
Web Authorization Protocol                                T. Lodderstedt
Internet-Draft                                                   yes.com
Intended status: Standards Track                             B. Campbell
Expires: July 2, 2020                                      Ping Identity
                                                             N. Sakimura
                                               Nomura Research Institute
                                                                D. Tonge
                                           Moneyhub Financial Technology
                                                               F. Skokan
                                                                   Auth0
                                                       December 30, 2019

OAuth 2.0 Pushed Authorization Requests
draft-ietf-oauth-par-00

Abstract

   This document defines the pushed authorization request endpoint,
   which allows clients to push the payload of an OAuth 2.0
   authorization request to the authorization server via a direct
   request and provides them with a request URI that is used as
   reference to the data in a subsequent authorization request.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on July 2, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents

Lodderstedt, et al.       Expires July 2, 2020                  [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78


Internet-Draft                  oauth-par                  December 2019

   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
1.1.  Conventions and Terminology . . . . . . . . . . . . . . .   4

2.  Pushed Authorization Request Endpoint . . . . . . . . . . . .   5
2.1.  Request . . . . . . . . . . . . . . . . . . . . . . . . .   5
2.2.  Successful Response . . . . . . . . . . . . . . . . . . .   7
2.3.  Error Response  . . . . . . . . . . . . . . . . . . . . .   8

3.  "request" Parameter . . . . . . . . . . . . . . . . . . . . .   9
3.1.  Error responses for Request Object  . . . . . . . . . . .  10
3.1.1.  Authentication Required . . . . . . . . . . . . . . .  10

4.  Authorization Request . . . . . . . . . . . . . . . . . . . .  10
5.  Authorization Server Metadata . . . . . . . . . . . . . . . .  10
6.  Security Considerations . . . . . . . . . . . . . . . . . . .  11
6.1.  Request URI Guessing  . . . . . . . . . . . . . . . . . .  11
6.2.  Open Redirection  . . . . . . . . . . . . . . . . . . . .  11
6.3.  Request Object Replay . . . . . . . . . . . . . . . . . .  11
6.4.  Client Policy Change  . . . . . . . . . . . . . . . . . .  11

7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  11
8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
9.1.  Normative References  . . . . . . . . . . . . . . . . . .  12
9.2.  Informative References  . . . . . . . . . . . . . . . . .  12
9.3.  URIs  . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Appendix A.  Document History . . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  14

1.  Introduction

   In OAuth [RFC6749] authorization request parameters are typically
   sent as URI query parameters via redirection in the user-agent.  This
   is simple but also yields challenges:

   o  There is no cryptographic integrity and authenticity protection,
      i.e. the request can be modified on its way through the user-agent
      and attackers can impersonate legitimate clients.

   o  There is no mechanism to ensure confidentiality of the request
      parameters.

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6749


Lodderstedt, et al.       Expires July 2, 2020                  [Page 2]



Internet-Draft                  oauth-par                  December 2019

   o  Authorization request URLs can become quite large, especially in
      scenarios requiring fine-grained authorization data.

   JWT Secured Authorization Request (JAR) [I-D.ietf-oauth-jwsreq]
   provides solutions for those challenges by allowing OAuth clients to
   wrap authorization request parameters in a signed, and optionally
   encrypted, JSON Web Token (JWT), the so-called "Request Object".

   In order to cope with the size restrictions, JAR introduces the
   "request_uri" parameter that allows clients to send a reference to a
   request object instead of the request object itself.

   This document complements JAR by providing an interoperable way to
   push the payload of a request object directly to the AS in exchange
   for a "request_uri".

   It also allows for clients to push the form encoded authorization
   request parameters to the AS in order to exchange them for a request
   URI that the client can use in a subsequent authorization request.

   For example, the following authorization request,

     GET /authorize?response_type=code
      &client_id=s6BhdRkqt3&state=af0ifjsldkj
      &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb HTTP/1.1
     Host: as.example.com

   could be pushed directly to the AS by the client as follows:

     POST /as/par HTTP/1.1
     Host: as.example.com
     Content-Type: application/x-www-form-urlencoded
     Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

     response_type=code
     &client_id=s6BhdRkqt3&state=af0ifjsldkj
     &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

   The AS responds with a request URI,



Lodderstedt, et al.       Expires July 2, 2020                  [Page 3]



Internet-Draft                  oauth-par                  December 2019

     HTTP/1.1 201 Created
     Cache-Control: no-cache, no-store
     Content-Type: application/json

     {

       "request_uri": "urn:example:bwc4JK-ESC0w8acc191e-Y1LTC2",
       "expires_in": 90
     }

   which is used by the client in the subsequent authorization request
   as follows,

     GET /authorize?request_uri=
       urn%3Aexample%3Abwc4JK-ESC0w8acc191e-Y1LTC2 HTTP/1.1

   The pushed authorization request endpoint fosters OAuth security by
   providing all clients a simple means for an integrity protected
   authorization request, but it also allows clients requiring an even
   higher security level, especially cryptographically confirmed non-
   repudiation, to explicitly adopt JWT-based request objects.

   As a further benefit, the pushed authorization request allows the AS
   to authenticate the clients before any user interaction happens,
   i.e., the AS may refuse unauthorized requests much earlier in the
   process and has much higher confidence in the client's identity in
   the authorization process than before.

   This is directly utilized by this draft to allow confidential clients
   to set the redirect URI for every authorization request, which gives
   them more flexibility in building redirect URI.  And if the client
   IDs and credentials are managed by some external authority (e.g. a
   certification authority), explicit client registration with the
   particular AS could practically be skipped.

1.1.  Conventions and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   This specification uses the terms "access token", "refresh token",
   "authorization server", "resource server", "authorization endpoint",
   "authorization request", "authorization response", "token endpoint",
   "grant type", "access token request", "access token response", and
   "client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc6749


Lodderstedt, et al.       Expires July 2, 2020                  [Page 4]



Internet-Draft                  oauth-par                  December 2019

2.  Pushed Authorization Request Endpoint

   The pushed authorization request endpoint is an HTTP API at the
   authorization server that accepts POST requests with parameters in
   the HTTP request entity-body using the "application/x-www-form-
   urlencoded" format with a character encoding of UTF-8 as described in

Appendix B of [RFC6749].

   The endpoint accepts the parameters defined in [RFC6749] for the
   authorization endpoint as well as all applicable extensions defined
   for the authorization endpoint.  Some examples of such extensions
   include PKCE [RFC7636], Resource Indicators
   [I-D.ietf-oauth-resource-indicators], and OpenID Connect [OIDC].

   The rules for client authentication as defined in [RFC6749] for token
   endpoint requests, including the applicable authentication methods,
   apply for the pushed authorization request endpoint as well.  If
   applicable, the "token_endpoint_auth_method" client metadata
   parameter indicates the registered authentication method for the
   client to use when making direct requests to the authorization
   server, including requests to the pushed authorization request
   endpoint.

   Note that there's some potential ambiguity around the appropriate
   audience value to use when JWT client assertion based authentication
   is employed.  To address that ambiguity the issuer identifier URL of
   the AS according to [RFC8414] SHOULD be used as the value of the
   audience.  In order to facilitate interoperability the AS MUST accept
   its issuer identifier, token endpoint URL, or pushed authorization
   request endpoint URL as values that identify it as an intended
   audience.

2.1.  Request

   A client can send all the parameters that usually comprise an
   authorization request to the pushed authorization request endpoint.
   A basic parameter set will typically include:

   o  "client_id"

   o  "response_type"

   o  "redirect_uri"

   o  "scope"

   o  "state"

https://datatracker.ietf.org/doc/html/rfc6749#appendix-B
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc8414


Lodderstedt, et al.       Expires July 2, 2020                  [Page 5]



Internet-Draft                  oauth-par                  December 2019

   o  "code_challenge"

   o  "code_challenge_method"

   Depending on client type and authentication method, the request might
   also include other parameters for client authentication such as the
   "client_secret" parameter, the "client_assertion" parameter and the
   "client_assertion_type" parameter.  The "request_uri" authorization
   request parameter MUST NOT be provided in this case (see Section 3).

   The client adds the parameters in "x-www-form-urlencoded" format with
   a character encoding of UTF-8 as described in Appendix B of [RFC6749]
   to the body of an HTTP POST request.  If applicable, the client also
   adds client credentials to the request header or the request body
   using the same rules as for token endpoint requests.

   This is illustrated by the following example:

     POST /as/par HTTP/1.1
     Host: as.example.com
     Content-Type: application/x-www-form-urlencoded
     Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

     response_type=code&
     state=af0ifjsldkj&
     client_id=s6BhdRkqt3&
     redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb&
     code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U&
     code_challenge_method=S256&
     scope=ais

   The AS MUST process the request as follows:

   1.  The AS MUST authenticate the client in the same way as at the
       token endpoint.

   2.  The AS MUST reject the request if the "request_uri" authorization
       request parameter is provided.

   3.  The AS MUST validate the request in the same way as at the
       authorization endpoint.  For example, the authorization server
       checks whether the redirect URI matches one of the redirect URIs
       configured for the client.  It MUST also check whether the client
       is authorized for the "scope" for which it is requesting access.
       This validation allows the authorization server to refuse
       unauthorized or fraudulent requests early.

https://datatracker.ietf.org/doc/html/rfc6749#appendix-B


Lodderstedt, et al.       Expires July 2, 2020                  [Page 6]



Internet-Draft                  oauth-par                  December 2019

   The AS MAY allow confidential clients to establish per-authorization
   request redirect URIs with every pushed authorization request.  This
   is possible since, in contrast to [RFC6749], this specification gives
   the AS the ability to authenticate and authorize clients before the
   actual authorization request is performed.

   This feature gives clients more flexibility in building redirect URIs
   and, if the client IDs and credentials are managed by some authority
   (CA or other type), the explicit client registration with the
   particular AS (manually or via dynamic client registration [RFC7591])
   could practically be skipped.  This makes this mechanism especially
   useful for clients interacting with a federation of ASs (or OpenID
   Connect OPs), for example in Open Banking, where the certificate is
   provided as part of a federated PKI.

2.2.  Successful Response

   If the verification is successful, the server MUST generate a request
   URI and return a JSON response that contains "request_uri" and
   "expires_in" members at the top level with "201 Created" HTTP
   response code.

   o  "request_uri" : The request URI corresponding to the authorization
      request posted.  This URI is used as reference to the respective
      request data in the subsequent authorization request only.  The
      way the authorization process obtains the authorization request
      data is at the discretion of the authorization server and out of
      scope of this specification.  There is no need to make the
      authorization request data available to other parties via this
      URI.

   o  "expires_in" : A JSON number that represents the lifetime of the
      request URI in seconds.  The request URI lifetime is at the
      discretion of the AS.

   The "request_uri" value MUST be generated using a cryptographically
   strong pseudorandom algorithm such that it is computationally
   infeasible to predict or guess a valid value.

   The "request_uri" MUST be bound to the client that posted the
   authorization request.

   Since the request URI can be replayed, its lifetime SHOULD be short
   and preferably limited to one-time use.

   The following is an example of such a response:

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7591


Lodderstedt, et al.       Expires July 2, 2020                  [Page 7]



Internet-Draft                  oauth-par                  December 2019

     HTTP/1.1 201 Created
     Content-Type: application/json
     Cache-Control: no-cache, no-store

     {
       "request_uri": "urn:example:bwc4JK-ESC0w8acc191e-Y1LTC2",
       "expires_in": 3600
     }

2.3.  Error Response

   For an error the authorization server sets an appropriate HTTP status
   code and MAY include additional error parameters in the entity-body
   of the HTTP response using the format specified for the token
   endpoint in Section 5.2 of [RFC6749].

   If the authorization server sets an error code, it SHOULD be one of
   the defined codes for the token endpoint in Section 5.2 or for the
   authorization endpoint in Sections 4.1.2.1 and 4.2.2.1 of [RFC6749],
   or by an OAuth extension if one is involved in the initial processing
   of authorization request that was pushed.  Since initial processing
   of the pushed authorisation request doesn't involve resource owner
   interaction, error codes related to user interaction, such as
   "consent_required" defined by [OIDC], are not returned.

   In addition to the error codes above, the pushed authorization
   request endpoint specifies use of the following HTTP status codes:

   o  405: If the request did not use POST, the authorization server
      responds with an HTTP 405 (Method Not Allowed) status code.

   o  413: If the request size was beyond the upper bound that the
      authorization server allows, the authorization server responds
      with an HTTP 413 (Payload Too Large) status code.

   o  429: If the request from the client for a time period goes beyond
      the number the authorization server allows, the authorization
      server responds with an HTTP 429 (Too Many Requests) status code.

   The following is an example of an error response from the pushed
   authorization request endpoint:

https://datatracker.ietf.org/doc/html/rfc6749#section-5.2
https://datatracker.ietf.org/doc/html/rfc6749


Lodderstedt, et al.       Expires July 2, 2020                  [Page 8]



Internet-Draft                  oauth-par                  December 2019

     HTTP/1.1 400 Bad Request
     Content-Type: application/json
     Cache-Control: no-cache, no-store

     {
       "error": "invalid_request",
       "error_description":
         "The redirect_uri is not valid for the given client"
     }

3.  "request" Parameter

   Clients MAY use the "request" parameter as defined in JAR
   [I-D.ietf-oauth-jwsreq] to push a request object JWT to the AS.  The
   rules for processing, signing, and encryption of the request object
   as defined in JAR [I-D.ietf-oauth-jwsreq] apply.  When the
   "application/x-www-form-urlencoded" HTTP entity-body "request"
   parameter is used, the request object MUST contain all the
   authorization request parameters as claims of the JWT.  Additional
   request parameters as required by the given client authentication
   method are to be included as 'application/x-www-form-urlencoded'
   parameters in the HTTP request entity-body (e.g.  Mutual TLS client
   authentication [I-D.ietf-oauth-mtls] uses the "client_id" HTTP
   request parameter while JWT assertion based client authentication
   [RFC7523] uses "client_assertion" and "client_assertion_type").

   The following is an example of a pushed authorization request using a
   signed request object.  The client is authenticated by its client
   secret using the HTTP Basic Authentication scheme specified in

Section 2.3.1 of [RFC6749]:

     POST /as/par HTTP/1.1
     Host: as.example.com
     Content-Type: application/x-www-form-urlencoded
     Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

     request=eyJraWQiOiJrMmJkYyIsImFsZyI6IlJTMjU2In0.eyJpc3MiOiJzNkJoZ
     FJrcXQzIiwiYXVkIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJyZXNwb2
     5zZV90eXBlIjoiY29kZSIsImNsaWVudF9pZCI6InM2QmhkUmtxdDMiLCJyZWRpcmV
     jdF91cmkiOiJodHRwczovL2NsaWVudC5leGFtcGxlLm9yZy9jYiIsInNjb3BlIjoi
     YWlzIiwic3RhdGUiOiJhZjBpZmpzbGRraiIsImNvZGVfY2hhbGxlbmdlIjoiSzItb
     HRjODNhY2M0aDBjOXc2RVNDX3JFTVRKM2J3dy11Q0hhb2VLMXQ4VSIsImNvZGVfY2
     hhbGxlbmdlX21ldGhvZCI6IlMyNTYifQ.O49ffUxRPdNkN3TRYDvbEYVr1CeAL64u
     W4FenV3n9WlaFIRHeFblzv-wlEtMm8-tusGxeE9z3ek6FxkhvvLEqEpjthXnyXqqy
     Jfq3k9GSf5ay74ml_0D6lHE1hy-kVWg7SgoPQ-GB1xQ9NRhF3EKS7UZIrUHbFUCF0
     MsRLbmtIvaLYbQH_Ef3UkDLOGiU7exhVFTPeyQUTM9FF-u3K-zX-FO05_brYxNGLh
     VkO1G8MjqQnn2HpAzlBd5179WTzTYhKmhTiwzH-qlBBI_9GLJmE3KOipko9TfSpa2
     6H4JOlMyfZFl0PCJwkByS0xZFJ2sTo3Gkk488RQohhgt1I0onw

https://datatracker.ietf.org/doc/html/rfc7523
https://datatracker.ietf.org/doc/html/rfc6749#section-2.3.1


Lodderstedt, et al.       Expires July 2, 2020                  [Page 9]



Internet-Draft                  oauth-par                  December 2019

   The AS needs to take the following steps beyond the processing rules
   defined in Section 2.1:

   1.  If applicable, the AS decrypts the request object as specified in
       JAR [I-D.ietf-oauth-jwsreq], section 6.1.

   2.  The AS validates the request object signature as specified in JAR
       [I-D.ietf-oauth-jwsreq], section 6.2.

   3.  If the client is a confidential client, the authorization server
       MUST check whether the authenticated "client_id" matches the
       "client_id" claim in the request object.  If they do not match,
       the authorization server MUST refuse to process the request.  It
       is at the authorization server's discretion to require the "iss"
       claim to match the "client_id" as well.

3.1.  Error responses for Request Object

   This section gives the error responses that go beyond the basic
Section 2.3.

3.1.1.  Authentication Required

   If the signature validation fails, the authorization server returns a
   "401 Unauthorized" HTTP error response.  The same applies if the
   "client_id" or, if applicable, the "iss" claim in the request object
   do not match the authenticated "client_id".

4.  Authorization Request

   The client uses the "request_uri" value returned by the authorization
   server as the authorization request parameter "request_uri" as
   defined in JAR.

     GET /authorize?request_uri=
       urn%3Aexample%3Abwc4JK-ESC0w8acc191e-Y1LTC2 HTTP/1.1

   Clients are encouraged to use the request URI as the only parameter
   in order to use the integrity and authenticity provided by the pushed
   authorization request.

5.  Authorization Server Metadata

   If the authorization server has a pushed authorization request
   endpoint, it SHOULD include the following OAuth/OpenID Provider
   Metadata parameter in discovery responses:



Lodderstedt, et al.       Expires July 2, 2020                 [Page 10]



Internet-Draft                  oauth-par                  December 2019

   "pushed_authorization_request_endpoint" : The URL of the pushed
   authorization request endpoint at which the client can post an
   authorization request and get a request URI in exchange.

6.  Security Considerations

6.1.  Request URI Guessing

   An attacker could attempt to guess and replay a valid request URI
   value and try to impersonate the respective client.  The AS MUST
   consider the considerations given in JAR [I-D.ietf-oauth-jwsreq],
   section 10.2, clause d on request URI entropy.

6.2.  Open Redirection

   An attacker could try register a redirect URI pointing to a site
   under his control in order to obtain authorization codes or lauch
   other attacks towards the user.  The AS MUST only accept new redirect
   URIs in the PAR request from confidential clients after sucessful
   authentication and authorization.

6.3.  Request Object Replay

   An attacker could replay a request URI captured from a legitimate
   authorization request.  In order to cope with such attacks, the AS
   SHOULD make the request URIs one-time use.

6.4.  Client Policy Change

   The client policy might change between the lodging of the request
   object and the authorization request using a particular request
   object.  It is therefore recommended that the AS check the request
   parameter against the client policy when processing the authorization
   request.

7.  Acknowledgements

   This specification is based on the work towards Pushed Request Object
   [1] conducted at the Financial-grade API working group at the OpenID
   Foundation.  We would like to thank the members of the WG for their
   valuable contributions.

   We would like to thank Vladimir Dzhuvinov, Aaron Parecki, Joseph
   Heenan, and Takahiko Kawasaki for their valuable feedback on this
   draft.



Lodderstedt, et al.       Expires July 2, 2020                 [Page 11]



Internet-Draft                  oauth-par                  December 2019

8.  IANA Considerations

   ...

9.  References

9.1.  Normative References

   [I-D.ietf-oauth-jwsreq]
              Sakimura, N. and J. Bradley, "The OAuth 2.0 Authorization
              Framework: JWT Secured Authorization Request (JAR)",

draft-ietf-oauth-jwsreq-20 (work in progress), October
              2019.

   [OIDC]     Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
              C. Mortimore, "OpenID Connect Core 1.0 incorporating
              errata set 1", Nov 2014,
              <http://openid.net/specs/openid-connect-core-1_0.html>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC6749]  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

              <https://www.rfc-editor.org/info/rfc6749>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8414]  Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
              Authorization Server Metadata", RFC 8414,
              DOI 10.17487/RFC8414, June 2018,
              <https://www.rfc-editor.org/info/rfc8414>.

9.2.  Informative References

   [I-D.ietf-oauth-mtls]
              Campbell, B., Bradley, J., Sakimura, N., and T.
              Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication
              and Certificate-Bound Access Tokens", draft-ietf-oauth-

mtls-17 (work in progress), August 2019.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwsreq-20
http://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-17
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-17


Lodderstedt, et al.       Expires July 2, 2020                 [Page 12]



Internet-Draft                  oauth-par                  December 2019

   [I-D.ietf-oauth-resource-indicators]
              Campbell, B., Bradley, J., and H. Tschofenig, "Resource
              Indicators for OAuth 2.0", draft-ietf-oauth-resource-

indicators-08 (work in progress), September 2019.

   [RFC7523]  Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
              (JWT) Profile for OAuth 2.0 Client Authentication and
              Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May
              2015, <https://www.rfc-editor.org/info/rfc7523>.

   [RFC7591]  Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
              P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
              <https://www.rfc-editor.org/info/rfc7591>.

   [RFC7636]  Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key
              for Code Exchange by OAuth Public Clients", RFC 7636,
              DOI 10.17487/RFC7636, September 2015,
              <https://www.rfc-editor.org/info/rfc7636>.

9.3.  URIs

   [1] https://bitbucket.org/openid/fapi/src/master/
Financial_API_Pushed_Request_Object.md

Appendix A.  Document History

   [[ To be removed from the final specification ]]

   -00 (WG draft)

   o  Reference RFC6749 sec 2.3.1 for client secret basic rather than
RFC7617

   o  further clarify that a request object JWT contains all the
      authorization request parameters while client authentication
      params, if applicable, are outside that JWT as regular form
      encoded params in HTTP body

   -01

   o  List "client_id" as one of the basic parameters

   o  Explicitly forbid "request_uri" in the processing rules

   o  Clarification regarding client authentication and that public
      clients are allowed

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-resource-indicators-08
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-resource-indicators-08
https://datatracker.ietf.org/doc/html/rfc7523
https://www.rfc-editor.org/info/rfc7523
https://datatracker.ietf.org/doc/html/rfc7591
https://www.rfc-editor.org/info/rfc7591
https://datatracker.ietf.org/doc/html/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://bitbucket.org/openid/fapi/src/master/Financial_API_Pushed_Request_Object.md
https://bitbucket.org/openid/fapi/src/master/Financial_API_Pushed_Request_Object.md
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7617


Lodderstedt, et al.       Expires July 2, 2020                 [Page 13]



Internet-Draft                  oauth-par                  December 2019

   o  Added option to let clients register per-authorization request
      redirect URIs

   o  General clean up and wording improvements

   -00

   o  first draft

Authors' Addresses

   Torsten Lodderstedt
   yes.com

   Email: torsten@lodderstedt.net

   Brian Campbell
   Ping Identity

   Email: bcampbell@pingidentity.com

   Nat Sakimura
   Nomura Research Institute

   Email: nat@sakimura.org

   Dave Tonge
   Moneyhub Financial Technology

   Email: dave@tonge.org

   Filip Skokan
   Auth0

   Email: panva.ip@gmail.com



Lodderstedt, et al.       Expires July 2, 2020                 [Page 14]


