
Workgroup: Web Authorization Protocol

Internet-Draft: draft-ietf-oauth-par-03

Published: 31 July 2020

Intended Status: Standards Track

Expires: 1 February 2021

Authors: T. Lodderstedt

yes.com

B. Campbell

Ping Identity

N. Sakimura

NAT.Consulting

D. Tonge

Moneyhub Financial Technology

F. Skokan

Auth0

OAuth 2.0 Pushed Authorization Requests

Abstract

This document defines the pushed authorization request endpoint,

which allows clients to push the payload of an OAuth 2.0

authorization request to the authorization server via a direct

request and provides them with a request URI that is used as

reference to the data in a subsequent authorization request.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 1 February 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1.  Introduction

1.1.  Conventions and Terminology

2.  Pushed Authorization Request Endpoint

2.1.  Request

2.2.  Successful Response

2.3.  Error Response

3.  "request" Parameter

4.  Authorization Request

5.  Authorization Server Metadata

6.  Client Metadata

7.  Security Considerations

7.1.  Request URI Guessing

7.2.  Open Redirection

7.3.  Request Object Replay

7.4.  Client Policy Change

8.  Acknowledgements

9.  IANA Considerations

9.1.  OAuth Authorization Server Metadata

9.2.  OAuth Dynamic Client Registration Metadata

9.3.  OAuth URI Registration

10. Normative References

11. Informative References

Appendix A.  Document History

Authors' Addresses

1. Introduction

In OAuth [RFC6749] authorization request parameters are typically

sent as URI query parameters via redirection in the user-agent. This

is simple but also yields challenges:

There is no cryptographic integrity and authenticity protection.

An attacker could, for example, modify the ACR value requested by

the client or swap the context of a payment transaction

authorization by changing scope values. Although clients should

detect such changes by inspecting the token response data,

preventing such modifications early in the process would be a

better solution.

There is no mechanism to ensure confidentiality of the request

parameters. This obviously is an issue if personal identifiable

information is sent in the authorization request, which might be

the case in identity and open banking scenarios.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶



Authorization request URLs can become quite large, especially in

scenarios requiring fine-grained authorization data, which might

cause errors in request processing.

JWT Secured Authorization Request (JAR) [I-D.ietf-oauth-jwsreq]

provides solutions for the security challenges by allowing OAuth

clients to wrap authorization request parameters in a signed, and

optionally encrypted, JSON Web Token (JWT), the so-called "Request

Object". In order to cope with the size restrictions, JAR introduces

the request_uri parameter that allows clients to send a reference to

a request object instead of the request object itself.

This document complements JAR by providing an interoperable way to

push the payload of a request object directly to the authorization

server in exchange for a request_uri.

It also allows for clients to push the form encoded authorization

request parameters to the authorization server in order to exchange

them for a request URI that the client can use in a subsequent

authorization request.

For example, a client typically initiates an authorization request

by directing the user-agent to make an HTTP request like the

following:

Such a request could instead be pushed directly to the authorization

server by the client as follows:

The authorization server responds with a request URI:

*

¶

¶

¶

¶

¶

  GET /authorize?response_type=code

   &client_id=s6BhdRkqt3&state=af0ifjsldkj

   &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb HTTP/1.1

  Host: as.example.com

¶

¶

  POST /as/par HTTP/1.1

  Host: as.example.com

  Content-Type: application/x-www-form-urlencoded

  Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

  response_type=code

  &client_id=s6BhdRkqt3&state=af0ifjsldkj

  &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

¶

¶



The client uses the request URI value to create the subsequent

authorization request and directing the user-agent to make an HTTP

request like the following:

The pushed authorization request endpoint fosters OAuth security by

providing all clients a simple means for a confidential and

integrity protected authorization request, but it also allows

clients requiring an even higher security level, especially

cryptographically confirmed non-repudiation, to explicitly adopt

JWT-based request objects.

As a further benefit, the pushed authorization request allows the

authorization server to authenticate the clients before any user

interaction happens, i.e., the authorization server may refuse

unauthorized requests much earlier in the process and has much

higher confidence in the client's identity in the authorization

process than before. This generally improves security since it

prevents attempts to spoof confidential clients early in the

process.

This is directly utilized by this draft to allow confidential

clients to set the redirect URI for every authorization request,

which gives them more flexibility in building redirect URI. And if

the client IDs and credentials are managed by some external

authority (e.g. a certification authority), explicit client

registration with the particular authorization server could

practically be skipped.

Note: HTTP POST requests to the authorization endpoint as described

in Section 3.1 of [RFC6749] and Section 3.1.2.1 of [OIDC] could also

be used to cope with the request size limitations described above.

Although this is a viable option for traditional web applications,

it's difficult to use with mobile apps. Those apps typically invoke

a custom tab with an URL that is translated into a GET request.

Using POST would require the app to first open a web page under its

control in the custom tab that in turn would initiate the form POST

  HTTP/1.1 201 Created

  Cache-Control: no-cache, no-store

  Content-Type: application/json

  {

    "request_uri": "urn:example:bwc4JK-ESC0w8acc191e-Y1LTC2",

    "expires_in": 90

  }

¶

¶

  GET /authorize?client_id=s6BhdRkqt3&

  request_uri=urn%3Aexample%3Abwc4JK-ESC0w8acc191e-Y1LTC2 HTTP/1.1

  Host: as.example.com

¶

¶

¶

¶



towards the authorization server. PAR is simpler to use and has

additional security benefits as described above.

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification uses the terms "access token", "refresh token",

"authorization server", "resource server", "authorization endpoint",

"authorization request", "authorization response", "token endpoint",

"grant type", "access token request", "access token response", and

"client" defined by The OAuth 2.0 Authorization Framework [RFC6749].

2. Pushed Authorization Request Endpoint

The pushed authorization request endpoint is an HTTP API at the

authorization server that accepts POST requests with parameters in

the HTTP request entity-body using the application/x-www-form-

urlencoded format with a character encoding of UTF-8 as described in

Appendix B of [RFC6749]. The pushed authorization request endpoint

URL MUST use the "https" scheme.

Authorization servers supporting pushed authorization requests

SHOULD include the URL of their pushed authorization request

endpoint in their authorization server metadata document [RFC8414]

using the pushed_authorization_request_endpoint parameter as defined

in Section 5.

The endpoint accepts the parameters defined in [RFC6749] for the

authorization endpoint as well as all applicable extensions defined

for the authorization endpoint. Some examples of such extensions

include PKCE [RFC7636], Resource Indicators [RFC8707], and OpenID

Connect [OIDC]. The endpoint also supports sending all authorization

request parameters as request object according to [I-D.ietf-oauth-

jwsreq].

The rules for client authentication as defined in [RFC6749] for

token endpoint requests, including the applicable authentication

methods, apply for the pushed authorization request endpoint as

well. If applicable, the token_endpoint_auth_method client metadata

parameter indicates the registered authentication method for the

client to use when making direct requests to the authorization

server, including requests to the pushed authorization request

endpoint.

¶

¶

¶

¶

¶

¶

¶



Note that there's some potential ambiguity around the appropriate

audience value to use when JWT client assertion based authentication

is employed. To address that ambiguity the issuer identifier URL of

the authorization server according to [RFC8414] SHOULD be used as

the value of the audience. In order to facilitate interoperability

the authorization server MUST accept its issuer identifier, token

endpoint URL, or pushed authorization request endpoint URL as values

that identify it as an intended audience.

2.1. Request

A client can send all the parameters that usually comprise an

authorization request to the pushed authorization request endpoint.

A basic parameter set will typically include:

client_id

response_type

redirect_uri

scope

state

code_challenge

code_challenge_method

Depending on client type and authentication method, the request

might also include other parameters for client authentication such

as the client_secret parameter, the client_assertion parameter and

the client_assertion_type parameter. The request_uri authorization

request parameter MUST NOT be provided in this case (see Section 3).

The client adds the parameters in x-www-form-urlencoded format with

a character encoding of UTF-8 as described in Appendix B of 

[RFC6749] to the body of an HTTP POST request. If applicable, the

client also adds client credentials to the request header or the

request body using the same rules as for token endpoint requests.

This is illustrated by the following example:

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶



The authorization server MUST process the request as follows:

Authenticate the client in the same way as at the token

endpoint.

Reject the request if the request_uri authorization request

parameter is provided.

Validate the pushed request as it would an authorization

request sent to the authorization endpoint. For example, the

authorization server checks whether the redirect URI matches

one of the redirect URIs configured for the client and also

checks whether the client is authorized for the scope for which

it is requesting access. This validation allows the

authorization server to refuse unauthorized or fraudulent

requests early. The authorization server MAY omit validation

steps that it is unable to perform when processing the pushed

request, however such checks MUST then be performed at the

authorization endpoint.

The authorization server MAY allow confidential clients to establish

per-authorization request redirect URIs with every pushed

authorization request. This is possible since, in contrast to 

[RFC6749], this specification gives the authorization server the

ability to authenticate and authorize clients before the actual

authorization request is performed.

This feature gives clients more flexibility in building redirect

URIs and, if the client IDs and credentials are managed by some

authority (CA or other type), the explicit client registration with

the particular authorization server (manually or via dynamic client

registration [RFC7591]) could practically be skipped. This makes

this mechanism especially useful for clients interacting with a

federation of authorization servers (or OpenID Connect Providers),

for example in Open Banking, where the certificate is provided as

part of a federated PKI.

  POST /as/par HTTP/1.1

  Host: as.example.com

  Content-Type: application/x-www-form-urlencoded

  Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

  response_type=code&

  state=af0ifjsldkj&

  client_id=s6BhdRkqt3&

  redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb&

  code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U&

  code_challenge_method=S256&

  scope=ais

¶

¶

1. 

¶

2. 

¶

3. 

¶

¶

¶



2.2. Successful Response

If the verification is successful, the server MUST generate a

request URI and return a JSON response with the following members at

the top level with 201 Created HTTP response code.

request_uri : The request URI corresponding to the authorization

request posted. This URI is used as reference to the respective

request data in the subsequent authorization request only. The

way the authorization process obtains the authorization request

data is at the discretion of the authorization server and out of

scope of this specification. There is no need to make the

authorization request data available to other parties via this

URI.

expires_in : A JSON number that represents the lifetime of the

request URI in seconds. The request URI lifetime is at the

discretion of the authorization server and will typically be

relatively short.

The format of the request_uri value is at the discretion of the

authorization server but it MUST contain some part generated using a

cryptographically strong pseudorandom algorithm such that it is

computationally infeasible to predict or guess a valid value. The

authorization server MAY construct the request_uri value using the

form urn:ietf:params:oauth:request_uri:<reference-value> with 

<reference-value> as the random part of the URI that references the

respective authorization request data. The string representation of

a UUID as a URN per [RFC4122] is also an option for authorization

servers to construct request_uri values.

The request_uri MUST be bound to the client that posted the

authorization request.

Since parts of the request content, e.g. the code_challenge

parameter value, is unique to a certain authorization request, a 

request_uri SHOULD be limited to one-time use.

The following is an example of such a response:

¶

*

¶

*

¶

¶

¶

¶

¶

  HTTP/1.1 201 Created

  Content-Type: application/json

  Cache-Control: no-cache, no-store

  {

    "request_uri":

      "urn:ietf:params:oauth:request_uri:bwc4JK-ESC0w8acc191e-Y1LTC2",

    "expires_in": 60

  }

¶



2.3. Error Response

For an error the authorization server sets an appropriate HTTP

status code and MAY include additional error parameters in the

entity-body of the HTTP response using the format specified for the

token endpoint in Section 5.2 of [RFC6749].

If the authorization server sets an error code, it SHOULD be one of

the defined codes for the token endpoint in Section 5.2 or for the

authorization endpoint in Sections 4.1.2.1 and 4.2.2.1 of [RFC6749],

or by an OAuth extension if one is involved in the initial

processing of authorization request that was pushed. Since initial

processing of the pushed authorization request doesn't involve

resource owner interaction, error codes related to user interaction,

such as consent_required defined by [OIDC], are not returned.

If the client is required to use signed request objects, either by

authorization server or client policy (see [I-D.ietf-oauth-jwsreq],

section 10.5), the authorization server MUST only accept requests

complying with the definition given in Section 3 and MUST refuse any

other request with HTTP status code 400 and error code 

invalid_request.

In addition to the error codes above, the pushed authorization

request endpoint can also make use of the following HTTP status

codes:

405: If the request did not use POST, the authorization server

responds with an HTTP 405 (Method Not Allowed) status code.

413: If the request size was beyond the upper bound that the

authorization server allows, the authorization server responds

with an HTTP 413 (Payload Too Large) status code.

429: If the request from the client for a time period goes beyond

the number the authorization server allows, the authorization

server responds with an HTTP 429 (Too Many Requests) status code.

The following is an example of an error response from the pushed

authorization request endpoint:

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

  HTTP/1.1 400 Bad Request

  Content-Type: application/json

  Cache-Control: no-cache, no-store

  {

    "error": "invalid_request",

    "error_description":

      "The redirect_uri is not valid for the given client"

  }

¶



3. "request" Parameter

Clients MAY use the request parameter as defined in JAR [I-D.ietf-

oauth-jwsreq] to push a request object JWT to the authorization

server. The rules for processing, signing, and encryption of the

request object as defined in JAR [I-D.ietf-oauth-jwsreq] apply. When

the application/x-www-form-urlencoded HTTP entity-body request

parameter is used, the request object MUST contain all the

authorization request parameters as claims of the JWT. Additional

request parameters as required by the given client authentication

method are to be included as 'application/x-www-form-urlencoded'

parameters in the HTTP request entity-body (e.g. Mutual TLS client

authentication [I-D.ietf-oauth-mtls] uses the client_id HTTP request

parameter while JWT assertion based client authentication [RFC7523]

uses client_assertion and client_assertion_type).

The following is an example of a pushed authorization request using

a signed request object. The client is authenticated by its client

secret using the HTTP Basic Authentication scheme specified in

Section 2.3.1 of [RFC6749]:

The authorization server needs to take the following steps beyond

the processing rules defined in Section 2.1:

If applicable, decrypt the request object as specified in JAR 

[I-D.ietf-oauth-jwsreq], section 6.1.

Validates the request object signature as specified in JAR [I-

D.ietf-oauth-jwsreq], section 6.2.

If the client is a confidential client, the authorization

server MUST check whether the authenticated client_id matches

¶

¶

  POST /as/par HTTP/1.1

  Host: as.example.com

  Content-Type: application/x-www-form-urlencoded

  Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

  request=eyJraWQiOiJrMmJkYyIsImFsZyI6IlJTMjU2In0.eyJpc3MiOiJzNkJoZ

  FJrcXQzIiwiYXVkIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJyZXNwb2

  5zZV90eXBlIjoiY29kZSIsImNsaWVudF9pZCI6InM2QmhkUmtxdDMiLCJyZWRpcmV

  jdF91cmkiOiJodHRwczovL2NsaWVudC5leGFtcGxlLm9yZy9jYiIsInNjb3BlIjoi

  YWlzIiwic3RhdGUiOiJhZjBpZmpzbGRraiIsImNvZGVfY2hhbGxlbmdlIjoiSzItb

  HRjODNhY2M0aDBjOXc2RVNDX3JFTVRKM2J3dy11Q0hhb2VLMXQ4VSIsImNvZGVfY2

  hhbGxlbmdlX21ldGhvZCI6IlMyNTYifQ.O49ffUxRPdNkN3TRYDvbEYVr1CeAL64u

  W4FenV3n9WlaFIRHeFblzv-wlEtMm8-tusGxeE9z3ek6FxkhvvLEqEpjthXnyXqqy

  Jfq3k9GSf5ay74ml_0D6lHE1hy-kVWg7SgoPQ-GB1xQ9NRhF3EKS7UZIrUHbFUCF0

  MsRLbmtIvaLYbQH_Ef3UkDLOGiU7exhVFTPeyQUTM9FF-u3K-zX-FO05_brYxNGLh

  VkO1G8MjqQnn2HpAzlBd5179WTzTYhKmhTiwzH-qlBBI_9GLJmE3KOipko9TfSpa2

  6H4JOlMyfZFl0PCJwkByS0xZFJ2sTo3Gkk488RQohhgt1I0onw

¶

¶

1. 

¶

2. 

¶

3. 



the client_id claim in the request object. If they do not

match, the authorization server MUST refuse to process the

request. It is at the authorization server's discretion to

require the iss claim to match the client_id as well.

The following RSA key pair, represented in JWK [RFC7517] format, can

be used to validate or recreate the request object signature in the

above example (line wraps within values for display purposes only):

4. Authorization Request

The client uses the request_uri value returned by the authorization

server to build an authorization request as defined in [I-D.ietf-

oauth-jwsreq]. This is shown in the following example where the

client directs the user-agent to make the following HTTP request:

¶

¶

 {

   "kty": "RSA",

   "kid":"k2bdc",

   "n": "y9Lqv4fCp6Ei-u2-ZCKq83YvbFEk6JMs_pSj76eMkddWRuWX2aBKGHAtKlE

         5P7_vn__PCKZWePt3vGkB6ePgzAFu08NmKemwE5bQI0e6kIChtt_6KzT5Oa

         aXDFI6qCLJmk51Cc4VYFaxgqevMncYrzaW_50mZ1yGSFIQzLYP8bijAHGVj

         dEFgZaZEN9lsn_GdWLaJpHrB3ROlS50E45wxrlg9xMncVb8qDPuXZarvghL

         L0HzOuYRadBJVoWZowDNTpKpk2RklZ7QaBO7XDv3uR7s_sf2g-bAjSYxYUG

         sqkNA9b3xVW53am_UZZ3tZbFTIh557JICWKHlWj5uzeJXaw",

   "e": "AQAB",

   "d": "LNwG_pCKrwowALpCpRdcOKlSVqylSurZhE6CpkRiE9cpDgGKIkO9CxPlXOL

         zjqxXuQc8MdMqRQZTnAwgd7HH0B6gncrruV3NewI-XQV0ckldTjqNfOTz1V

         Rs-jE-57KAXI3YBIhu-_0YpIDzdk_wBuAk661Svn0GsPQe7m9DoxdzenQu9

         O_soewUhlPzRrTH0EeIqYI715rwI3TYaSzoWBmEPD2fICyj18FF0MPy_SQz

         k3noVUUIzfzLnnJiWy_p63QBCMqjRoSHHdMnI4z9iVpIwJWQ3jO5n_2lC2-

         cSgwjmKsFzDBbQNJc7qMG1N6EssJUwgGJxz1eAUFf0w4YAQ",

   "qi": "J-mG0swR4FTy3atrcQ7dd0hhYn1E9QndN-

         -sDG4EQO0RnFj6wIefCvwIc4

         7hCtVeFnCTPYJNc_JyV-mU-9vlzS5GSNuyR5qdpsMZXUMpEvQcwKt23ffPZ

         YGaqfKyEesmf_Wi8fFcE68H9REQjnniKrXm7w2-IuG_IrVJA9Ox-uU",

   "q": "4hlMYAGa0dvogdK1jnxQ7J_Lqpqi99e-AeoFvoYpMPhthChTzwFZO9lQmUo

         BpMqVQTws_s7vWGmt7ZAB3ywkurf0pV7BD0fweJiUzrWk4KJjxtmP_auuxr

         jvm3s2FUGn6f0wRY9Z8Hj9A7C72DnYCjuZiJQMYCWDsZ8-d-L1a-s",

   "p": "5sd9Er3I2FFT9R-gy84_oakEyCmgw036B_nfYEEOCwpSvi2z7UcIVK3bSEL

         5WCW6BNgB3HDWhq8aYPirwQnqm0K9mX1E-4xM10WWZ-rP3XjYpQeS0Snru5

         LFVWsAzi-FX7BOqBibSAXLdEGXcXa44l08iec_bPD3xduq5V_1YoE",

   "dq": "Nz2PF3XM6bEc4XsluKZO70ErdYdKgdtIJReUR7Rno_tOZpejwlPGBYVW19

         zpAeYtCT82jxroB2XqhLxGeMxEPQpsz2qTKLSe4BgHY2ml2uxSDGdjcsrbb

         NoKUKaN1CuyZszhWl1n0AT_bENl4bJgQj_Fh0UEsQj5YBBUJt5gr_k",

   "dp": "Zc877jirkkLOtyTs2vxyNe9KnMNAmOidlUc2tE_-0gAL4Lpo1hSwKCtKwe

         ZJ-gkqt1hT-dwNx_0Xtg_-NXsadMRMwJnzBMYwYAfjApUkfqABc0yUCJJl3

         KozRCugf1WXkU9GZAH2_x8PUopdNUEa70ISowPRh04HANKX4fkjWAE"

  }

¶

¶



pushed_authorization_request_endpoint

require_pushed_authorization_requests

The authorization server MUST validate authorization requests

arising from a pushed request as it would any other authorization

request. The authorization server MAY omit validation steps that it

performed when the request was pushed, provided that it can validate

that the request was a pushed request, and that the request or the

authorization server's policy has not been modified in a way that

would affect the outcome of the omitted steps.

Authorization server policy MAY dictate, either globally or on a

per-client basis, that pushed authorization requests are the only

means for a client to pass authorization request data. In this case,

the authorization server will refuse, using the invalid_request

error code, to process any request to the authorization endpoint

that does not have a request_uri parameter with a value obtained

from the pushed authorization request endpoint.

Note: authorization server and clients MAY use metadata as defined

in Section 5 and Section 6 to signal the desired behavior.

5. Authorization Server Metadata

The following authorization server metadata [RFC8414] parameters are

introduced to signal the server's capability and policy with respect

to pushed authorization requests.

The URL of the pushed

authorization request endpoint at which the client can post an

authorization request and get a request URI in exchange.

Boolean parameter indicating

whether the authorization server accepts authorization request

data only via the pushed authorization request method. If

omitted, the default value is false.

6. Client Metadata

The Dynamic Client Registration Protocol [RFC7591] defines an API

for dynamically registering OAuth 2.0 client metadata with

authorization servers. The metadata defined by [RFC7591], and

registered extensions to it, also imply a general data model for

clients that is useful for authorization server implementations even

when the Dynamic Client Registration Protocol isn't in play. Such

implementations will typically have some sort of user interface

available for managing client configuration. The following client

metadata parameter is introduced by this document to indicate

  GET /authorize?client_id=s6BhdRkqt3&request_uri=urn%3Aietf%3Aparams

  %3Aoauth%3Arequest_uri%3Abwc4JK-ESC0w8acc191e-Y1LTC2 HTTP/1.1

  Host: as.example.com

¶

¶

¶

¶

¶

¶

¶



require_pushed_authorization_requests

whether pushed authorization requests are reqired for the given

client.

Boolean parameter indicating

whether the only means of initiating an authorization request the

client is allowed to use is a pushed authorization request.

7. Security Considerations

7.1. Request URI Guessing

An attacker could attempt to guess and replay a valid request URI

value and try to impersonate the respective client. The

authorization server MUST consider the considerations given in JAR 

[I-D.ietf-oauth-jwsreq], section 10.2, clause (d) on request URI

entropy.

7.2. Open Redirection

An attacker could try register a redirect URI pointing to a site

under his control in order to obtain authorization codes or lauch

other attacks towards the user. The authorization server MUST only

accept new redirect URIs in the PAR request from confidential

clients after successful authentication and authorization.

7.3. Request Object Replay

An attacker could replay a request URI captured from a legitimate

authorization request. In order to cope with such attacks, the

authorization server SHOULD make the request URIs one-time use.

7.4. Client Policy Change

The client policy might change between the lodging of the request

object and the authorization request using a particular request

object. It is therefore recommended that the authorization server

check the request parameter against the client policy when

processing the authorization request.

8. Acknowledgements

This specification is based on the work towards Pushed Request

Object conducted at the Financial-grade API working group at the

OpenID Foundation. We would like to thank the members of the WG for

their valuable contributions.

We would like to thank Vladimir Dzhuvinov, Aaron Parecki, Justin

Richer, Sascha Preibisch, Daniel Fett, Michael B. Jones, Annabelle

Backman, Joseph Heenan, Sean Glencross, Maggie Hung, Neil Madden,

and Takahiko Kawasaki for their valuable feedback on this draft.

¶

¶

¶

¶

¶

¶

¶

¶

https://bitbucket.org/openid/fapi/src/master/Financial_API_Pushed_Request_Object.md
https://bitbucket.org/openid/fapi/src/master/Financial_API_Pushed_Request_Object.md


Metadata Name:

Metadata Description:

Change Controller:

Specification Document(s):

Metadata Name:

Metadata Description:

Change Controller:

Specification Document(s):

Metadata Name:

Metadata Description:

Change Controller:

Specification Document(s):

URN:

Common Name:

Change Controller:

Specification Document(s):

[I-D.ietf-oauth-jwsreq]

9. IANA Considerations

9.1. OAuth Authorization Server Metadata

This specification requests registration of the following values in

the IANA "OAuth Authorization Server Metadata" registry of 

[IANA.OAuth.Parameters] established by [RFC8414].

pushed_authorization_request_endpoint

URL of the authorization server's pushed

authorization request endpoint

IESG

Section 5 of [[ this document ]]

require_pushed_authorization_requests

Indicates whether the authorization server

accepts authorization request only via the pushed authorization

request method.

IESG

Section 5 of [[ this document ]]

9.2. OAuth Dynamic Client Registration Metadata

This specification requests registration of the following value in

the IANA "OAuth Dynamic Client Registration Metadata" registry of 

[IANA.OAuth.Parameters] established by [RFC7591].

require_pushed_authorization_requests

Indicates whether the client is required to

use the pushed authorization request method to initiate

authorization requests.

IESG

Section 6 of [[ this document ]]

9.3. OAuth URI Registration

This specification requests registration of the following value in

the "OAuth URI" registry of [IANA.OAuth.Parameters] established by 

[RFC6755].

urn:ietf:params:oauth:request_uri:

A URN Sub-Namespace for OAuth Request URIs.

IESG

Section 2.2 of [[ this document ]]

10. Normative References

Sakimura, N. and J. Bradley, "The OAuth 2.0

Authorization Framework: JWT Secured Authorization

Request (JAR)", Work in Progress, Internet-Draft, draft-

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



[RFC2119]

[RFC8174]

[RFC6749]

[OIDC]

[RFC8414]

[RFC7523]

[RFC4122]

[I-D.ietf-oauth-mtls]

[RFC7517]

ietf-oauth-jwsreq-26, 27 July 2020, <https://

tools.ietf.org/html/draft-ietf-oauth-jwsreq-26>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", 

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>. 

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,

and C. Mortimore, "OpenID Connect Core 1.0 incorporating

errata set 1", 8 November 2014, <http://openid.net/specs/

openid-connect-core-1_0.html>. 

Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0

Authorization Server Metadata", RFC 8414, DOI 10.17487/

RFC8414, June 2018, <https://www.rfc-editor.org/info/

rfc8414>. 

11. Informative References

Jones, M., Campbell, B., and C. Mortimore, "JSON Web

Token (JWT) Profile for OAuth 2.0 Client Authentication

and Authorization Grants", RFC 7523, DOI 10.17487/

RFC7523, May 2015, <https://www.rfc-editor.org/info/

rfc7523>. 

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>. 

Campbell, B., Bradley, J., Sakimura, N., and T.

Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication

and Certificate-Bound Access Tokens", Work in Progress, 

Internet-Draft, draft-ietf-oauth-mtls-17, 23 August 2019,

<https://tools.ietf.org/html/draft-ietf-oauth-mtls-17>. 

Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/

RFC7517, May 2015, <https://www.rfc-editor.org/info/

rfc7517>. 

https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-26
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-26
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://tools.ietf.org/html/draft-ietf-oauth-mtls-17
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7517


[IANA.OAuth.Parameters]

[RFC6755]

[RFC7636]

[RFC8707]

[RFC7591]

IANA, "OAuth Parameters", , <http://

www.iana.org/assignments/oauth-parameters>. 

Campbell, B. and H. Tschofenig, "An IETF URN Sub-

Namespace for OAuth", RFC 6755, DOI 10.17487/RFC6755, 

October 2012, <https://www.rfc-editor.org/info/rfc6755>. 

Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof

Key for Code Exchange by OAuth Public Clients", RFC 7636,

DOI 10.17487/RFC7636, September 2015, <https://www.rfc-

editor.org/info/rfc7636>. 

Campbell, B., Bradley, J., and H. Tschofenig, "Resource

Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/

RFC8707, February 2020, <https://www.rfc-editor.org/info/

rfc8707>. 

Richer, J., Ed., Jones, M., Bradley, J., Machulak, M.,

and P. Hunt, "OAuth 2.0 Dynamic Client Registration

Protocol", RFC 7591, DOI 10.17487/RFC7591, July 2015, 

<https://www.rfc-editor.org/info/rfc7591>. 

Appendix A. Document History

[[ To be removed from the final specification ]]

-03

Editorial updates

Mention that https is required for the PAR endpoint

Add some discussion of browser form posting an authz request vs.

the benefits of PAR for any application

Added text about motivations behind PAR - integrity,

confidentiality and early client auth

Better explain one-time use recommendation of the request_uri

Drop the section on special error responses for request objects

Clarify authorization request examples to say that the client

directs the user-agent to make the HTTP GET request (vs. making

the request itself)

¶

¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

http://www.iana.org/assignments/oauth-parameters
http://www.iana.org/assignments/oauth-parameters
https://www.rfc-editor.org/info/rfc6755
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc7591


-02

Update Resource Indicators reference to the somewhat recently

published RFC 8707

Added metadata in support of pushed authorization requests only

feature

Update to comply with draft-ietf-oauth-jwsreq-21, which requires 

client_id in the authorization request in addition to the 

request_uri

Clarified timing of request validation

Add some guidance/options on the request URI structure

Add the key used in the request object example so that a reader

could validate or recreate the request object signature

Update to draft-ietf-oauth-jwsreq-25 and added note regarding 

require_signed_request_object

-01

Use the newish RFC v3 XML and HTML format

Added IANA registration request for 

pushed_authorization_request_endpoint

Changed abbrev to "OAuth PAR"

-00 (WG draft)

Reference RFC6749 sec 2.3.1 for client secret basic rather than

RFC7617

further clarify that a request object JWT contains all the

authorization request parameters while client authentication

params, if applicable, are outside that JWT as regular form

encoded params in HTTP body

-01

List client_id as one of the basic parameters

Explicitly forbid request_uri in the processing rules

Clarification regarding client authentication and that public

clients are allowed

Added option to let clients register per-authorization request

redirect URIs

General clean up and wording improvements

¶

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

*

¶

¶

* ¶

*

¶

* ¶

¶

*

¶

*

¶

¶

* ¶

* ¶

*

¶

*

¶

* ¶



-00

first draft

Authors' Addresses

Torsten Lodderstedt

yes.com

Email: torsten@lodderstedt.net

Brian Campbell

Ping Identity

Email: bcampbell@pingidentity.com

Nat Sakimura

NAT.Consulting

Email: nat@sakimura.org

Dave Tonge

Moneyhub Financial Technology

Email: dave@tonge.org

Filip Skokan

Auth0

Email: panva.ip@gmail.com

¶

* ¶

mailto:torsten@lodderstedt.net
mailto:bcampbell@pingidentity.com
mailto:nat@sakimura.org
mailto:dave@tonge.org
mailto:panva.ip@gmail.com

	OAuth 2.0 Pushed Authorization Requests
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. Pushed Authorization Request Endpoint
	2.1. Request
	2.2. Successful Response
	2.3. Error Response

	3. "request" Parameter
	4. Authorization Request
	5. Authorization Server Metadata
	6. Client Metadata
	7. Security Considerations
	7.1. Request URI Guessing
	7.2. Open Redirection
	7.3. Request Object Replay
	7.4. Client Policy Change

	8. Acknowledgements
	9. IANA Considerations
	9.1. OAuth Authorization Server Metadata
	9.2. OAuth Dynamic Client Registration Metadata
	9.3. OAuth URI Registration

	10. Normative References
	11. Informative References
	Appendix A. Document History
	Authors' Addresses


