workgroup: Web Authorization Protocol
Internet-Draft: draft-ietf-oauth-par-04
Published: 18 September 2020

Intended Status: Standards Track
Expires: 22 March 2021

Authors: T. Lodderstedt B. Campbell N. Sakimura
yes.com Ping Identity NAT.Consulting
D. Tonge F. Skokan

Moneyhub Financial Technology Autho
OAuth 2.0 Pushed Authorization Requests

Abstract

This document defines the pushed authorization request endpoint,
which allows clients to push the payload of an OAuth 2.0
authorization request to the authorization server via a direct
request and provides them with a request URI that is used as
reference to the data in a subsequent call to the authorization
endpoint.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."
This Internet-Draft will expire on 22 March 2021.
Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Introductory Example
1.2. Conventions and Terminology
2. Pushed Authorization Request Endpoint
2.1 Request
2.2 Successful Response
2.3. Error Response
2.4. Management of Client Redirect URIs
3. The "request" Request Parameter
4. Authorization Request
5. Authorization Server Metadata
6. Client Metadata
7. Security Considerations
7.1 Request URI Guessing
7.2 Open Redirection
7.3 Request Object Replay
7.4 Client Policy Change
7.5. Request URI Swapping
8. Privacy Considerations
9. Acknowledgements

10. IANA Considerations
10.1. OAuth Authorization Server Metadata
10.2. OAuth Dynamic Client Registration Metadata
10.3. OAuth URI Registration

11. Normative References

12. Informative References

Appendix A. Document History

Authors' Addresses

1. Introduction

Pushed authorization requests (PAR), defined by this document,
enable OAuth [REC6749] clients to push the payload of an
authorization request directly to the authorization server in
exchange for a request URI value, which is used as reference to the
authorization request payload data in a subsequent call to the
authorization endpoint via the user-agent.

In OAuth [RFC6749] authorization request parameters are typically
sent as URI query parameters via redirection in the user-agent. This
is simple but also yields challenges:

*There is no cryptographic integrity and authenticity protection.
An attacker could, for example, modify the scope of access

requested or swap the context of a payment transaction by
changing scope values. Although protocol facilities exist to
enable clients or users to detect some such changes, preventing
modifications early in the process is a more robust solution.

*There is no mechanism to ensure confidentiality of the request
parameters. Although HTTPS is required for the authorization
endpoint, the request data passes through the user-agent in the
clear and query string data can inadvertently leak to web server
logs and to other sites via referer. The impact of which can be
significant, if personal identifiable information or other
regulated data is sent in the authorization request (which might
well be the case in identity, open banking, and similar
scenarios).

*Authorization request URLs can become quite large, especially in
scenarios requiring fine-grained authorization data, which might
cause errors in request processing.

JWT Secured Authorization Request (JAR) [I-D.ietf-oauth-jwsreq]
provides solutions for the security challenges by allowing OAuth
clients to wrap authorization request parameters in a request
object, which is a signed and optionally encrypted JSON Web Token
(IJWT) [REC7519]. In order to cope with the size restrictions, JAR
introduces the request_uri parameter that allows clients to send a
reference to a request object instead of the request object itself.

This document complements JAR by providing an interoperable way to
push the payload of an authorization request directly to the
authorization server in exchange for a request_uri value usable at
the authorization server in a subsequent authorization request.

PAR fosters OAuth security by providing clients a simple means for a
confidential and integrity protected authorization request. Clients
requiring an even higher security level, especially
cryptographically confirmed non-repudiation, are able to use JWT-
based request objects as defined by [I-D.ietf-ocauth-jwsreq] in
conduction with a pushed authorization request.

PAR allows the authorization server to authenticate the client
before any user interaction happens. The increased confidence in the
identity of the client during the authorization process allows the
authorization server to refuse illegitimate requests much earlier in
the process, which can prevent attempts to spoof clients or
otherwise tamper with or misuse an authorization request.

Note that HTTP POST requests to the authorization endpoint via the
user-agent, as described in Section 3.1 of [REC6749] and Section
3.1.2.1 of [0IDC], could also be used to cope with the request size

1.

limitations described above. However, it's only optional per
[REC6749] and, even when supported, it is a viable option for
traditional web applications but is prohibitively difficult to use
with mobile apps. Those apps typically invoke a custom tab with an
URL that is translated into a GET request. Using POST would require
the app to first open a web page under its control in the custom tab
that in turn would initiate the form POST towards the authorization
server. PAR is simpler to use and has additional security benefits
as described above.

1. Introductory Example

A client typically initiates an authorization request by directing
the user-agent to make an HTTP request like the following to the
authorization server's authorization endpoint (extra line breaks and
indentation for display purposes only):

GET /authorize?response_type=code
&client_id=s6BhdRkqt3&state=af@ifjsldkj
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb HTTP/1.1

Host: as.example.com

Such a request could instead be pushed directly to the authorization
server by the client as follows with a POST request to the pushed
authorization request endpoint (extra line breaks for display
purposes only):

POST /as/par HTTP/1.1

Host: as.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3FOMzo3RmpmcDBaQnIXS3REUmMJuZlZkbUl3

response_type=code
&client_id=s6BhdRkqt3&state=af0ifjsldkj
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

The authorization server responds with a request URI:

HTTP/1.1 201 Created
Cache-Control: no-cache, no-store
Content-Type: application/json

"request_uri": "urn:example:bwc4JK-ESCOwBaccl19le-Y1LTC2",
"expires_in": 90

The client uses the request URI value to create the subsequent
authorization request by directing the user-agent to make an HTTP
request to the authorization server's authorization endpoint like

the following (extra line breaks and indentation for display
purposes only):

GET /authorize?client_id=s6BhdRkqt3
&request_uri=urn%3Aexample%3Abwc4JK-ESCOwW8accl191le-Y1LTC2 HTTP/1.1
Host: as.example.com

1.2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFEC2119] [REC8174] when, and only when, they appear in all
capitals, as shown here.

This specification uses the terms "access token", "authorization
server", "authorization endpoint", "authorization request", "token
endpoint", and "client" defined by The OAuth 2.0 Authorization
Framework [RFC6749].

2. Pushed Authorization Request Endpoint

The pushed authorization request endpoint is an HTTP API at the
authorization server that accepts HTTP POST requests with parameters
in the HTTP request entity-body using the application/x-www-form-
urlencoded format with a character encoding of UTF-8 as described in
Appendix B of [REC6749]. The pushed authorization request endpoint
URL MUST use the "https" scheme.

Authorization servers supporting pushed authorization requests
SHOULD include the URL of their pushed authorization request
endpoint in their authorization server metadata document [RFC8414]
using the pushed_authorization_request_endpoint parameter as defined
in Section 5.

The endpoint accepts the authorization request parameters defined in
[REC6749] for the authorization endpoint as well as all applicable
extensions defined for the authorization endpoint. Some examples of
such extensions include PKCE [RFC7636], Resource Indicators
[REC8707], and OpenID Connect [0IDC]. The endpoint MAY also support
sending the set of authorization request parameters as a request
object according to [I-D.ietf-oauth-jwsreq] and Section 3.

The rules for client authentication as defined in [RFC6749] for
token endpoint requests, including the applicable authentication
methods, apply for the pushed authorization request endpoint as
well. If applicable, the token_endpoint_auth_method client metadata
[REC7591] parameter indicates the registered authentication method
for the client to use when making direct requests to the
authorization server, including requests to the pushed authorization

request endpoint. Similarly, the
token_endpoint_auth_methods_supported authorization server metadata
[REC8414] parameter lists client authentication methods supported by
the authorization server when accepting direct requests from
clients, including requests to the pushed authorization request
endpoint.

Due to historical reasons there is potential ambiguity regarding the
appropriate audience value to use when employing JWT client
assertion based authentication (defined in Section 2.2 of [RFC7523]
with private_key_jwt or client_secret_jwt authentication method
names per Section 9 of [0IDC]). To address that ambiguity the issuer
identifier URL of the authorization server according to [RFC8414]
SHOULD be used as the value of the audience. In order to facilitate
interoperability the authorization server MUST accept its issuer
identifier, token endpoint URL, or pushed authorization request
endpoint URL as values that identify it as an intended audience.

2.1. Request

A client sends the parameters that comprise an authorization request
directly to the pushed authorization request endpoint. A typical
parameter set might include: client_id, response_type, redirect_uri,
scope, state, code_challenge, and code_challenge_method as shown in
the example below. However, the pushed authorization request can be
composed of any of the parameters applicable for use at
authorization endpoint including those defined in [RFC6749] as well
as all applicable extensions. The request_uri authorization request
parameter is one exception, which MUST NOT be provided.

The request also includes, as appropriate for the given client, any
additional parameters necessary for client authentication (e.g.,
client_secret, or client_assertion and client_assertion_type). Such
parameters are defined and registered for use at the token endpoint
but are applicable only for client authentication. When present in a
pushed authorization request, they are relied upon only for client
authentication and are not germane to the authorization request
itself. Any token endpoint parameters that are not related to client
authentication have no defined meaning for a pushed authorization
request. The client_id parameter is defined with the same semantics
for both authorization requests and requests to the token endpoint;
as a required authorization request parameter, it is similarly
required in a pushed authorization request.

The client adds the parameters in x-www-form-urlencoded format with
a character encoding of UTF-8 as described in Appendix B of
[REC6749] to the body of an HTTP POST request. If applicable, the
client also adds its authentication credentials to the request

header or the request body using the same rules as for token
endpoint requests.

This is illustrated by the following example (extra line breaks in
the message-body for display purposes only):

POST /as/par HTTP/1.1

Host: as.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3FOMzo3RmpmcDBaQnIxXS3REUMJuzlZkbul3

response_type=code&state=af0ifjsldkj&client_id=s6BhdRkqt3
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fch
&code_challenge=K2-1tc83acc4hOcOw6ESC_rEMTJI3bww-uCHaoeK1t8U
&code_challenge_method=S256&scope=account-information

The authorization server MUST process the request as follows:

1. Authenticate the client in the same way as at the token
endpoint.

2. Reject the request if the request_uri authorization request
parameter is provided.

3. Validate the pushed request as it would an authorization
request sent to the authorization endpoint. For example, the
authorization server checks whether the redirect URI matches
one of the redirect URIs configured for the client and also
checks whether the client is authorized for the scope for which
it is requesting access. This validation allows the
authorization server to refuse unauthorized or fraudulent
requests early. The authorization server MAY omit validation
steps that it is unable to perform when processing the pushed
request, however such checks MUST then be performed at the
authorization endpoint.

The authorization server MAY allow clients with authentication
credentials to establish per-authorization request redirect URIs
with every pushed authorization request. Described in more detail in
Section 2.4, this is possible since, in contrast to [RFC6749], this
specification gives the authorization server the the ability to
authenticate clients and validate client requests before the actual
authorization request is performed.

2.

2.

Successful Response

If the verification is successful, the server MUST generate a
request URI and return a JSON response with the following members at
the top level with 201 Created HTTP response code.

*request_uri : The request URI corresponding to the authorization
request posted. This URI is used as reference to the respective
request data in the subsequent authorization request only. The
way the authorization process obtains the authorization request
data is at the discretion of the authorization server and out of
scope of this specification. There is no need to make the
authorization request data available to other parties via this
URI.

*expires_in : A JSON number that represents the lifetime of the
request URI in seconds as a positive integer. The request URI
lifetime is at the discretion of the authorization server but
will typically be relatively short (e.g., between 5 and 600
seconds).

The format of the request_uri value is at the discretion of the
authorization server but it MUST contain some part generated using a
cryptographically strong pseudorandom algorithm such that it is
computationally infeasible to predict or guess a valid value. The
authorization server MAY construct the request_uri value using the
form urn:ietf:params:oauth:request_uri:<reference-value> with
<reference-value> as the random part of the URI that references the
respective authorization request data. The string representation of
a UUID as a URN per [REC4122] is also an option for authorization
servers to construct request_uri values.

The request_uri value MUST be bound to the client that posted the
authorization request.

The following is an example of such a response:

HTTP/1.1 201 Created
Content-Type: application/json
Cache-Control: no-cache, no-store

"request_uri":
"urn:ietf:params:oauth:request_uri:bwc4JK-ESCOw8accl9le-Y1LTC2",
"expires_in": 60

2.

3. Error Response

The authorization server returns an error response with the same
format as is specified for error responses from the token endpoint
in Section 5.2 of [REC6749] using the appropriate error code from
therein or from Section 4.1.2.1 of [RFC6749]. Error codes defined by
OAuth extension can also be used when such an extension is involved
in the initial processing of authorization request that was pushed.
Since initial processing of the pushed authorization request does
not involve resource owner interaction, error codes related to user
interaction, such as consent_required defined by [0IDC], are never
returned.

If the client is required to use signed request objects, either by
authorization server or client policy (see [I-D.ietf-oauth-jwsreq],
section 10.5), the authorization server MUST only accept requests
complying with the definition given in Section 3 and MUST refuse any
other request with HTTP status code 400 and error code
invalid_request.

In addition to the above, the pushed authorization request endpoint
can also make use of the following HTTP status codes:

*405: If the request did not use the POST method, the
authorization server responds with an HTTP 405 (Method Not
Allowed) status code.

*413: If the request size was beyond the upper bound that the
authorization server allows, the authorization server responds
with an HTTP 413 (Payload Too Large) status code.

*429: If the number of requests from a client during a particular
time period exceeds the number the authorization server allows,
the authorization server responds with an HTTP 429 (Too Many
Requests) status code.

The following is an example of an error response from the pushed
authorization request endpoint:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-cache, no-store

"error": "invalid_request",
"error_description":
"The redirect_uri is not valid for the given client"

2.

4.

Management of Client Redirect URIs

While OAuth 2.0 [RFC6749] allows clients to use unregistered
redirect_uri values in certain circumstances, or for the
authorization server to apply its own matching semantics to the
redirect_uri value presented by the client at the authorization
endpoint, the OAuth Security BCP [I-D.ietf-ocauth-security-topics] as
well as OAuth 2.1 [I-D.ietf-oauth-v2-1] require an authorization
server exactly match the redirect_uri parameter against the set of
redirect URIs previously established for a particular client. This
is a means for early detection of client impersonation attempts and
prevents token leakage and open redirection. As a downside, this can
make client management more cumbersome since the redirect URI is
typically the most volatile part of a client policy.

The exact matching requirement MAY be relaxed when using pushed
authorization requests for clients that have established
authentication credentials with the authorization server. This is
possible since, in contrast to a traditional authorization request,
the authorization server authenticates the client before the
authorization process starts and thus ensures it is interacting with
the legitimate client. The authorization server MAY allow such
clients to specify redirect_uri values that were not previously
registered with the authorization server. This will give the client
more flexibility (e.g. to mint distinct redirect URI values per
authorization server at runtime) and can simplify client management.
It is at the discretion of the authorization server to apply
restrictions on supplied redirect_uri values, e.g. the authorization
server MAY require a certain URI prefix or allow only a query
parameter to vary at runtime.

Note: The ability to set up transaction specific redirect URIs is
also useful in situations where client ids and corresponding
credentials and policies are managed by a trusted 3rd party, e.g.
via client certificates containing client permissions. Such an
externally managed client could interact with an authorization
server trusting the respective 3rd party without the need for an
additional registration step.

The "request" Request Parameter

Clients MAY use the request parameter as defined in JAR [I-D.ietf-
oauth-jwsreq] to push a request object JWT to the authorization
server. The rules for processing, signing, and encryption of the
request object as defined in JAR [I-D.ietf-oauth-jwsreq] apply. When
the application/x-www-form-urlencoded HTTP entity-body request
parameter is used, the request object MUST contain all the
authorization request parameters as claims of the JWT. Additional
request parameters as required by the given client authentication

method are to be included as 'application/x-www-form-urlencoded'
parameters in the HTTP request entity-body (e.g. Mutual TLS client
authentication [REC8705] uses the client_id HTTP request parameter
while JWT assertion based client authentication [REC7523] uses
client_assertion and client_assertion_type).

The following is an example of a pushed authorization request using
a signed request object. The client is authenticated by its client
secret using the HTTP Basic Authentication scheme specified in
Section 2.3.1 of [REC6749] (extra line breaks for display purposes
only):

POST /as/par HTTP/1.1

Host: as.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3FOMzo3RmpmcDBaQnIXS3REUmMJuzlzZkbul3

request=eyJraWQiOiJrMmJkYyISImFsZyI6I1JTMjuU2In0.eyJpc3Mi0iJzNkJoZ
FIrcXQzIiwiYXVkIjoiaHROCHM6LY9zZXJ2ZXIuZXhhbXBsZS5]jb20iLCJyZXNwh2
5zZV90eXB1IjoiY29kZSIsImNsaWVudF9pZCI6InM2QmhkUmtxdDMiLCJyZWRpcmV
jdF91cmkiOiJodHRwczovL2NsawVvudC51eGFtcGx1Lm9yZy9jYiIsInNjb3BlIjoi
YW1zIiwic3RhdGUi0iJhZjBpZmpzbGRraiIsImNvZGVfY2hhbGx1bmdlIjoiSzItb
HRjODNhY2M0aDBjOXc2RVNDX3JFTVRKM2J3dy11Q0hhb2VLMXQ4VSISImMNVZGVTY2
hhbGx1bmd1X211dGhvZCI6I1IMyNTYifQ.049ffUXRPANKN3TRYDVbEYVriCeAL64u
W4FenV3n9wlaFIRHeFblzv-wlEtMm8-tusGxeE9z3ek6FxkhvvLEQEp]jthXnyXqqy
Jfq3k9GSf5ay74ml_OD61HE1hy-kVWg7SgoPQ-GB1xQINRhF3EKS7UZIrUHbFUCFO
MsRLbmtIvalLYbQH_Ef3UkDLOGiU7exhVFTPeyQUTMIFF-u3K-zX-FO05_brYxNGLh
Vk01G8MjqQnn2HpAz1Bd5179WTzTYhKmhTiwzH-qlBBI_9GLJIJmE3KOipko9TfSpa2
6H4J01MyfZF1OPCJIwkBYySOxZFJ2sTo3Gkk488RQohhgt1I®onw
&client_id=s6BhdRkqt3

The authorization server MUST take the following steps beyond the
processing rules defined in Section 2.1:

1. If applicable, decrypt the request object as specified in JAR
[I-D.ietf-oauth-jwsreq], section 6.1.

2. Validate the request object signature as specified in JAR [I-
D.ietf-oauth-jwsreq], section 6.2.

3. If the client has authentication credentials established with
the authorization server, reject the request if the
authenticated client_id does not match the client_id claim in
the request object. Additionally requiring the iss claim to
match the client_id is at the discretion of authorization
server.

The following RSA key pair, represented in JWK [REC7517] format, can
be used to validate or recreate the request object signature in the

above example (extra line breaks and indentation within values for
display purposes only):

"kty": "RSA",

"kid":"k2bdc",

"n": "yoLqv4fCp6Ei-u2-ZCKg83YVbFEK6JIMs_pSj76eMkddWRUWX2aBKGHALK1E
5P7_vn__PCKZWePt3vGkB6ePgzAFUO8BNmKemwE5bQIOe6kIChtt_6KzT50a
aXDFI6qCLJImk51Cc4VYFaxggevMncYrzaW_50mZ1yGSFIQzLYP8bijAHGV]
dEFgZaZEN91lsn_GdWLaJpHrB3RO1S50E45wxr1g9xMncVb8qDPuXZarvghL
LOHZzOuYRadBJVoWZowDNTpKpk2Rk1Z7QaB07XDv3uR7s_sf2g-bAjSYXYUG
sgkNA9b3xVvw53am_UzZ3tZbFTIh557JICWKH1IW]j5uzeJXaw",

"e": "AQAB",

"d": "LNwG_pCKrwowALpCpRdAcOK1SVqylSurZhE6CpkRiE9CcpDYGKIKO9CXP1XOL
Z7gxXuQc8MdMqRQZTnAwgd7HHOBGgNCr ruV3NewI -XQVOckldTjgNfOTz1V
Rs-JE-57KAXI3YBIhu-_0YpIDzdk_wBuAk661Svn@GsPQe7m9DoxdzenQu9
0_soewUh1PzRrTHOEeIqQYI715rwI3TYaSzoWBmMEPD2fICyj18FFOMPyY_SQz
k3noVUUIzfzLnnJiWy_p63QBCMgjROSHHAMNI4z9iVpIwJIWQ3j0O5n_21C2-
cSgwjmKsFzDBbQNJc7gMGINGEssJUwgGIxz1eAUFfOw4YAQ",

"gi": "J-mGOsSwWR4FTy3atrcQ7ddOhhYnl1E9QndN-
-SDG4EQOORNFj6wWIefCvwIc4
7hCtVeFnCTPYJNc_JyV-mU-9v1zS5GSNuyR5qdpsMZXUMpEVQcwKt23ffPZ
YGaqfKyEesmf_Wi8fFcE68HOREQjnniKrXm7w2-IuG_IrVJA90x-uU",

"q": "4hlMYAGa®dvogdK1jnxQ7J_Lgpgi99e-AeoFvoYpMPhthChTzwFZ091Qmuo
BpMqVQTws_s7vWGmt 7ZAB3ywkur fOpV7BDOfweJiUzrwk4KJjxtmP_auuxr
jvm3s2FUGN6TOWRY9Z8Hj9A7C72DnYCjuziJQMYCWDsZ8-d-L1la-s",

"p": "5sSd9Er3I2FFT9R-gy84_oakEyCmgw036B_nfYEEOCWpSvi2z7UcIVK3bSEL
5WCW6BNgB3HDWhg8aYPirwQngmOKOmX1E - 4XM1OWWZ - rP3XjYpQeSOSnrus
LFVWsAzi-FX7B0OgqBibSAXLAEGXcXa44108iec_bPD3xduq5V_1YoE",

"dg": "Nz2PF3XM6bEc4XsluKZ070ErdYdKgdtIJReUR7Rno_t0ZpejwlPGBYVW19
zpAeYtCT82jxroB2XghLxGeMXEPQpsz2qTKLSe4BgHY2m12uxSDGdjcsrbb
NoKUKaN1CuyZszhwl1nOAT_bEN14bJgQj_FhOUEsQj5YBBUJt5gr_k",

"dp": "Zc877jirkkLOtyTs2vxyNe9KnMNAmOidlUc2tE_-O@gAL4Lpol1hSwWKCtKwe
ZJ-gkqt1hT-dwNx_0Xtg_-NXsadMRMwInzBMYwYAT jApUkfqABcOyUCJJ13
KozRCugf1WXkU9GZAH2_x8PUopdNUEa70ISowPRhO4HANKX4TkjWAE"

4. Authorization Request

The client uses the request_uri value returned by the authorization
server to build an authorization request as defined in [I-D.ietf-
oauth-jwsreq]. This is shown in the following example where the
client directs the user-agent to make the following HTTP request
(extra line breaks and indentation for display purposes only):

GET /authorize?client_id=s6BhdRkqt3&request_uri=urn%3Aietf%3Aparams
%3Aoauth%3Arequest_uri%3Abwc4JK-ESCOw8acc191e-Y1LTC2 HTTP/1.1
Host: as.example.com

Since parts of the authorization request content, e.g. the
code_challenge parameter value, are unique to a particular
authorization request, the client MUST only use a request_uri value
once. Authorization servers SHOULD treat request_uri values as one-
time use but MAY allow for duplicate requests due to a user
reloading/refreshing their user-agent.

The authorization server MUST validate authorization requests
arising from a pushed request as it would any other authorization
request. The authorization server MAY omit validation steps that it
performed when the request was pushed, provided that it can validate
that the request was a pushed request, and that the request or the
authorization server's policy has not been modified in a way that
would affect the outcome of the omitted steps.

Authorization server policy MAY dictate, either globally or on a
per-client basis, that pushed authorization requests are the only
means for a client to pass authorization request data. In this case,
the authorization server will refuse, using the invalid_request
error code, to process any request to the authorization endpoint
that does not have a request_uri parameter with a value obtained
from the pushed authorization request endpoint.

Note: authorization server and clients MAY use metadata as defined
in Section 5 and Section 6 to signal the desired behavior.

Authorization Server Metadata

The following authorization server metadata [RFC8414] parameters are
introduced to signal the server's capability and policy with respect
to pushed authorization requests.

pushed_authorization_request_endpoint The URL of the pushed
authorization request endpoint at which a client can post an
authorization request in exchange for a request_uri value usable
at the authorization server.

require_pushed_authorization_requests Boolean parameter indicating
whether the authorization server accepts authorization request
data only via the pushed authorization request method. If
omitted, the default value is false.

Client Metadata

The Dynamic Client Registration Protocol [RFC7591] defines an API
for dynamically registering OAuth 2.0 client metadata with
authorization servers. The metadata defined by [RFC7591], and
registered extensions to it, also imply a general data model for
clients that is useful for authorization server implementations even
when the Dynamic Client Registration Protocol isn't in play. Such

7.

7.

7.

7.

7.

7.

implementations will typically have some sort of user interface
available for managing client configuration. The following client
metadata parameter is introduced by this document to indicate

whether pushed authorization requests are reqgired for the given
client.

require_pushed_authorization_requests Boolean parameter indicating
whether the only means of initiating an authorization request the
client is allowed to use is a pushed authorization request. If
omitted, the default value is false.

Security Considerations

1. Request URI Guessing

An attacker could attempt to guess and replay a valid request URI
value and try to impersonate the respective client. The
authorization server MUST consider the considerations given in JAR

[I-D.ietf-oauth-jwsreq], section 10.2, clause (d) on request URI
entropy.

2. Open Redirection

An attacker could try register a redirect URI pointing to a site
under his control in order to obtain authorization codes or launch
other attacks towards the user. The authorization server MUST only

accept new redirect URIs in the pushed authorization request from
authenticated clients.

3. Request Object Replay

An attacker could replay a request URI captured from a legitimate
authorization request. In order to cope with such attacks, the
authorization server SHOULD make the request URISs one-time use.

4. Client Policy Change

The client policy might change between the lodging of the request
object and the authorization request using a particular request
object. It is therefore recommended that the authorization server
check the request parameter against the client policy when
processing the authorization request.

5. Request URI Swapping

An attacker could capture the request URI from one request and then
substitute it into a different authorization request. For example,
in the context of OpenID Connect, an attacker could replace a
request URI asking for a high level of authentication assurance with
one that requires a lower level of assurance. Clients SHOULD make

10.

10

use of PKCE, a unique state parameter, or the OIDC "nonce" parameter
in the pushed request object to prevent this attack.

Privacy Considerations

OAuth 2.0 is a complex and flexible framework with broad ranging
privacy implications due to the very nature of it having one entity
intermediate user authorization to data access between two other
entities. The privacy considerations of all of OAuth are beyond the
scope of this document, which only defines an alternative way of
initiating one message sequence in the larger framework. Using
pushed authorization requests, however, may improve privacy by
reducing the potential for inadvertent information disclosure due to
passing authorization request data directly between client and
authorization server over a secure connection in the message-body of
an HTTP request rather than in the query component of a URL that
passes through the user-agent in the clear.

Acknowledgements

This specification is based on the work towards Pushed Request
Object conducted at the Financial-grade API working group at the
OpenID Foundation. We would like to thank the members of the WG for
their valuable contributions.

We would like to thank Vladimir Dzhuvinov, Aaron Parecki, Justin
Richer, Sascha Preibisch, Daniel Fett, Michael B. Jones, Annabelle
Backman, Joseph Heenan, Sean Glencross, Maggie Hung, Neil Madden,
Karsten Meyer zu Selhausen, and Takahiko Kawasaki for their valuable
feedback on this draft.

IANA Considerations

.1. OAuth Authorization Server Metadata

This specification requests registration of the following values in
the IANA "OAuth Authorization Server Metadata" registry of
[IANA.OAuth.Parameters] established by [RFC8414].

Metadata Name: pushed_authorization_request_endpoint

Metadata Description: URL of the authorization server's pushed
authorization request endpoint

Change Controller: IESG

Specification Document(s): Section 5 of [[this document]]

Metadata Name: require_pushed_authorization_requests

Metadata Description: Indicates whether the authorization server
accepts authorization request only via the pushed authorization
request method.

Change Controller: IESG

Specification Document(s): Section 5 of [[this document]]

https://bitbucket.org/openid/fapi/src/master/Financial_API_Pushed_Request_Object.md
https://bitbucket.org/openid/fapi/src/master/Financial_API_Pushed_Request_Object.md

10.

10.

11.

2. OAuth Dynamic Client Registration Metadata

This specification requests registration of the following value in
the IANA "OAuth Dynamic Client Registration Metadata" registry of
[IANA.OAuth.Parameters] established by [RFC7591].

Metadata Name: require_pushed_authorization_requests

Metadata Description: Indicates whether the client is required to
use the pushed authorization request method to initiate
authorization requests.

Change Controller: TIESG

Specification Document(s): Section 6 of [[this document]]

3. OAuth URI Registration

This specification requests registration of the following value in
the "OAuth URI" registry of [IANA.OAuth.Parameters] established by
[RFC6755].

URN: urn:ietf:params:oauth:request_uri:

Common Name: A URN Sub-Namespace for OAuth Request URIs.
Change Controller: IESG

Specification Document(s): Section 2.2 of [[this document]]

Normative References

[I-D.ietf-oauth-jwsreq]
Sakimura, N., Bradley, J., and M. Jones, "The OAuth 2.0
Authorization Framework: JWT Secured Authorization
Request (JAR)", Work in Progress, Internet-Draft, draft-
ietf-oauth-jwsreq-30, 10 September 2020, <https://
tools.ietf.org/html/draft-ietf-oauth-jwsreq-30>.

[0IDC] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,
and C. Mortimore, "OpenID Connect Core 1.0 incorporating
errata set 1", 8 November 2014, <http://openid.net/specs/
openid-connect-core-1_0.html>.

[RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
Authorization Server Metadata", RFC 8414, DOI 10.17487/
RFC8414, June 2018, <https://www.rfc-editor.org/info/
rfc8414>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-30
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414

12.

[RFC8174]

[RFC6749]

RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://
www.rfc-editor.org/info/rfc6749>.

Informative References

[I-D.ietf-oauth-v2-1] Hardt, D., Parecki, A., and T. Lodderstedt,

[RFC8705]

[RFC7636]

[RFC4122]

"The OAuth 2.1 Authorization Framework", Work in
Progress, Internet-Draft, draft-ietf-oauth-v2-1-00, 30
July 2020, <https://tools.jetf.org/html/draft-ietf-oauth-
v2-1-00>.

Campbell, B., Bradley, J., Sakimura, N., and T.
Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication
and Certificate-Bound Access Tokens", RFC 8705, DOI
10.17487/RFC8705, February 2020, <https://www.rfc-
editor.org/info/rfc8705>.

Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof
Key for Code Exchange by OAuth Public Clients", RFC 7636,
DOI 10.17487/RFC7636, September 2015, <https://www.rfc-
editor.org/info/rfc7636>.

Leach, P., Mealling, M., and R. Salz, "A Universally
Unique IDentifier (UUID) URN Namespace'", RFC 4122, DOI
10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>.

[IANA.OAuth.Parameters] IANA, "OAuth Parameters", <http://

[RFC8707]

[RFC7523]

www.iana.org/assignments/oauth-parameters>.

Campbell, B., Bradley, J., and H. Tschofenig, "Resource
Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/
RFC8707, February 2020, <https://www.rfc-editor.org/info/
rfc8707>.

Jones, M., Campbell, B., and C. Mortimore, "JSON Web
Token (JWT) Profile for OAuth 2.0 Client Authentication
and Authorization Grants", RFC 7523, DOI 10.17487/

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://tools.ietf.org/html/draft-ietf-oauth-v2-1-00
https://tools.ietf.org/html/draft-ietf-oauth-v2-1-00
https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
http://www.iana.org/assignments/oauth-parameters
http://www.iana.org/assignments/oauth-parameters
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707

RFC7523, May 2015, <https://www.rfc-editor.org/info/
rfc7523>.

[I-D.ietf-oauth-security-topics]
Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
"OAuth 2.0 Security Best Current Practice", Work in
Progress, Internet-Draft, draft-ietf-oauth-security-
topics-15, 5 April 2020, <https://tools.ietf.org/html/
draft-ietf-oauth-security-topics-15>.

[RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/
RFC7517, May 2015, <https://www.rfc-editor.org/info/
rfc7517>.

[RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
<https://www.rfc-editor.org/info/rfc7519>.

[RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M.,
and P. Hunt, "OAuth 2.0 Dynamic Client Registration
Protocol", RFC 7591, DOI 10.17487/RFC7591, July 2015,
<https://www.rfc-editor.org/info/rfc7591>.

[RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-
Namespace for OAuth", RFC 6755, DOI 10.17487/RFC6755,
October 2012, <https://www.rfc-editor.org/info/rfc6755>.

Appendix A. Document History
[[To be removed from the final specification]]
-04
*Edits to address WGLC comments
*Replace I-D.ietf-oauth-mtls reference with now published RFC8705

*Moved text about redirect URI management from introduction into
separate section

-03
*Editorial updates
*Mention that https is required for the PAR endpoint

*Add some discussion of browser form posting an authz request vs.
the benefits of PAR for any application

https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7523
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc6755

*Added text about motivations behind PAR - integrity,
confidentiality and early client auth

*Better explain one-time use recommendation of the request_uri
*Drop the section on special error responses for request objects

*Clarify authorization request examples to say that the client
directs the user-agent to make the HTTP GET request (vs. making
the request itself)

-02

*Update Resource Indicators reference to the somewhat recently
published RFC 8707

*Added metadata in support of pushed authorization requests only
feature

*Update to comply with draft-ietf-oauth-jwsreq-21, which requires
client_id in the authorization request in addition to the
request_uri

*Clarified timing of request validation
*Add some guidance/options on the request URI structure

*Add the key used in the request object example so that a reader
could validate or recreate the request object signature

*Update to draft-ietf-oauth-jwsreq-25 and added note regarding
require_signed_request_object

-01

*Use the newish RFC v3 XML and HTML format
*Added IANA registration request for
pushed_authorization_request_endpoint
*Changed abbrev to "OAuth PAR"

-00 (WG draft)

*Reference RFC6749 sec 2.3.1 for client secret basic rather than
RFC7617

*further clarify that a request object JWT contains all the
authorization request parameters while client authentication
params, if applicable, are outside that JWT as regular form
encoded params in HTTP body

-01

*List client_id as one of the basic parameters

*Explicitly forbid request_uri in the processing rules
*Clarification regarding client authentication and that public
clients are allowed

*Added option to let clients register per-authorization request
redirect URIs

*General clean up and wording improvements

-00
*first draft
Authors' Addresses

Torsten Lodderstedt
yes.com

Email: torsten@lodderstedt.net

Brian Campbell
Ping Identity

Email: bcampbell@pingidentity.com

Nat Sakimura
NAT.Consulting

Email: nat@sakimura.org

Dave Tonge
Moneyhub Financial Technology

Email: dave@tonge.org

Filip Skokan
Autho

Email: panva.ip@gmail.com

mailto:torsten@lodderstedt.net
mailto:bcampbell@pingidentity.com
mailto:nat@sakimura.org
mailto:dave@tonge.org
mailto:panva.ip@gmail.com

	OAuth 2.0 Pushed Authorization Requests
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Introductory Example
	1.2. Conventions and Terminology

	2. Pushed Authorization Request Endpoint
	2.1. Request
	2.2. Successful Response
	2.3. Error Response
	2.4. Management of Client Redirect URIs

	3. The "request" Request Parameter
	4. Authorization Request
	5. Authorization Server Metadata
	6. Client Metadata
	7. Security Considerations
	7.1. Request URI Guessing
	7.2. Open Redirection
	7.3. Request Object Replay
	7.4. Client Policy Change
	7.5. Request URI Swapping

	8. Privacy Considerations
	9. Acknowledgements
	10. IANA Considerations
	10.1. OAuth Authorization Server Metadata
	10.2. OAuth Dynamic Client Registration Metadata
	10.3. OAuth URI Registration

	11. Normative References
	12. Informative References
	Appendix A. Document History
	Authors' Addresses

