versions of iOS without SFSafariViewController.

 To receive the authorization response, both custom URI scheme
 redirects and claimed HTTPS links (known as Universal Links) are
 viable choices, and function the same whether the request is loaded
 in SFSafariViewController or the Safari app. Apps can claim Custom
 URI schemes with the "CFBundleURLTypes" key in the application's
 property list file "Info.plist", and HTTPS links using the Universal
 Links feature with an entitlement file and an association file on the
 domain.

 Universal Links are the preferred choice on iOS 9 and above due to
 the ownership proof that is provided by the operating system.

 A complete open source sample is included in the AppAuth for iOS and
 macOS [AppAuth.iOSmacOS] library.

B.2. Android Implementation Details

 Apps can initiate an authorization request in the browser without the
 user leaving the app, through the Android Custom Tab feature which
 implements the browser-view pattern. The user's default browser can
 be used to handle requests when no browser supports Custom Tabs.

 Android browser vendors should support the Custom Tabs protocol (by
 providing an implementation of the "CustomTabsService" class), to
 provide the in-app browser tab user experience optimization to their
 users. Chrome is one such browser that implements Custom Tabs.

 To receive the authorization response, custom URI schemes are broadly
 supported through Android Implicit Intends. Claimed HTTPS redirect
 URIs through Android App Links are available on Android 6.0 and
 above. Both types of redirect URIs are registered in the
 application's manifest.

 A complete open source sample is included in the AppAuth for Android
 [AppAuth.Android] library.

B.3. Windows Implementation Details

 Apps can initiate an authorization request in the user's default
 browser using platform APIs for this purpose.

Denniss & Bradley Expires April 15, 2017 [Page 16]

Internet-Draft oauth_mobile October 2016

 The custom URI scheme redirect is a good choice for Universal Windows
 Platform (UWP) apps as it will open the app returning the user right
 back where they were. Known on UWP as URI Activation, the scheme is
 limited to 39 characters, but may include the "." character, making
 short reverse domain name based schemes (as recommended in

Section 7.1.1) possible.

 The loopback redirect is the common choice for traditional desktop
 apps, listening on a loopback interface port is permitted by default
 Windows firewall rules.

 A complete open source sample is available [SamplesForWindows].

B.4. macOS Implementation Details

 Apps can initiate an authorization request in the user's default
 browser using platform APIs for this purpose.

 To receive the authorization response, custom URI schemes are are a
 good redirect URI choice on macOS, as the user is returned right back
 to the app they launched the request from. These are registered in
 the application's bundle information property list using the
 "CFBundleURLSchemes" key. Loopback IP redirects are another viable
 option, and listening on the loopback interface is allowed by default
 firewall rules.

 A complete open source sample is included in the AppAuth for iOS and
 macOS [AppAuth.iOSmacOS] library.

B.5. Linux Implementation Details

 Opening the Authorization Request in the user's default browser
 requires a distro-specific command, "xdg-open" is one such tool.

 The loopback redirect is the recommended redirect choice for desktop
 apps on Linux to receive the authorization response.

Appendix C. Acknowledgements

 The author would like to acknowledge the work of Marius Scurtescu,
 and Ben Wiley Sittler whose design for using custom URI schemes in
 native OAuth 2.0 clients formed the basis of Section 7.1.

 The following individuals contributed ideas, feedback, and wording
 that shaped and formed the final specification:

 Andy Zmolek, Steven E Wright, Brian Campbell, Paul Madsen, Nat
 Sakimura, Iain McGinniss, Rahul Ravikumar, Eric Sachs, Breno de

Denniss & Bradley Expires April 15, 2017 [Page 17]

Internet-Draft oauth_mobile October 2016

 Medeiros, Hannes Tschofenig, Ashish Jain, Erik Wahlstrom, Bill
 Fisher, Sudhi Umarji, Michael B. Jones, Vittorio Bertocci, Paul
 Grassi, David Waite, Naveen Agarwal, and Adam Dawes.

Authors' Addresses

 William Denniss
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 USA

 Email: wdenniss@google.com
 URI: http://wdenniss.com/appauth

 John Bradley
 Ping Identity

 Phone: +1 202-630-5272
 Email: ve7jtb@ve7jtb.com
 URI: http://www.thread-safe.com/p/appauth.html

http://wdenniss.com/appauth
http://www.thread-safe.com/p/appauth.html

Denniss & Bradley Expires April 15, 2017 [Page 18]

